

DOE/PC/88890--T1

DOE/PC/88890--T1

DE89 010914

MAY 03 1989

PROOF OF CONCEPT TESTING OF AN INTEGRATED
DRY INJECTION SYSTEM FOR SO_x/NO_x CONTROL

Quarterly Technical Progress Report

January - March, 1989

Prepared by

D. J. Helfritch, Cottrell Environmental Sciences

R. Beittel, Riley Stoker Corp.

S. J. Bortz, KVB, Inc.

DOE Contract No. DE-AC22-88PC88890

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

JK
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

APR 03 1989

TABLE OF CONTENTS

	Page No.
1.0 Introduction	1
2.0 Status	3
3.0 System Design	4
4.0 The Test Program Planning	14
5.0 Heat Exchanger Specifications	22
5.1 Economizer	22
5.2 Air Heater	24
5.3 Cold Side Duct	24
6.0 Electrostatic Precipitator and Baghouse	25

FIGURES

	Page No.
Figure 1. Integrated Dry Injection Process	2
Figure 2. Equipment Arrangement	5
Figure 3. Flue Gas Time/Temperature Profile	6
Figure 4. Material Flow Diagram	7
Figure 5. Subscale Test Reactor	16
Figure 6. Temperature and Gas Measurement	21
Figure 7. R-C Pilot Precipitator Equipment	26
Figure 8. Pulse Jet Baghouse	28

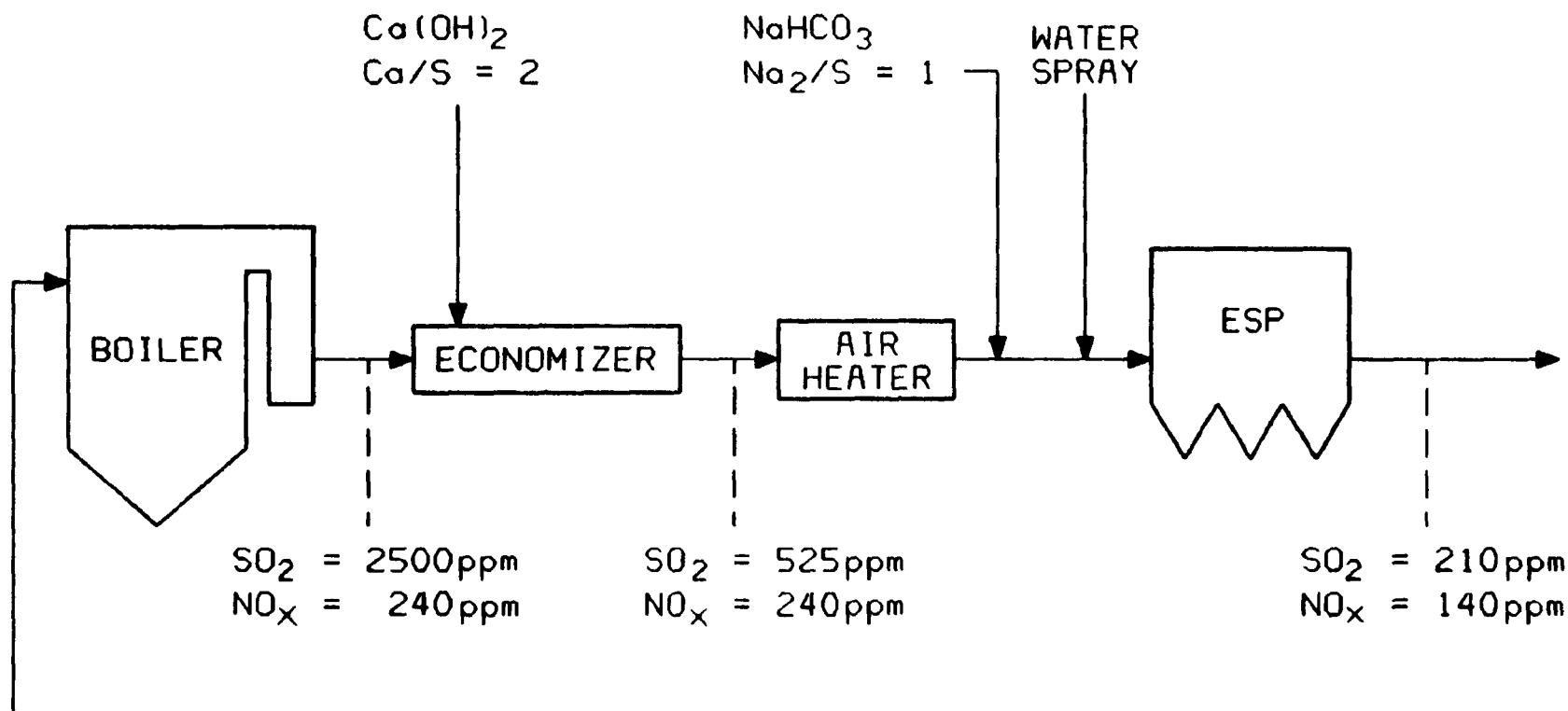
EXHIBITS

	Page No.
Exhibit 1. Material/Heat Balance Input	8
Exhibit 2. Combustion Calculation Input	9
Exhibit 3. Combustion Calculations Output	10
Exhibit 4. Material Flows 1	12
Exhibit 5. Material Flows 2	13
Exhibit 6. Heat Flows	15

TABLES

	Page No.
Table 1. Test Matrix For The Demonstration Facility	19

1.0 Introduction


The team of Cottrell Environmental Sciences, KVB and Riley Stoker will conduct a proof of concept demonstration of an Integrated Dry Injection Process. The process consists of combustion modification using low NO_x burners to reduce NO_x (i.e., NO + NO₂) emissions, dry injection of hydrated lime at economizer temperatures for primary capture of SO₂, and addition of a commercial grade sodium bicarbonate at the air heater exit for additional SO₂ and NO_x removal. This concept is illustrated in Figure 1. The Integrated Dry Injection Process offers the potential for simultaneously achieving 90+% SO₂ removal, and 75+% NO_x removal from a high sulfur flue gas. The proposed process is well suited for new or retrofit applications since it can be incorporated within the existing economizer and downstream duct. In addition, the capital costs are kept to a minimum since no large system components such as catalytic beds, spray dryers or scrubbers are required. Preliminary economic analysis indicate a capital requirement of \$50/kw and a total levelized operating cost of about 10 mills/kwh.

Tests conducted by KVB on a bench scale and a small pilot plant unit have demonstrated that hydrated lime addition at economizer temperatures is capable of capturing 79% of the inlet SO₂ with a feed stoichiometric ratio of 2. The simultaneous removal of SO₂ and NO_x in the presence of sodium bicarbonate or hydroxide has also been demonstrated by KVB at the Arapahoe test facility of EPRI. A low NO_x burner has been developed by Riley Stoker for sizes up to 100 million Btu/hr.

The proof of concept demonstration will be conducted on the large combustor at the Riley Stoker research facility in Worcester, MA. The scope of the program includes system engineering and design, equipment procurement, modification and installation, system commissioning, operation and testing, data analysis and reporting. A preliminary sorbent screening test program will be conducted at the KVB test facility in Irvine, California. CES is the primary contractor and has overall project management responsibility, KVB, Inc. and the Riley Stoker Corp. are the major subcontractors.

Figure 1.

INTEGRATED DRY INJECTION PROCESS

600ppm NO_x WITHOUT LOW NO_x
BURNER (LNB)
60% REDUCTION WITH LNB

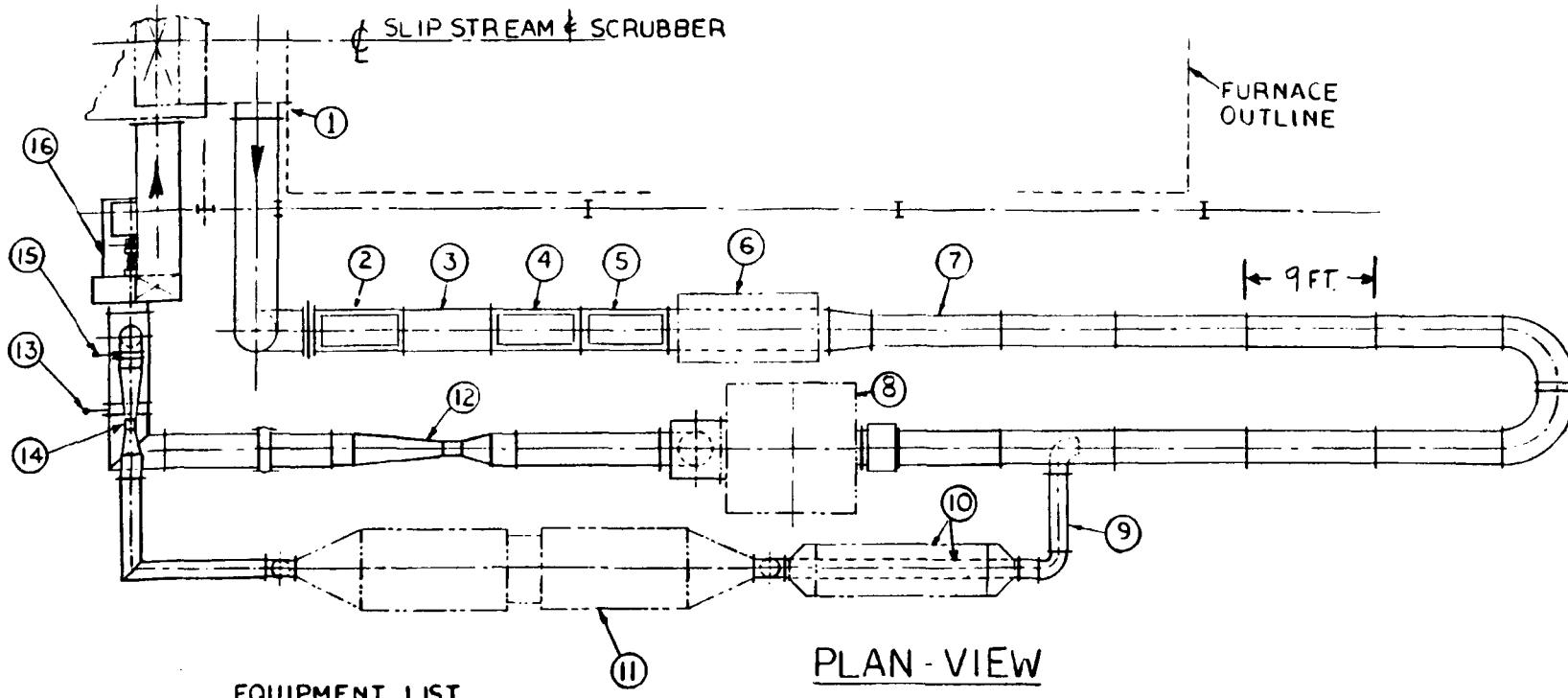
The demonstration plant consists of a combustor equipped with a low NO_x burner firing at a rate of 50 million Btu/hr. A slip stream of 10,000 scfm of flue gas from the combustor will be indirectly cooled to the target economizer inlet temperature. Hydrated lime will be injected in the pilot economizer section at representative inlet temperatures and quench rates. Exit gases will be cooled to typical preheater outlet temperatures in an air cooled exchanger. Dry sodium bicarbonate will be injected in the flue gas exiting the air preheater. Subsequent humidification of the flue gas with a water spray after the sodium bicarbonate injection is expected to enhance precipitator performance.

A twenty-four month program is planned with startup of the demonstration facility about twelve months after project inception. Two coals will be tested: a medium (2.5%) sulfur and high (3.5%) sulfur coal in order to demonstrate the process over an inlet SO₂ concentration of about 2200 to 3000 ppm.

2.0 Status

During the January - March 1989 time period major efforts were directed toward a finalization of the test parameters and their order of testing and toward the system design. A kickoff meeting, a Utility Review Committee meeting and a design review meeting were held during this period in order to gain direction on these objectives. The test parameter matrix has been modified several times as a result of these meetings. The current version will be discussed in this report.

The equipment design has also evolved through several changes, and the current design will be presented in this report.


Work during the next three months period will be devoted to detailed design, and equipment specification and purchase.

3.0 System Design

Flue gas will be taken from the Riley Research CBTF at the furnace exit just upstream of the spraydown and scrubber. The gas will leave the furnace at about 1200F, and will be routed to a heat exchanger in order to reduce the temperature of the gas entering the simulated economizer to the 900-1100 F range. A 6-ft long section of open duct will separate this heat exchanger from the economizer tube banks in order to accommodate sorbent injectors. The economizer will be simulated with two heat exchangers each having the following construction: 6-ft long, 3-ft x 5-ft in cross section; 10 tubes/row, 1.91-inch OD tubes on 3.6-inch centers, 17 rows in in the direction of flow; air cooled tubes. The superficial velocity for 50 million Btu/hr gas flow will be about 27 ft/s (at 800 F). The gas will exit the economizer section at 650-750 F and will then be cooled in a simulated air heater to 300 F. The air heater will be of parallel plate construction. The air heater exit gas will enter a 30-inch ID duct, nominally 100 feet in length, and providing about 2 s isothermal residence time at 50 ft/s and 300 F. The duct will be straight except for one 180 degree turn to bring the flue gas back to the particulate control devices. The 30-inch duct will continue into the pulse-jet baghouse; a 15-inch duct will take a portion of the flow into the ESP. Separate venturies and dampers will be used in the exit lines to control flow through the baghouse and ESP. The gas streams will then be combined and returned to the scrubber using a booster fan. Figure 2 shows a plan view of the equipment arrangement. Figure 3 shows the design flue gas time-temperature profile for the described system. The residence times and temperatures are considered to be representative of the U.S. boiler population.

A combustion calculation and a material and heat balance computer program have been written which allows a rapid determination of material flows and heat transfer within the system. The flow system is shown in Figure 4. A typical input page to the program is shown in Exhibit 1. A Riley Research combustion program is used to generate the flue gas constituents, and an example of the input and output of this program is given in Exhibits 2 and 3. For the examples shown, the output of the

Figure 2. Equipment Arrangement

EQUIPMENT LIST

(1) SLIP STREAM TAKE-OFF 1200°F. 36"	(9) ELECTROSTATIC PRECIPITATOR TAKE-OFF
(2) HEAT EXCHANGER, AIR-COOLED TEMP. CONTROL TO 900-1100°F.	(10) HUMIDIFICATION CHAMBER OR 15" DUCT
(3) EMPTY DUCT FOR SORBENT INJECTORS	(11) ELECTROSTATIC PRECIPITATOR (ESP)
(4) ECONOMIZER SECT. 1 AIR COOLED TUBE BANKS IN 3'X5' DUCT	(12) BAGHOUSE VENTURI
(5) ECONOMIZER SECT. 2 VELOCITY= 28 FT. PER SEC.	(13) BAGHOUSE DAMPER
(6) AIR HEATER SYSTEM	(14) ESP VENTURI
(7) DUCT 30" x 100 FT. LENGTH.	(15) ESP DAMPER
(8) BAG HOUSE	(16) BOOSTER FAN

THIS PRINT IS THE PROPERTY OF RILEY STOKER CORPORATION AND IS NOT TO BE USED IN ANY WAY INJURIOUS TO ITS INTERESTS AND IS TO BE RETURNED UPON REQUEST.

