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1 Introduction

A general DAE takes the form
f(y,’y,t) =0 (1)

where f and y are in R™. The differential index, di, of the system is the minimum integer, m,
such that the system of equations (1) and

df(y(s Y, t) -

0
dt

amf(y'sy,t) _

dt™ 0

can be solved for y' = y'(y). A formal reduction technique to derive this system of equations,
called the underlying ODE, is given in [2]. Hairer et al [1] define what we will call the pertur-
bation index, pi, as the smallest value of the integer m such that the difference between the

solution of (1) and the solution of the perturbed equation
f(#,2,t) = e(t) (2)
can be bounded by an expression of the form
max ||2(t) — y(2)]] < K (max(|le(t)|]) + max(||é()]]) + - - - + max(]|e™))). (3)

The perturbation index is clearly an important factor in the numerical solution of a DAE since
it will play a major role in determining the impact of roundoff errors. It is clear that one
can expect errors of the order of ¢/h?* because the method will be performing a numerical
differentiation on roundoff errors assumed to be order of e. However, the differential index
determines some major characteristics of the underlying structure of the DAE: it determines,
for example, the number of manifolds on which the solution is constrained to lie - it is the
number of sets of algebraic relations developed in the index reduction process shown in [2]. We
will show that for general systems, pi = di + 1 unless the DAE satisfies some special conditions
that, unfortunately, are difficult to describe in terms of the original DAE. One important form



occurs when the equation is linear in y’ and the components containing y’ are total differentials,
that is, if
F('s 9.t) = ay(y, )y + by, 2) = 0. (4)
DAEs which can be written in this form will be said to have integral form. In this case, pt = di.
(It is noted on page 6 of [1] that this condition is sufficient for the index 1 case.)
To simplify expressions we will consider the autonomous form independent of . This does

not reduce generality. Eq. (4) can be written as

a(y) = alyo) - [ B(u(s), s)ds Q

which is a particular case of the integral algebraic equation, IAE,

¢
a(y) = alwo) + [ k(t,s,())ds, (6)
which itself is a special case of the general IAE
aly) = alw) + | K(a(),v(s))ds. @

These display a very similar behavior to DAEs and will be discussed later. ‘

2 The Relationship Between the Indices

We will restrict ourselves to problem formulations for which both indices are well defined. It
is always possible to restate a problem in a form in which the formal definitions do not apply.
For example, consider the problem

y* =0

It has no perturbation index since we cannot get a bound of the form of (3) for any m. If
we apply the index reduction technique, the first differentiation yields yy’' = 0 which has two
solutions, ¥y’ = 0 implying that its index is one, and y = 0, implying that its index is two, so
it’s differential index could be said to be one or two.

The main result of this section is di < pi < d¢ F1.

As defined in [1], the perturbation index can not be less than one. To allow for pi to be
zero, we will modify the definition as follows. Define

E(t) = /0 e(r)dr 8)
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The perturbation index is the minimum integer, m, such that the difference in the solutions of

(1) and (2) satisfies a bound of the form

m~—1

max ||2(£) — y(¢)|| < K[max(|E@)]| + Y max(leD()|])]. (9)

7=0

We first show that pi > di. This follows directly from an examination of the index reduction
process in [2]. The first step consists of selecting a maximum subset of equations (2) that are
independent in z' and eliminating the derivatives from the remaining equations to get non
differential (“algebraic”) relations. This does not change the index but yields a set of algebraic
equations, ¢1,;(z,€) = e;j, whose right-hand sides, e;, are a subset of all the e. Furthermore,
the e; that appear on the right-hand sides do not appear in the left-hand sides. Subsequent
steps of the process differentiate the algebraic equations and then repeat the above process.
The m-th step of the process yields a similar algebraic subsystem which contains eg-m_l) on the
right-hand side, but these terms do not also appear on the left-hand sides. The process can
be continued until m = di + 1, at which time there are no further algebraic equations (this

being equivalent to the definition of the differential index). Hence, when m = di we obtain a

subsystem of algebraic equations
. i di—
9aii(2 {es oy el D)) = 87D (10)

where j selects a non-null subset of the original equations and the components of e(#-1) that

appear on the right-hand side do not appear in the left-hand side. When the same process is

