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ABSTRACT
We apply the MHD energy principle to the atability of a magnetized
atmosphere which is bounded below by much denser fluid, as is the 'soJ,ar
corona. We treat the two fluids as 1ideal; the approximation which is

consistent with the energy principle, and use the dynamical conditions that

mast hold at a fluid-fluid interface to show that if vertical displacements of.

the lower boundary are permitted, then the lower atmosphere must be perturbed
as well, Howaever, displacements which do not perturb the coronal boundary can

be properly treated as isolated pertzurbations of the corona alone.
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I. INTRODUCTION

Studies of the aquilibrium and stability of magnet.zed plasma in a
gravitational field are important to wmany areas ot ascrophysics, including
solar and stellar physics (reviewed by Priest, 1982, and Rosner et al.,
1984). The stability of structures in the solar corona is relevant to
understanding the onset of eruptive activity, as well as the necessary
cenditions for equilibrium, Because even the simplest models aof coronal
features are sufficiently inhomogenecus that solving the full mede problem is
very difficult, many studies of coronal MHD stability have used the energy
principle method of Bernstein et al. {1958; hereaftar BFKK) to determine
stability without calculating the modes themselves,

Coronal magnetic fieldlines are thought to be connected to the lower
solar atmosphere (chromosphere and photosphere), which 1s much denser than the
corona, and ultimately to extend into the solar interior. Rather than
considering the stability of the composite system consisting of hot gas and
cooler underlying material, most studlesa of coronal MHD stability have ilmposed
a boundary at the coronal base and have treated the lower atmosphere only
through its influence on the boundary comditions.

Several different assumptions about the boundary conditions on §,, the
component of the fluid displacenent t parallel to the magnetic field ﬁ, have
been made in the literature. Schindler et al, (1983) chose t 20, as 4f the
photosphere were a rigid boundary. Einauwdi and van Hoven (1981) imposed
parity constraints on £y that allow £y # 0, Hood (1984a,b) did not explicitly
restrict £y at all.

In this paper, we discuss the influence of the photospheric boundary
condition on stability by assuming that both the upper and lower atmosphere

are ldeal flulds. It is clear that materjial in the solar atmogphere does not
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always behave adiabatically. Radiative processes, thermnal conduction, aad
some form of heating all play roles in the structur~, Mass flow las often
present. The two-fluid treatment in this paper is an idealization, but it is
an idealization which is consistent with the MHD energy principle, and should
be a good approximation as long as the MHD time scales are rapid compared to
the time asacale on which mass exchanga occurs between the twe fluids,
Bquilibria with flows, and ncnadiabatic perturbations, cannot be studied with
the ideal MHD energy principle.

we find that for coronal stabhility problems in which gravitational
stratification is included, the effect of nonzero §; 1s to force the lower
atmosphere to be perturbed., This arises in a natural way from the conditions
at the boundary between the two fluids.

In Sec. II, we use the MHD energy principle to demonatrate the existence
of a surface integral and a perturbation of the lower atmosphere when £, is
not zero at the boundary. In Sec. III, we discuss the effect of the boundary
terms on various results in the 1literature. Section IV is a discussion

together with conclusions.

Ir. BOUNDARY CONDITIONS AND ENERGY PRINCIPLE ANALYSIS
We first describe the equilibrium model, including the conditions which
must be fulfilled at the coronal base, We then derive the corrasponding
conditions in_ the presence of small perturbations. Finally, we use the MHD
energy prirciple of BFKK to assess the effect of the boundary conditions on
stability. TIdeal MHD (adiabatic, inviscid, infinite electrical zonrductivity)

igs agsumed to hold throughout,



a) Boundary conditions

The equation of mechanical equilibrium in a stratified atmosphere is

ve[BR~T[p+BY2)] +pgm=0 (1)

where P, 3. @, and 5 are the gas pressure, magnetic field, gas dengity, and
gravitational acceleration, respectively. For a surface of discontinuity with

normal direction n in the fluid, it follows from ¥ * B = 0 and from equation

(1) that
<B> = 0 . (2a)
<BnB1;> =D ’ (2b)
[(82 -88)2 2] =0 : (20)

where the notation <S> refers to the jump in quantity S across the
discontinuity and the subscripts n and t+ refer to npormal and tangent
directions to the surface, respectively. ¥ote that if B = 0, B, may be
Qigcontinuous, but if B, ¥ 0, B,, B,, and P are each continuous separately.
These conditicns are discussed, e.g., by Roberts (1967).

