

300
6-5-79

HCP/T2898-01/9

14. 26 51

OTEC Thermal Resource Report for Jakarta, Indonesia

MASTER

May 1979

Prepared for
U.S. Department of Energy
Assistant Secretary for Energy Technology
Division of Central Solar Technology

Under Contract No. ET-78-C-01-2898

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Available from:

National Technical Information Service (NTIS)
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161

Price: Printed copy: \$4.50
 Microfiche: \$3.00

OTEC Thermal Resource Report for Jakarta, Indonesia

May 1979

Prepared for
U.S. Department of Energy
Assistant Secretary for Energy Technology
Division of Central Solar Technology
Washington, D.C. 20585

Prepared by
William Alan Wolff
Ocean Data Systems, Inc.
Monterey, California 93940

Under Contract No. ET-78-C-01-2898

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

NOTICE

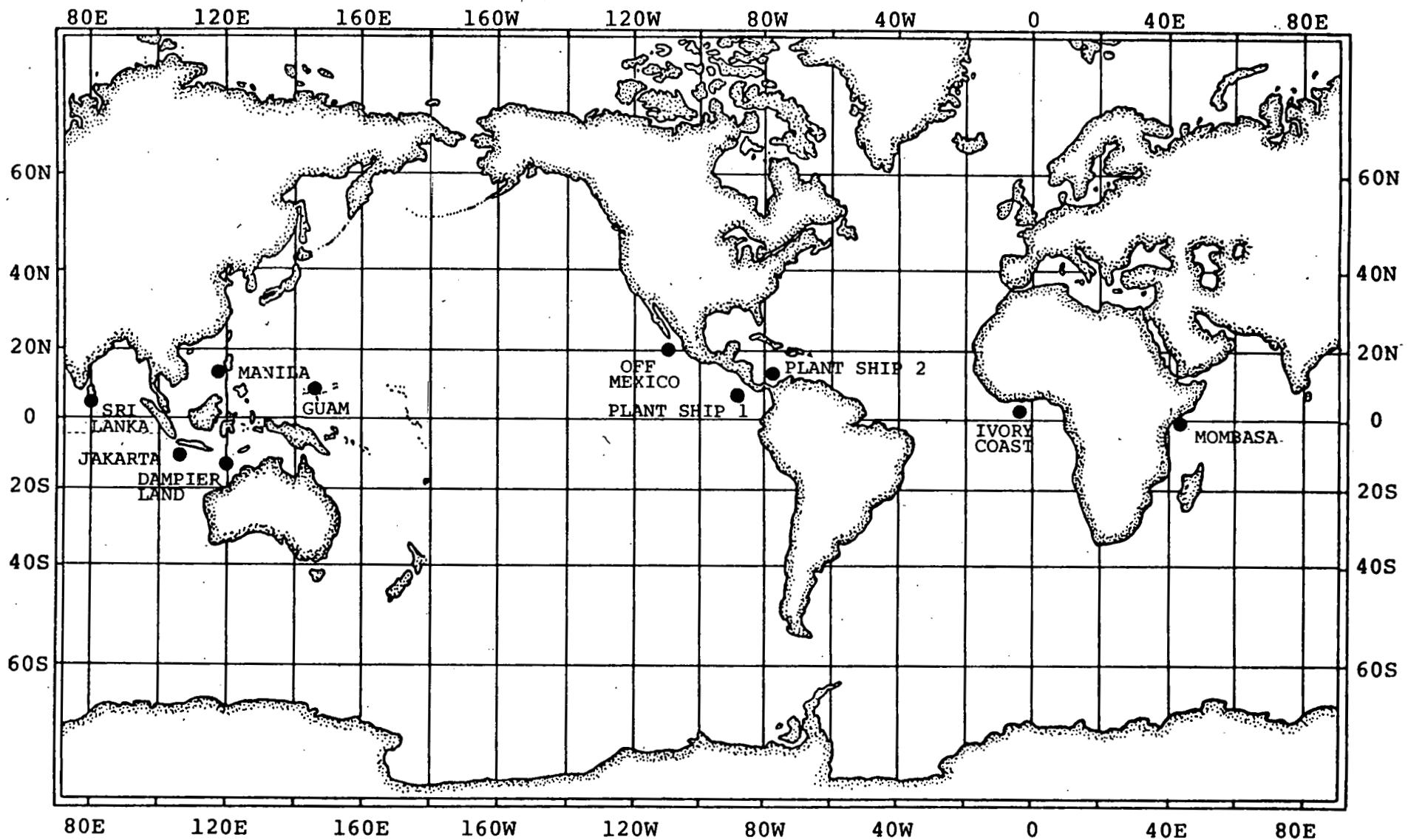
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
INTRODUCTION.....		iii
I. EXECUTIVE SUMMARY.....		I-1
II. BATHYMETRY.....		II-1
III. THERMAL RESOURCE.....		III-1
IV. MIXED LAYER DEPTH.....		IV-1
V. WEATHER CONDITIONS.....		V-1
VI. SEA AND SWELL CHARACTERISTICS.....		VI-1
VII. CURRENTS.....		VII-1
REFERENCES.....		R-1

INTRODUCTION

One of the basic environmental considerations in site selection for an Ocean Thermal Energy Conversion (OTEC) power plant is the availability of an adequate temperature difference resource. OTEC plants are designed to convert the potential energy in the temperature difference between the warm ocean surface water and the cold water existing at deeper depths into electricity. The turbines which produce the electricity must run on temperature differentials which are extremely small by the standards of conventional energy plants. Therefore, a definition of the most probable temperature structure for a site is most important.


In order to define temperature structures for OTEC areas of interest, Ocean Data Systems, Inc. (ODSI) has developed computer data files of all unclassified soundings available. The primary sources for the data were NOAA's National Oceanographic Data Center, and the U.S. Navy's Fleet Numerical Weather Central. The files were updated in September 1978. Included in the data base were mechanical bathythermographs (MBT), expendable bathythermographs (XBT), salinity temperature depth systems (STD), and Nansen casts.

Under U.S. Department of Energy, Division of Solar Energy Contract No. EY-78-C-2989, ODSI has analyzed the monthly temperature structure for ten different geographical areas. The ten sites selected for study by the Department of Energy are:

		<u>Latitude</u>	<u>Longitude</u>
Bottom Mounted or Shore Plants:	Dampier Land	13-18°S	118-121°E
	Manila	14-16°N	118-120°E
	Guam	12-15°N	142-146°E
	Ivory Coast	3-6°N	3-8°W
	Jakarta	6-9°S	104-109°E
	Mexico	20-23°N	105-110°W
	Sri Lanka	5-10°N	78-83°E
	Mombasa	5°S-3°N	40-45°E
Ship Plants:	No. 1	5-10°N	90-95°W
	No. 2	13-15°N	75-80°W

The location of these sites is shown on the following map; a separate report was produced for each site.

For each area, the most probable temperature structures were determined. When the most probable temperature soundings were plotted, some month to month variability was present which was caused by the non-uniform data sample rather than by real changes in the ocean. These short-period time variations were removed by a filtering process described by Wolff, et al (1977), [44]. Availability of cold and warm water was examined at each site. In addition to warm and cold water availability, there are other requirements for the continuous operation of an OTEC plant. An adequate temperature differential (ΔT) is the primary need. A ΔT greater than 16.7°C (30°F) for the coldest month of the year would enable year round operation. The annual mean ΔT for

LOCATION OF THE TEN SELECTED SITES

a site should equal or exceed 20°C (36°F). Besides the thermal resource, there are other operational requirements. Bottom depth should be less than 1500 meters for mooring. Minimum distances offshore to 1000-meter depth is another important consideration for shore plants. Currents should be sufficient to guarantee good cold/warm water sources and to provide for dispersion of modified water. Desirable sites also have light winds, minimum sea and swell, and the lack of severe storms. These parameters have been examined for each site. The following tables summarize some of the key site parameters for each location.