~ applied to the original system (1) we get the algebraic relations

94i,;(¥,0) = 0. (11)

Subtracting (11) from (10) for a choice of e(t) such that the right-hand side of (10) is of order
one and all e terms on the left-hand side are arbitrarily small, we find that

Iz = gll > [|e(=V1|/118g.m/ By (12)

Hence, pi > di.
Now we show that pi < di + 1. After the di-th differentiation, we have the underlying ODE

2 = f(z,{e,&---,el®}).



Subtracting
y' =f (y’ 0)
from this we easily obtain

max | 2(£) - y(t)]| < K(||2(0) - y(0)|| + max(jle(¢)|}) + max([|é(®)])) + - -+ + max(||e(*]}).

thus showing that pi < di + 1.

3 Integral Form DAEs

The main result of this section is that pi = di if the DAE has integral form. Since the DAE
has integral form, it can be written by eq. (4) as

da(y)
dt

+b(y)=0 (13)

The corresponding perturbed equations are

d‘;—(t’) +8(2) = e(t) (14)
Writing E(t) = e(t) we have .
Zla(2) - B@)] + b(z) = 0. (15)
Hence
Z1a(2) - aly) - E(8)] + b(z) - b(y) = 0. (16)

If di = 0 then ay is nonsingular and for small enougﬁ E(t) there exists a function é(t) = O(E(t))
such that a(y + §(t)) = a(y) + E(t). Substituting in (16) we get

%[G(Z) —a(y +48(t)] = -5(2) + b(y) = Bly + §(t) - z - §(t)] (17)
where B is bounded. Eq. (17) immediately yields
llz = yll < Ka([[2(0) - y(0)|[ + [1411) < K ([|2(0) — »(O)I| + | 1)) (18)

where the norms are the max norms over the interval unless indicated otherwise. Hence the

perturbation index is zero.



If di # O then a is singular. If Q1(y) is the maximum dimension, full rank matrix for which
Q1(y)ay is null, then the first step of the index reduction process in (2] yields the algebraic
equations

Ql(Z)dE/dt - Ql(Z)b(Z) = gl(z, e) =0 (19)

plus a subset of eqs (15). If di is non zero, (19) is a non-empty set. The next step in the index

reduction process is to differentiate (19) to get

d
Egl(z, e)=0, , (20)

then select a maximum number of rows of (20) linearly independent in z' of (14) and of them-

selves, and eliminate 2z’ from the remaining rows of (20) by forming

Q2a(z,e)(ayz +b(z)—€) + ng(z,e)%gl(z,e) = go(z,e,€) = 0. (21)

The process continues until, after di differentiations, g4i+1 is a null system. The underlying

ODE is given by subsets of equations (15), (20), and so on, having the form
d :
Z1e(2) = E(t)] +5(z) = 0 (22)

d .
E-t-gi(z,e,é,...,e(i—l)) =0, 1= 1’...,di_ (23)
This system is an index zero DAE which has integral form, so the difference between its solution

and y (which satisfies the same equations with E = e = - - - = e(#-1) = 0) satisfies

Iz = vl < K(ly(0) = 2()| + 1 EI| + lle + [l€]] + -+ + |el=])). (24)

Hence the perturbation index p: = d:.
4 Whenispi=di+17

The previous section shows that integral form equations have pi = di so we only have to
examine non-integral form equations. For index 0 problems, the answer is all such equations
have pi = di+1. We will prove this by selecting a perturbation e(t) such that E(t) is arbitrarily
small but the solution of the DAE is changed by greater than order || E||. Let f(y',y) = 0 be an



index zero DAE and consider the solution of f(2',z) = e. We treat two cases below, equations
non-linear in the derivatives and equations linear in the derivatives.

