

# LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

**NOTICE**  
**PORTIONS OF THIS REPORT ARE ILLEGIBLE.**  
**It has been reproduced from the best**  
**available copy to permit the broadest**  
**possible availability.**

LA-UR-83-964

DE83 009909

TITLE

THE REACTION OF FLUORINE AND CHLORINE ATOMS WITH FORMALDEHYDE AND  
DEUTERO-FORMALDEHYDE

AUTHOR(S)

N. S. Nogar, CHM-2  
D. M. Fasano, University of Nebraska

MASTER

SUBMITTED TO

Proceedings of Optics '83 meeting to be held  
at Los Alamos, April 11-15, 1983, Santa Fe, NM

#### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this document, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy

Los Alamos

Los Alamos National Laboratory  
Los Alamos, New Mexico 87545

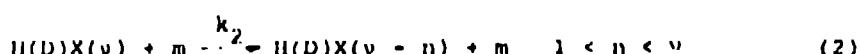
380155

The reaction of fluorine and chlorine atoms with formaldehyde and deutero-formaldehyde\*

N. S. Nogar  
Chemistry Division  
Los Alamos National Laboratory  
Los Alamos, New Mexico 87545

D. M. Fasano\*\*  
Department of Chemistry  
University of Nebraska  
Lincoln, Nebraska 68588

Introduction


As a result of recent work, gas-phase metathetical reactions of formaldehyde represent a particularly well-studied group of chemical reactions<sup>1-8</sup>. A wide variety of studies have been conducted including real-time<sup>1,3-8</sup> and relative-rate kinetics<sup>9</sup>, product energy distributions<sup>2,10,11</sup> and theoretical calculations<sup>12</sup>. The interest prompting these studies is two-fold. First, the removal of reactive species, such as atomic chlorine, from the stratosphere via reaction with formaldehyde could have a tremendous impact on the ecological effects of anthropogenically released substances. Secondly, these reactions are generally quite fast and are of considerable interest from a dynamic point of view.

Other interest in formaldehyde chemistry concerns the microscopic details of its reactions. The reactions of chlorine and fluorine atoms with formaldehyde are highly exothermic ( $\Delta H = -15$  and  $-49$  kcal mole<sup>-1</sup>, respectively) and the energy is released primarily as internal energy in the produce hydrogen halide.



Detailed state distributions have been determined for the excited hydrogen halide formed in reactions (1)<sup>2,10,11</sup>. The results of these experiments can be summarized as follows: the highest observed HF energies coincide with the expected thermochemical limits ( $v = 4$ ,  $J = 14$ ) while the maximum population was found in  $v = 3$ ; significant vibrational excitation was also found in the  $v_1$  mode of HCO; and vibrational distributions were found to yield linear surprisals using either three-body models or those incorporating HCO rotation, thereby permitting an estimate of the ground state population of the product that is initially formed.

We have undertaken a study of reactions (1a) - (1d) using infrared multiple photon dissociation (MPD) to produce fluorine atoms, and infrared chemiluminescence to monitor the rate of reaction. The rise in infrared luminescence with time due to reactions (1) is followed by a decay due to radiative and (predominantly) collisional deactivation:



where  $k_2$  is a mole-fraction weighted rate constant. A deconvolution of the rising and falling portions allows independent determinations of the rate constant (1a - 1d), and (2). This technique was introduced by Flynn<sup>13</sup>, Whittig<sup>14</sup>, Houston<sup>15</sup>, and their co-workers, and has been extensively used by Houston and Heidner et al<sup>16</sup>. The reactions can be carried out under "wall-less" conditions, using inert free radical precursors. Further, the use of infrared lasers as the photolytic source provides more chemical specificity than does conventional ultraviolet photolysis. There is usually less problem with simultaneous

\*Work performed under the auspices of US DOE.

\*\*Current Address: Rohm & Haas Co.  
Norristown & McLean Rds  
Spring House, PA 19477

photolysis of the reactant molecule, and negligible likelihood of producing electronically excited fragments from the photolysis.