SUMMARY OF SITE PARAMETERS

Site	Monthly Mean Temperature (°C) Surface Range	Monthly Mean Temperature (°C) 1000M	Annual Mean ΔT (°C) 500M	Annual Mean ΔT (°C) 1000M	Coldest Monthly Mean ΔT (°C) 500M	Coldest Monthly Mean ΔT (°C) 1000M
Sri Lanka	27.5-28.6	6.5-6.7	18.0	21.3	17.5	20.8
Mombasa N	25.4-28.7	7.2-7.5	17.0	19.5	15.6	18.2
Mombasa S	25.5-28.4	6.3-7.0	18.0	20.2	15.9	18.5
Jakarta	27.2-29.0	5.1-5.6	19.1	22.8	17.9	21.9
Dampier Land	25.6-28.2	4.9-5.0	19.1	22.6	17.4	20.7
Manila	27.1-29.5	4.4-4.6	20.0	24.0	18.6	22.6
Guam	27.7-29.2	4.3-4.4	21.1	24.1	20.4	23.4
Off Mexico	22.5-28.0	4.4-4.5	17.6	20.9	14.9	18.0
Plant Ship Pacific	27.1-28.5	4.6-4.8	19.4	22.8	18.1	21.7
Ivory Coast	24.3-28.1	4.5	19.2	22.1	16.8	19.7
Plant Ship Caribbean	26.4-28.4	5.0-5.3	18.1	22.4	17.2	21.3

SUMMARY OF SITE PARAMETERS

SITE	RANGE DISTANCE (IN KILOMETERS) TO SHORE FROM 1000 METERS	MONTHLY MEAN MIXED LAYER DEPTH METERS	MONTHLY MEAN SURFACE CURRENTS (CM/SEC)	SEA STATE MAX % OF TIME ≥ 3 METERS	NUMBER TROPICAL CYCLONES PER YEAR
SRI LANKA	22-55	30-80	25-62	3	0.2-1.2
MOMBASA	33-130	30-90	30-62	2	0.0-0.1
JAKARTA	18-60	55-80	25-52	2	0.0-0.1
DAMPIER LAND	265-417	30-80	25-47	4	0.4-1.2
MANILA	6-82	20-30	30-52	5	4.0-6.0
GUAM	7-18	60-120	30-47	5	2.0-3.0
OFF MEXICO	5-104	10-30	25-31	2	0.6-4.0
PLANT SHIP PACIFIC	-	0-30	30-52	2	0.0-2.0
IVORY COAST	33-52	0-30	25-31	2	0.0-0.1
PLANT SHIP CARIBBEAN	-	40-110	30-62	3	0.6-1.2

I. EXECUTIVE SUMMARY

The thermal resource south of Jakarta, Indonesia was studied for the area between 6-9° South latitude and 104-109° East longitude. The available thermal resource is an excellent one for OTEC exploitation. The mean surface temperature is very high, above 28°C. An average monthly ΔT of 22.8°C is available at a depth of 1000 meters. An annual average ΔT greater than 20.0°C is available at 650 meters. Mean monthly temperatures at depths greater than 400 meters do not vary by more than 1°C.

The distance from the south coast of Java to the 1000- and 1500-meter depths is not prohibitive, with depths of 1000 meters available in less than 20 kilometers. The necessary depth to provide an adequate cold water supply are not available north of the island. The distance from Jakarta, on the north west coast of the island to water 1000 meters deep is quite large. A mixed layer exists throughout the year with small seasonal variation. High winds and storms are not major problems for OTEC development or operation. Surface circulation is fairly complex with variations throughout the year. Seismic activity is a problem for this site.

II. BATHYMETRY

Figure II-1 shows the location of the "Jakarta" site. Actually, the depths off Jakarta in the Java Sea are far too shallow to support OTEC operations so that the "Jakarta" site is off the south coast of Java in the Indian Ocean. Figure II-2, from the Defense Mapping Agency (1974), [10], shows the rough bathymetry of the area out to depths of 1500 meters.

Both the 500 and 1000 meter contours maintain a relatively uniform distance from the south coast of Java. Slopes are quite steep into the Java Trench. Table II-1 summarizes distances offshore to selected depths.

TABLE II-1: DISTANCES TO SELECTED DEPTHS OFF
THE SOUTH COAST OF JAVA (JAKARTA SITE).
From Defense Mapping Agency (1974), [10].

DEPTH (Meters)	CLOSEST DISTANCE (Kilometers)	FARTHEST DISTANCE (Kilometers)
100	7.4	55.5
500	9.3	57.5
1000	18.5	59.5
1500	29.7	74.0

The distance from Jakarta to waters 1000 meters deep is over 185 kilometers.