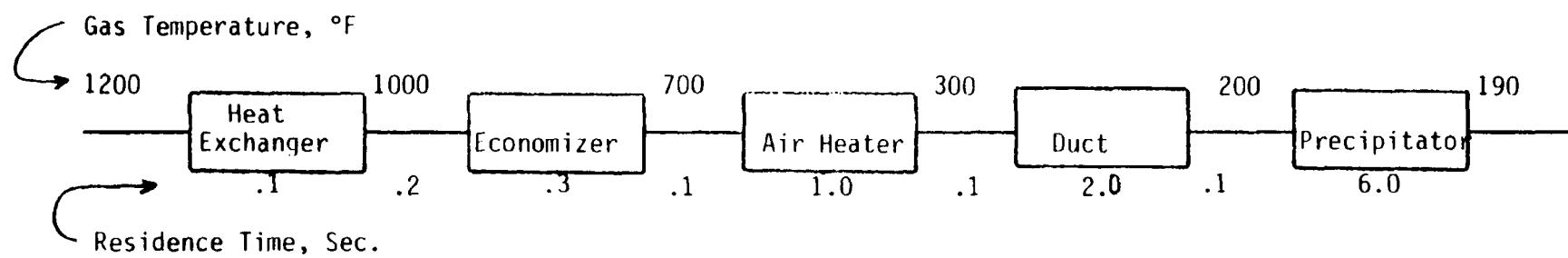
WE ARE NOT RESPONSIBLE FOR ANY INJURY OR DAMAGE DUE TO THE USE OF DESIGN ON THIS DRAWING OF ANYTHING NOT ACTUALLY FURNISHED BY US WHETHER SO SPECIFICALLY INDICATED OR NOT AND WE ARE ALSO NOT RESPONSIBLE FOR THE DESIGN, INSTALLATION OR OPERATION OF ANY PART OF FOUNDATION OR SETTING OR ACCESSORY EQUIPMENT NOT ACTUALLY FURNISHED BY US

"N" MATERIAL NOT FURNISHED BY

"F" MATERIAL FURNISHED BY

DO NOT USE THIS DRAWING FOR CONSTRUCTION UNLESS IT CONTAINS DATE AND SIGNATURE OF APPROVAL

FIRST USED ON
CONTRACT NO
BLR
EUEI


DO NOT SCALE
USE DIMENSIONS ONLY

RILEY STOKER CORPORATION
WORCESTER, MASS.

GENERAL LAYOUT OF EQUIPMENT
SORBENT INJECTION PROJECT
REASEARCH-COTTRELL

DWG. 89801-01-PD1
NO.

Figure 3. Flue Gas Time/Temperature Profile

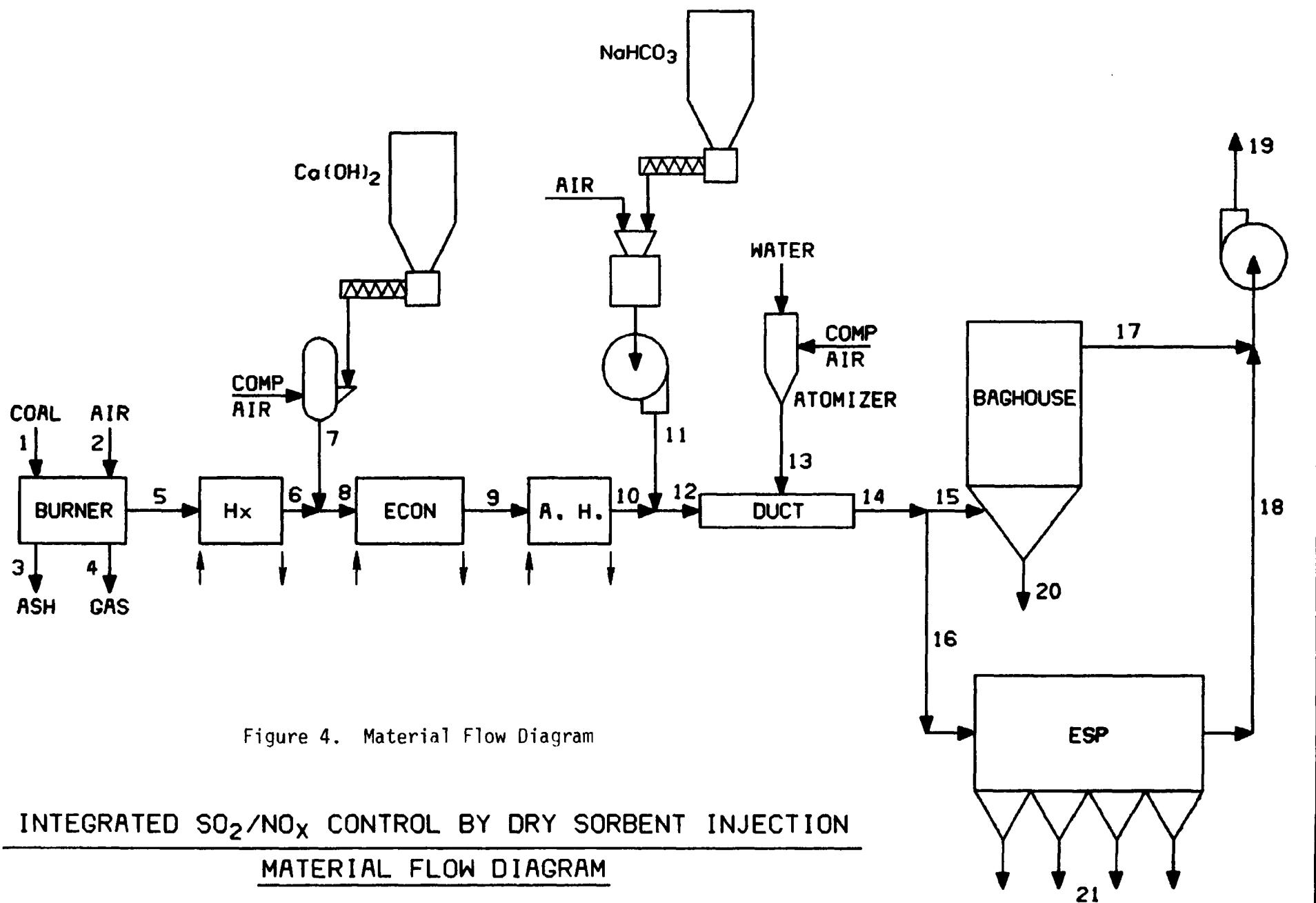


Exhibit 1. Material/Heat Balance Input

MATERIAL AND ENERGY FLOW CALCULATIONS

COAL CONSTITUENT WT. %

C	58.50
H	4.00
N	1.00
S	5.00
O	21.50
<u>2.34</u>	<u>16.00</u>

WATER % 10.00 IN SITE 1.0

SUPERFUEL FLOW = 10000.00 WSCFM @ 1 ATM 60 DEG F IN SUPERFUEL SITE

PRODUCTION CALCULATION RESULT NSR = 1.17

GAS CONSTITUENT LB/HR LB AIR/LB COAL @ 60 DEG F

NOX	73.34	22445.62	7.76
SO2	2.71	1270.18	
CO2%	14.17	9850.98	
SO2ppm	2270.00	229.54	
NOx%	240.00	11.38	
H2O%	81.58	2718.36	
ASH, GR/SCF	8.41	720.36	WSCF/LB COAL = 180.00

REACTION CONSTANTS --- A ... N IN LB MOLE / HOUR

A*Ca(OH)2 + B*SO2 = C*CaSO3 + D*CaSO4 + E*CaCO3 + F*CaO + G*Ca +

I*NaHCO3 + J*SO2 + K*NO = L*Na2SO4 + M*NaNO3 + N*Na2CO3

CALCIUM NSR = A/B = 2.00

SO2 CAPTURE EFF = (C+D)/B =	0.79	COOLING AIR FLOW LB/HR	
CaCO3/CaSO4 = C/D =	1.00	HX	12500.00
CaCO3/(SO3+SO4) = E/(C+D) =	0.50	ECON	27000.00
CaO/(SO3+SO4) = F/(C+D) =	0.25	AH	75000.00
SODIUM NSR = I/(2J+K) =	1.00	STREAM TEMPERATURE DEG F	
SO2 CAPTURE EFF = L/J =	0.60	HX IN	1200.00
NO CAPTURE EFF = M/K =	0.42	ECON IN	1000.00
LB INJECT AIR / LB Ca(OH)2	4.00	AH IN	700.00
LB INJECT AIR / LB NaHCO3 =	1.00	DUCT IN	300.00
LB ATOMIZER AIR / LB WATER	0.50	DUCT OUT	200.00
REFERENCE TEMPERATURE = AMBIENT =	70.00	DEG F	DEG F
		550.00 DEG F	

Exhibit 2. Combustion Calculation Input

LOTUS123 FILE FUELSTO.WK1
USER ENTERS VALUES MARKED *

PAGE 1/2

FLUE GAS COMPOSITION FROM COAL ANALYSIS

FUEL*: #2, 3/7/89 FAX

WT% IN COAL AF	MOL O2 RQD/LB	MOL PRODUCED/LB COAL, 0% O2 IN DRY AIR				
		CO2	H2O	SO2	N2	FLUE GAS
CARBON*	58.50	4.88E-02	4.88E-02		1.83E-01	2.32E-01
HYDROGEN*	4.00	1.00E-02		2.00E-02	3.76E-02	5.76E-02
NITROGEN*	1.00	0.00E+00			3.57E-04	3.57E-04
OXYGEN*	6.00	-1.9E-03			-7.1E-03	-7.1E-03
SULFUR*	2.50	7.81E-04			7.81E-04	2.94E-03
ASH*	16.00	0.00E+00				0.00E+00
MOISTURE*	12.00	0.00E+00		6.67E-03		6.67E-03
TOTAL	100.0	5.77E-02	4.88E-02	2.67E-02	7.81E-04	2.17E-01
						2.93E-01

STOICHIOMETRIC COMBUSTION IN DRY AIR, PER LB FUEL:

	AIR RQD(MDAO)	DRY FG(MDFG0)	WET FG
MOLES	2.75E-01	2.67E-01	2.93E-01
M.W.	2.90E+01	3.10E+01	2.98E+01
LBS	7.96E+00	8.28E+00	8.76E+00

Y(0), MOL H2O/MOL DRY FG, STOICH COMB IN DRY AIR: 1.00E-01

BTU/LB* 10500

LBS SO2/10E6 BTU 4.76
LBS ASH/10E6 BTU 15.24

Exhibit 3. Combustion Calculations Output

LOTUS123 FILE FUELSTO.WK1
USER ENTERS VALUES MARKED *

PAGE 2/2

YA, AMBIENT HUMIDITY, MOL/DRY MOL*: 2.00E-02

DRY %O2*	0.00	1.00	2.00	3.00	4.00	5.00
SR	1.000	1.050	1.105	1.167	1.235	1.313

DRY BASIS:

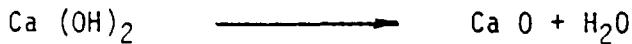
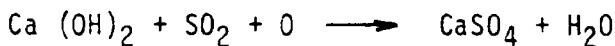
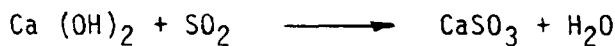
CO2, %	18.27	17.40	16.53	15.66	14.79	13.92
N2, %	81.43	81.32	81.20	81.09	80.97	80.85
SO2, PPM	2928	2789	2649	2510	2371	2231
MOL WT	31.03	30.92	30.82	30.72	30.61	30.51
DSCF/LB COAL	103.2	108.4	114.1	120.5	127.5	135.5
DSCF/1E6 BTU	9833	10325	10868	11472	12147	12906
ASH, GR/DSCF	10.85	10.33	9.81	9.30	8.78	8.27

Y, MOL/MOL DRY FG	0.120	0.115	0.110	0.106	0.101	0.096
-------------------	-------	-------	-------	-------	-------	-------

WET BASIS:

O2, %	0.00	0.90	1.80	2.71	3.63	4.56
CO2, %	16.32	15.61	14.89	14.17	13.44	12.70
N2, %	72.71	72.92	73.13	73.34	73.55	73.76
SO2, PPM	2615	2501	2386	2270	2153	2035
H2O, %	10.71	10.33	9.95	9.56	9.17	8.77
MOL WT	29.63	29.59	29.55	29.50	29.46	29.41
WSCF/LB COAL	115.6	120.9	126.7	133.2	140.4	148.5
WSCF/1E6 BTU	11012	11514	12068	12684	13372	14147
ASH, GR/WSCF	9.69	9.26	8.84	8.41	7.98	7.54

Y TAKEN AS Y(0)/SR + YA (WITHIN 1% RELATIVE FOR COAL, 2%REL FOR GAS)




SR DEFINED AS 21/(21-DRY O2)

DRY CONCENTRATION = DRY CONC(% O2)/SR

WET CONCENTRATION = DRY CONC/(1+Y)

combustion program (Exhibit 3), for the case of an air to fuel stoichiometric ratio of 1.167, is the input for the material balance program (Gas Constituent column of Exhibit 1).

Material balances are then calculated for the various streams of Figure 3, assuming the following reactions occur:

The stoichiometric ratios, capture efficiencies and product ratios of Exhibit 1 allow a determination of the percentage of sorbent entering into each reaction above. The reaction constants shown in Exhibit 1 were selected for the purpose of demonstration, but are considered to be realistic. The actual values of these constants will be determined by solids composition testing and measured SO_2 and NO_x removal efficiencies. Other inputs needed in order to complete a material balance are the air to sorbent and air to water ratios. The calculated material flows are given in Exhibits 4 and 5. Exhibit 4 gives material flows in lb/hr for the principal streams. Exhibit 5 gives material flows for all the streams of Figure 3 in conventional units.

Once the material flows are established and the temperatures are specified, a heat balance is determined by calculating the sensible heat

Exhibit 4. Material Flows 1

MATERIAL FLOWS, LBS/HR

COMPONENT	ECON INLET	CATIONIC INJECT	ECON OUTLET	NaHCO ₃ +WATER	DUCT OUTLET	VALVE VOL.
NE-13-4R	32445.62	1628.53	54074.16	573.03	34560.13	71.43
O2	1370.18	490.60	1340.11	151.23	1974.74	7.33
CO2	9850.98		9788.65		9853.52	2.82
SC2	222.54		48.20		19.78	0.11
NO	11.38		11.38		6.89	0
H2O	2718.86		2608.12	107.14	2899.66	11.17
TOTAL GAS	46626.56	2121.14	43570.61	1757.40	5037.13	100.00
MATERIAL FLOWS						
Al(OH) ₃	576.69		576.69		576.69	47.41
Na2CO ₃	0.00		170.30		170.30	0
NaCO ₃	0.00		192.57		192.57	17.57
NaCO ₃	0.00		141.67		141.67	13.13
NaCl	0.00		39.67		39.67	3.67
Ca(OH) ₂	0.00	530.82	163.82		163.82	1.63
Na2SO ₄	0.00		0.00		64.17	4.52
NaNO ₃	0.00		0.00		13.54	0.96
Na ₂ CO ₃	0.00		0.00		43.59	3.11
NaHCO ₃	0.00		0.00	158.39	0.00	0.00
TOTAL SOLIDS	576.69	530.82	1284.59	158.39	1405.89	100.00
TOTAL MASS	47203.24	2651.96	49855.20	1925.79	51716.31	

Exhibit 5. Material Flows 2

STREAM NUMBER						
	1	2	3	4	5	6
AIR, SCFM		17810.27				
WATER, GPM						
COAL, LB/HR	5238.10					
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM				1623.57	10010.00	111.00
ASH&SOLIDS, LB/HR			167.65	33.90	576.07	576.07
	7	8	9	10	11	12
AIR, SCFM	471.84				35.10	
WATER, GPM						
COAL, LB/HR		530.82				
Ca(OH)2, LB/HR					169.39	
NaHCO3, LB/HR						1000.31
FLUE GASES, WSCFM	10471.34	9971.16	9971.16			
ASH&SOLIDS, LB/HR	1107.50	1284.59	1284.59			1442.77
	13	14	15	16	17	18
AIR, SCFM	119.24					
WATER, GPM	2.14					
COAL, LB/HR						
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM	10432.13	7451.52	2980.61	7451.52	77	
ASH&SOLIDS, LB/HR	1405.89	1004.21	401.68			
	19	20	21			
AIR, SCFM						
WATER, GPM						
COAL, LB/HR						
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM	10432.13					
ASH&SOLIDS, LB/HR		1004.21	401.68			

of each component within a flow stream and summing the individual sensible heats. The sensible heats for the gas are calculated from the equation:

$$\Delta H = \int_{T_{ref}}^T C_p dt$$

where the specific heat for each gas, C_p , is represented by an approximation in the form of

$$C_p = a + bT + cT^2$$

The specific heats of the solids are assumed to be constants.