#### Experimental

The experimental technique has been described previously<sup>1,17</sup>. Briefly, the fluorine atoms were produced via infrared multiphoton dissociation of a precursor molecule. The photolysis source was a grating tuned CO<sub>2</sub> TEA laser based on a Tachisto head. The output was restrained to be approximately circular by an intracavity iris, and consisted of a 45-ns spike (FWHM) containing >80% of the pulse intensity, followed by a low intensity tail of ~0.5  $\mu$ s (determined with a photon drag detector). Repetition rates were typically 0.5 Hz, with pulse energies of ~0.8 J at  $\lambda = 10.591 \mu\text{m}$ , and ~0.2 J at  $\lambda = 9.201 \mu\text{m}$ . Shot to shot energy fluctuations were  $\pm 5\%$ .

A 200 mm AR-coated Ge lens was used to direct the beam into the photolysis cell, which was a Pyrex flow tube (2.5 cm  $\phi \times 10 \text{ cm}$ ) equipped with O-ring mounted NaCl entrance and exit windows, and epoxy mounted CaF<sub>2</sub> viewing windows. Flow rate and pressure were controlled by Teflon metering valves. Infrared fluorescence was viewed at right angles to the laser beam by focusing (6 cm CaF<sub>2</sub> lens) it onto an InSb (SBRC) detector cooled to 77 K. Interference filters were used to increase S/N and to isolate the relevant signal. The detector signal was coupled to a matched preamp (SBPC) and fed into a Tektronix amplifier (7A18) for further amplification. This signal was then digitized by a waveform recorder (Biomation 805) and averaged on an interfaced Z-80A based microcomputer<sup>18</sup>. Overall response time of the system was < 500 ns. A schematic of the experimental apparatus is shown in Fig. 1.

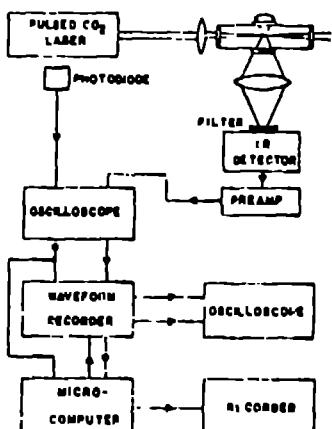
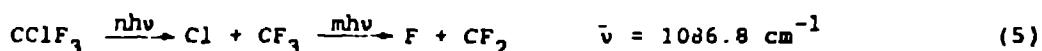
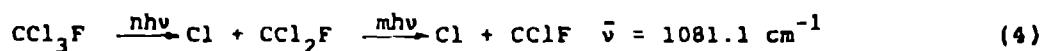



Figure 1. Schematic of the experimental apparatus.



Samples were prepared by freezing the halogen source (SF<sub>6</sub> or CClF<sub>3</sub>) into an isolated cold finger of a 3 L Pyrex bulb which had been conditioned prior to use. Formaldehyde and buffer gas (if any) were then added sequentially and the SF<sub>6</sub> was allowed to warm prior to mixing. The large volume to surface ratio of the bulbs, and the conditioning procedure—exposure to high formaldehyde pressures—insured that the amount of formaldehyde which polymerized on the surface was minimal. Derived rate constants were found to be independent of the time between sample mixing and the experimental determination, again indicating that formaldehyde polymerization was minimal. All gas handling was carried out on a grease free glass vacuum line capable of vacuum better than  $5 \times 10^{-6} \text{ Torr}$ . Pressures were monitored by a Validyne differential pressure transducer in sample preparation and a Barocel capacitance manometer on the flow cell.

The monomeric formaldehyde was prepared from the isotopic paraformaldehyde (H<sub>2</sub>CO-Aldrich, D<sub>2</sub>CO-Merck, 98% D) by the method of Spence and Wild.<sup>19</sup> The formaldehyde monomer was then purified by vacuum distillation from 174 K to 77 K. Storage at 77 K prevented polymerization. N<sub>2</sub> and Ar (Matheson) were used without further purification. CClF<sub>3</sub> and SF<sub>6</sub> (PCR) were subjected to repetitive freeze-pump-thaw cycles.