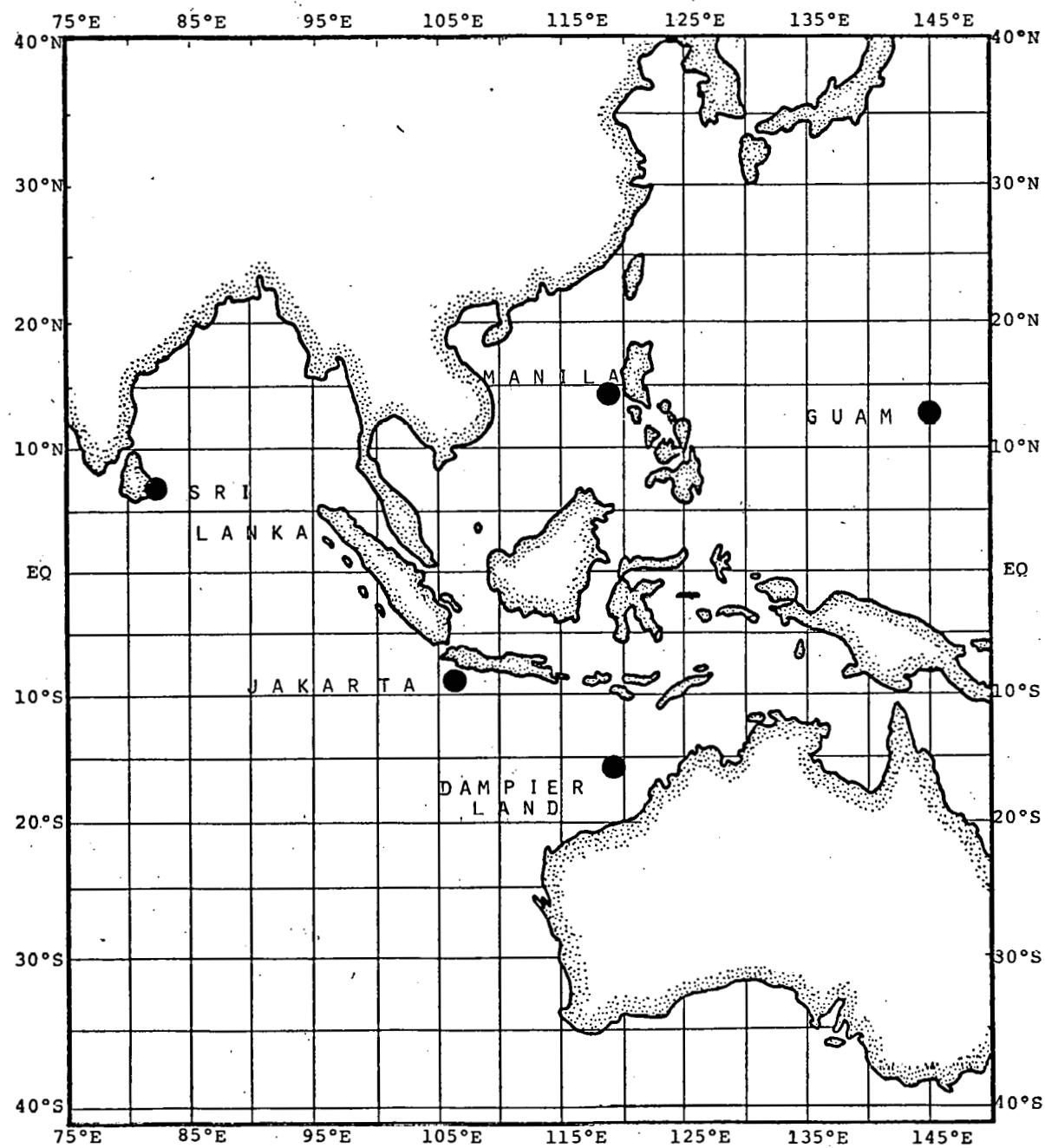


FIGURE II-1: LOCATOR CHART SHOWING AREA OF RESOURCE INVESTIGATION OFF JAVA

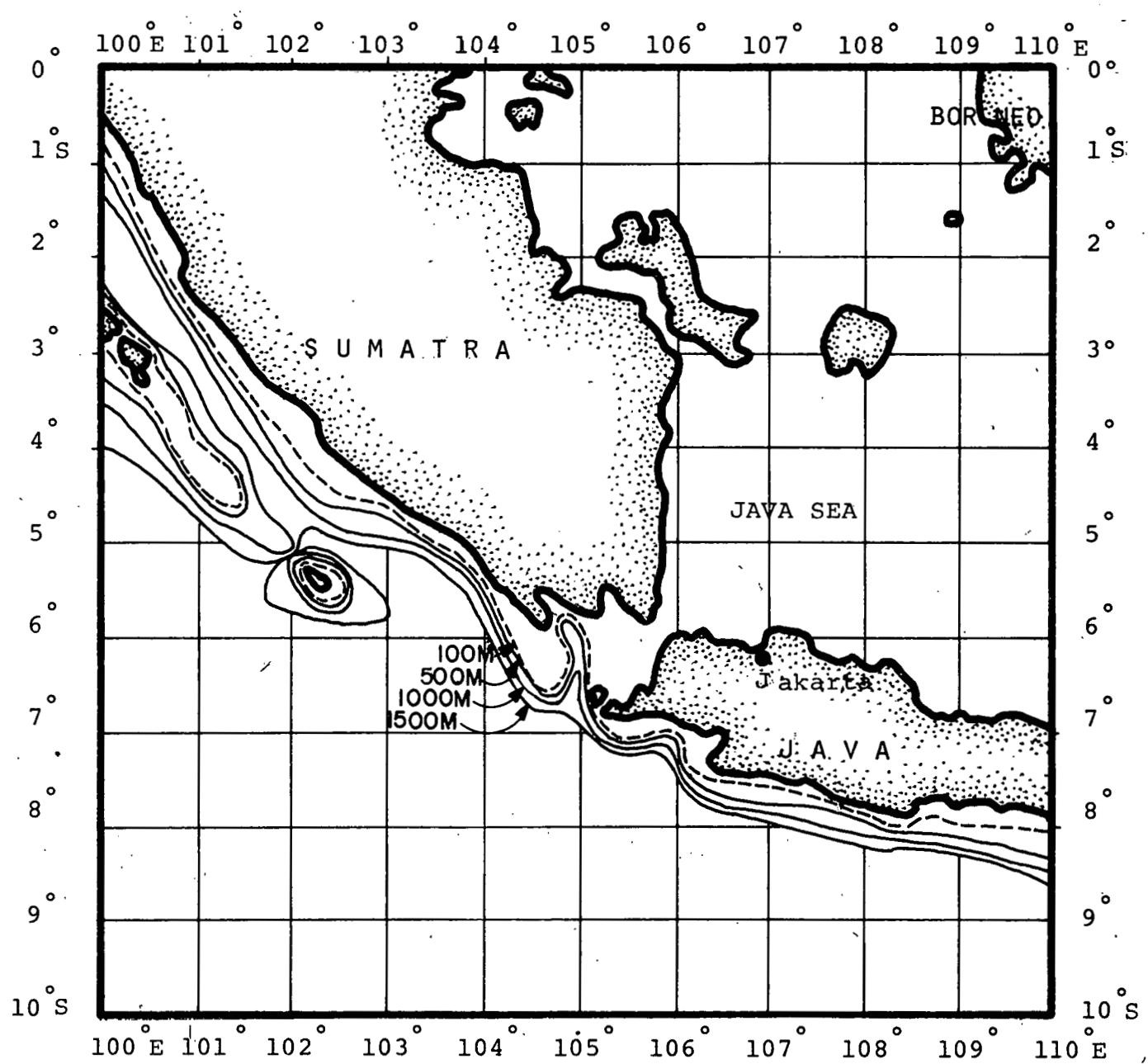


FIGURE II-2 : ROUGH BATHYMETRY FOR JAKARTA

III. THERMAL RESOURCE

The historical oceanographic data for the area south of Java demonstrates the existence of a thermal resource with excellent potential for OTEC exploitation. The data file contains data for every month of the year, at every depth in 50-meter increments from the surface to 1500 meters. The main source for this data were NOAA's National Oceanographic Data Center, and the U.S. Navy's Fleet Numerical Weather Central, although soundings from other sources were added when available.

When the available data was plotted some month-to-month variability was present which was caused by the sparse and non-uniform data sample rather than by real changes in the ocean. These short-period time variations were removed by a filtering process described by Wolff, et al (1977), [44].

Table 1 provides the most probable temperature profile. The annual mean surface temperature for the area is 28.2°C. During March and April, isotherms above 14°C concentrate above 150 meters. Mean monthly temperatures at 1000 meters range from 5.1°C to 5.6°C. The temperatures at depth of 1000 meters in the Indian Ocean, including the waters surrounding Jakarta, are warmer than sites in the Atlantic and Pacific. Table 2 provides ΔT , the surface temperature minus the temperature at depth differential (°C) by months.

TABLE III-1: MONTHLY MOST PROBABLE TEMPERATURE (°C) PROFILE

JAKARTA 6-9°S/104-109°E

Depth	Month												Annual Mean
	1	2	3	4	5	6	7	8	9	10	11	12	
0	28.2	28.3	28.5	29.0	29.1	29.0	28.6	27.8	27.4	27.2	27.8	28.0	28.2
50	27.6	27.8	27.9	28.3	28.6	28.9	28.3	27.5	27.0	26.6	27.1	27.7	27.8
100	23.8	23.0	22.5	23.0	23.2	23.1	22.7	22.1	22.6	22.6	23.7	23.9	23.0
150	16.4	16.1	15.5	16.0	16.3	16.3	16.0	15.5	15.9	16.1	16.5	16.8	16.1
200	12.8	12.8	12.6	13.3	13.6	13.5	12.6	12.9	13.1	12.9	12.9	13.0	13.0
250	11.6	11.5	11.4	12.0	12.4	12.3	11.7	11.5	11.6	11.8	11.8	11.9	11.8
300	11.0	11.0	10.8	11.4	11.6	11.6	11.0	10.8	10.9	11.2	11.2	11.3	11.2
350	10.3	10.2	10.4	10.9	11.0	10.9	10.5	10.3	10.4	10.6	10.7	10.5	10.6
400	9.8	9.8	10.0	10.3	10.4	10.3	10.0	9.8	9.9	10.1	10.2	10.0	10.1
450	9.3	9.4	9.6	9.7	9.8	9.7	9.6	9.5	9.5	9.7	9.7	9.5	9.6
500	8.8	8.9	9.0	9.2	9.3	9.4	9.2	9.1	9.1	9.3	9.2	9.1	9.1
550	8.3	8.5	8.6	8.9	9.0	9.1	8.9	8.8	8.8	8.9	8.8	8.6	8.8
600	7.9	8.0	8.2	8.5	8.6	8.6	8.4	8.3	8.4	8.5	8.7	8.2	8.4
650	7.4	7.7	7.8	8.1	8.1	8.0	7.8	7.8	8.0	8.2	8.0	7.7	7.9
700	7.0	7.3	7.4	7.7	7.7	7.5	7.4	7.3	7.6	7.7	7.6	7.3	7.5
750	6.7	6.9	7.0	7.3	7.3	7.1	6.9	6.9	7.2	7.3	7.3	7.0	7.1
800	6.3	6.5	6.6	6.9	6.9	6.8	6.6	6.6	6.9	6.9	6.8	6.5	6.7
850	5.9	6.1	6.3	6.5	6.5	6.4	6.2	6.2	6.5	6.5	6.4	6.1	6.3
900	5.6	5.8	6.0	6.2	6.2	6.1	5.9	5.9	6.1	6.2	6.0	5.7	6.0
950	5.3	5.5	5.6	5.9	5.9	5.8	5.6	5.6	5.8	5.9	5.7	5.4	5.7
1000	5.1	5.3	5.4	5.6	5.6	5.6	5.4	5.4	5.5	5.5	5.3	5.1	5.4
1050	4.9	5.1	5.2	5.3	5.4	5.4	5.2	5.1	5.3	5.3	5.1	4.8	5.2
1100	4.6	4.8	4.9	5.1	5.2	5.2	5.0	5.0	5.1	5.0	4.9	4.6	5.0
1150	4.5	4.7	4.8	4.9	5.0	5.0	4.9	4.8	4.8	4.7	4.6	4.5	4.8
1200	4.3	4.5	4.6	4.7	4.7	4.7	4.6	4.6	4.6	4.5	4.4	4.3	4.5
1250	4.2	4.3	4.4	4.6	4.5	4.5	4.4	4.5	4.5	4.4	4.3	4.2	4.4
1300	4.1	4.2	4.3	4.5	4.4	4.4	4.3	4.4	4.3	4.2	4.2	4.1	4.3
1350	4.0	4.1	4.2	4.4	4.3	4.3	4.2	4.3	4.2	4.1	4.1	4.0	4.2
1400	3.8	3.9	4.1	4.2	4.1	4.1	4.0	4.1	4.1	4.1	4.0	3.9	4.0
1450	3.7	3.7	3.9	4.0	4.0	4.0	4.0	4.0	3.9	3.9	3.8	3.7	3.9
1500	3.5	3.6	3.8	3.9	3.8	3.8	3.8	3.9	3.8	3.8	3.8	3.6	3.8