Now consider a small displacement ¥ of the fluid. The Eulerian

perturbations af P, 3. and p are (BFKK)

sp=-ypVeE_F.m ' (3a)

B=Vx(Ex8)=7d , (3b)



5p=-V-pE . (3c¢c)

Faraday's law implies that, to first order in £,
" +
anx {ExBp =0, (4)

Furthermore, £, must be continuous.

Conditions for the perturbed system analogous to BEJs. (2} were derived by
BFXK for a fluid-vacuum interface tangent to ﬁ, and by Goedbloed (1979) for a
fluld~fluld interface, again with B ¢ n = 0, while Roberts (1967) gives
conditions for 8 * n # 0. Eguations (2) must be linearized and satisfied at
the perturbed boundary, with reference to the perturbed normal. The relevant
perturbations of the fluid variables here are the Lagranglan perturbations,
which follow the boundary elements to thelr new positions, The Lagrangian
per turbations AP, Aﬁ, and Ap can be obtained from their Eulerian-counterparts

(3a,b,c) by the usual relationship for any quantity

8s =65 +§ + Vs, (s)
As Roberts (1967) shows in detail, for the case 5 . 1; # 0,

<AB> = <8P> = 0 ) {6)

Equation (6) is the analog of Bgs, (2) above; the Lagranglan perturbatlons of

P and  as well as P and B themselves are continuous across the interface.



b) Energy principle

The linearized equation of motion for the displacement vector E is

2 -
pf_E-F(E). (7)
3t
where
FE) =yev « £+ 8 evp) « (W Q) xB+ (vxB) x5 -3V +ad (8)

and it is assumed that a is produced by external sources and remains

congtant. The perturbed potential energy is
w(E, %) = - %f a’x £ - F(¥) (2)

where the integral extends over the volume of the fluid, In the general case,
both the photospheric and coronal fluids contribute to W.

BFKX proved (see also Freldberg 1982) that the sy.stem is unstable if and
only if GW(E,E) is negative for a displacement vector 2 which satisfies
appropriate boundary conditions. In the most restricted sense, E must satisfy
continuity conditions such as Bgs. (4) and (6) and continuity of £, at an
interface. However, BFKK proved an extended energy principle for the plasma-
vacumm problem with - ;I = Q. They showed that E need not satisfy the
lagrangian force-balance condition [(Eg. 2.32) in their paper; Eg. (6) here]
by proving that it is possible to correct % in a thin layer near the interface
in a way which enables 'E to sati=sfy the pressure balance condition. 1In their
construction [see alsc Roberts (1967)), I is augmented by a vector el which

goes to zero within a distance € from the boundary. Then, the normal gradient
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of n is of order £~', and the contribution of &} to 6Wp is of order €. 'The

extended energy principle makes it possible to choose trial funct.ons Tty
8% which do not satisfy the force balance condition. Rokarts -(1967) discusses
the extended energy principle in cases where B - ;l ¥ 0, Since the Lagrangian
force balance condition involves both E and its derivatives, and takes some
care to satisfy, the extended energg,; principle ig easier to work with and is.
used in most applications.

When tne extended energy principle is written in itas usual form [BFXK;
B]. (3.16)], surface integrals involving the pressure balance condition
appear. These integrals are ralated to the change in plasma potential energy

caused by the P4V work done at its surface. We now consider the rcle of these

boundary terms. According to Eys. (8) and (9},
260(E,E) = -[a’x [E+9(ve9d + £:Vp) + Ee(Txd)xE 4+ Eo(VxB)xd - EE v-pt]  (10)
Integrating by parts, this can be wrltten

26w(2, %) =260 + 260, .