380155

Results

$SF_6$  and  $CCl_3F$  were the primary fluorine and chlorine atom sources, respectively.  $CCl_3F$ , was used to simultaneously produce chlorine and fluorine atoms. The primary and secondary photolysis schemes are shown below:



Previous results have shown that the halogen atoms produced in these processes to be of near thermal energy. Reactions 1a - 1d are thus carried out very near the ambient translational temperature ( $T = 295 \pm 5 \text{ K}$ ).

Pseudo-first-order conditions ( $[F]_0; [Cl] \ll [H_2CO]; [D_2CO]$ ) were maintained throughout all experiments. For  $SF_6$  it is estimated that < 1% dissociation occurred within the focal volume of the  $CO_2$  laser<sup>17</sup>. The amount of dissociation for the freon precursors is expected to be less. In all cases  $[H_2CO]/[X]_0 > 15$ , thus, satisfying the criterion for pseudo-first-order behavior.

The rise and fall of the infrared emission signal from the excited hydrogen halide can be shown to follow:

$$I(t) = \frac{ck'}{k_r^r - k_r^r} [\exp(-k_r^r t) - \exp(-k_r^r t)] \quad (6)$$

where  $k' = k/[H_2CO]$  and  $k$  is the bimolecular rate constant of the reaction being studied. The rising and decaying rates for the hydrogen halide fluorescence can be obtained by fitting Eq. (6) to the experimental fluorescence traces using standard methods.

The experimental data is shown in Figs. 2 - 5 for, respectively:  $Cl + H_2CO$ ,  $F + H_2CO$ ,  $Cl + D_2CO$ , and  $F + D_2CO$ . The data is displayed as  $k'$  vs  $H(D)_2CO$  concentrations so the slope yields the bimolecular rate constant. Absolute rate constants measured in this study are shown in Table 1, along with previous determinations of those and related ( $X + H(D)_2CO$ ) rate constants.

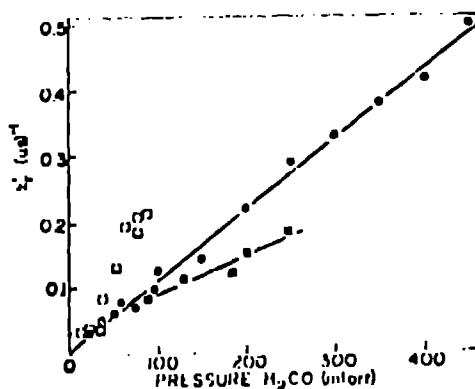



Figure 2. Plot of  $k'$  vs  $H_2CO$  pressure for the reaction  $Cl + H_2CO$ ; ○ indicate  $CCl_3F$  as precursor; ■ indicate  $CClF_3$  as precursor and □ indicates static cell with  $CCl_3F$  as precursor.

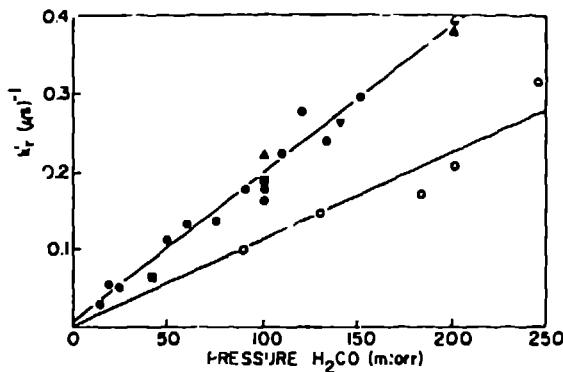



Figure 3. Plot of  $k_r'$  vs  $H_2CO$  pressure for the reaction  $F + H_2CO$ ; open symbols indicate  $SF_6$  and  $CClF_3$  precursor, respectively. Circles indicate no buffer gas,  $\blacktriangledown$  - 5 torr  $N_2$ ,  $\blacktriangle$  - 5 torr Ar and  $\square$  - 10 torr Ar.

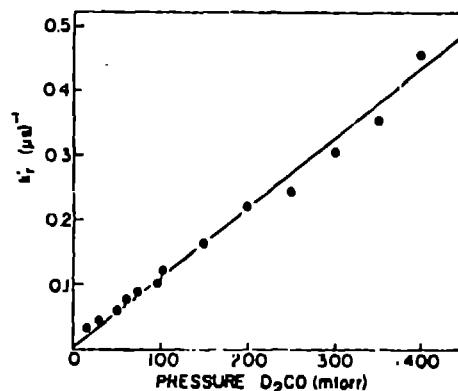



Figure 4.  $k_r'$  vs  $D_2CO$  for the reaction  $Cl + D_2CO$ .