TABLE III-2: SURFACE TEMPERATURE - TEMPERATURE AT DEPTH

DIFFERENTIAL (°C), BY MONTHS JAKARTA 6°S/104°E

Depth	Month												Annual Mean
	1	2	3	4	5	6	7	8	9	10	11	12	
50	0.6	0.5	0.6	0.7	0.5	0.1	0.3	0.3	0.4	0.6	0.7	0.3	0.5
100	4.4	5.3	6.0	6.0	5.9	5.9	5.9	5.7	4.8	4.6	4.1	4.1	5.2
150	11.8	12.2	13.0	13.0	12.8	12.7	12.6	12.3	11.5	11.1	11.3	11.2	12.1
200	15.4	15.5	15.9	15.7	15.5	15.5	16.0	14.9	14.3	14.3	14.9	15.0	15.2
250	16.6	16.8	17.1	17.0	16.7	16.7	16.9	16.3	15.8	15.4	16.0	16.1	16.5
300	17.2	17.3	17.7	17.6	17.5	17.4	17.6	17.0	16.5	16.0	16.6	16.7	17.1
350	17.9	18.1	18.1	18.1	18.1	18.1	18.1	17.5	17.0	16.6	17.1	17.5	17.7
400	18.4	18.5	18.5	18.7	18.7	18.7	18.6	18.0	17.5	17.1	17.6	18.0	18.2
450	18.9	18.9	18.9	19.3	19.3	19.3	19.0	18.3	17.9	17.5	18.1	18.5	18.7
500	19.4	19.4	19.5	19.8	19.8	19.6	19.4	18.7	18.3	17.9	18.6	18.9	19.1
550	19.9	19.8	19.9	20.1	20.1	19.9	19.7	19.0	18.6	18.3	19.0	19.4	19.5
600	20.3	20.3	20.3	20.5	20.5	20.4	20.2	19.5	19.0	18.7	19.1	19.8	19.9
650	20.8	20.6	20.7	20.9	21.0	21.0	20.8	20.0	19.4	19.0	19.8	20.3	20.4
700	21.2	21.0	21.1	21.3	21.4	21.5	21.2	20.5	19.8	19.5	20.2	20.7	20.8
750	21.5	21.4	21.5	21.7	21.8	21.9	21.7	20.9	20.2	19.9	20.5	21.0	21.2
800	21.9	21.8	21.9	22.1	22.2	22.2	22.0	21.2	20.5	20.3	21.0	21.5	21.6
850	22.3	22.2	22.2	22.5	22.6	22.6	22.4	21.6	20.9	20.7	21.4	21.9	21.9
900	22.6	22.5	22.5	22.8	22.9	22.9	22.7	21.9	21.3	21.0	21.8	22.3	22.3
950	22.9	22.8	22.9	23.1	23.2	23.2	23.0	22.2	21.6	21.3	21.9	22.6	22.6
1000	23.1	23.0	23.1	23.4	23.5	23.4	23.2	22.4	21.9	21.7	22.5	22.9	22.8
1050	23.3	23.2	23.3	23.7	23.7	23.6	23.4	22.7	22.1	21.9	22.7	23.2	23.1
1100	23.6	23.5	23.6	23.9	23.9	23.8	23.6	22.8	22.3	22.2	22.9	23.4	23.3
1150	23.7	23.6	23.7	24.1	24.1	24.0	23.7	23.0	22.6	22.5	23.2	23.5	23.5
1200	23.9	23.8	23.9	24.3	24.4	24.3	24.0	23.2	22.8	22.7	23.4	23.7	23.7
1250	24.0	24.0	24.1	24.4	24.6	24.5	24.2	23.3	22.9	22.8	23.5	23.8	23.8
1300	24.1	24.1	24.2	24.5	24.7	24.6	24.3	23.4	23.1	23.0	23.6	23.9	24.0
1350	24.2	24.2	24.3	24.6	24.8	24.7	24.4	23.5	23.2	23.1	23.7	24.0	24.1
1400	24.4	24.4	24.4	24.8	25.0	24.9	24.6	23.7	23.3	23.1	23.8	24.1	24.2
1450	24.5	24.6	24.6	25.0	25.1	25.0	24.6	23.8	23.5	23.3	24.0	24.3	24.4
1500	24.7	24.7	24.7	25.1	23.3	25.2	24.8	23.9	23.6	23.4	24.0	24.4	24.5

The annual average ΔT from the surface to 1000 meters is 22.8°C. The ΔT at 1000 meters for the coldest month of the year is well over 20°C. The annual average ΔT at 650 meters is 20.4°C. The supply of cold water is virtually inexhaustible, with open access to the Antarctic region. The flow from the Antarctic is more intense in the Indian Ocean than the Atlantic or Pacific. Figure 3 provides a plot of monthly ΔT contours for the Jakarta site.

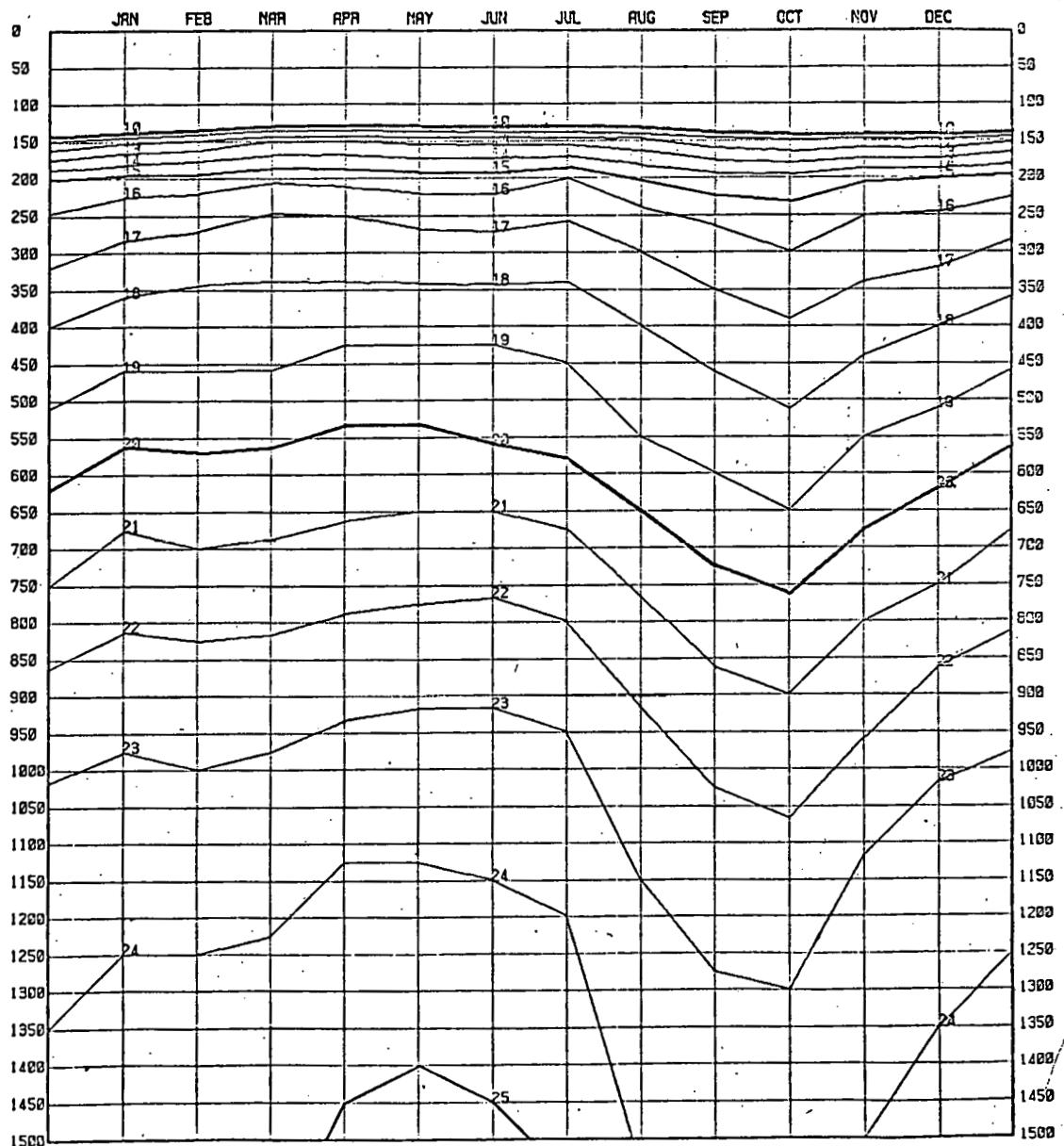


FIGURE III-1: CHART SHOWING MONTHLY AT CONTOURS ($^{\circ}$ C) AT 50 METER DEPTH INTERVALS FOR THE AREA OFF JAKARTA, INDONESIA (6° - 9° S/104-109 $^{\circ}$ E).

IV. MIXED LAYER DEPTH

For OTEC purposes the depth of the upper mixed layer is defined as the depth at which the temperature is first 1°C colder than the sea surface temperature. A well defined and moderately deep upper mixed layer is favorable for OTEC operations. There is a mixed layer depth for the Jakarta area throughout the year. It is deep enough to assure an intake of uniformly warm water. It is not too deep so that the mixed exhaust water cannot be discharged below the mixed layer depth in order to minimize the possibility of recirculation. The mixed layer depth for this region shows small seasonal variation. The MLD is generally between 50-80 meters deep. Depths of the MLD in meters off the south coast of Java are shown in Table IV-1.