The results of such a calculation for the input values given in Exhibit I is shown in Exhibit 6. The difference in sensible heat of the total gas and solids from point to point represents the amount of heat which must be removed by the heat exchangers. This heat is represented by the temperature increase of the cooling air. Finally, the flow rate of spray water is calculated, based upon the desired final temperature of the gas and the latent heat of evaporation of the water.

4.0 The Test Program Planning

The overall test program includes subscale sorbent screening tests at KVB and a pilot scale parametric test series at the Riley CBTF.

The KVB subscale tests will evaluate eleven hydrates at 900, 1000 and 1100°F in the pilot scale reactor system shown in Figure 5. For each test, O_2 , CO_2 , CO , NO , NO_2 and SO_2 concentration will be monitored.

Exhibit 6. Heat Flows

HEAT BALANCE

ALL COOLING AIR AND INJECTED SOLIDS AND GASES AT AMBIENT TEMPERATURE

COMPONENT	SENSIBLE HEAT, BTU/HR. REF 70.00 DEG F					
	HX INLET	ECON INLET	AH INLET	DUCT INLET	DUCT OUTLET	
CO	9.29E+06	7.58E+06	5.33E+06	1.92E+06	1.02E+06	
SO	3.43E+05	2.80E+05	2.02E+05	9.06E+04	5.37E+04	
SO2	2.69E+06	2.16E+06	1.40E+06	4.78E+05	3.67E+05	
SO3	4.31E+04	3.46E+04	4.72E+03	1.62E+03	7.59E+02	
NO	3.04E+03	2.48E+03	1.66E+03	5.97E+02	1.95E+02	
NO2	4.69E+06	4.33E+06	3.95E+06	3.20E+06	4.33E+06	
ASH	1.56E+05	1.29E+05	3.72E+04	3.18E+04	1.30E+04	
CaCO3	0.00E+00	0.00E+00	2.57E+04	9.38E+03	5.30E+03	
CaSO4	0.00E+00	0.00E+00	2.43E+04	8.86E+03	5.01E+03	
CaCO3	0.00E+00	0.00E+00	1.87E+04	6.84E+03	3.87E+03	
CaO	0.00E+00	0.00E+00	4.75E+03	1.73E+03	9.20E+02	
Ca(OH)2	0.00E+00	0.00E+00	2.99E+04	1.09E+04	5.18E+03	
Na2CO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.75E+03	
NaNO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.75E+02	
Na2CO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.47E+03	
NaHCO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
FLUE GAS+SOLES	1.72E+07	1.45E+07	1.11E+07	5.86E+06	5.84E+06	
WALL CONDUCTION	0.00E+00	2.66E+04	3.36E+04	3.21E+04	2.00E+04	
COOLING AIR	0.00E+00	2.66E+06	3.36E+06	5.21E+05	0.00E+00	
TOTALS	1.72E+07	1.72E+07	1.45E+07	1.11E+07	5.36E+06	
COOL AIR OUT DEG F		947.37	590.40	362.93		
SPRAY WATER, GPM	=		2.14			

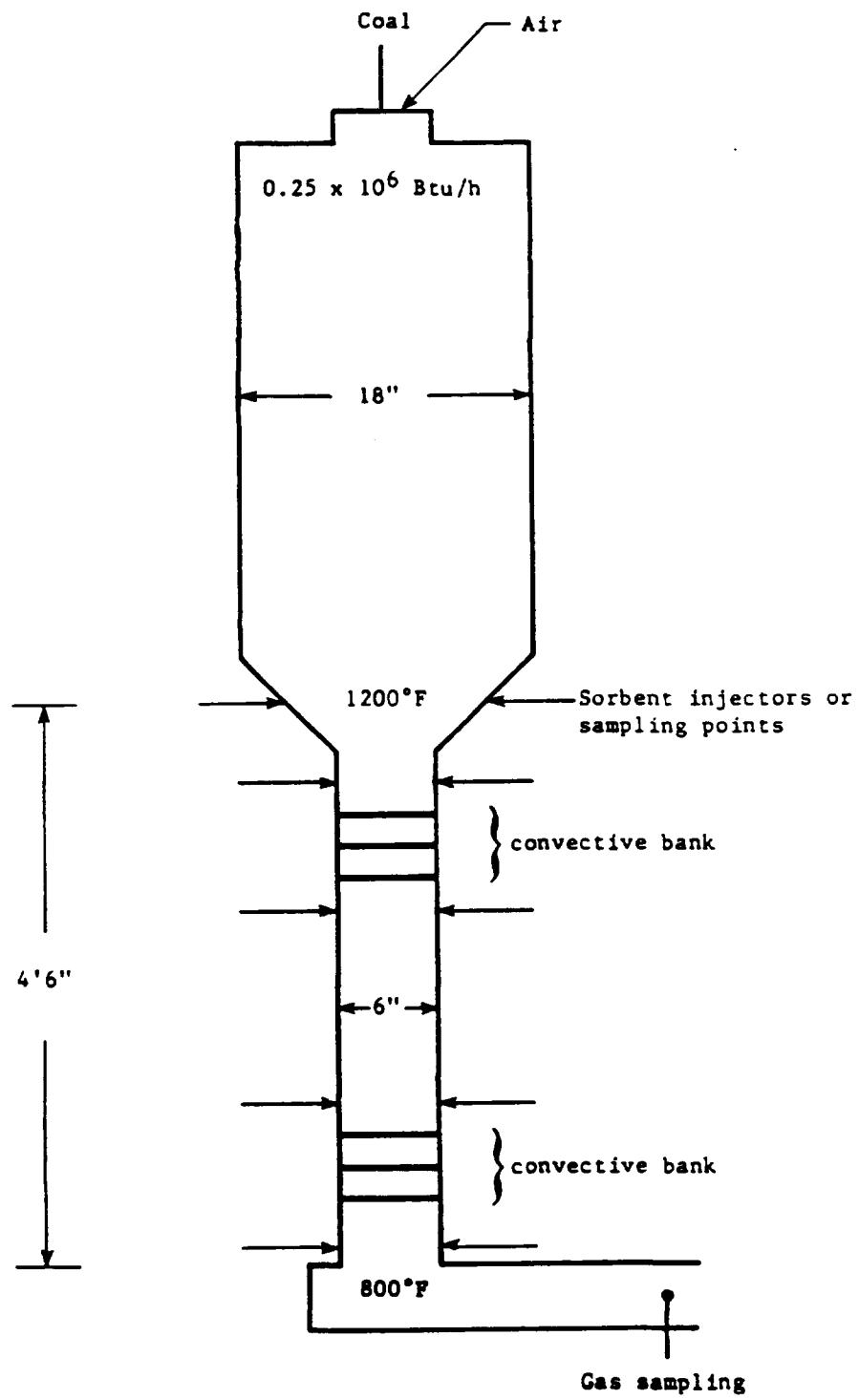


Figure 5. Subscale Test Reactor

The hydrates are:

Hydrate	Source
1. Mississippi Lime Co.	Ste. Genevieve, MO
2. Marblehead Lime Co.	Chicago, IL
3. Bellefonte Lime Co.	Bellefonte, PA
4. Tenn-Luttrell Co.	Luttrell, TN
5. & 6. Chemical Lime Co.	Clifton, TX
5. Regular (17-20 m ² /g)	
6. High (30-40 m ² /g)	
7. Colton Lime Co.	Colton, CA
8. Rheinische Kalksteinwerke	Wulfrath W. Germany
9. Alcohol Hydrate	KVB Lab
10. Lignosite Additive 1	KVB Lab
11. Lignosite Additive 2	KVB Lab

Hydrates 1,2,3,4,5 and 7 are commercial hydrates selected on the basis of a high surface area. Hydrate 6 is currently produced on a pilot scale by Chemical Lime Co. and they claim special process could be quickly commercialized. Hydrate 8 is from a commercial alcohol/water hydration plant in West Germany, which will be compared to hydrate 9, an alcohol water hydrate made in the KVB laboratory. Hydrates 10 and 11 will be made with 2% and 3% lignosulfonate. The commercial hydrates will be milled on-line prior to injection, while the additive enhanced hydrates will not be milled on line. One commercial hydrate and one additive enhanced hydrate will be selected for the demonstration program.

The same pilot scale furnace will be used to evaluate the effectiveness of the NO₂ suppression additive to the sodium bicarbonate. In these tests calcium hydroxide will be injected at 1000°F with a Ca/S = 2. The coal burner will also be run under staged conditions so that approximately 400 ppm NO_x is generated. Sodium bicarbonate will then be injected upstream of the baghouse at a temperature between 300 and 350°F. Urea and activated carbon will be added to the bicarbonate and the resultant NO_x removal and NO₂ generation will be studied. The optimum additive will be selected based on NO₂ suppression, effect on NO_x removal and any potentially detrimental byproducts formed. These subscale tests are scheduled for March through May, 1989.

Prior to conducting the parametric tests, a series of experiments will be performed to optimize the hydrate mixing rate with the flue gas above the economizer. Three injection parameters will be varied independently -- the injector number, the exit velocity and the transport air to flue gas ratio. Tests would generally be run at Ca/S ratios of both 1 and 2. At the conclusion of the tests the nozzle number and injection velocity would be fixed at optimum values for the parametric and long term experiments.

The parametric test program will consist of a series of short tests, 4 to 8 hours each, for the purpose of demonstrating SO_2 and NO_x reductions. The test matrix for achieving these objectives is given in Table 1. The matrix is designed to allow a determination of the influence of each parameter independently of the other parameters. Thirty four test runs are planned. All runs are scheduled for eight hours, except those marked with an asterisk, which signifies four hours. Except where otherwise indicated, all tests will be run using a 2 1/2% sulfur coal (2200 ppm SO_2), the Riley CCV low NO_x burner, and a commercial hydrate milled prior to injection.

The first five runs are designed to determine the importance of bicarbonate injection and humidifier cool down temperature on precipitator performance. The first run will establish base case precipitator performance for fly ash only. Run #2 will show how this performance changes resulting from hydrate injections, run #3 will show how precipitator performance changes resulting from bicarbonate injection, and runs # 4 and 5 will demonstrate the effects of humidification. Following run #5, a humidified temperature will be chosen that yields acceptable precipitator performance, and this temperature will be used for the remaining tests.

Runs #6 - 8 will be used to determine the amount of additive needed for good NO_2 control. The value established by these runs will be used for the remaining tests.

Runs #9 - 11 will be used to establish an economizer hydrate injection temperature for optimum SO_2 removal. This temperature will be used for the remaining runs.

Table 1.

TEST MATRIX FOR THE DEMONSTRATION FACILITY

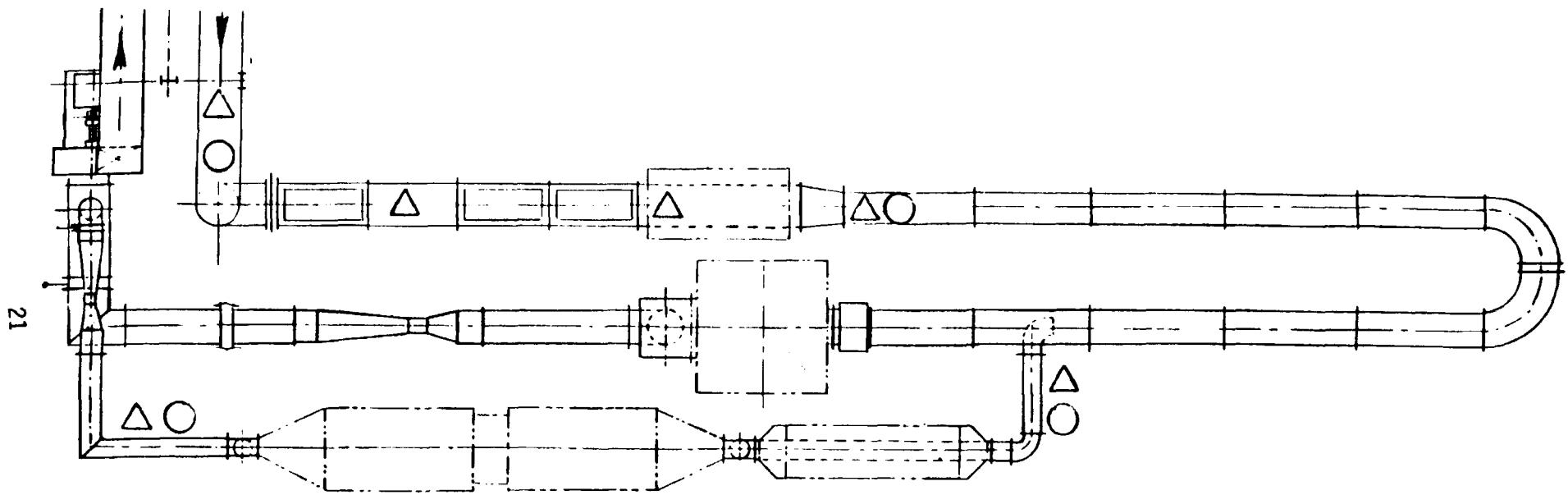
RUN	ECON INLET TEMP	Ca/S	AH EXIT TEMP	Na/(2S + NO)	HUMID TEMP	NO ₂ CONTROL ADDITIVE % OF BICARB
1	1000	0	300	0	300	
2	1000	2.0	300	0	300	
3				1.0	300	
4					200	
5					250	
6						
7						2
8						5
9*	1000					10
10*	1100					Best
11*	900		270			
12*	Best		350			
13*			300			
14*				1.0		
15*				1.5		
16*				0.5		
17		2.0		1.0		
18		2.5				
19		1.5				
20	1000	2.0				
21	1100	2.0				
22	900	2.0				
23	Best	2.5				
24	Best	1.5				
25*	Best From Run 12	2.0				
26*		2.5				
27*		1.5				
28*		2.0				
29*					200	
30*					160	
31*				0	180	
32*				1.5		
33*				1.0		
34*				0.5		

* Indicates two runs per day

The effect of air heater exit temperature is investigated in runs #12 - 14, the effect of bicarbonate mole ratio in runs # 14 - 16, and the effect of hydrate mole ratio in runs #17 - 19.

The additive enhanced hydrate will be evaluated in runs # 20 - 24. Both the hydrate to sulfur mole ratio and the injection temperature will be varied during these tests.