280 = [ ax[(7+8) (e Vol » Eove) & o - Te(wnd)xd « Eog vend]

28w = - @ [(n8) (vp Vof 4 Eevp) 4 & « [a x (Ex8)] . (1)
The surface integral GWS is taken over the boundary between the upper and
lower atmosphere, plus terms at infinity, which we assume vanigh. 1f the

horizontal extent of the structure is finite, we can impose horizontal

periodic boundary conditions. The volume integral GWF contains contributions

eraate 21 1
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from both fluids,

Proceeding similarly to BFKK (see also Roberts, 1967), we rewrite the
surface integral in Pg. (11) using the boundary conditiona satisfied by [
Note that even if we use the extanded energy principle, sc that we allow trial
functiona in the volume integral SWF which do not satisfy the boundary
conditions (6), we must evaluate GWS agsuming that these conditions are
satisfied., This haa not always been dane in the literature.

According to Bj. (4),‘3 x (¥ x %) {s continuous at the interface. Using

Bas. (5) and {(6), AP and § + ¥ « Af are continuous as well, as is £ « n.

These results enable us to write
280, = - § a%[(n°}) [E-v(p + B2/2)] ~ (n<B) (E-vd).})
Using the equation of mechanical equilibrium, this Lecomes
285 = § aZxf(ned) [(3-98) + ﬂ'E'-§] - (n-B) (E-vE)-H}
or
280, = - § Zx{(n-t)(Era)or [;X(Exﬁ)-vg]oﬁ} __ .
Evidertly, the secend term involves only tangential derivatives of & at the

interface. But the tangential derivatives of B are continuous; this term is

therefore zero, If we take z} = yg and let the boundary lie in the x-z plane,

tnen &Wg takeg the final form

. o i
260 = J d;ﬂzEyg[Dz nu) (12)
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where Py and p, denote the dengities in the lower and upper atmosphere,
respectively.

Byuation (12) is exactly what ia expected when one. considers the
Rayleigh-Taylor instability between two media of different density (e.g.,
Chandrasekhar, 1961). since pp >- p, in the problem considered here, the
swrface temm ig pogitive, Thus we have shown that zor nonzero g, the presence
of flow across the unperturbed fluid boundary (nonzerc £,;) tends to be
stabilizing. The surface term given in By, (12) arises naturally from the
dynamics of the problem, and must be included in any evaluation of dw.

We can write

Sw = W + SW_. + &W

FC FL 8
vwhere 5WFC and GWFL are the contribution of the corona and the lower
atmosphere to GWF as qgiven in By. (11), and 5W5 ig the gurface term given in
Bg. (12).

It is clear that if the problem of the stability of isolated coranal
structures has any meaning, we must be able to make GWFL vanishingly small.

This requires, in general, that % be nonzero only in an infinitesimally
thin layer below the boundary. Can the argument used in deriving the extended
energy principle be applied to this situation? That is, is there always a
displacement 'E of the lower atmosphere which satisfies the interface
conditions but which makes 6“5':. arbitrarily small in magnitude?

In general, there is not. Recall from the discussion of the extended
energy principle following By. (9) that the correction vector to Eis assuned
to be of order € and localized to a layer of width . Its contribution to S

is then of order €. But in the present case, if E sn is of order 1 at the
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incerface, and'g is again localized to a layar of arder g, GWFL will be order
€. we cannot always make dWp, negligibly small.

The case E . r; = 0 is an exception. In this case, % can be zerc on the
boundary and of order € in a layer of width €. For example, take vy w 0 to be
the surface; y * «® with depth. Take the lagrangian pregsure and maghetic

field perturbations Aps{x,zl, Aﬁs(x,z) to be prascribed hy the dlsplacement of

the upper atmosphere. Then, for y € 0, let

B_ApP
--E - X _8) VB[, o ¥/E
Slreria) = - g (2o, « <g2le’ "(1-e77)
EAp
- s _y/e¢,_Y/¢
B lny,z) = =" e (1-e""%)
B_AP
£ (x,7,2) = - ;_y (Agzs - _Z_Y_P.i]eY/e(1_eY/sJ'

where the functions multiplying the exponentials are evaluated at y = 0. This
choice of ¥ gives Swp of order & for ¥y < 0,