TABLE IV-1: TYPICAL MIXED LAYER DEPTHS (METERS)
OFF JAVA (JAKARTA SITE).

<u>JAN-FEB</u>	<u>MAR-APR</u>	<u>MAY-JUN</u>	<u>JUL-AUG</u>	<u>SEP-OCT</u>	<u>NOV-DEC</u>
80	55	60	65	55	75

This mixed layer is better than adequate for OTEC purposes. The Thermal Structure of the Indian Ocean by Colburn (1974), [6], was consulted for mixed layer depth values together with our own temperature data file.

V. WEATHER CONDITIONS

Table V-1, taken from the U.S. Naval Weather Service, (1974), [35], shows basic climatic information for the vicinity of Jakarta, Indonesia. The area exhibits steady flow from the west from November through February and a steady flow from the east from July to September. In the fall and spring transition period winds are more variable in both speed and direction. This is verified from wind flow statistics for the water area south of Java as shown in Table V-2 through V-5 from the U.S. Weather Bureau (1938), [31].

The thermal resource was examined south of Java between 6-9° south latitude. Tropical storms and hurricanes are not a problem for OTEC for the Jakarta site. Figure V-1 shows the preferred tropical storm tracks for the region while Figure V-2 shows the average number of tropical cyclones per 5° square per year. Both figures are from Crutcher and Quayle (1974), [7]. Data from this source indicates one severe storm over the period of record of 73 years in the site area.

TABLE V-1: CLIMATIC SUMMARY FOR JAKARTA, INDONESIA (Elevation 4.8 Meters)
 Latitude 06° 09S, Longitude 106 50E.
 From U.S. Naval Weather Service (1974), [35].

V-2

PARAMETER	MONTH											
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
ABSOLUTE MAX TEMP (°C)	33	33	33	33	33	33	33	34	36	36	36	34
AVERAGE MAX TEMP (°C)	29	29	30	30	30	29	30	30	31	31	30	29
MEAN TEMP (°C)	26	26	27	27	27	27	27	27	27	27	27	27
AVERAGE MIN TEMP (°C)	23	23	23	23	23	23	22	22	22	23	23	23
ABSOLUTE MIN TEMP (°C)	21	21	21	21	21	19	19	19	19	21	20	19
AVERAGE RAINFALL (MM)	300	300	211	147	132	97	64	43	66	112	142	203
MEAN NO. DAYS RAIN	19	18	16	12	9	8	6	4	6	9	13	16
MEAN NO. DAYS THUNDERSTORM	12	9	9	8	6	4	2	2	2	4	9	7
MEAN NO. DAYS FOG	<1	<1	1	1	1	1	<1	<1	<1	<1	<1	<1
MEAN RELATIVE HUMIDITY (%)	84	84	83	81	80	80	77	75	75	76	79	81
PREVAILING WIND DIRECTION	W	W	N	N	NE	SW	E	E	E	S	W	W
MEAN WIND SPEED (M/S)	3.1	4.1	3.1	3.1	2.6	2.1	3.1	3.6	3.6	1.5	3.1	4.1

TABLE V-2
RESULTANT WINDS
Average Wind Velocity in Meters per Second

Location	Dec-Jan-Feb	Mar-Apr-May	Jun-Jul-Aug	Sep-Oct-Nov
Ivory Coast	3.1-4.1	3.1-4.1	4.1-5.1	4.1-5.1
Mombasa	5.1-6.2	4.1-5.1	6.2-7.2	4.1-5.1
Sri Lanka	4.1-5.1W 5.1-6.2E	4.1-5.1	6.2-7.2W 7.2-8.2E	5.1-6.2
Jakarta	4.1	3.1-4.1	5.1-6.2	5.1-6.2
Dampier Land	4.1-5.1	4.1-6.2	5.1-6.2	4.1-5.1
Philippines	5.1-6.2	3.1-4.1	4.1	6.2-7.2
Guam	5.1-6.2	4.1-5.1	4.1-5.1	4.1-5.1
Off Mexico	3.1-4.1	2.1-4.1	2.1-4.1	4.1-5.1
Plant Ship Pacific	3.1-4.1	3.1-4.1	4.1-5.1	4.1-6.2
Plant Ship Caribbean	6.2-7.2	5.1-6.2	6.2-8.2	4.1-5.1

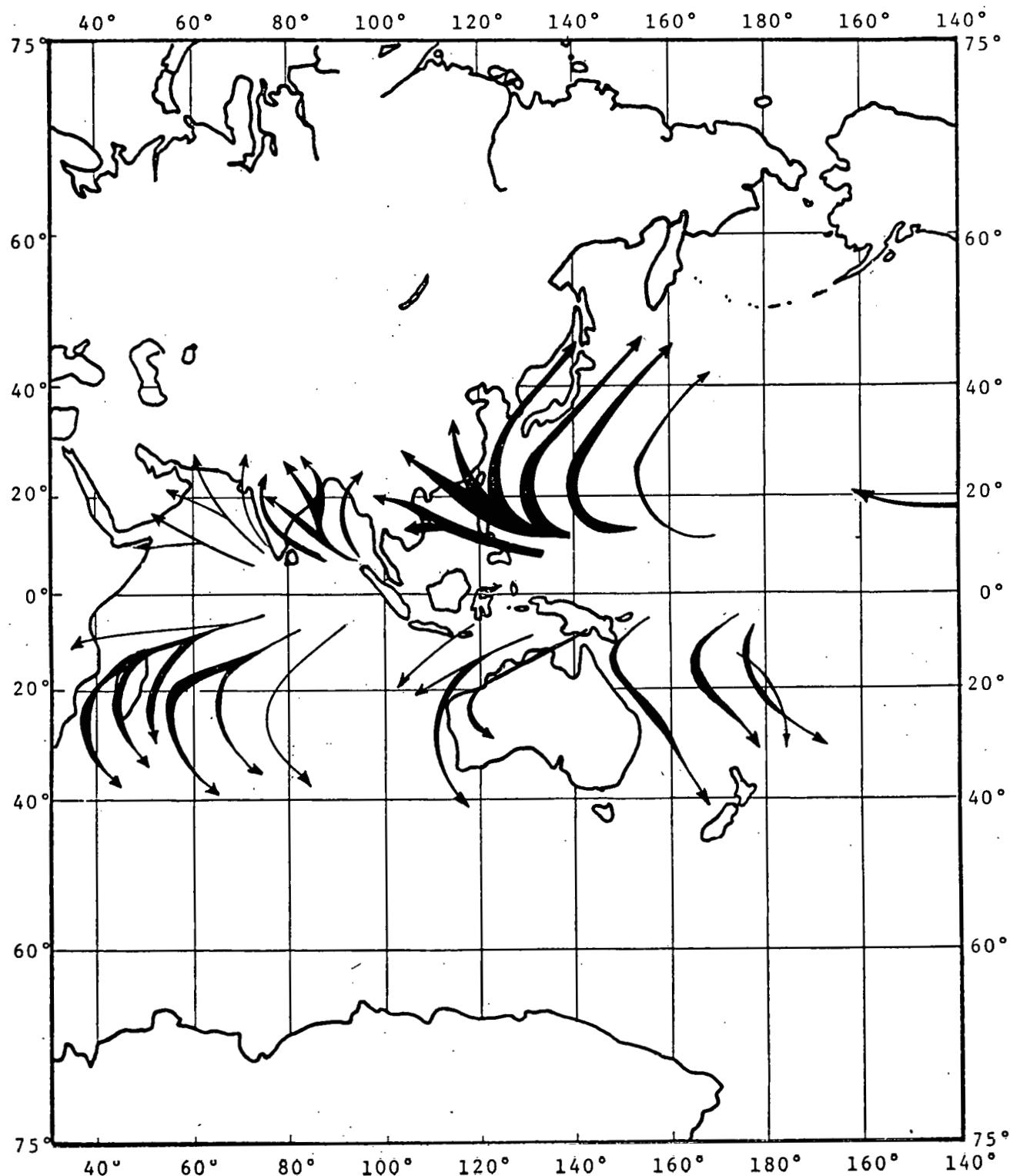
TABLE V-3
 FREQUENCY AND PERCENTAGE OF MODERATE GALES AND STRONGER WINDS,
 BEAUFORT FORCE 7 AND HIGHER
 (> 14.4 meters per second)

MONTH	IVORY COAST	MOMBASA	SRI LANKA	JAKARTA	DAMPIER LAND	PHILLIPINES	GUAM	OFF MEXICO	PLANT SHIP (PACIFIC)	PLANT SHIP (CARIBN)
JAN	0*	0-1	0	0	0	1-5	1-5	1-5	0	5
FEB	0	0	1	1-5	1-5	5	1-2	1-2	0	5
MAR	1-2	0	0	1-2	1-2	1	0	1-2	0	1-5
APR	0	0	0	1-2	0	1	1-5	1	0	1-5
MAY	0	1	1-5	1	0	1-5	0	0	0	1
JUN	0	5-10	5-10	1-5	0	1-5	0	1	0	1-5
JUL	0	5-10N 10-20S	1-5	1-5	1-5	5	0	0	0	1-5
AUG	0	1-5S 5-15N	1-5	0	0	1-5	1-5	1-5	0	1-5
SEP	0	0	1-5	1-5	0	5	1-5	0	0	1
OCT	0	0	OW 1-5E	1-5	0	1-5	1-2	1	1	1-5
NOV	0	0	1-5	1-5	0	10-15N 1-10S	5-15	1-5	0-5	1-5
DEC	0	1-2	OW 1-5E	1-5	0	10-15N 5-10S	1-5	1-5	0	1-5

* 0 = few or none.