The effects of burning a 3 1/2% sulfur coal will be investigated in runs # 25 - 27.


An effort to enhance SO_2 capture through humidification to a close approach to the adiabatic saturation temperature will be made in runs # 28 - 30. During these runs an additional cooling water atomizer will be located in a large diameter duct section just upstream of the precipitator.

Finally, the CCV burner will be replaced by a standard burner, and the ability to handle higher NO_x levels will be investigated in runs #31 - 34.

Figure 6 shows the locations of the temperature measurement and gas sampling points. All temperatures will be routinely recorded once per hour. Gas monitoring will be by the KVB mobile lab. The gases measured and the methods to be used are:

Gas	Method
SO_2	Ultraviolet Photometric
NO_x	Chemiluminescent
O_2	Fuel Cell
CO_2	Nondispersive Infrared
CO	" "

Figure 6. Temperature and Gas Measurement

△ Temperature Measurement
○ Gas Sampling

Solid samples will be taken from the precipitator hopper once per test run. These samples will be analysed for Ca, Mg, Na, NO₂, NO₃, SO₃, S, and CO₃. In addition, ASTM 0698-70 will be used to evaluate the disposibility of the solids. In this method, water is added to the material until maximum denisty is achieved, whereupon a 1.5 inch diameter tube is filled with 6" of the material. This material is allowed to cure for periods of 1 to 28 days, after which 10 to 100 psi of water is applied to the top of the material and the rate of water flow through the material is measured. This leachate is analyzed for nitrate and sodium content, and in this way permeability of the fixed material and the nitrate and sodium concentrations in the leachate are determined.

5.0 Heat Exchanger Specifications

5.1 Economizer

The design for the economizer simulation is based on the results of a survey of utility convective sections performed by KVB. Here are KVB's recommendations:

- 6 ft. of open space upstream of the economizer to accomodate sorbent injectors.
- 6 injector ports at two locations.
- Economizer inlet controllable at 900-1100 F.
- Economizer outlet controllable at 650-750 F.
- Maximum velocity between tubes of 40-60 ft/s (corresponds to 20-30 ft/s superficial velocity with typical tube spacing).
- Typical residence time of 0.3 s
- Temperature drop through the economizer of 200 F.

In order to supplement this information, the economizer sections of three Riley boilers were examined. All were pulverized coal fired, 1967-1970 construction, and ranged from 250-410 MWe. Here is some information from the boiler design data:

- The economizer in each boiler was divided into two parallel passes with the area split ranging from 75/25 to 67/33%. This is a common design feature allowing control of upstream superheat/reheat temperatures by varying the proportion of flow through each pass. At full load, the flow through each pass should be approximately proportional to area. (At reduced load, the gas flow through each pass would not be proportional to area since most of the flow would be directed through the main pass.) Since the amount of heat transfer surface upstream of each economizer pass is different, inlet temperatures can be significantly different in each pass. This issue is not addressed in the simulation, but should be kept in mind for full scale application.
- The calculated superficial velocity at full load was 18-19 ft/s, and the maximum (intertube) velocity calculated at an assumed temperature of 800 F, was 35-42 ft/s. These velocities are based on the full duct cross section. Unbalanced flow could increase the velocity in one pass.
- Tube patterns were either 2.0-inch OD on 4.0-inch centers, or 2.5-inch OD on 4.5-inch centers.
- The number of rows varied from 17 to 27 deep in the direction of flow, or a tube-bank depth of 6 to 9 ft.
- Two of the three economizers included a cavity about 3 feet deep.
- The superficial residence time within the tube banks (excluding the cavity) ranged from 0.33 to 0.5 s (proportional flow and identical temperatures throughout the two passes assumed).

- Calculated inlet/outlet temperatures were 850/750, 922/721, and 935/715 F, with corresponding quench rates (based on tube bank depth excluding the cavity) of 275, 590, and 400 F/S.

These particular economizers had a lower velocity and quench rate and longer residence time than the average from the survey. However, the recommendations from the survey appear to be sound. The design superficial velocity will be taken as the mid to upper part of the 20-30 ft/s range recommended by KVB. Tube bank depth and temperature drop capability will be increased to ensure adequate performance. Two separately cooled tube banks and the use of air cooling will allow the heat removal to be controlled as required.

Water temperatures in the three Riley economizers ranged from 481 to 553F. Since tube metal temperature will closely approach water temperature, and since we wish to avoid a pressurized system for the simulator, this indicates that air cooling must be used to maintain realistic tube temperature.

5.2 Air Heater

The heat exchanger simulating the air heater will be capable of cooling the flue gas to 300 F from the maximum economizer outlet temperature of 750F. The most common utility air heater by far is the regenerative type, typified by the Lungstrom. However, this type of air heater exhibits excessive leakage between the flue gas and air streams at this scale (20 - 40%, compared to about 5% in large units). A parallel plate type recuperative heater will be used in order to roughly simulate the geometry of the regenerative heater, and because it is more compact than the cross flow tube type of exchanger.

5.3 Cold Side Duct

SO_2 removal by sodium bicarbonate injected downstream of the air heater will depend on the residence time available in the duct connecting the air heater and the ESP. Since the primary air of the project is to demonstrate a retrofit technology, the duct will be designed with a realistic residence time and velocity. Based on information provided by

DOE, the duct will be designed to provide about 2 s residence time at 50 ft/s and 300 F. The duct diverting part of the gas flow into the ESP will be scaled to maintain the same velocity. In addition, a small chamber will be available to substitute for a section of duct immediately preceding the ESP. This will be used only if required for humidification to a low approach temperature. Normal operation will entail only moderate humidification within the straight duct section.

6.0 Electrostatic Precipitator and Baghouse

The electrostatic precipitator that will be used for the program is an existing Research-Cottrell pilot unit and is shown in Figure 7. The precipitator is a two-field unit and is designed as a small segment of a standard R-C precipitator. The gas passage width is 9" and the discharge electrodes consist of the weighted wire design. The collecting surface is the G-Opzel design and is the same as in a full-scale precipitator, with the exception of height, and the total collecting surface is 792 square feet. This yields an SCA of approximately 200 Sq. Ft./1000 ACFM.

The gas passing through a full-sized ESP does not normally lose more than a few degrees of temperature from inlet to outlet; but the ratio of gas volume to outside surface is so much smaller on the pilot ESP that the shell is heated to prevent a large temperature change.

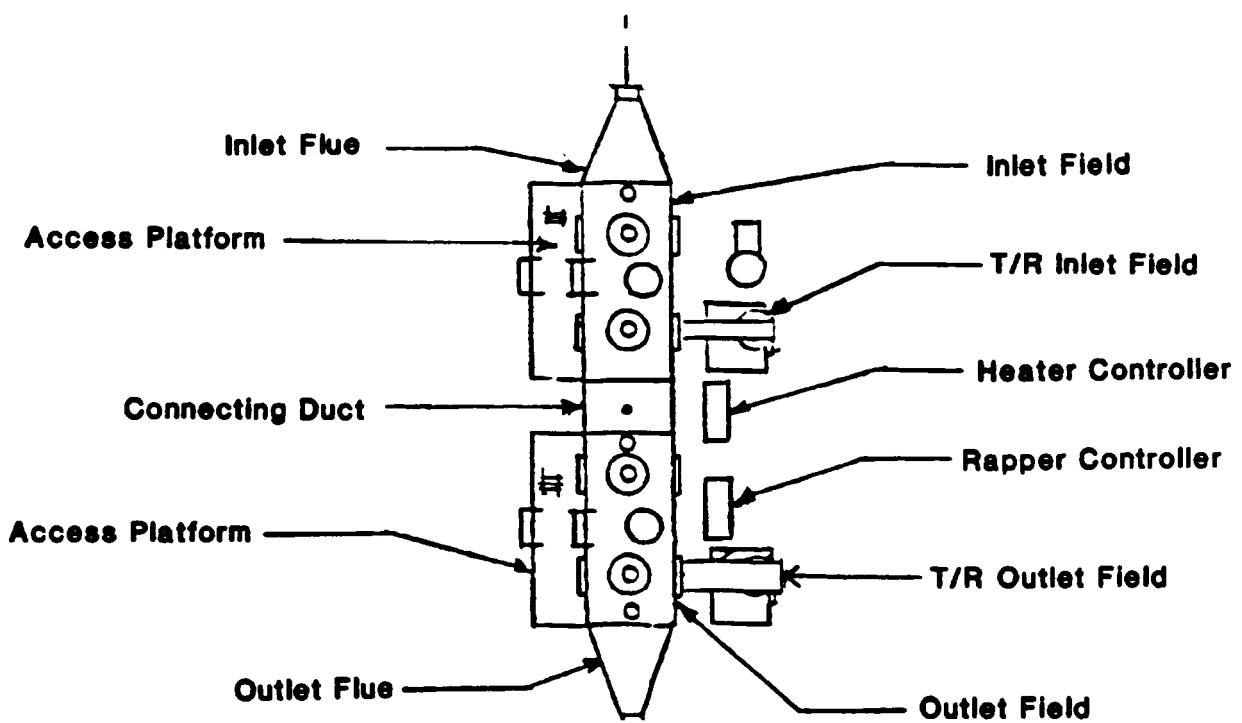
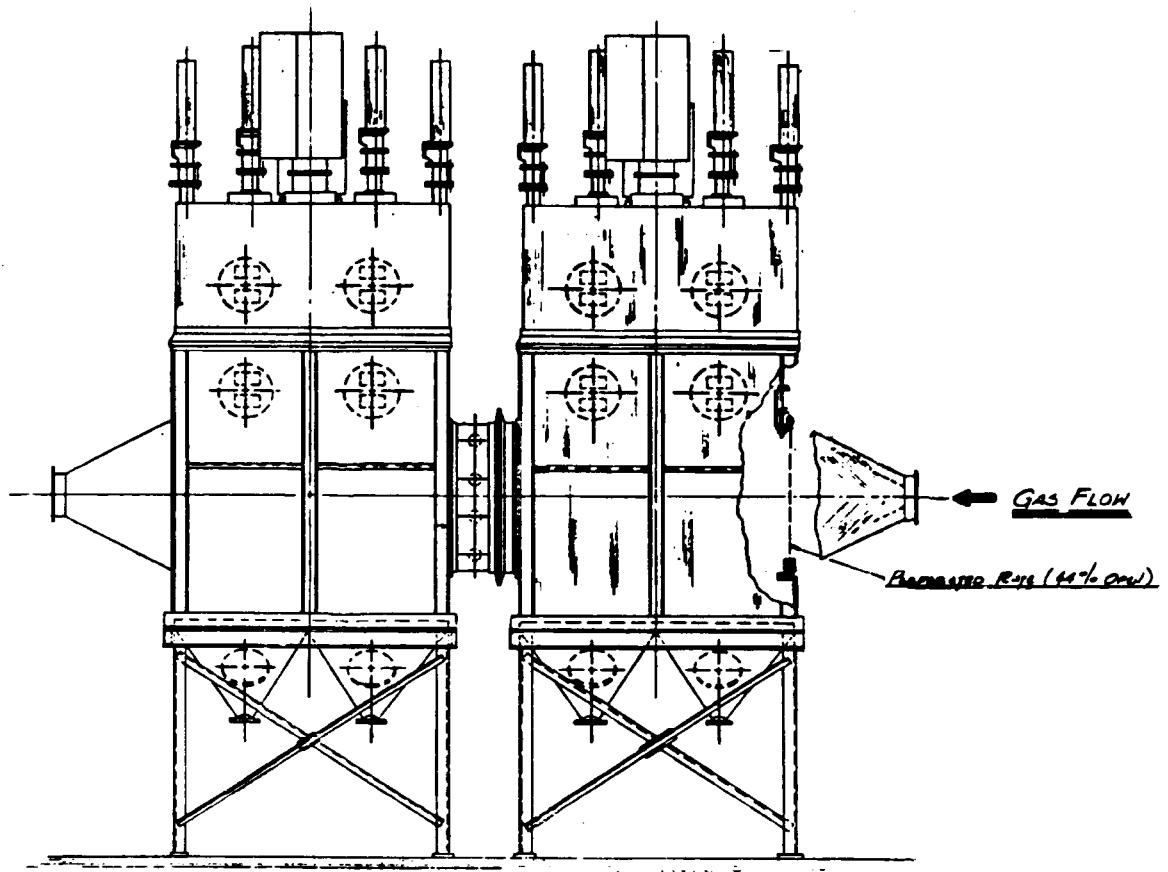
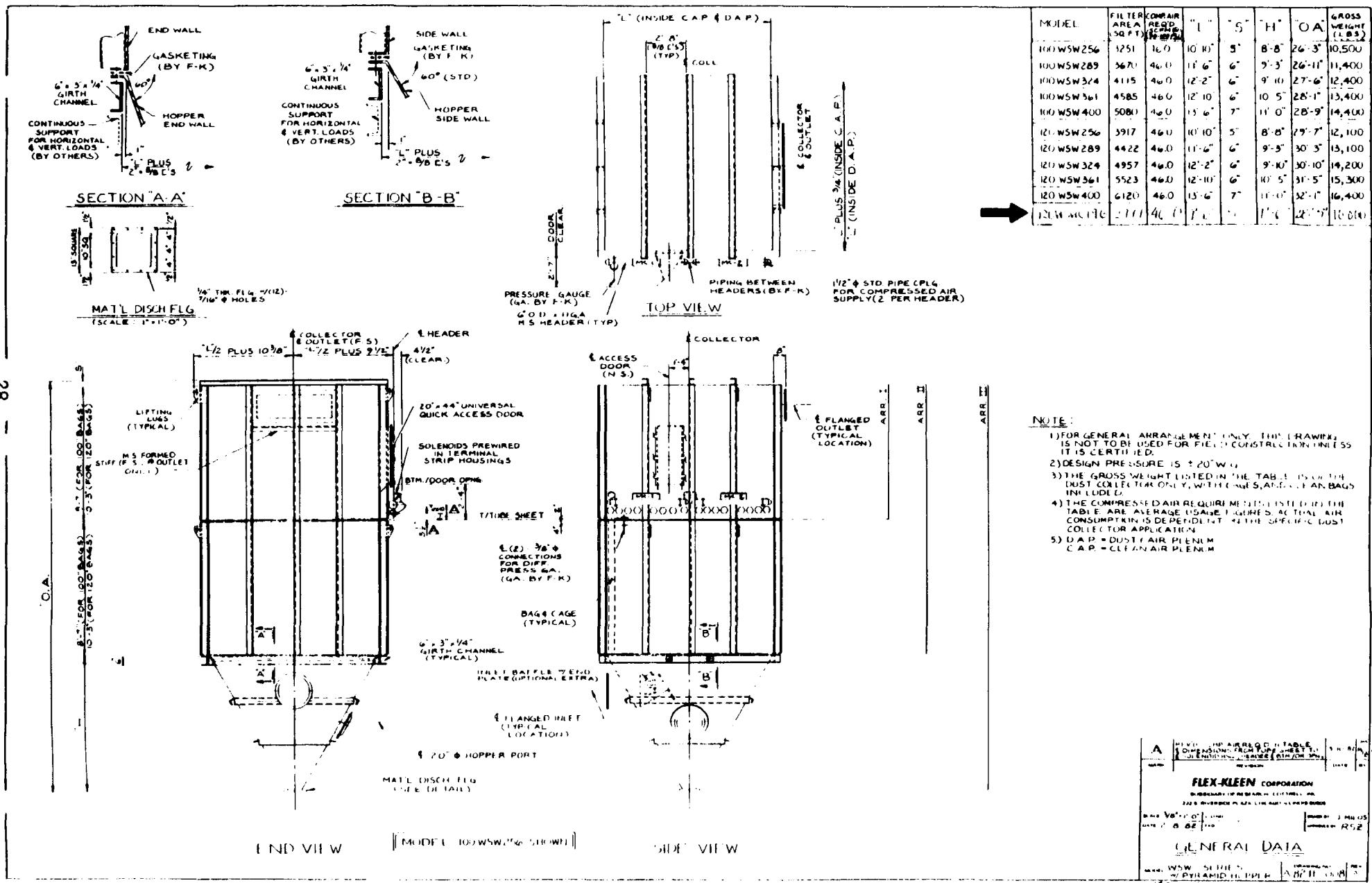



Figure 7.