Figure 5.  $k_r'$  vs  $D_2CO$  for the reaction  $F + D_2CO$ .

#### Discussion

Earlier experiments by this group<sup>1</sup> involving reaction 1 resulted in a larger rate constant than was deduced in the current study. This discrepancy is most likely due to differences in the experimental procedure of the two experiments. The original study utilized a simple static photolysis cell fitted with a single viewing window. In the latter experiments, a flow cell was used with a back reflecting mirror for more efficient collection of the emission. Improvements in the laser produced much higher intensities within the focal volume of the beam in the latter experiments, thus achieving higher signal-to-noise ratios.

In addition, use of the static photolysis cell in the earlier experiments may have introduced secondary reactions. Buildup of product species, in particular  $HClCO$ , could lead to an overall faster rate of chlorine atom removal. The rate of hydrogen abstraction from  $HClCO$  is expected to be faster than from  $H_2CO$  due to the weaker C-H bond; the electronegative chlorine draws electron density away from the bond. This trend is seen<sup>20</sup> in the hydrogen abstraction by chlorine atoms with  $CH_4$  and  $CHCl$  where  $k_{CH_3Cl}/k_{CH_4} = 5$  at 298 K.

380155

HClCO can be formed by the reaction of HCO with the precursor,  $\text{CCl}_3\text{F}$ . HClCO has been observed in the study of reaction (1a) where molecular chlorine was used as the atom source<sup>9</sup>. However, HClCO could not be detected by infrared spectroscopy in the present experiments due to the low concentrations ( $[\text{HClCO}] < [\text{H}_2\text{CO}]_0$ ) which would be formed and short lifetime (<1 hour).

The data for both the static and flow cell experiments are shown in Fig. 2. At low  $\text{H}_2\text{CO}$  pressures (< 40 mtorr) the data are in agreement but at higher  $\text{H}_2\text{CO}$  pressures, and presumably higher HClCO concentrations during the experiment, severe disagreement is observed. Therefore the flow cell data are to be preferred over the static cell data.

A point of greater interest is the variation of a measured rate constant with photolysis frequency. The rate constants obtained for the various halogen atom/formaldehyde reactions by the IRMPD/TRIRC technique and other methods are given in Table I. The difference between the photolysis frequency employed to dissociate the appropriate atom precursor and the nearest vibrational absorption feature of formaldehyde ( $\text{H}_2\text{CO}$ ;  $\text{D}_2\text{CO}$ )<sup>21</sup> is also given. It is evident that for laser lines corresponding to near resonances (presumably indicating a high degree of vibrational excitation in formaldehyde) there is a marked decrease in the derived rate constant relative to off-resonant experiments. This decrease is particularly evident in the reaction of  $\text{F} + \text{H}_2\text{CO}$  where  $944.2 \text{ cm}^{-1}$  excitation is far off resonance and produces a rate constant of  $5.79 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$  while  $1086.8 \text{ cm}^{-1}$  excitation is only 7  $\text{cm}^{-1}$  off resonance and yields a rate constant of  $3.8 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ . The 7  $\text{cm}^{-1}$  is easily compensated by laser power broadening<sup>22</sup>, or the "red shift" effect which is likely if infrared multiphoton absorption is occurring. The decrease in rate constant with increasing reactant vibrational excitation can be explained qualitatively in terms of simple arguments concerning the nature of the reactive potential surface. A feature of attractive potential energy surfaces is their ability to effectively channel relative translational energy into the reaction coordinate. That is, if the barrier to reaction is along the approach coordinate, vibrational motion is roughly perpendicular to the reaction coordinate and, therefore, vibrational energy may trap reactants in the potential well prior to the transition state thereby inhibiting the reaction.