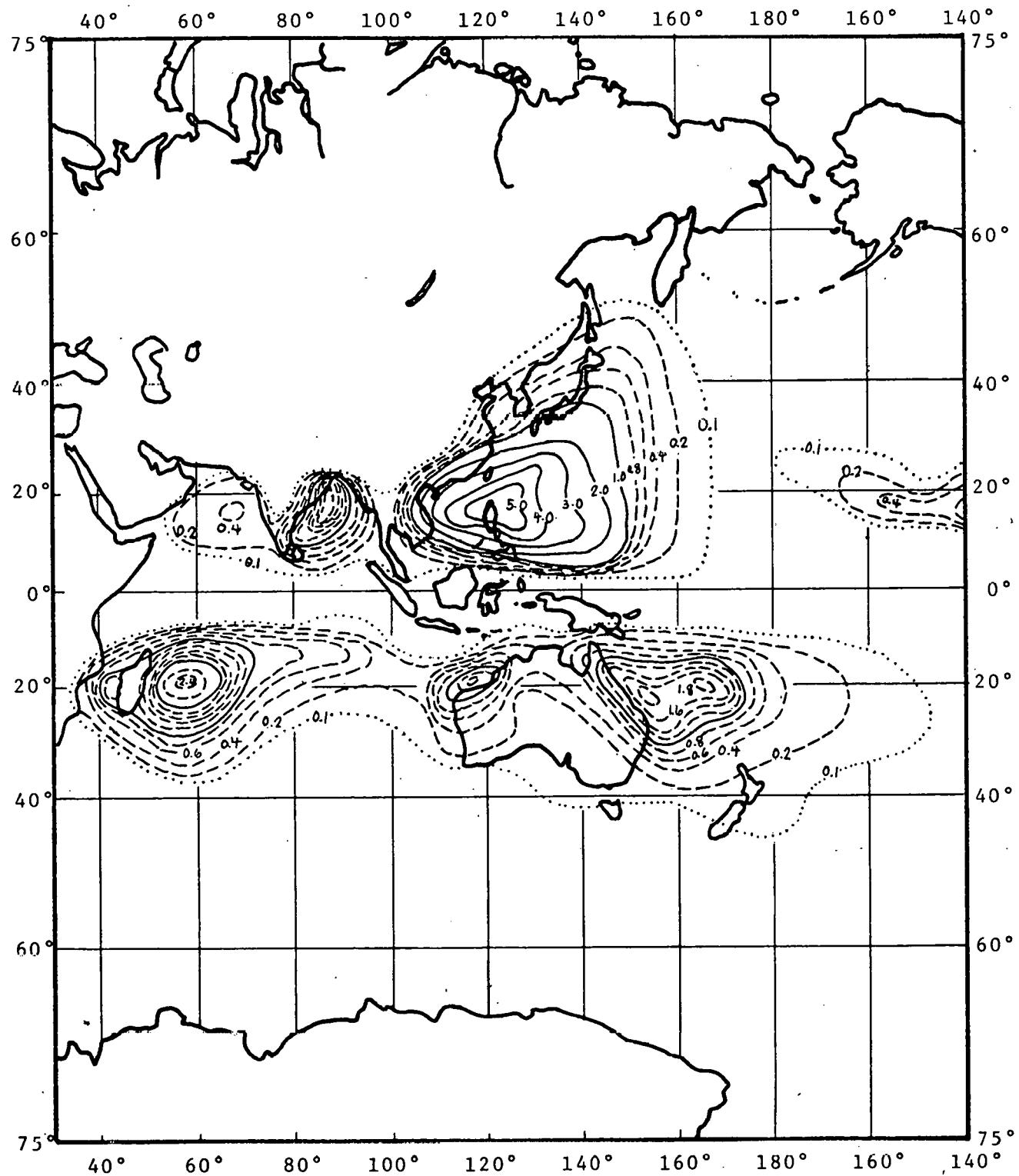
TABLE V-4

PERCENTAGE OF WINDS WITH BEAUFORT FORCE 8 AND HIGHER


(≥ 17.5 meters per second)

LOCATION	Dec-Jan-Feb	Mar-Apr-May	Jun-Jul-Aug	Sep-Oct-Nov
Ivory Coast	0	1	0	0
Mombasa	N 1 S 0	0	0	0
Sri Lanka	0	0	1	0
Jakarta	1	1	0	1
Dampier Land	1	1	0	0
Philippines	5	0	1	1-5
Guam	0	1	1	1-5
Off Mexico	1	1	0	1
Plant Ship Pacific	0	1	0	0
Plant Ship Caribbean	1	0	1	0

TABLE V-5
PREDOMINANT SURFACE WIND DIRECTION


9-4

MONTH	MOMBASA	SRI LANKA	DAMPIER LAND	JAKARTA	MANILA	GUAM	OFF MEXICO	PLANT SHIP (PACIFIC)	PLANT SHIP (CARIBN)	IVORY COAST
JAN	↓↓	↙	↗↖	↙	↙	↙	↙	↙	↙	↑↗
FEB	↓	↖	↗	↗	↖	↖	↓	↖	↖	↑
MAR	↖	↖↙ ↗↖	↗↖	↙	↖	↖	↖	↖	↖	↑
APR	0° ↖↗	↗↗	↗↗	↗	↖	↖	↖	↖	↖	↑
MAY	↑↗	↗	↗	↗	↗↖	↖	↖	↗	↖	↑
JUN	↑	↗	↗	↗	↗	↖	↖	↖ ↖	↖	↑
JUL	↑	↗	↗	↗	↗	↗↗	↖	↑	↖	↑
AUG	↑	↗	↗	↗	↗	↗↖	↖	↗↗	↖	↗
SEP	↑	↗↗	↗	↗	↖↗	↖	↖	↗	↖	↑
OCT	↗	→	↗	↗	↖	↖	↖	↗	↖	↑
NOV	↖↖	↖↖	↗↗	↖	↖	↖	↖	↖↖	↖	↑
DEC	↖	↖	↗	↗	↖	↖	↖	↖	↖	↗

ANNUAL PREFERRED STORM TRACKS FOR TROPICAL STORMS

FIGURE V-1

AVERAGE NUMBER OF
TROPICAL CYCLONES PER 5°
SQUARE PER YEAR

FIGURE V-2

V-8

VI. SEA AND SWELL CHARACTERISTICS

Low sea and swell conditions are predominant throughout the year for the Jakarta region. For the January-February period, low seas of 0.3-0.9 meters exist approximately 73% of the time. High seas greater than 2.4 meters occur only 1% of the time. Similarly, for January-February, low swell conditions of 0.3-1.8 meters occur 78% of the time, and high swell of greater than 3.6 meters occurs <4% of the time. During July and August, the conditions are only slightly rougher. During these months, low seas occur about 57% of the time, and high seas only 1% of the time. The distribution of low swell conditions is 55% during July-August, with high swell <4% of the time. Conditions during spring and fall vary only slightly from these figures. This data is from Wind Waves at Sea by H. B. Bigelow and W. T. Edmundson, (1947), [5].

Table VI-1 provides wave statistics for the Jakarta area taken from Ocean Wave Statistics (1967), [19]. This statistical breakdown shows the number of observations in various height versus period categories. The observations are from an area somewhat larger than the area chosen for site analysis, but the conditions over the area are represented as being homogeneous. Figure VI-1 provides a graph of the relative frequency of various wave heights for the Jakarta site.

TABLE VI-1: STATISTICAL BREAKDOWN SHOWING NUMBER OF SHIPS OBSERVATIONS
 SOUTH OF JAVA REPORTING VARIOUS HEIGHT/PERIOD
 COMBINATIONS (ALL SEASONS). From Ocean Wave Statistics (1967), [19].