These argquments have the following implications for MHD stability
analysis of the solar corona. If we restrict ourselves to displacements
with 'E . :1 ¥ 0, then 6“5 and GWFL can both be made 2zerc, and .t is both
necessary and sufficient for the stability of the "isolated” coronal modes
that. ﬁch ? O. If we conesider displacements with f . ;l # ¢, the positive
definite teim Gws [c.f. Bz (12)] must be added to EWFC. In addition, ‘SWFL
must also be minimized. This requires an explicit model of the lower
atmosphere, but none of the presently'available corcnal equilibrium models
include the lower atmosphere. Thus, the stability of modes with [ ;1 # 0 is
indeterminate. In summary, it 1s sufficient but not necegsary for the

stabllity of the isolated (Exn=0) displacements with unrestricted ¥ n.
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Modeg with E ’ r; o 0 cannut properly be tested for stability withcut a model

of the lower atmosphere.

III. EFFECT OF SURFACE TERMS ON CORONAL STARILITY

In this section, we discuss the relevance of the term dWg and GHEC
derived in Sec., II to a number of gtudies of ceronal MHD stability in the
literature in which different lower bhoundary conditions were assumed. We
first consider the conditions originally used by Elnawdi and Van Hoven (1381)
and then discuss the conditions used by Schindler et al. (1983). Finally, wa
treat the work of Hood (1984a,b), for which the necessarv analysig is somewhat
more involved. In all the papers we will treat, the components of E
perpendicular to the magnetic field are assumed to vanish at the base of the

atmosphere. The ph'ysical motivation for this is that the fileldlinea are

asgumed to be fixed in dense, infinitely conducting photospheric gas.

a) Line tying with flow at lower boundary

Elnaudi and Van Hoven (1981) studied the stahility of coronal loops
idealized as cyiinders of finite length with twisted magnetic fields. They
did not inclvde gravitational stratification, an approximation which applies
when the thermal scale height much exceeds the size of the system. The

conditions they imposed at the ends of the cvlinder are
£ =0atz = iL
& (L) = E,(L) (13)

d a
= Ez(-r.) == EZ(L)
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where z ils along the axis of the cylinder and £, an@ | are the components of
E parallel and perpendicular to B. These conditions have also been used by
Migliucle et al. (1984), Einaudi and Van FHoven (1983), and references
therein. Since & '1‘{ ¥ 0 in their model, they can derive sufficlent but not

necessary _stability conditions for the isclated modes.

b) Rigid boundary condition

Schindler et a2, {1983} used the condition E = 0 on the lower boundary,
which corresponds to treating the photosphere as a rigid, perfectly conducting
wall. It is clear in this case that &Wg and §Wp, vanish, Thus, none of the
stability results arising from their minimization of OSWp are affected by
addition of the corresponding 6“5 ar GWI-‘C' In a sensge, the f = 0 boundary
con@ition is a limiting case of the two-fluid analysis for pp + = 1If p, + &,

éwg becomes large unless §, > 0. One must also impose £y = O,

¢) Line tying with unrestricted £y

Hood (1983a) derived a form of 6W including gravitational
stratification. He used the lower boundesry condition E x g = ¢, although only
in the approximate sense described below, and did -not restrict §y. Although
his formulation {as does that of Schindler et al.) extends to systems in which
the magnetic flelds have three spatial components, the analysis here is

restrictes to systems in which the field lines lie in parallel, vertical

planes, such that

x 2 Yaa (14)

All the equilibrium quantities are functions of x and y only, and the magnetic

PR P



|
|
|
|

13

field lines are assumed to form loops which are symmetric in x. ‘These systems
resemble solar magnetic arcades. Defining A, as . VA and using {14), Hood's

boundary condition becomes A, = 0 on the boundary. Using only this boundary

condition, he writes 'SWFC as

L 2
3 - 23 3 2 2
26WFC = Id x [.as_.lJz + IVA . V(—J; - —Bi. - E;JA 1 + [BGVEZJ +
B

13 Va+¥a_-+JA
[B gpz - ———1% + 2[(y=1)(7 « §)% 4 o/ ¥(v « B¥H)2) (4

Here, J 1is the current density, H 1is the thermal scale height,
and 3/3s » 1/B B + V 1s the derivative along a field line.