First suppose that f is nonlinear in 2’ (in which case it does not have integral form).
Consequently somewhere along the solution y(t), (8Py/dy?)/p! = dp is nonzero for some p > 1.
(If all such partials are zero along the solution, the equation is either linear in the neighborhood
of the solution, or has a singularity at the solution. We restrict our discussion to nonsingular
problems.) Let g be the smallest such value of p and suppose d, # 0 in an interval I of length
L.

If q is even, chose e(t) to be a square wave with magnitude £6 and period L/N for N
cycles in the interval I and zero elsewhere. Over each cycle, the direction of the vector e(t) will
be constant so that E(nL/N) = 0 for all integer n, but the vector direction can change from
cycle to cycle. For small enough §, the perturbation to y’ is f;l[:tﬁ —~dy(fy 16)9] plus higher
order terms in § and 1/N, so is independent of N to the first approximation. The effect of this
change on y over the interval I is of order f;ldq(fglé)q. Since the value of ||E|| = || f; e(r)dT||
is bounded by §/2N which can be arbitrarily small, any bound on the perturbation to the
solution due to e must involve ||e||, so the perturbation index is one.

If, on the other hand, ¢ is odd, choose the magnitude of e in I to alternate between the
2§ for an interval of length L/3N and —§ for an interval of length 2L/3N. Again, keep the
vector direction of e constant over each cycle. The value of ||E|| is bounded by 2§/3N so is
arbitrarily small, while the perturbation to y' is f; 126 - dy(2 f;16 )9] plus higher order terms
in one direction and ~ f;l[é' = dy( fx;l&)q] in the other direction. If N is large enough, the
value of d; will not change appreciably over each cycle of length L/N so the total effect of the
perturbation on y in one cycle will be of order (22—1) f;ldq( fy 1§)4L/N. Hence the effect over
the interval I will be of order (29 — 1)f; 1d,( Iy 1§)9, so once again the perturbation index is
one, .

In the second case we suppose that f is linear in 3’ but not of integral form, so the DAE

can be written as A(y)y’ + b(y) = 0 where A(y) # ay for any a. Hence we have
A(y +7)r' +[A(y +r) = AW + (b(y + ) - b(y)) = e(t) (25)
where » = z — y. As a DAE in r (y(t) is a given function), this has integral form only if the
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original DAE does. Viewing y as a given function of ¢, this equation has form
A(r, t)r' = e(t) + B(r,t)r. (26)

Equation (26) has an integral form iff § A(r,t)dr = 0 for all closed paths in the r-plane with
t fixed, hence we know that this integral is non-zero for some paths. For any two orthogonal
vectors p and ¢ and point ro in r-space, let P(rq,p,q) be the plane containing ro, p, and
g. Define ¢(t,7,p,q) to be a vector whose i-th component is the curl, in P(rq,p,q), of the
projection of the i-th row of A(r,t) into P(rg, p, ¢). If the equation does not have integral form,
¢ is non zero for some values of its arguments in a neighborhood of 7o = 0 (since a closed
path can be approximated arbitrarily closely by the union of a number of closed paths in such
planes). Choose p(t) and g(t) such that ¢ is non zero for some interval in t, say, [0, L]. For
small enough L, ¢ can be represented as a constant plus a small perturbation over the interval.

For a closed path in the plane P (we drop the arguments when they are obvious), we have

}4 A(r, t)dr = / c(t, 7 p,a)dv = c(t, 70, p, @)V (path) + O(||7 — rol|*) (27)

where the second integral is over the area in P bounded by the path, V(path) = [dv is the
area contained within the path, r¢ is a point to be chosen inside this area, and 7 is the most
distant point on the path from rq.