R-C PILOT PRECIPITATOR EQUIPMENT


GENERAL ARRANGEMENT

Pertinent physical characteristics of the precipitator are given below:

Number of Chambers	1
Number of Fields	2
Number of Gas Passages per Field	4
Length of Field	9 Ft.
Size of Gas Passages	9" x 5.5"
Type of Collecting Surfaces	G-Opzel
Type of Discharge Electrodes	Weighted WIre
Number of Hoppers	2
Number of Rappers	4
Number of T-R's	1
Type of T-R	NWL Model 30140 6 kVA Single Phase 60 Hz. 460 VAC. 14A Input 140 KVDC Peak, 50 mA Output

The baghouse will be a pulse jet type, containing approximately 3,000 sq. ft. of filter fabric, yielding an air cloth ratio of 3 ACFM/Sq. Ft. The filter fabric will be acid resistant Nomex felt and on-line pulse jet cleaning will be employed. The baghouse will be insulated with 3 inches of fiberglass wool. The baghouse vendor has not yet been chosen, but a baghouse typical of the specifications given above is shown in Figure 8.

Figure 8. Pulse Jet Baghouse

APPENDIX I Material And Heat Balances

The results of calculations for the material and heat balances of the system shown in Figure 4 are reported here. The calculations are for 2.5 and 3.5% sulfur coal and for calcium to sulfur mole ratios of 1 and 2. For each value of coal sulfur level, the combustion calculation is followed by the material and heat balances for two values of Ca/S.

LOTUS123 FILE FUELSTO.WK1
USER ENTERS VALUES MARKED *

PAGE 1/2

FLUE GAS COMPOSITION FROM COAL ANALYSIS

FUEL*: #2, 3/7/89 FAX

WT% IN COAL AF	RQD/LB	MOL PRODUCED/LB COAL, 0% O2 IN DRY AIR				
		CO2	H2O	SO2	N2	FLUE GAS
CARBON*	58.50	4.88E-02	4.88E-02		1.83E-01	2.32E-01
HYDROGEN*	4.00	1.00E-02		2.00E-02	3.76E-02	5.76E-02
NITROGEN*	1.00	0.00E+00			3.57E-04	3.57E-04
OXYGEN*	6.00	-1.9E-03			-7.1E-03	-7.1E-03
SULFUR*	2.50	7.81E-04			7.81E-04	2.94E-03
ASH*	16.00	0.00E+00				0.00E+00
MOISTURE*	12.00	0.00E+00		6.67E-03		6.67E-03
TOTAL	100.0	5.77E-02	4.88E-02	2.67E-02	7.81E-04	2.17E-01
						2.93E-01

STOICHIOMETRIC COMBUSTION IN DRY AIR, PER LB FUEL:

	AIR RQD(MDAO)	DRY FG(MDFG0)	WET FG
MOLES	2.75E-01	2.67E-01	2.93E-01
M.W.	2.90E+01	3.10E+01	2.98E+01
LBS	7.96E+00	8.28E+00	8.76E+00

Y(0), MOL H2O/MOL DRY FG, STOICH COMB IN DRY AIR: 1.00E-01

BTU/LB* 10500

LBS SO2/10E6 BTU 4.76
LBS ASH/10E6 BTU 15.24

LOTUS123 FILE FUELSTO.WK1
USER ENTERS VALUES MARKED *

PAGE 2/2

YA, AMBIENT HUMIDITY, MOL/DRY MOL*: 2.00E-02

DRY %O2*	0.00	1.00	2.00	3.00	4.00	5.00
SR	1.000	1.050	1.105	1.167	1.235	1.313

DRY BASIS:						
CO2, %	18.27	17.40	16.53	15.66	14.79	13.92
N2, %	81.43	81.32	81.20	81.09	80.97	80.85
SO2, PPM	2928	2789	2649	2510	2371	2231
MOL WT	31.03	30.92	30.82	30.72	30.61	30.51
DSCF/LB COAL	103.2	108.4	114.1	120.5	127.5	135.5
DSCF/1E6 BTU	9833	10325	10868	11472	12147	12906
ASH, GR/DSCF	10.85	10.33	9.81	9.30	8.78	8.27

Y, MOL/MOL DRY FG	0.120	0.115	0.110	0.106	0.101	0.096
-------------------	-------	-------	-------	-------	-------	-------

WET BASIS:

DRY BASIS:						
O2, %	0.00	0.90	1.80	2.71	3.63	4.56
CO2, %	16.32	15.61	14.89	14.17	13.44	12.70
N2, %	72.71	72.92	73.13	73.34	73.55	73.76
SO2, PPM	2615	2501	2386	2270	2153	2035
H2O, %	10.71	10.33	9.95	9.56	9.17	8.77
MOL WT	29.63	29.59	29.55	29.50	29.46	29.41
WSCF/LB COAL	115.6	120.9	126.7	133.2	140.4	148.5
WSCF/1E6 BTU	11012	11514	12068	12684	13372	14147
ASH, GR/WSCF	9.69	9.26	8.84	8.41	7.98	7.54

Y TAKEN AS Y(0)/SR + YA (WITHIN 1% RELATIVE FOR COAL, 2%REL FOR GAS)
SR DEFINED AS 21/(21-DRY O2)

DRY CONCENTRATION = DRY CONC(% O2)/SR

WET CONCENTRATION = DRY CONC/(1+Y)

MATERIALS AND ENERGY FLOW CALCULATIONS

TOtal CONSTITUENT	WT %
C	58.50
H	4.00
N	1.00
O	6.00
S	2.52
<u>ASH</u>	<u>16.00</u>
WATER	12.00

100% OF STREAM

FLUE STREAM FLOW = 10000.00 WSCFM 1 ATM SC DENSITY = 5.350+07.47 = 5.350

COMBUSTION CALCULATION RESULT, CR = 1.17

GAS CONSTITUENT	LB/HR	US ATOMIZER INLET = 0.0
NO ₂	73.34	32445.60
CO ₂	2.71	1370.18
CO _{2%}	14.17	9850.98
SO ₂ STP	2270.00	229.54
NO ₂ STP	240.00	11.38
HO ₂ %	9.56	2718.86
ASH GR/OF	8.41	720.86

WATER/OF = 0.04 = 133.00

REACTION CONSTANTS --- A . . . N IN LB MOLE / HOUR

4*K₁ Ca(OH)₂ + 3*SO₂ = C*CaSO₃ + D*CaSO₄ + E*Na₂CO₃ + F*Na₂SO₃ + G*Na₂SO₄

3*Na₂CO₃ + J*SO₂ + K*NO = L*Na₂SO₄ + M*NaNO₃ + N*Na₂SO₃

CA/Na NSR = A/B = 1.00

SO ₂ CAPTURE EFF = (C+D)/B = 0.50	COOLING AIR FLOW / LB =
CaSO ₃ /CaSO ₄ = C/D = 1.00	Hx = 12500.00
CaSO ₃ /(SO ₃ +SO ₄) = E/(C+D) = 0.20	ECON = 27000.00
CaO / (SO ₃ +SO ₄) = F/(C+D) = 0.10	AH = 75000.00
Ca/Na NSR = I/(2J+K) = 1.00	STREAM TO REACTOR =
SO ₂ CAPTURE EFF = L/J = 0.50	DEG F = DEG R
NO CAPTURE EFF = M/K = 0.42	Hx IN = 1200.00 1200.00
LB INJECT AIR / LB Ca(OH) ₂ = 4.00	ECON IN = 1300.00 1400.00
LB INJECT AIR / LB NaHCO ₃ = 1.00	AH IN = 700.00 816.00
LB ATOMIZER AIR / LB WATER = 0.50	DUCT IN = 300.00 340.00
REFERENCE TEMPERATURE = AMBIENT = 70.00 =	DUCT OUT = 200.00 260.00

COMPONENT	MATERIAL FLOW & CONC						%
	ECON INLET	CH4 INLET	CO2 INLET	NaHCO3 +WATER	CO2 OUTLET	CH4 OUTLET	
Na+ LAB/BR	30445.62	614.27	30259.59	539.48	3429.92	11.11	11.11
Cl-	1370.18	246.30	1602.13	193.43	1388.76	3.33	3.33
CaCO3	3930.98		9835.01		5915.03	1.11	1.11
CO2	229.54		114.77		15.77	0.33	0.33
H2O	11.00		11.00		8.00	0.17	0.17
NaHCO3	2718.86		27.623	1031.03	3752.18	1.00	1.00
TOTAL MASS	46625.56	1060.57	47584.13	1874.14	43075.81	100.00	100.00
Alkalinity	576.69		576.69		576.69	45.45	45.45
CaCO3	0.00		107.60		107.60	0.17	0.17
CaCO4	0.00		121.94		121.94	0.21	0.21
CaCO5	0.00		35.87		35.87	0.06	0.06
CaC	0.00		10.04		10.04	0.02	0.02
Ca(OH)2	0.00	265.41	92.89		92.89	7.77	7.77
Na2CO4	0.00		0.00		152.79	12.12	12.12
NaNO3	0.00		0.00		17.54	1.33	1.33
Na2CO3	0.00		0.00		67.99	5.55	5.55
NaHCO3	0.00		0.00	333.13	0.00	0.00	0.00
TOTAL SOLIDS	576.69	265.41	945.03	333.13	1129.05	100.00	100.00
TOTAL MASS	47203.24	1325.93	48529.22	2157.27	51194.92		

STREAM NUMBER

1 2 3 4 5 6

AIR, SCFM	10312.97					
WATER, GPM						
COAL, LB/HR	5238.10					
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM		1628.51	10060.60	10070.74	10070.74	10070.74
ASH&SOLIDS, LB/HR		167.65	93.92	516.59	516.59	516.59

7 8 9 10 11 12

AIR, SCFM	235.40					74.03
WATER, GPM						
COAL, LB/HR						
Ca(OH)2, LB/HR	265.41					
NaHCO3, LB/HR						
FLUE GASES, WSCFM	10275.92	9712.45	9732.45			9802.43
ASH&SOLIDS, LB/HR	842.05	945.03	945.03			1278.15

13 14 15 16 17 18

AIR, SCFM	111.25					
WATER, GPM	2.01					
COAL, LB/HR						
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM	10336.79	7383.42	2953.37	7383.42	10070.74	10070.74
ASH&SOLIDS, LB/HR	1199.05	856.46	342.59			

19 20 21

AIR, SCFM						
WATER, GPM						
COAL, LB/HR						
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM	10336.79					
ASH&SOLIDS, LB/HR		856.46	342.59			

TEAT (41-420)

ALL COOLING AIR AND INJECTED SOLIDS AND GASES AT AMBIENT TEMPERATURE

SENSIBLE HEAT, PTU/HR., REF. 70, 30 DSG 8

COMPONENT	HX INLET	ECON INLET	AH INLET	DRAFT INLET	DUCT OUTLET
N2	9.27E+06	7.58E+06	5.11E+06	1.37E+06	1.39E+06
CO	3.43E+05	2.50E+05	2.19E+05	7.89E+04	8.20E+04
CO2	2.69E+06	2.16E+06	1.40E+06	4.80E+05	2.70E+05
SO2	4.31E+04	3.46E+04	1.12E+04	3.85E+03	8.50E+03
NO	3.04E+03	2.48E+03	1.66E+03	5.97E+02	1.95E+02
NO2	4.69E+06	4.33E+06	3.88E+06	3.25E+06	4.27E+06
4OH					
CaCO3	1.56E+05	1.28E+05	8.72E+04	3.18E+04	1.30E+04
CaSO4	0.00E+00	0.00E+00	1.63E+04	5.94E+03	5.36E+03
CaSO3	0.00E+00	0.00E+00	1.54E+04	5.61E+03	3.17E+03
CaO	0.00E+00	0.00E+00	4.75E+03	1.73E+03	2.79E+03
Ca(OH)2	0.00E+00	0.00E+00	1.20E+03	4.39E+02	2.48E+02
Na2SO4	0.00E+00	0.00E+00	1.70E+04	6.20E+03	3.50E+03
NaNO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.17E+03
Na2CO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.75E+02
NaHCO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.96E+02
FLUE GAS+SOLIDS	1.72E+07	1.45E+07	1.09E+07	5.73E+06	5.71E+06
WALL CONDUCTION	0.00E+00	2.66E+04	3.62E+04	5.08E+04	5.00E+04
COOLING AIR	0.00E+00	2.66E+06	3.62E+06	5.08E+05	5.00E+05
TOTALS	1.72E+07	1.72E+07	1.45E+07	1.09E+07	5.73E+06
COOL AIR OUT DEG F		947.37	629.68	355.47	
SPRAY WATER, GPM	=		2.00		

MATERIAL AND ENERGY FLOW CALCULATIONS

MASS CONSTITUENT WT. %

C	58.50
H	4.00
N	1.00
O	6.00
S	2.50
<u>ATM</u>	<u>16.00</u>
WATER	10.00

10000 LB/HR. 100% REA

SULFATE IN FLOW = 10000 LB/HR. (1 ATM 60 DEG F) @ 5.30E+07 LB/HR. 2

ATOMIZATION & CULATION RESULT SR = 1.17

MASS CONSTITUENT LB/HR

NaOH	73.34	23445.53
SO2	2.71	1370.18
CaCO3	14.17	9850.98
CaO	1070.00	229.54
Na2CO3	246.00	11.58
NaOH	2.50	2718.36
ATM/HR/OF	8.41	720.86