To derive stability criteria, Hood assumes that the perturbations are
isathermal (Y = 1) and minimizes with respect to $£,/8z and V o(Ze~¥/Hy, mnig

results in the conditions

£
T e E = I_{.Y_ ; {186)
13 Va-va_+Ja
z 1 1]
= . (17)
dz B2

Be then takes the 1limit of infinitely large wave number in the =z
direction; k, * ®. sSince condition (17) requires that the product k,£, be
finite, the magnetic tension term (B-VEz)z in 64, which corresponds to bending
the Ffield lines out of their eciuilibritm plane, becomes negligible. {Sae
Gilman 1979, Rsseo et al. 1980, 2zweibel 1981)}. Thus, oW is reduced to the

form

3 <2
3
26w = falx{(z )P [mav(E5)- 2 - I 2, (18)
3* B



which is considerably simpler than Bg. (15), since only the perturbation
variable A, and its derivative along a field line appear. When 6W in the form
(18) is minimized subject to the normalization condition Jfd3x A12 = 1, the
regulting Euler equation for A4 is an elgenvalue equation. The solution of
the eigenvalue problem is the basis of Hood's stability analysis (Hood 1984b)
of the Zweibel and Rundhausen {1982) equilibrium solutions.

The minimizing conditions {16) and (17), together with the assumption
that ¥ = 1 and §) = 0 at the lower boundary, guarantee that &Wg, as Lt appears
in By. (11), vanishes. BHowever, ags we showed in Sec. II, the appropriate form
of GWS 1s really BEi. (12) because of the Lagrangian force balance condition.
Sinee ¢ is unrestricted, 6HS will generally not vanish, and 6WFL will not
vanish either.

We should also note that when %,/3z is given by By. (17), &, will not
vanish on the lower boundary (because VA1 does not)!. Therefore, the condition
E), = 0 is technically violated, Kowever, since £, is sgmall [see the
discusgion following Bi. (17)], ityappears congistent to neglect §, on the
boundary when dropplng (B * VEz)z from SWpq.

Suppose that when GWF as given by By. (18) is minimized over A,, the
regulting E [;hich can be calculated from A, using corditions (16} and (17),
as we do below] satisfies B » ; = 0, In this sase, GWFC itself will be a “true
minimum. On the other hand; if ¥ - ; ¥ 0, the minimization is unacceptable
because &Wg and Wy must be included.

Wea now discuss the conditicns under which the minimization of Bq. {18)
will permit t. ; = 0. Slnee GHFC in Bg. (18) only contains derivatives of a,
along a field line, we can consider perturbations which are localized to a
single flux-tube. To solve for § o ; in terms of any given A,, we eliminate

98 . /9z between conditions {16) and (17) to give
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+ + + + » - BzE
(B W) cB-(B. VB - EaE, : (19)

Then, £, may be written in terms of A, and £, and eliminated from (19). The

result is a first order differential equation for EY as a function of A,, wit

solution

y/H Is ds’ e-y'/H(A1 de Bx d A1
B

EY {s) = Ey(s)e B—ByF B 3z B

We assume here that B, does not vanish anywhere on the field line, s2 s[:l.s a
single valued function of x%; the field lines Bood studied have these

properties, Let the field line emd at isq- then, if Ey vanishes at the

endpoints, we must have

foast ymlra h B Ty - (21)
B B ds B_ B_ ds
=S, b Y

[¢]