Wave Height (meters)	Wave Period (Seconds)											Total	Percent of Grand Total
	Calm	<5	6-7	8-9	10-11	12-13	14-15	16-17	18-19	20-21	over 21		
0.25	171	281	17	3	1	2	1			2	1	479	2
0.5	28	1030	106	30	13	7	2	1	1	1	26	1245	5
1.0	50	2508	1435	375	135	49	12	6		14	22	4606	17
1.5	101	1747	3502	1408	403	160	53	11	2	2	2	7391	27
2.0	61	500	2140	1951	764	259	76	22	7	1	1	5785	21
2.5	38	174	998	1324	752	265	88	26	6			3671	13
3.0	28	59	388	710	544	213	88	15	2			2047	7
3.5	7	23	135	352	312	164	52	16	2			1063	4
4.0	6	11	91	182	191	113	56	20	5			675	2
4.5	1	8	45	84	84	86	36	17	2	1		368	1
5.0	4		2	10	14	18	6	3	1			58	<1
5.5	4		10	13	11	13	11					62	<1
6.0	4	4	6	6	9	5	8	2	1			47	<1
6.5	3	6	5	7	9	3	3	1				37	<1
7.0				5	4	2	2					13	<1
7.5				8	1	1	2	3	1			16	<1
8.0	1				2	1		1	1	3		9	<1
8.5		1		2	1	3	2					9	<1
Total	50	6349	8887	6468	3248	1370	497	146	32	25	52	27581	
Percent of Grand Total	2	23	32	23	12	5	2	<1	<1	<1	<1		

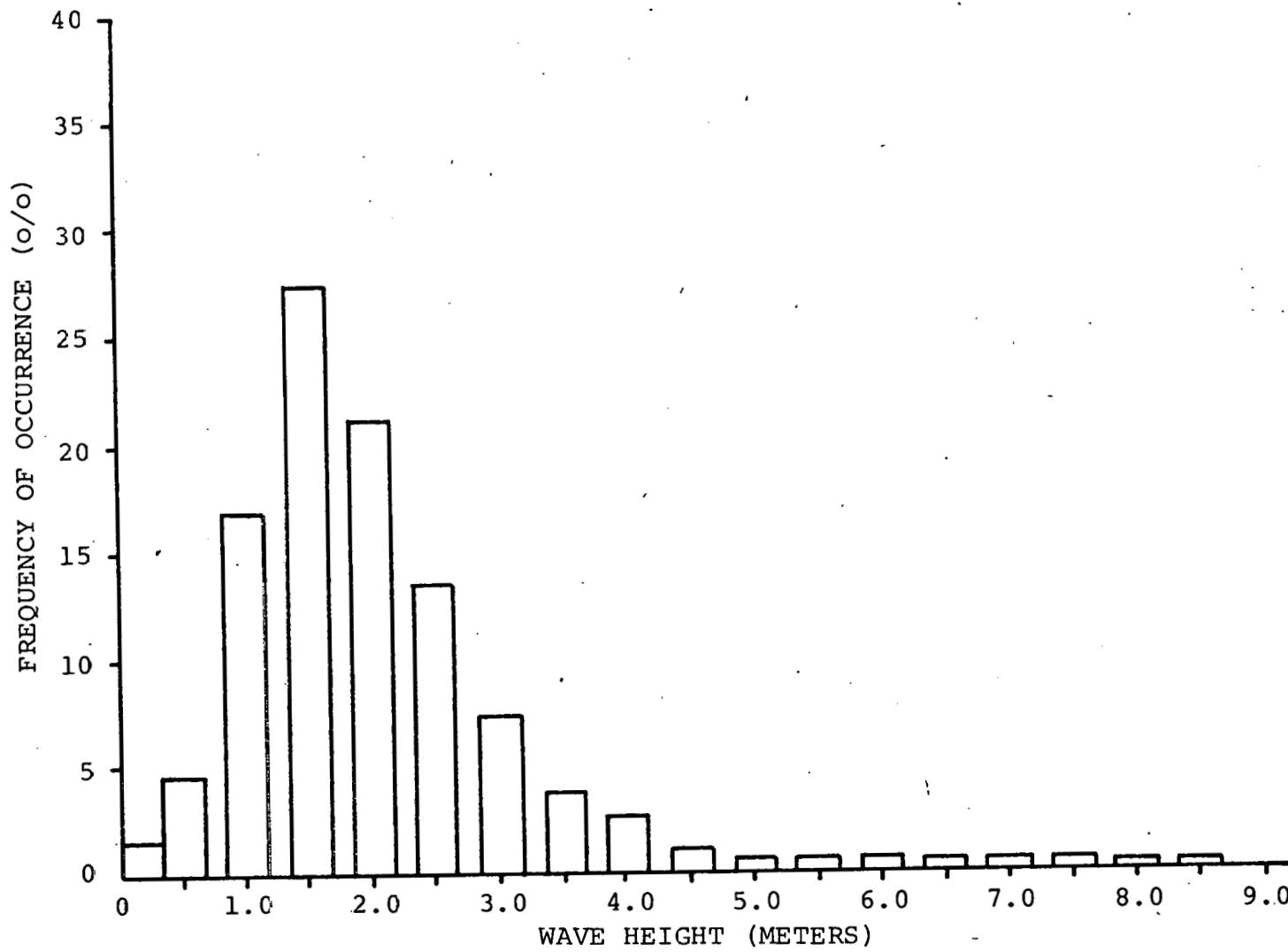


FIGURE VI- 1
WAVE HEIGHT FREQUENCIES (JAKARTA)

Table VI-2, from Climatic Summaries for Major Indian Ocean Ports and Waters (1974), [35], provides monthly mean wave heights for the Jakarta site. The monthly mean wave height for every month for most of this site region is less than 1 meter.

TABLE VI-2: MONTHLY MEAN WAVE HEIGHT (METERS)
FOR SITE SOUTH OF JAVA

<u>JAN</u>	<u>FEB</u>	<u>MAR</u>	<u>APR</u>	<u>MAY</u>	<u>JUN</u>
0.6-0.9	0.6-0.9	0.6-0.9	0.6-0.9	0.6-0.9	0.6-1.5
<u>JUL</u>	<u>AUG</u>	<u>SEP</u>	<u>OCT</u>	<u>NOV</u>	<u>DEC</u>
0.6-1.5	0.6-1.5	0.6-1.5	0.6-1.5	0.6-1.5	0.6-1.5

VII. CURRENTS

The surface circulation of the area is complex and shows variation seasonally. The westward flowing South Equatorial Current, which originates in the region south of Java, dominates during the Monsoon period. The Monsoon effects influence a maximum depth of between 150-200 meters off Java according to Düing (1970, [14]). An outflow from the Sunda Strait occurs during most of the year. In the fall, this current shifts to the south. The Equatorial Countercurrent turns southeast into the area in November. In August-September, the South Equatorial Current flows strongly off the western portion of Java. During most of the rest of the year, the Java coastal current flows along the coast to the southeast. The concentration of isotherms above 14°C in the upper 150 meters may perhaps be due to a reduced inflow through the Sunda Strait or by upwelling. South of Java the South Equatorial Current flow meanders. Wyrtki (1970, [46]) states that the velocity of the South Equatorial Current in its axis is more than 50 cm/sec. The pattern at 100 meters is the same with smaller velocities.

Currents are generally moderate in strength, being between 25 and 50 cm/sec closer to shore. Occasional periods of weak currents of less than 15 cm/sec can be expected. Variation in direction also occurs seasonally. This current information from studies by Colburn (1974, [6]) and Düing (1970, [14]) is largely based on ships logs which are derived

from calculations of ship's drift. Düing felt there was insufficient data for monthly charts of the currents. Few subsurface current measurements exist, and they are not consistent.

The rare hurricane that effects the area can have an effect on the surface currents. Leipper's (1967, [21]) study of Hurricane Hilda showed that a current had developed in the area transversed by the storm. Analysis of temperature-depth data showed a current of approximately 50 cm/sec. A theoretical study of O'Brien and Reid (1967, [27]) states that hurricanes will cause currents with a speed of approximately one meter per second.

The passage of hurricanes will induce upwelling of subsurface waters for a temporary period of up to a week. This upwelling will cause anomalous vertical current shears. A study by Wyrtki (1972, [45]) also shows that strong upwelling occurs south of Java, and that upwelling along Java's south coast is the strongest in the area. Previously the strongest upwelling was thought to occur off Northwest Australia. The region south of Java has very low temperature at 200 meters, very high concentrations of inorganic phosphate to depths of 100 meters, and a high plankton biomass. All are indications of strong upwelling. This upwelling not only poses problems to OTEC in terms of the temperature difference resource, or biofouling, but also may cause vertical current shears. Wyrtki (1971, [46]) estimates the upwelling to contribute 24 million m^3/sec for the South Equatorial Current. Vertical

and horizontal current shears are also observed in association with major current systems. This site is located in the region where the South Equatorial Current is formed.