LB AIR/LB COAL = 0.50

WOCF/LB COAL	=	153.50
--------------	---	--------

REACTION CONSTANTS --- A ... N IN LB MOLE / HOUR

A*Ca(OH)2 + B*SO2 = C*CaSO3 + D*CaSO4 + E*CaCO3 + F*CaO + G*Ca(OH)2

I*NaHCO3 + J*SO2 + K*NO = L*Na2SO4 + M*NaNO3 + N*Na2CO3

CALCIUM NSR = A/B = 2.00

SO2 CAPTURE EFF = (C+D)/B = 0.79

COOLING AIR FLOW = 40000

CaCO3/CaSO4 = C/D = 1.00

HX 12500.00

CaCO3/(SO3+SO4) = E/(C+D) = 0.50

ECON 27000.00

AH 75000.00

CaO/(SO3+SO4) = F/(C+D) = 0.25

STREAM TEMPERATURE

SODIUM NSR = I/(2J+K) = 1.00

DEG F DEG F

SO2 CAPTURE EFF = L/J = 0.60

HX IN 1000.00 1500.00

NO CAPTURE EFF = M/K = 0.42

ECON IN 1000.00 1450.00

LB INJECT AIR / LB Ca(OH)2 4.00

AH IN 700.00 1150.00

LB INJECT AIR / LB NaHCO3 = 1.00

DUCT IN 300.00 500.00

LB ATOMIZER AIR / LB WATER 0.50

DUCT OUT 200.00 660.00

REFERENCE TEMPERATURE = AMBIENT = 70.00

530.00 DEG F

MATERIAL FLOWS, 10/14/92

COMPONENT	ECON INLET	CODING INLET	ECON OUTLET	NaHCO ₃ +WATER	DUOT OUTLET	%
Na ₂ CO ₃ 48	32445.82	1628.53	34074.16	573.03	34560.19	100.00
Na ₂	1370.13	492.50	1840.11	161.23	1974.74	100.00
Na ₂ O	9850.93		9788.65		9853.52	100.00
Na ₂ O	222.54		48.20		19.78	100.00
Na ₂	11.73		11.38		9.30	100.00
Na ₂ O	2712.51		2698.12	107.14	2899.66	100.00
TOTAL 48	46626.36	2121.14	46370.61	1737.40	50367.51	100.00
Na ₂ CO ₃ 0	576.69		576.69	576.69	576.69	100.00
Na ₂ O ₃	0.00		170.00	170.00	170.00	100.00
Na ₂ O ₄	0.00		192.57	192.57	192.57	100.00
Na ₂ O ₃	0.00		141.57	141.57	141.57	100.00
Na ₂	0.00		39.67	39.67	39.67	100.00
Na ₂ O ₂	0.00	530.82	163.89	163.89	163.89	100.00
Na ₂ O ₃ 4	0.00		0.00	0.00	0.00	0.00
Na ₂ O ₃	0.00		0.00	0.00	0.00	0.00
Na ₂ O ₃	0.00		0.00	0.00	43.59	100.00
NaHCO ₃	0.00		0.00	158.39	0.00	0.00
TOTAL SOLIDS	576.69	530.82	1284.59	158.39	1405.69	100.00
TOTAL MASS	47203.14	2651.96	49855.30	1925.79	51717.31	

STREAM NUMBER 2

	1	2	3	4	5	6
AIR, SCFM		10812.97				
WATER, GPM						
COAL, LB/HR	5238.10					
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM				1622.57	1061.71	1061.71
ASH&SOLIDS, LB/HR			167.65	13.91	8.75	8.75
	7	8	9	10	11	12
AIR, SCFM	4711.84				35.37	
WATER, GPM						
COAL, LB/HR	530.82					
Ca(OH)2, LB/HR					158.39	
NaHCO3, LB/HR						1042.71
FLUE GASES, WSCFM	10471.34	2971.16	2371.16			
ASH&SOLIDS, LB/HR	1167.50	1284.59	1284.59			1442.73
	13	14	15	16	17	18
AIR, SCFM	119.24					
WATER, GPM	3.14					
COAL, LB/HR						
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM	10432.13	7451.52	2930.61	7451.52	7451.52	7451.52
ASH&SOLIDS, LB/HR	1405.89	1004.21	401.68			
	19	20	21			
AIR, SCFM						
WATER, GPM						
COAL, LB/HR						
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM	10432.13					
ASH&SOLIDS, LB/HR		1004.21	401.68			

HEAT BALANCE

ALL COOLING AIR AND INJECTED SOLIDS AND BASED AT AMBIENT TEMPERATURE

SENSIBLE HEAT, BTU/HR. REF 70.00 DEG F

COMPONENT	44 INLET	44 OUTLET	44 INLET	DUCT INLET	DUCT OUTLET
NO	9.29E+06	7.58E+06	5.33E+06	1.92E+06	1.09E+06
CO	3.43E+05	2.80E+05	2.32E+05	9.06E+04	5.37E+04
CO2	2.69E+06	2.16E+06	1.40E+06	4.78E+05	2.57E+05
SO2	4.31E+04	3.46E+04	4.72E+03	1.62E+03	7.59E+02
NO2	3.04E+03	2.48E+03	1.66E+03	5.97E+02	1.95E+02
H2O	4.69E+06	3.33E+06	3.95E+06	3.30E+06	4.36E+06
ASH	1.56E+05	1.29E+05	3.72E+04	3.18E+04	1.50E+04
CaCO3	0.00E+00	0.00E+00	2.57E+04	9.38E+03	5.30E+03
CaSO4	0.00E+00	0.00E+00	2.43E+04	8.86E+03	5.01E+03
CaCO3	0.00E+00	0.00E+00	1.87E+04	6.84E+03	3.87E+03
CaO	0.00E+00	0.00E+00	4.75E+03	1.73E+03	9.80E+02
Ca(OH)2	0.00E+00	0.00E+00	2.99E+04	1.09E+04	5.18E+03
Na2CO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.75E+03
NaNO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.75E+02
Na2CO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.47E+03
NaHCO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FLUE GAS+SOLIDS	1.72E+07	1.45E+07	1.11E+07	5.86E+06	5.84E+06
WALL CONDUCTION	0.00E+00	2.66E+04	3.36E+04	5.21E+04	2.00E+04
COOLING AIR	0.00E+00	2.66E+06	3.36E+06	5.21E+06	0.00E+00
TOTALS	1.72E+07	1.72E+07	1.45E+07	1.11E+07	5.86E+06
COOL AIR OUT DEG F		947.37	590.40	362.93	
SPRAY WATER, GPM	=		2.14		

LOTUS123 FILE FUELSTO.WK1
USER ENTERS VALUES MARKED *

PAGE 1/2

FLUE GAS COMPOSITION FROM COAL ANALYSIS

FUEL*: #1, 3/7/89 FAX

WT% IN COAL AF	MOL O2 RQD/LB	MOL PRODUCED/LB COAL, 0% O2 IN DRY AIR				
		CO2	H2O	SO2	N2	FLUE GAS
CARBON*	57.50	4.79E-02	4.79E-02		1.80E-01	2.28E-01
HYDROGEN*	4.00	1.00E-02		2.00E-02	3.76E-02	5.76E-02
NITROGEN*	1.00	0.00E+00			3.57E-04	3.57E-04
OXYGEN*	6.00	-1.9E-03			-7.1E-03	-7.1E-03
SULFUR*	3.50	1.09E-03			1.09E-03	4.11E-03
ASH*	16.00	0.00E+00				0.00E+00
MOISTURE*	12.00	0.00E+00		6.67E-03		6.67E-03
TOTAL	100.0	5.71E-02	4.79E-02	2.67E-02	1.09E-03	2.15E-01
						2.91E-01

STOICHIOMETRIC COMBUSTION IN DRY AIR, PER LB FUEL:

	AIR RQD(MDA0)	DRY FG(MDFG0)	WET FG
MOLES	2.72E-01	2.64E-01	2.91E-01
M.W.	2.90E+01	3.10E+01	2.99E+01
LBS	7.89E+00	8.21E+00	8.69E+00

Y(0), MOL H2O/MOL DRY FG, STOICH COMB IN DRY AIR: 1.01E-01

BTU/LB* 10500

LBS SO2/10E6 BTU 6.67
LBS ASH/10E6 BTU 15.24

LOTUS123 FILE FUELSTO.WK1
USER ENTERS VALUES MARKED *

PAGE 2/2

YA, AMBIENT HUMIDITY, MOL/DRY MOL*: 2.00E-02

DRY %O2*	0.00	1.00	2.00	3.00	4.00	5.00
SR	1.000	1.050	1.105	1.167	1.235	1.313
DRY BASIS:						

CO2, %	18.13	17.27	16.40	15.54	14.68	13.81
N2, %	81.46	81.34	81.22	81.11	80.99	80.87
SO2, PPM	4138	3941	3744	3547	3350	3153
MOL WT	31.05	30.94	30.84	30.73	30.63	30.52
DSCF/LB COAL	102.3	107.4	113.1	119.3	126.4	134.3
DSCF/1E6 BTU	9742	10229	10767	11365	12034	12786
ASH, GR/DSCF	10.95	10.43	9.91	9.39	8.86	8.34

Y, MOL/MOL DRY FG	0.121	0.116	0.111	0.106	0.102	0.097
-------------------	-------	-------	-------	-------	-------	-------

WET BASIS:

O2, %	0.00	0.90	1.80	2.71	3.63	4.56
CO2, %	16.17	15.47	14.76	14.04	13.32	12.59
N2, %	72.67	72.88	73.09	73.30	73.51	73.73
SO2, PPM	3692	3531	3369	3206	3041	2874
H2O, %	10.79	10.40	10.01	9.62	9.23	8.83
MOL WT	29.64	29.60	29.55	29.51	29.46	29.42
WSCF/LB COAL	114.7	119.9	125.6	132.0	139.2	147.3
WSCF/1E6 BTU	10919	11416	11965	12575	13257	14024
ASH, GR/WSCF	9.77	9.34	8.91	8.48	8.05	7.61

Y TAKEN AS Y(0)/SR + YA (WITHIN 1% RELATIVE FOR COAL, 2%REL FOR GAS)

SR DEFINED AS 21/(21-DRY O2)

DRY CONCENTRATION = DRY CONC(% O2)/SR

WET CONCENTRATION = DRY CONC/(1+Y)

MASS AND ENERGY FLOW RATE COMPUTATIONS

ICAL CONSTITUENT WT %

C	57.50
H	4.00
N	1.00
O	6.00
S	3.50
<u>SCF</u>	<u>16.00</u>
WATER	12.00

100000 LB ATMALE

REFL STREAM FLOW IN SCF/SEC TO WATER AT ATM, 40 DEG F & 100% RELATIVE HUMIDITY

COMBUSTION CALCULATION RESLT: SR = 1.17

ICAL CONSTITUENT WT %

Na%	73.30
O2%	1.71
CO2%	14.74
CO2out	3206.00
NO2out	240.00
FO2%	8.62
ASH SR OF	3.48

LB AIR/100000 LB SR

7.192

21427.81
1370.18
9760.61
324.19
11.58
2735.93
726.80

WATER LB/CAO = 170.00

REACTION CONSTANTS FOR ALL REACTIONS IN LB MOLE / HOUR

A*Ca(OH)2 + B*K2CO3 = C*K2O + D*CaCO4 + E*CaCO3 + F*K2O + G*CaO

I*Na2CO3 + J*K2CO3 + K*NaO = L*Na2CO4 + M*NaNO3 + N*Na2O2

REACTANT NGR = A/B = 1.00

CO2 CAPTURE EFF = (C+D)/(B) = 0.50

COOLING AIR FLOW = LB/SEC

CaCO3/CaCO4 = C/D = 1.00

HX IN 12500.00

CaCO3/(CO2+CO4) = E/(C+D) = 0.20

ECON 27000.00

AH 75000.00

CaO/(CO3+CO4) = F/(C+D) = 0.10

STREAM TEMPERATURE =

CO2 INJECT AIR NGR = I/(2J+K) = 1.00

DEG F DEG K

CO2 CAPTURE-EFF = L/J = 0.60

HX IN 1200.00 1857.00

NO CAPTURE-EFF = M/K = 0.42

ECON IN 1000.00 1441.00

LB INJECT AIR / LB Ca(OH)2 = 4.00

AH IN 700.00 1150.00

LB INJECT AIR / LB NaHCO3 = 1.00

DUCT IN 300.00 750.00

LB ATOMIZER AIR / LB WATER = 0.50

DUCT OUT 200.00 500.00

REFERENCE TEMPERATURE = AMBIENT = 70.00 =

500.00 DEG. K

MATERIAL FLOWS, LB/HR

COMPONENT	ECON INLET	Ca(OH)2 INJECT	ECON OUTLET	NaHCO3 +WATER	DUCT OUTLET	VOL
NO _x + H ₂	32427.92	1150.03	33577.45	728.04	34931.11	7.0000
CO ₂	1370.18	347.86	1697.77	220.21	2032.78	0.0000
CO ₃	9760.61		9738.32		9926.47	0.0000
SO ₂	324.19		162.10		64.14	0.0000
NO	11.38		11.38		8.61	0.0000
H ₂ O	2735.93		2795.19	983.71	3824.85	0.0000
TOTAL FLOWS	48630.20	1437.88	47981.70	1951.95	50803.12	0.0000
CaCO ₃ + H ₂ O	581.49		581.49		581.47	0.0000
CaCO ₃	0.00		151.98		151.91	0.0000
CaCO ₄	0.00		172.13		172.23	0.0000
CaCO ₃	0.00		50.65		50.65	0.0000
CaO	0.00		14.18		14.18	0.0000
Ca(OH) ₂	0.00	374.85	131.30		131.10	0.0000
Na ₂ CO ₃	0.00		0.00		215.79	14.0000
NaNO ₃	0.00		0.00		12.64	0.0000
Na ₂ CO ₃	0.00		0.00		119.04	8.0000
NaHCO ₃	0.00		0.00	457.35	0.00	0.0000
TOTAL SOLIDS	581.49	374.85	1101.71	457.35	1450.78	15.0000
TOTAL MASS	47211.68	1572.73	49084.41	2389.51	52053.21	0.0000

STREAM NUMBERS

1

2

3

4

5

AIR, SCFM	10717.85				
WATER, GPM					
COAL, LB/HR	5238.10				
Ca(OH)2, LB/HR					
NaHCO3, LB/HR					
FLUE GASES, WSCFM		1525.81	101.00	0.00	1060.00
ASH&SOLIDS, LB/HR		187.52	83.61	58.43	35.04

6

7

8

9

10

AIR, SCFM	333.20				101.57
WATER, GPM					
COAL, LB/HR					
Ca(OH)2, LB/HR	574.85				
NaHCO3, LB/HR					
FLUE GASES, WSCFM	16383.20	9820.45	9820.45		9820.45
ASH&SOLIDS, LB/HR	936.33	1101.71	1101.71		1557.00

13

14

15

16

17

18

AIR, SCFM	109.57				
WATER, GPM	1.95				
COAL, LB/HR					
Ca(OH)2, LB/HR					
NaHCO3, LB/HR					
FLUE GASES, WSCFM	10537.18	7526.56	7010.62	7526.56	7010.62
ASH&SOLIDS, LB/HR	1450.08	1035.77	414.31		

19

20

21

AIR, SCFM				
WATER, GPM				
COAL, LB/HR				
Ca(OH)2, LB/HR				
NaHCO3, LB/HR				
FLUE GASES, WSCFM	10537.18			
ASH&SOLIDS, LB/HR	1035.77	414.31		

HEAT BALANCE

ALL COOLING AIR AND INJECTED GASES AND GASES AT AMBIENT TEMPERATURE

COMPONENT	VARIABLE HEAT		BTU/HR.		REF. NO. 173
	HX INLET	ECON THERM	AH INLET	DUCT INLET	
N2	9.28E+00	7.58E+06	5.26E+06	1.89E+06	1.11E+00
O2	3.43E+00	2.16E+05	2.30E+05	9.32E+04	3.94E+00
CO2	2.67E+06	2.14E+06	1.39E+06	4.75E+05	2.64E+05
SO2	6.09E+04	4.18E+04	1.59E+04	5.44E+03	1.21E+03
NO	3.04E+01	2.48E+03	1.56E+03	5.97E+02	1.95E+00
H2O	4.72E+08	4.13E+08	3.93E+08	3.23E+08	4.70E+08
ACH	1.58E+05	1.30E+05	8.72E+04	3.21E+04	1.81E+04
CaSO4	0.00E+00	0.00E+00	2.30E+04	8.39E+03	4.74E+03
Na2O4	0.00E+00	0.00E+00	2.17E+04	7.92E+03	4.49E+03
CaCO3	0.00E+00	0.00E+00	5.70E+03	2.45E+03	1.38E+03
CaO	0.00E+00	0.00E+00	1.70E+03	6.20E+02	3.50E+02
Ca(OH)2	0.00E+00	0.00E+00	2.40E+04	8.75E+03	4.95E+03
Na2CO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.89E+03
NaNO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.75E+03
Na2OOS	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.02E+03
NaHCO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FLUE GAS+CO2/CO	1.72E+07	1.45E+07	1.10E+07	5.89E+06	5.78E+06
WALL CONDUCTION	0.00E+00	2.65E+04	3.52E+04	5.13E+04	5.07E+04
COOLING AIR	0.00E+00	2.86E+06	3.52E+06	5.13E+06	5.07E+06
TOTALS	1.72E+07	1.72E+07	1.45E+07	1.10E+07	5.89E+06
COOL AIR OUT DEG F		947.42	613.72	358.59	
SPRAY WATER, GPM	=		1.76		