Table I. Absolute rate constants obtained for the reaction of halogen atoms with formaldehyde at  $T=295 \pm 5 \text{ K}$

| Reaction                          | Halogen Atom Source                  | Detection Method          | $\Delta\nu(\text{cm}^{-1})^a$ | $k(10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ | Reference |
|-----------------------------------|--------------------------------------|---------------------------|-------------------------------|-----------------------------------------------------------------|-----------|
| $\text{Cl} + \text{H}_2\text{CO}$ | uv photolysis of $\text{Cl}_2$       | FTIR                      | --                            | 7.8                                                             | 9         |
|                                   | flash photolysis of $\text{Cl}_2$    | Cl resonance fluorescence | --                            | $7.48 \pm 0.50$                                                 | 3         |
|                                   | flash photolysis of $\text{Cl}_2$    | Cl resonance fluorescence | --                            | $7.18 \pm 0.61$                                                 | 4         |
|                                   | IRMPD of $\text{CCl}_3\text{F}$      | TRIRC                     | 12                            | $3.29 \pm 0.13^b$                                               | this work |
|                                   | IRMPD of $\text{CClF}_3$             | TRIRC                     | 7                             | $1.70 \pm 0.37^b$                                               | this work |
| $\text{Cl} + \text{D}_2\text{CO}$ | uv photolysis of $\text{Cl}_2$       | FTIR                      | --                            | 6                                                               | 9         |
|                                   | IRMPD of $\text{CCl}_3\text{F}$      | TRIRC                     | 23                            | $3.26 \pm 0.19^b$                                               | this work |
| $\text{F} + \text{H}_2\text{CO}$  | microwave discharge in $\text{F}_2$  | EPR                       | --                            | $6.6 \pm 1.1$                                                   | 5         |
|                                   | IRMPD of $\text{SF}_6$               | TRIRC                     | 83                            | $5.79 \pm 0.56$                                                 | this work |
|                                   | IRMPD of $\text{CClF}_3$             | TRIRC                     | 7                             | $3.8 \pm 1.2^b$                                                 | this work |
| $\text{F} + \text{D}_2\text{CO}$  | IRMPD of $\text{SF}_6$               | TRIRC                     | 14                            | $5.22 \pm 0.37^b$                                               | this work |
| $\text{Br} + \text{H}_2\text{CO}$ | microwave discharge in $\text{Br}_2$ | EPR                       | --                            | $0.16 \pm 0.03$                                                 | 5         |

<sup>a</sup>  $\Delta\nu$  = formaldehyde absorption - laser line. Formaldehyde absorptions are from reference 26.

<sup>b</sup> These rate constants may not represent thermal reaction; see text for explanation.

It is likely that with 1081.1 and 1086.6  $\text{cm}^{-1}$  excitation for both  $\text{H}_2\text{CO}$  and  $\text{DCO}$  and 944.2  $\text{cm}^{-1}$  excitation for  $\text{D}_2\text{CO}$  there is a significant amount of vibrational energy deposited in the formaldehyde. The effects of intense  $\text{CO}_2$  laser radiation on  $\text{H}_2\text{CO}$  and  $\text{D}_2\text{CO}$  have been studied and show absorption when the laser line is near resonant ( $\sim 20 \text{ cm}^{-1}$ ) with formaldehyde transition<sup>22</sup>. The effect of vibrational excitation in the case of  $\text{H}_2\text{CO}$  at 944.2  $\text{cm}^{-1}$  photolysis is insignificant and the derived value is reported as the rate constant at  $295 \pm 5 \text{ K}$ . The remaining rate constants were all obtained with some degree of excess vibrational energy in the reactant formaldehyde. Therefore, these values should not be regarded as thermal rate constants.

It may be possible to employ this technique even though formaldehyde is a weak absorber in this spectral region. If a sufficient quantity of buffer gas were used such that the vibrational deactivation of formaldehyde was faster than the reaction of interest then the measured rate should be unperturbed. However, one must be judicious in choosing a suitable buffer gas. While it must efficiently deactivate vibrationally excited formaldehyde, it should not deactivate either the precursor molecule or the fluorescing hydrogen halide.

The study of the effect of internal energy of reactants on reaction rate is an expanding field. Recent articles<sup>24</sup> and a review<sup>25</sup> indicate the current interest in this aspect of chemical dynamics. Perhaps the use of laser excitation to produce nonthermal energy distributions in reactants will lead to a deeper understanding in this area of chemical kinetics.