We first give an outline of the essential idea of the proof, then fill in the details. Start by
integrating (26) w.r.t. t to get

/ A(r,t)dr = / e(t)dt + / B(r,t)rdt. (28)

We select a value of e(t) which is approximately periodic with very small period, 27, and
whose integral is zero over a full period. We are going to make T arbitrarily small. Hence, if
E(t) = e(t), E(0) = 0 then E = O(Te). We want to choose this value so that = in (26) changes
by m01.'e than O(E) over an interval. Note that if we integrate over N = o(1/T') periods of e,
the interval has length of o(1) as T' — 0, so it is arbitrarily small. Choose e to be composed
of two parts: the first part, over [0,T], corresponds to a closed path in a plane P in r-space.
From (27) we know that this leads to a non-zero left-hand side of (28) for suitable choice of

P. Since we are starting from a zero error r at ¢t = 0, the last term in (28) can be kept very



small, so we conclude that foT e(t)dt = E(T) is O(V(path)) while r(T) — r(0) = 0. We now
set e(t) = —E(T)/T over the interval (T,2T) so that E(2T) = 0. From (26) we see that
r' = O(E(T)/T), hence r(2T) = O(E(T)). We now repeat this over N = o(i/T) cycles to get
r(2NT) = O(NE(T)) which cannot be expressed as O(E). The details, given below, select the
paths and the relative orders of components so that the neglected terms are of higher order.

For the first half of the period we choose the path for r to be a circle in P of radius § center
ro. Hence, V(path) = w62, From, (27) and (28) we have

E(T) = O(6%) + O(T(ro + 6) + 6°) - (29)
as long as c is non zero. For the second half of the period we have e = —E(T')/T so we have
from (28)

r(2T) = —A(ro,0) 2 E(T) + O(rT). (30)

Hence, after IV periods, we get
r(2NT) = —N A(r,0) " E(T) + O(rT) + o( N E(T)), ‘ (31)

which cannot be expressed as O(||E||). Hence pi = 1.

For higher index cases, we can have pi = di even without integral form. If we start with
two independent DAEs, one of integral form with pi; = di; and the other with non integral
form with pi» = dis + 1 and we have di; > di,, the indices for the union of the two systems will
have pi = di = di; although the combined system will not have integral form. For example,
the DAE

(2" =1

y=1

has differential index one (because of the second equation) and perturbation index one because

of both equations.

5 Algebraic Integral Equations

We will consider the IAE (6). If A = a, is such that ||A7!|| < oo and k is smooth, it is

easy to show that this equation has a unique solution using a Picard iteration to define a new



iterate for the solution y(¢) on the left-hand side in terms of the previous iterate inserted on the
right-hand side of (6). In this case, we will call the system an index zero system. The solution
of such systems can be approximated using quadrature. For example, if we have computed
{yi,i=1,.--,n~ 1} we can computed y, by
n
a(yn) = a(yo) + E;Wik(tn, ti, ¥:) (32)
i=
where the {w;} are suitable weights. For small enough wp, this will have a solution, and for
close enough mesh spacing, w, will be small enough. (Of course, this may not be the best
approach to a computational approximation.) Note that a similar situation holds for (7) if
A = a, — [ K1(y(t),y(s))ds has a bounded inverse, where K; is the partial derivative of
K(y(t),y(s)) with respect to its first argument.
If A is singular, then there is no guarantee that there is :; solution, since the system has
a structure similar to that of DAEs of index greater than zero. Below we will give an “index
reduction procedure” similar to that in [2] for DAEs which, if it terminates, determines the
“index” of the IAE and ensures that there is a solution if the initial values lie on the constraint
manifolds implied by the IAE. We will consider the IAE (6) only, (7) follows in a similar
manner. . :

We first rewrite (6) as

a(y) + w1 = ao = a(yo) (33)
w = — /0 “k(2, 8, 9(s))ds. (34)
We will also be interested in the perturbed problem
a(z)+z1=a0+ E (35)
2y =— /ot k(t, s, z(s))ds. (36)