MASS AND ENERGY FLOW CALCULATIONS

GAS CONSTITUENT WT. %

C	57.50
H	4.00
N	1.00
O	2.00
S	3.50
<u>ACF</u>	15.00
WATER	10.00

10000.00 BTU/LB

OUTSTREAM FLOW = 10000.00 WB/EM .1 ATM 60 DEG F 6.5 FOF + 7.0 = 10

COMBUSTION CALCULATION RESULT SR = 1.17

GAS CONSTITUENT LB/HR LB/ATM/LB COAL/HR COAL

NOX	73.30	32427.92	7.89
CO%	2.71	1370.18	
CO2%	14.04	9760.61	
SO2in	3206.00	324.19	
NO2in	240.00	11.38	
H2O%	9.62	2735.93	
ASH,GR/CF	5.48	726.86	WOCF/LB COAL = 132.00

REACTION CONSTANTS --- A, B, C, D, E, F, G, H, I, J, K, L IN LB MOLE / HOUR

A*Ca(OH)2 + B*SO2 = C*CaSO3 + D*CaSO4 + E*CaCO3 + F*CaO + G*CaCO3 + H*CaCO3

I*NaHCO3 + J*SO2 + K*NO = L*Na2SO4 + M*NaNO3 + N*Na2CO3

CALCIUM NSR = A/B = 2.00

SO2 CAPTURE EFF = (C+D)/B = 0.79	COOLING AIR FLOW, LB/HR
CaCO3/CaSO4 = C/D = 1.00	HX 12500.00
CaCO3/(SO3+SO4) = E/(C+D) = 0.50	ECON 27000.00
CaO/(SO3+SO4) = F/(C+D) = 0.25	AH 75000.00
SODIUM NSR = I/(2J+K) = 1.00	STREAM TEMPERATURE, DEG F DEG R
SO2 CAPTURE EFF = L/J = 0.60	HX IN 1200.00 1651.00
NO CAPTURE EFF = M/K = 0.42	ECON IN 1000.00 1440.00
LB INJECT AIR / LB Ca(OH)2 4.00	AH IN 700.00 1160.00
LB INJECT AIR / LB NaHCO3 = 1.00	DUCT IN 300.00 760.00
LB ATOMIZER AIR / LB WATER 0.50	DUCT OUT 200.00 550.00
REFERENCE TEMPERATURE = AMBIENT = 70.00 = 580.00 DEG R	

MATERIAL FLOWS, LB/HR

COMPONENT	ECON INLET	CARBONIC INLET	ECON OUTLET	NAHCO3 +WATER	DUCT OUTLET	WATER
N2 LB/HR	32427.92	2300.05	34727.97	577.70	35373.98	71.17
O2	1370.18	695.71	2033.98	174.74	2213.97	3.44
CO2	9760.61		9672.57		9759.50	12.49
SO2	324.19		68.08		27.23	0.07
NO	11.38		11.33		6.40	0.71
NOX	1735.95		2861.98	1085.26	3971.24	12.47
TOTAL GAS	46630.20	2995.77	49375.86	1837.70	53352.57	117.15
MATERIAL						
ATMOLINE HR	581.49		581.49		581.49	53.77
CaSiO3	0.00		240.10		240.10	0.77
CaCO3	0.00		272.12		272.12	15.87
CaOOC3	0.00		200.09		200.09	11.47
CaO	0.00		56.02		56.02	3.22
Ca(OH)2	0.00	749.69	231.47		231.47	12.29
Na2SiO4	0.00		0.00		90.63	5.22
NaNO3	0.00		0.00		13.54	0.73
Na2CO3	0.00		0.00		56.76	3.26
NaHCO3	0.00		0.00	210.56	0.00	0.01
TOTAL SOLIDE	581.49	749.69	1581.28	210.56	1742.21	100.00
TOTAL MASS	47211.68	3745.46	50957.14	2048.26	53094.53	

STREAM NUMBER

1

2

3

4

5

6

AIR, SCFM	10717.88					
WATER, GPM						
COAL, LB/HR	5238.10					
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM		1523.81	10630.00	10630.00		
ASH&SOLIDS, LB/HR		167.52	38.61	581.43	581.43	

7

8

9

10

11

12

AIR, SCFM	666.39				46.73	
WATER, GPM						
COAL, LB/HR						
Ca(OH)2, LB/HR	743.69					
NaHCO3, LB/HR					210.56	
FLUE GASES, WSCFM	10666.39	10157.73	10157.73			10204.52
ASH&SOLIDS, LB/HR	1331.18	1581.28	1581.28			1791.89

13

14

15

16

17

18

AIR, SCFM	120.58					
WATER, GPM	2.17					
COAL, LB/HR						
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM	10671.98	7622.85	3049.14	7622.85	3049.14	
ASH&SOLIDS, LB/HR	1742.21	1244.44	497.78			

19

20

21

AIR, SCFM						
WATER, GPM						
COAL, LB/HR						
Ca(OH)2, LB/HR						
NaHCO3, LB/HR						
FLUE GASES, WSCFM	10671.98					
ASH&SOLIDS, LB/HR		1244.44	497.78			

HEAT BALANCE

ALL COOLING AIR AND INJECTED SOLIDS AND GASES AT AMBIENT TEMPERATURE

SENSIBLE HEAT, BTU/HR., REF 70.00 DEG F

COMPONENT	HX INLET	ECON INLET	AH INLET	DUCT INLET	DUCT OUTLET
NO	9.28E+06	7.58E+06	5.44E+06	1.95E+06	1.12E+06
O2	3.43E+05	2.80E+05	2.79E+05	1.00E+05	6.14E+04
CO2	2.67E+06	2.14E+06	1.38E+06	4.72E+05	2.65E+05
SO2	6.09E+04	4.89E+04	6.67E+03	2.29E+03	5.08E+02
NO	3.04E+03	2.48E+03	1.66E+03	5.37E+02	1.95E+02
H2O	4.72E+06	4.36E+06	4.02E+06	3.37E+06	4.46E+06
ASH	1.58E+05	1.30E+05	8.79E+04	3.21E+04	1.81E+04
CaSO3	0.00E+00	0.00E+00	3.63E+04	1.33E+04	7.49E+03
CaSO4	0.00E+00	0.00E+00	3.43E+04	1.25E+04	7.08E+03
CaCO3	0.00E+00	0.00E+00	2.65E+04	9.66E+03	5.46E+03
CaO	0.00E+00	0.00E+00	6.71E+03	2.45E+03	1.38E+03
Ca(OH)2	0.00E+00	0.00E+00	4.23E+04	1.54E+04	8.73E+03
Na2SO4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.47E+03
NaNO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.75E+02
Na2CO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.92E+03
NaHCO3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FLUE GAS+SOLIDS	1.72E+07	1.45E+07	1.14E+07	5.98E+06	5.96E+06
WALL CONDUCTION	0.00E+00	2.66E+04	3.15E+04	5.32E+04	2.00E+04
COOLING AIR	0.00E+00	2.66E+06	3.15E+06	5.32E+06	0.00E+00
TOTALS	1.72E+07	1.72E+07	1.45E+07	1.14E+07	5.98E+06
COOL AIR OUT DEG F		947.42	558.14	369.14	
SPRAY WATER, GPM =		2.17			