#### References

1. D. M. Fasano and N. S. Nogar, *Int. J. Chem. Kin.*, **13**, 325 (1981).
2. D. J. Bogan, D. W. Setser, and J. P. Sung, *J. Phys. Chem.*, **81**, 888 (1977).
3. J. V. Michael, D. F. Nava, W. A. Payne, and L. J. Stief, *J. Chem. Phys.*, **70**, 1147 (1979).
4. P. C. Anderson and M. J. Kurylo, *J. Phys. Chem.*, **83**, 2055 (1979).
5. G. LeBras, R. Foon, and J. Combourieu, *Chem. Phys. Lett.*, **73**, 357 (1980).
6. R. B. Kiemm, *J. Chem. Phys.*, **71**, 1987 (1979).
7. R. R. Baldwin and D. W. Cowe, *Trans. Farad. Soc.*, **58**, 1768 (1962).
8. A. H. Dean, R. L. Johnson, and D. C. Steiner, *Combust. Flame*, **37**, 41 (1980).
9. H. Kiki, P. D. Maker, L. P. Breitenbach, and C. M. Savage, *Chem. Phys. Lett.*, **57**, 596 (1978).
10. R. G. MacDonald and J. J. Sloan, *Chem. Phys.*, **31**, 165 (1978).
11. P. Beadle, M. R. Dunn, N. B. H. Jonathan, J. P. Liddy, J. C. Naylor, and S. Okuda, *J. Chem. Soc. Faraday II*, **74**, 2158 (1978).
12. L. B. Harding and G. C. Schatz, *J. Chem. Phys.*, **76**, 4296 (1982).
13. J. M. Presses, R. E. Weston, Jr., and G. W. Flynn, *Chem. Phys. Lett.*, **48**, 425 (1977).
14. R. Quick and C. Wittig, *Chem. Phys. Lett.*, **48**, 420 (1977).
15. E. Würzberg and P. L. Houston, *J. Chem. Phys.*, **72**, 4811 (1980);  
E. Würzberg, A. J. Grimley, and P. L. Houston, *Chem. Phys. Lett.*, **57**, 373 (1978);  
E. Würzberg and P. L. Houston, *J. Chem. Phys.*, **72**, 5915 (1980);  
E. Würzberg, L. J. Kovalenko, and P. L. Houston, *Chem. Phys.*, **35**, 317 (1979).
16. R. F. Heidner III, J. F. Bott, C. E. Gardner, and J. E. Melzer, *J. Chem. Phys.*, **70**, 4509 (1979);  
R. F. Heidner III, J. F. Bott, C. E. Gardner, and J. E. Melzer, *J. Chem. Phys.*, **72**, 4815 (1980).
17. D. M. Fasano and N. S. Nogar, *Chem. Phys. Lett.*, **92**, 411 (1982).

380155

18. D. M. Fasano and N. S. Nogar, *Chem. Biomed., and Environ. Instr.*, 11, 331 (1981).
19. R. Spence and W. Wild, *J. Chem. Soc.*, 338 (1935).
20. J.P.L. Publication JPL 87-57. "Chemical Kinetic and Photochemical Data for Use in Stratospheric Modeling Evaluation," 5 (1982).
21. E. S. Ebers and H. H. Nielson, *J. Chem. Phys.*, 5, 822 (1937); *ibid.*, *J. Chem. Phys.*, 6, 311 (1938); T. Nakanaga, S. Kondo, and S. Saeki, *J. Chem. Phys.*, 75, 3860 (1982).
22. G. Koren, U. P. Oppenheim, D. Tal, M. Okow, and R. Weil, *Appl. Phys. Lett.*, 29, 40 (1976);  
G. Koren, *Appl. Phys.*, 21, 65 (1980).
23. J. C. Polanyi, *Accts. Chem. Res.*, 5, 161 (1972).
24. H. Horiguchi and S. Tsuchiya, *Int. J. Chem. Kin.*, 13, 1085 (1981).
25. C. B. Moore and I. W. M. Smith, *Farad. Disc. Chem. Soc.*, 67, 146 (1979).