We will deal with eqs. (35) and (36) for z and z;. The solution for y and w; will follow by
setting E = 0. Following the approach used in {2] we assume that the components of z are
ordered so that the first r; columns of ay are linearly independent, where r; is the rank of a,.
We set z = [27,v]]T where the dimension of z; is ry. Hence, (35) can be solved, in principle,

for z; to get

57 = zl(vl,zl,E). (37)



This uses r; rows of (35). The remaining rows provide a set of n — r; constraints on z;, namely
gi1(z1, E)=0. (38)

Note that neither z; nor z; can appear in equation (38), or the rank of ay would be larger than
71, contrary to the definition of z;. We now differentiate (38) w.r.t. ¢t and substitute (36) to
get

g11[—k(t,t, 2(t)) - /Ot ke(t, 3, 2(8))ds)] + g1,2E = 0 (39)
- where g;; is the partial of g; w.r.t. its j-th argument and k; is the partial of k with respect to

its first argument. We will rewrite (39) using (37) as
R T Ty —
91,122 + 912F = g1,1k(8, 8, [ (v1, 21, E),v1]") = a2(v1, 21, E) (40)

and
T, = — /ot k(t, s, 2(s))ds. (41)

If a;,1 = 8ay/8v, in (40) is non singular, we can solve (40) for v; to get
Z2=v1 = 22(21,32,E,E). (42)

In this case, we will define the index of the IAE to be one. Note that equations (36), (37), (41),
and (42) form a standard Volterra integral equation for z;, 23, 21, and z,.

We used the term “index” without qualifying it as a differential or a perturbation index. It is
clear for the index zero and one cases defined above, the difference between z and y (the solution
with E = 0) can be bounded by L|| E|| (index zero) or L(||E||+||E|l) (index one). Furthermore,
(42) shows that, in the index one case, z does depend on E since 8z,/8E = [a21]71g1,2 and
g1,2 is non null. Hence, with the same definition of perturbation index as for DAEs, we find
that the perturbation index and the index defined above are identical for index zero and one
systems. The same is true for the higher index systems to be defined below.

If ay; in (40) is singular, we can not solve it for v;. Let the rank of a3 ; be 3. Continuing
as before set v; = [27,v7]7, where the dimension of z; is r;. Assume that the variables have
been ordered so that the first 7, columns of aj; are linearly independent. Then (40) can be

solved for 2, to get ‘

23 = z(v2, 21,22, E, E) (43)
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with the remaining rows reducing to
g2(z1,22, E, E) = 0. (44)
As before, we differentiate (44) w.r.t. ¢ and substitute (41) and (36) in it to get
92,122 + 92,223 + 92,3E + 924 E = g21k(t,t, 2(2)) + g2.2ke(tyt, 2(2)) = as(vz, 21,22, E, E) (45)

where
. t
2= — / k(s 3, 2(t))ds. (46)
o

The process is now clear. If 8a,41/0vm is non singular, we can solve the equation equivalent
to (45) for zm+1 = vm to get a system of equations for z; and 2z;, ¢ = 1,---,m + 1 which
are a Volterra integral equation. We will then define the index of the original IAE to be m.
It requires m differentiations to reduce it to a regular integral equation, just as an index m
DAE requires m differentiations to reduce it to an ODE. In the differentiation process, the
perturbation E will be differentiated m times, so, if the perturbation index is defined similarly
to the index perturbation index for DAEs, the perturbation index will also be m. (Note that

the perturbation introduced in IAEs is F, whereas the perturbation introduced in DAEs is

e=E.)
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index used by a number of authors is determined by the number of differentiations
of the DAEs that are required to generate an ordinary differential equation (ODE)
satisfied by the solution. We will call this the differential index, di. Hairer
et al give an example whose differential index is one and perturbation index is two

and other examples where they are identical.

We will show that di < pi < di +1

and that di = pi if the derivative components of the DAE are total differentials.
This means that the differential components have a first integral. The integrals
are a special case of a new type of integral equation we will call Integral

Algebraic Equations (IAEs).
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