Since, in the geometry assumed, B, and B, are even and odd functions of x (or

s}, respectively, Eg. (21) will be satisfied only if A, is an odd function of

XK.
N
W2 s now nonsider Hood's study of the 2Zweibel and Hundhausen (1982)

equilibria (Hosd 1984b). These equilibria form a one parameter family in
which the parameter measures the volume electric current, or distortion of the
field lines from a potential field at the base of the atmosphere. The only
previous stability ana.lylsis of these equilibria was a local analysis (2weibel
1981) which showed that some portion of all the ZH equilibria were locally
unstable. However, this analysis did not ceonsider the stabilizing effect of

magnetic tension. Hood found that instability along an entire field line only




exists if the parameter 2aH which measures the current exceeds a certaln
threshold. Hias solutions for A, are ev rather than odd, functions of x.
Mccording to the arguments above, the stablility boundary for isolated coronal
modes should be at a larger value of the current parameter than that found by
Bood. The atability boundary for these modes cann be found by solving the
Euler equation for the intagral (18) with A, = ¢ at the end and apex of a
field line, wWithin the frzmework of the present analysis, Hood has found a

sufficient, but not necegsary, stability condition.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have considered the lower boundary condition for
corenal MHD stability problems. These systems are characterized by magnetic
fleld 1lines which c¢onnect the corona tco a much denser, underlying
atmosphere. Their ideal MHD stability has b ‘*ed using the BFKK energy
principle.

The lower atmosphere has simply been modeled a3 a rigid, conducting wall
in some previous treatments (e.g., Schindler et al. 1983) on which the fluid
displacement E vanishes. Other studies have allowed a nonvanishing f£luid
displacement parallel +to the magnetic field at the lower boundary, but
required the perpendicular components £) to vanish.

If displacement of the lower boundary is permitted, there are two basic
ways in which this can be interpretsd physically. One appreach is to consider
the boundary as a conta.ct. surface bhetween two ideal flulds of different
temperatures and densities. We pursued this approa‘ch here. The alternative
is to consider the lower boundary as a source or sink of masa. This is only
posgible 1f heat gain or loss mechanisms are avallable to effect a phase

change between the twe flulds. Although the latter viewpolnt certainly has



elements of physical reallsm, the ideal MHD energy principle is lnapplicable
to such systems.

We reviewed the boundary c¢onditions which apply to a fluid-fluid
interface and pointed out that these boundary conditions lead to surface
integrals in the perturbed potential energy OW which represent PAV work done
at the inter;‘face between the fluids. These terms [(BE3. 12)] can be written in
a form which involves the density contrast between the two fluids, and is the
same term one derives in an analysis of the Rayleigh Taylor inatabllity at an
interface between unmagnetized fluids. Since the lower atmosphers 1is much
denser than the upper atmosphera, the surface term is strongly stabilizing.
It vanishes when the displacement normal to the boundary vanishes.

We also found that &Wp, cannot be ignored for displacements with
? . ﬁ#o. Thus, there are twe types of displacements; the isolated coronal
modes, with 14 1:1 = 0, for which Bws and GWFC can legitimately be set egunal to
zero, and the displacements with E . l; ¥ 0. For the latter, the stability
problem congists of jointly minimizing SWFC' Spy , and Sug.

If the wvolume term SWFC alone 1s minimized, as was done by Hood
(1984a,b), the result can be used to give a sufficient, but not necessary,
condition for stability of the isolated coronal modes. We showed that Hood's
minimization of 8Wp, for a particular set of equilibria (Hood 1984b) led ta
nonvanishing E . x;. The imposition of £ *» n = 0 on the boundary requires that
Hood's trial functions A, have odd parity. We would argue, therefore, that
some of the equilibria that Hood predicted are unstable are actually stable,
according to the two-fluid analysis.

Tae rigid boundary condition with % = 0 has a vanishing surface tarm.
This assumes that the rigid boundary condition with E = 0 leads to a self-

consistent problem in which BWE‘C alone is minimized. This seems to be the
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simplegt approach to treating the corona as an isolated asystem. The full
problem, involving thermal exchange and dynamical forcing by motions of the
fieldiine endpoints, will have to be explored by other methods than the MHD

energy principle.
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