REFERENCES

1. Adamec, D., and O'Brien, J.J., November 1978, "The Seasonal Upwelling in the Gulf of Guinea Due to Remote Forcing", *J. Phys. Oceanogr.*, 8, No. 6, 1050-1060.
2. Atwood, D.K., et al., 1976, *Ocean Thermal Energy Conversion, Resource Assessment and Environment Impact for Proposed Puerto Rico Site*, University of Puerto Rico.
3. Avery, W.H., et al., 1976, *Maritime and Construction Aspects of Ocean Thermal Energy Conversion (OTEC) Plant Ships*, The John Hopkins University Applied Physics Laboratory, Laurel, Maryland.
4. Bather, K.H., et al., 1977, "Consolidated Oceanographic and Meteorological Data for Four North Pacific OTEC Sites", University of Hawaii.
5. Bigelow, H.B., and W.T. Edmundson, 1947, *Wind Waves at Sea*, U.S. Hydrographic Office, Washington, D.C.
6. Colburn, J.G., 1974, "The Thermal Structure of the Indian Ocean", *International Indian Ocean Expedition Oceanographic Monograph No., 2*; The University Press of Hawaii; Honolulu, Hawaii.
7. Crutcher, H.L. and R.G. Quayle, 1974, "Mariners Worldwide Climatic Guide to Tropical Storms at Sea", NAVAIR 50-1C-61, Naval Weather Service; Asheville, N.C.
8. Defense Mapping Agency Hydrographic/Topographic Center, 1978, *Pilot Chart of the North Pacific*, DMA Stock Numbers PILOT 557801, 557804, 557810, Washington, D.C.
9. Defense Mapping Agency Hydrographic/Topographic Center, 1978, *Pilot Chart of the North Atlantic Ocean*, DMA Stock Numbers PILOT 167801, 167804, 167807, 167810, Washington, D.C.
10. Defense Mapping Agency Hydrographic Center, South Pacific Ocean, Sheet IV, Pub. N.O. 623, revised 1974, Washington, D.C.
11. Defense Mapping Agency Hydrographic Center, Indian Ocean, Northern Part, Pub No. 721, 1974, Washington, D.C.
12. Defense Mapping Agency Hydrographic Center, Gulf of Mexico and Caribbean Sea, Pub. No. 410, revised 1973, Washington, D.C.

13. Defense Mapping Agency Hydrographic Center, North Atlantic Ocean, Southeastern Sheet, Publication N.O. 125, 4th ed., 1974, Washington, D.C.
14. Duing, W., 1970; "The Monsoon Regime of the Currents in the Indian Ocean", International Indian Ocean Expedition Oceanographic Monograph No. 1, Hawaii Institute of Geophysics Contribution No. 331, the University of Hawaii Press; Honolulu, Hawaii.
15. Duing, W. and F. Schott; March 1978, "Measurements in the Source Region of the Somali Current during the Monsoon Reversal", *J. Phys. Oceanogr.*, 8, 278-289.
16. Emilsson, J., 1970, "On the Upper Layer Circulation in the Cayman Sea", from the Symposium on the Investigations and Resources of the Caribbean Sea and Adjacent Regions, UNESCO, Paris France.
17. Fleet Numerical Weather Central (FNWC), FNWC and National Oceanographic Data Center digitized reports.
18. Gentry, R.C., 1970, "Hurricanes, One of the Major Features of Air-Sea Interaction in the Caribbean Sea", from the Symposium on the Investigation and Resources of the Caribbean Sea and Adjacent Regions, UNESCO, Paris, France.
19. Hogben, N., and F. Lumb, 1967, Ocean Wave Statistics, National Physical Laboratory, Ministry of Technology, London. Her Majesty's Stationery Office.
20. Johnson, A. and S. Denwick, 1978; "Data Report Buoy Observations During Hurricanes Anita and Babe, August-September, 1977", NOAA Data Buoy Office, National Space Technology Laboratories, NSTL Station; Mississippi.
21. Leipper, D.F., 1967, "Observed Ocean Conditions and Hurricane Hilda, 1964. *J. Atmos Sci.*, 24, p 182-196.
22. McFadden J.D., "Airborne Investigations of the Effects of Hurricanes on the Thermal Structure of the Surface Layer of the Ocean", from the Symposium on Investigation and Resources of the Caribbean Sea and Adjacent Regions, UNESCO, Paris France.
23. National Oceanographic Data Center, The Variability of Water Masses in the Indian Ocean, Publication G-11, Washington, D.C.

24. National Oceanographic Data Center, Data File BTG75A, Washington, D.C., 1977.
25. National Oceanographic Data Center, Data Files SD40A5/0A6 from SD76A (1/30/76) 3509 STA: Washington, D.C., 1977.
26. National Science Foundation, 1972, Meteorological Atlas of the International Indian Ocean Expedition, Volume 7, Washington, D.C.
27. O'Brien, J.J., and R.O. Reid, 1967, "The Non-Linear Response of a Two Layer Baroclinic Ocean to a Stationary Axially Symmetric Hurricane", J. Atmos. Sci., 24, p 197-215.
28. Ramage, C.D., 1972, "Indian Ocean Surface Meteorology", International Indian Ocean Expedition, Collective Reprints VIII, Contribution No. 624, pgs 407-540; Paris, France.
29. Sirvastava, P.S., P.K. Vyayarayou and M.X. Joseph, 1972 "Monthly Wave Characteristics of the Bay of Bengal", International Indian Ocean Expedition, Collective Reprints VIII, Contribution No. 625, Paris, France.
30. The Encyclopedia of Oceanography, 1966, Reinhold Publishing Corp., New York, New York.
31. U.S. Department of Agriculture, Weather Bureau, 1938, "Atlas of Climatic Charts of the Oceans", Washington, D.C.
32. U.S. Department of Commerce, NOAA, 1971, Eastropac Atlas, Volume 3, Washington, D.C.
33. U.S. Navy, 1975, Marine Climatic Atlas of the World, Volume III, Indian Ocean, Washington, D.C.
34. U.S. Navy Hydrographic Office, 1964, Atlas of Sea and Swell Charts, Northeastern Pacific Ocean, Publication No. 799D, revised 1976, Washington, D.C.
35. U.S. Naval Weather Service, September 1974, Climatic Summaries For Major Indian Ocean Ports and Waters, NAVAIR 50-1C-63, Asheville, N.C.
36. U.S. Naval Weather Service, November 1973, Climatic Summaries For Major Seventh Fleet Ports and Waters, NAVAIR 50-1C-62, Asheville, N.C.
37. U.S. Naval Oceanographic Office, 1963, Oceanographic Atlas of the North Atlantic Ocean, Washington, D.C.

38. U.S. Naval Oceanographic Office, Bathymetric Atlas of the Northeastern Pacific Ocean, Pub No. 1303-S, No. 0902N, 0903N, 1002N, 1003N, Washington, D.C.
39. U.S. Naval Oceanographic Office, Indian Ocean, Africa-East Coast Publication No. 724, 1st ed., 1974, Washington, D.C.
40. U.S. Naval Oceanographic Office, 1971, Bathymetric Atlas of the Northeastern Pacific Ocean, H.O. Pub No. 1303-S, N.O. 1104N, 1105N, 1204N, 1204N, Washington, D.C.
41. U.S. Naval Oceanographic Office, 1971, Bathymetric Atlas of the Northeastern Pacific Ocean, H.O. Pub N.O. 1301-S, 2403N, 2040N, Washington, D.C.
42. U.S. Naval Oceanographic Office, 1970, Bathymetric Atlas of the Northwestern Pacific Ocean, H.O. Pub. 1201-S, N.O. 2203N, Washington, D.C.
43. Wolff, P.M. and W.E. Hubert, 1976, "Ocean Thermal Energy Conversion: Resource, Ecological and Environmental Studies", Contract No. NSF-C1020, Ocean Data Systems, Inc., Monterey, California.
44. Wolff, P.M., et al, 1977, "OTEC Resource Report for Hawaii", Contract EG-77-C-01-4028, Ocean Data Systems, Inc., Monterey, California.
45. Wyrtki, K., 1972, "The Upwelling in the Region Between Java and Australia during the South-East Monsoon, Collected reprints of the International Indian Ocean Expedition, Volume I, Contribution No. 15, pp 151-161.
46. Wyrtki, K., 1972, "Geopotential Topographics and Associated Circulation in the South Eastern Indian Ocean", Collected reprints of the International Indian Ocean Expedition, Volume I, contribution No. 14.
47. Wyrtki, K., 1971, Oceanographic Atlas of the International Ocean Expedition, National Science Foundation, NSF-IOE-1, Washington, D.C.