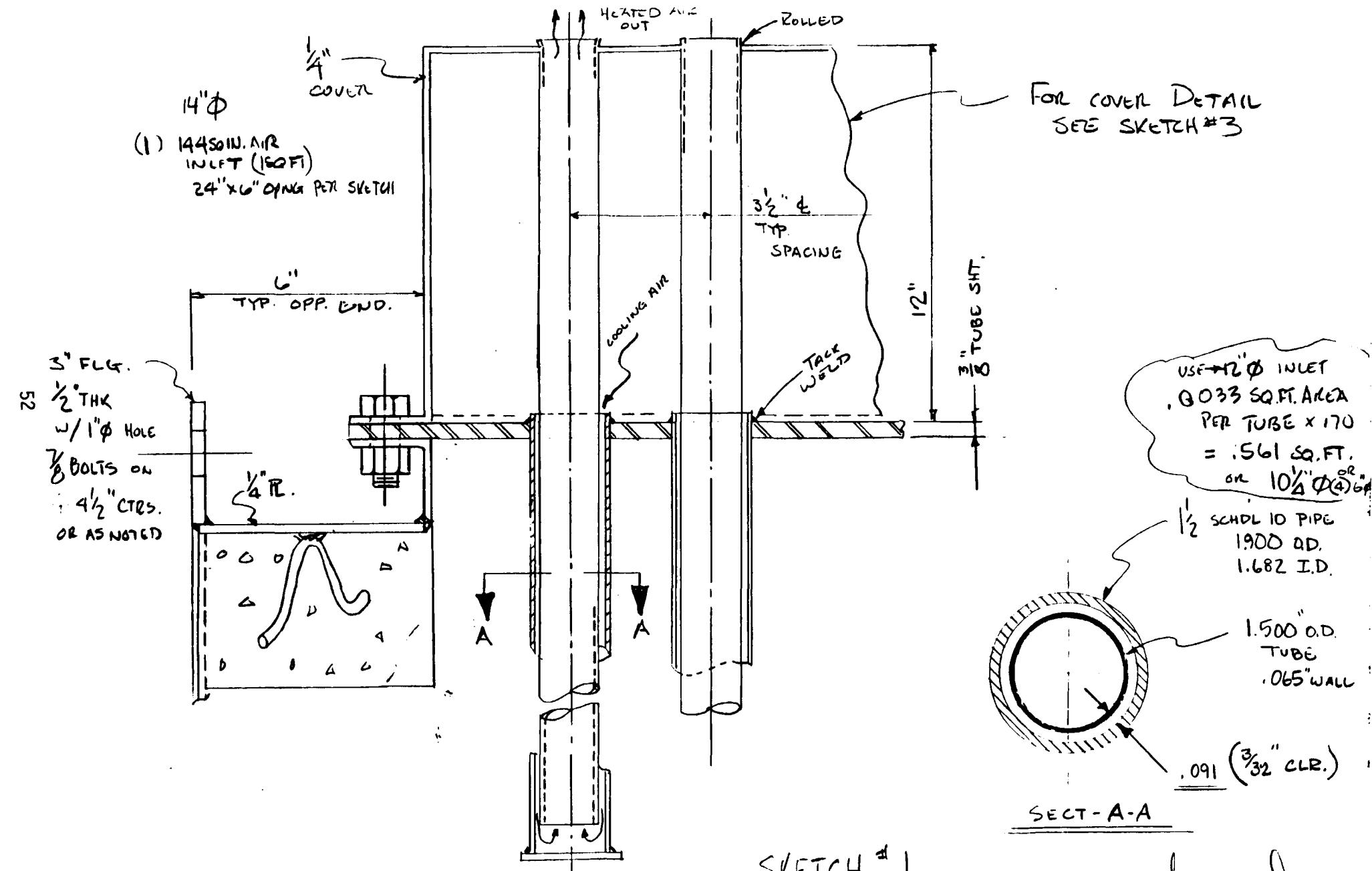
APPENDIX II Heat Exchanger Design

Air vs. Water Cooling

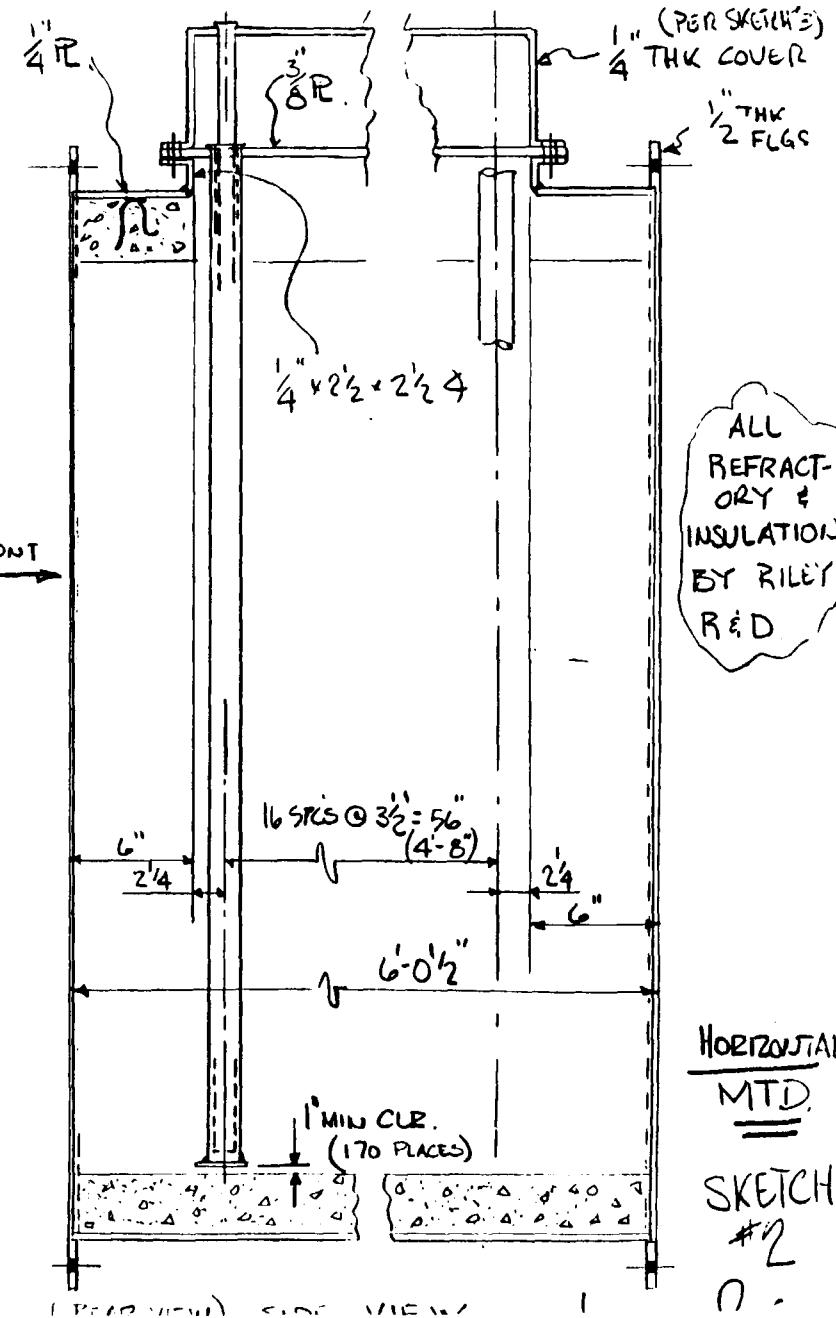
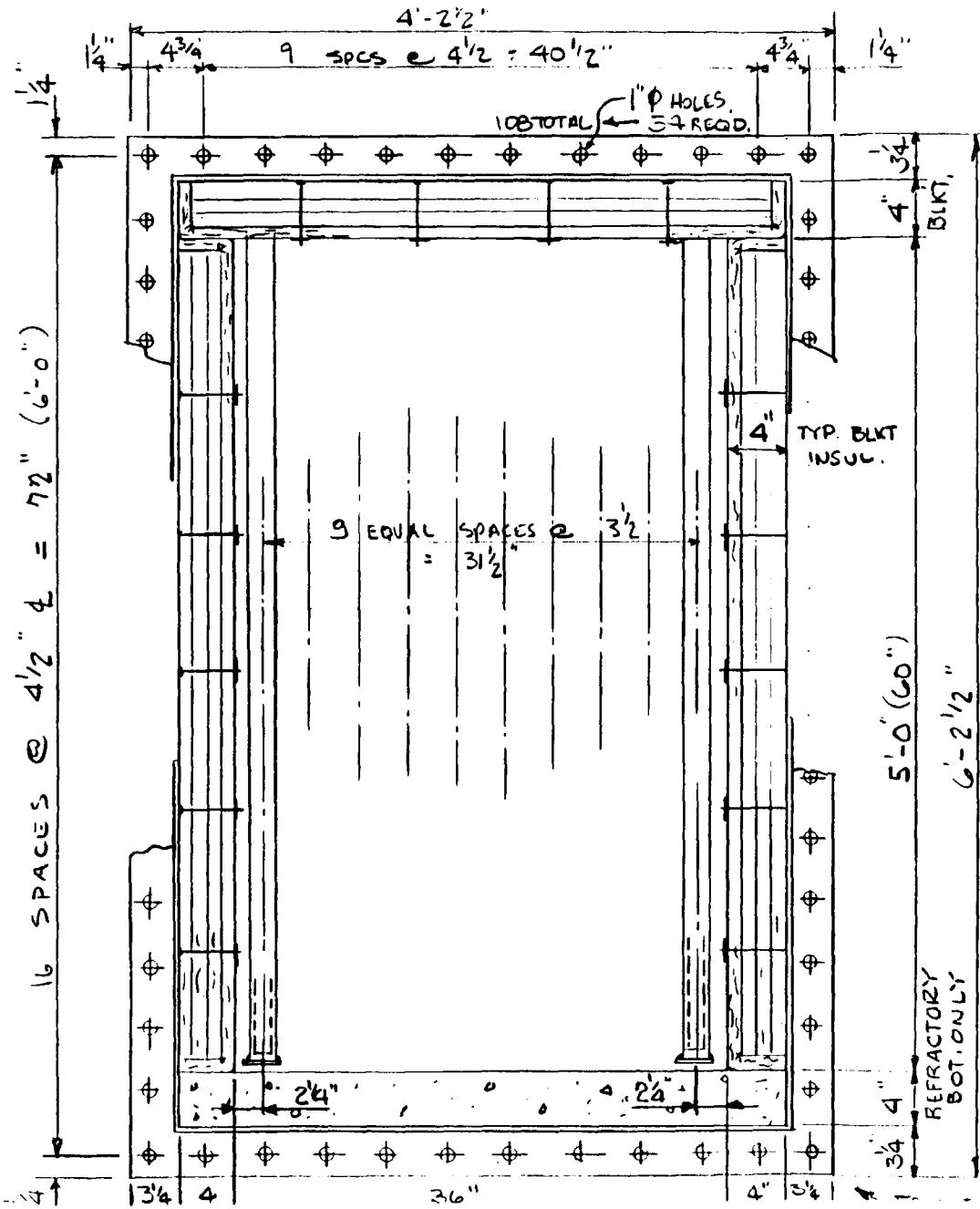
As mentioned previously, air cooling is preferred to give reasonable tube metal tempertures without the use of pressurized water or stream. Air also offers better control, since the range of water temperature, and hence the driving force for heat transfer, is limited in a non-pressurized system. A large supply of cooling air is available from the FD fan, since the furnace is operated at 50 rather than the nominal 100 million Btu/hr rating.

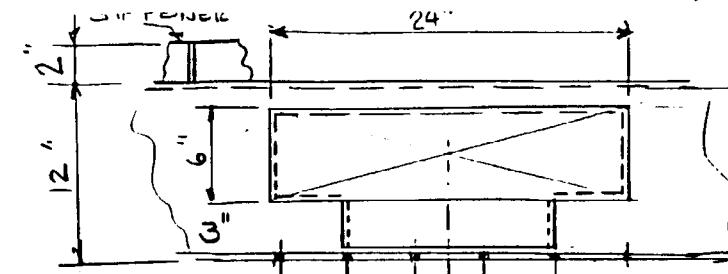
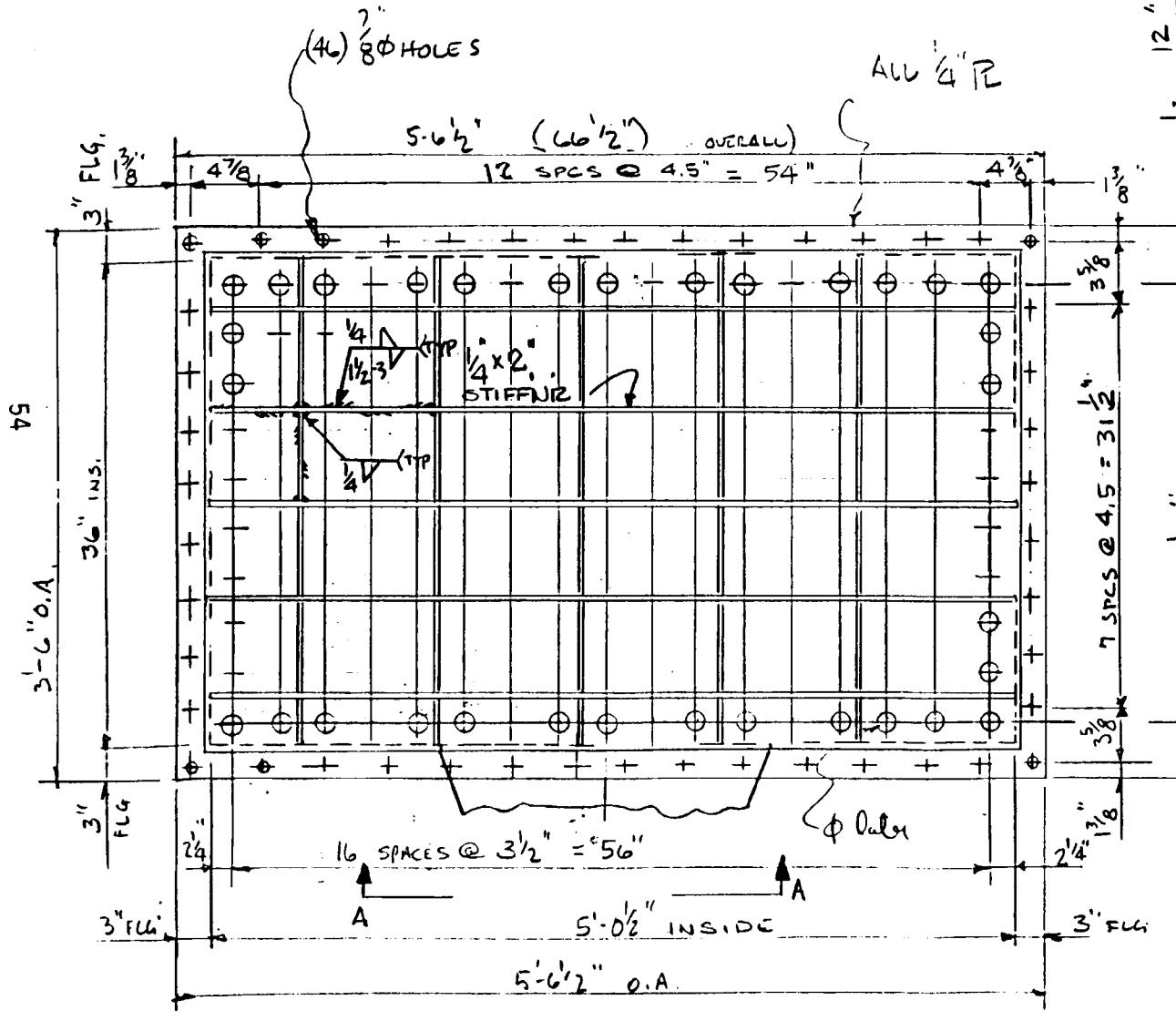
Annular vs. Hollow Tube

In the preceding example, the internal coefficient was about 4.4 Btu/hr F², and the cooling air delta p through tube was 0.2 IWC. The internal coefficient can be increased significantly at a given flow by using an annular arrangement and taking a higher pressure drop through the tube (eg, $h=20$ at $\Delta p = 8$ IWC). Since cooling air is available at up to 27 IWC, this approach is preferable. Annular construction can also be used to advantage in reducing expansion problems, since the air inlet and outlet are both at the fixed end of the tube, and the other end is not restricted.

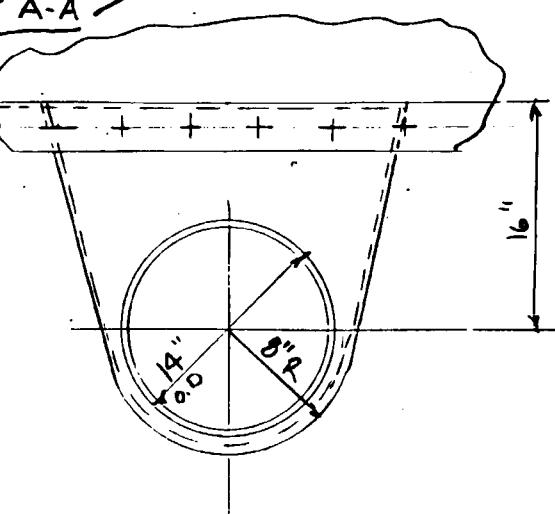

Modular Design

Three Heat exchanger modules will be constructed as follows:



- 3' X 5' duct cross section, 6 ft. long. Superficial velocity about 27 ft/s for 50E6 Btu/hr, 800 F gas.
- 1.91" OD tubes (sch 10 2-inch pipe) on 3.5" centers, 10 tubes/row, 17 rows/section.
- Annular air cooling.
- Lined with insulating refractory.



Sketches 1, 2 and 3 show the proposed heat exchanger module.

One exchanger will be constructed with stainless tubing and used to control the inlet temperature. Two additional exchangers will be used for the economizer section. A duct with the same cross section, but without tubes, will accommodate the sorbent injectors upstream of the economizer.



୪୩

SECT A-A

Bottom View
COOLING AIR ENTRY

APPENDIX III Heat Exchanger Calculations

An existing BASIC program was used to size the tube banks in the inlet heat exchanger and economizer. This section describes the equations used in the program, and checks the validity of the approximations used.

External to tube banks. Heat transfer correlations for tube banks generally involve graphical methods for geometry and arrangement, for example, the method given in B&W's Steam. However, a correlation given by Douglas and Churchill for single tubes in cross flow gives reasonable results if the maximum (intertube) velocity is substituted for the superficial velocity. The single-tube equation is:

$$h_o D/k = 0.46 RE^{0.5} + 0.00128 RE$$

Here is a comparison of the two methods for 800 F air flow at a superficial velocity of 20 ft/s:

tube OD x OC1 x OC2	h (eqn.)	h (B&W)
2.0 x 4.0 x 3.0	10.3	10.8
2.0 x 4.0 x 4.0		10.0
2.0 x 4.0 x 8.0		9.8
2.0 x 4.0 x 12.0		9.0
2.0 x 3.0 x 4.0	14.2	12.5
2.0 x 2.5 x 4.0	18.0	18.6

The heat transfer coefficient h (Btu/hr ft² F) varies slightly with spacing in the direction of gas flow (OC2 in the table). However, the single-tube equation gives a good approximation at typical tube spacings, and is used in the BASIC program.

Tube wall. The tube wall resistance in the usual form is:

$$\text{Resistance} = \frac{\ln(R_2/R_1)}{2\pi k L}, \text{ hr ft F/Btu}$$

In the example following, resistances are all normalized to the external tube surface area:

$$R_w = \frac{R_2 \ln(R_2/R_1)}{k}, \text{ hr ft}^2 \text{ F/Btu (outside area)}$$

For the case of a clean tube, the tube wall resistance is insignificant. However, a similar equation can be used to add the resistance of a hypothetical uniform layer of ash.

Internal tube flow. The Dittus-Boelter equation is used for internal flow:

$$h_i D/k = 0.023 RE^{0.8} PR^{0.4}$$

For annular flow, the same equation is used with RE based on equivalent hydraulic diameter.

Overall coefficient. The overall coefficient is calculated as:

$$U = 1/(1/h_o + 1/h_i + R_w), \text{ Btu/hr F ft}^2 \text{ outside area}$$

(all based on outside area)

Example calculation. One other approximation used in the BASIC program is the use of average driving force instead of log-mean difference. (The program originally emphasized high-temperature cases where radiation is important and very large temperature differentials made the log-mean correction insignificant.) The following example is used to check the program calculations by hand.

-4' x 5' cross section duct
-46,500 lb/hr flue gas (50E6 Btu/hr)
-1.91 OD x 1.61 ID tubes (sch 40 2" pipe)
-16 tubes/row, 27 rows of tubes in cross flow
-900 F gas inlet, 70 F air inlet
-30,150 lb/hr air, once-through each tube in parallel

Evaluate at 800 F average gas temperature, 250 F average air temperature:

Internal

$$v = 24 \text{ ft/s}$$
$$RE = 12,000$$
$$NU = 36.4$$

$$h_i = 5.18 \text{ Btu/hr ft}^2, \text{ inside area}$$
$$= 4.37 \text{ Btu/hr ft}^2, \text{ outside area}$$

External

$$v \text{ (between tubes)} = 55.3 \text{ ft/s}$$
$$RE = 13,470$$

$h_o = 12.9 \text{ Btu/hr F ft}^2$ outside area, based on single tube equation
(= 14.5 from B&W method)

Wall

$$k = 23 \text{ Btu/hr ft F}$$

$$R_w = 5.9E-4 \text{ hr F ft}^2/\text{Btu} \text{ (outside area)}$$

Overall

$$U = 1/(1/4.37 + 1/12.9 + 5.9E-4)$$
$$= 3.26 \text{ Btu/hr ft}^2 \text{ F} \quad (3.35 \text{ for } h_o = 14.5)$$

$$Q = UAF(DTlm) = mCp(Tin - Tout)$$

(where DTlm is log-mean temperature based on countercurrent flow, and F is a correction for cross-flow tube banks, eg, Welty, Wicks, and Wilson, Figure 22.10.)

$$F = 0.98$$

$$A = 1079 \text{ ft}^2$$

$$T_{\text{out flue gas}} = 740 \text{ F}$$

Gas properties should be reevaluated at $(900+740)/2$, but this will not change the result much. If the example geometry and flow is evaluated with the BASIC program, the exit temperature is 724 F. If the program is modified to exclude radiant heat transfer (which is not included in the hand calculation above), the calculated exit temperature is 733 F. This is taken as a validation of the program.

Tube bank pressure drop.

The BASIC program includes a tube bank pressure drop based on the approximation given in Perry, p 5-51:

$$\Delta p = 0.32 \times \text{velocity head}$$