

PPPL-2166

DR-0656-4 2-18433

PPPL-2166

DC20-G

APPLICATION OF THE MHD ENERGY PRINCIPLE TO
MAGNETOSTATIC ATMOSPHERES

By

E.G. Zweibel

NOVEMBER 1984

PLASMA
PHYSICS
LABORATORY

APPLICATION OF THE MHD ENERGY PRINCIPLE TO
MAGNETOSTATIC ATMOSPHERES

PPPL--2166

by

DE85 004398

Ellen G. Zweibel

Department of Astrophysical, Planetary, and
Atmospheric Sciences
University of Colorado
Boulder, Colorado 80309

ABSTRACT

We apply the MHD energy principle to the stability of a magnetized atmosphere which is bounded below by much denser fluid, as is the solar corona. We treat the two fluids as ideal; the approximation which is consistent with the energy principle, and use the dynamical conditions that must hold at a fluid-fluid interface to show that if vertical displacements of the lower boundary are permitted, then the lower atmosphere must be perturbed as well. However, displacements which do not perturb the coronal boundary can be properly treated as isolated perturbations of the corona alone.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

EB

I. INTRODUCTION

Studies of the equilibrium and stability of magnetized plasma in a gravitational field are important to many areas of astrophysics, including solar and stellar physics (reviewed by Priest, 1982, and Rosner *et al.*, 1984). The stability of structures in the solar corona is relevant to understanding the onset of eruptive activity, as well as the necessary conditions for equilibrium. Because even the simplest models of coronal features are sufficiently inhomogeneous that solving the full mode problem is very difficult, many studies of coronal MHD stability have used the energy principle method of Bernstein *et al.* (1958; hereafter BFKK) to determine stability without calculating the modes themselves.

Coronal magnetic fieldlines are thought to be connected to the lower solar atmosphere (chromosphere and photosphere), which is much denser than the corona, and ultimately to extend into the solar interior. Rather than considering the stability of the composite system consisting of hot gas and cooler underlying material, most studies of coronal MHD stability have imposed a boundary at the coronal base and have treated the lower atmosphere only through its influence on the boundary conditions.

Several different assumptions about the boundary conditions on ξ_{\parallel} , the component of the fluid displacement ξ parallel to the magnetic field \vec{B} , have been made in the literature. Schindler *et al.* (1983) chose $\xi = 0$, as if the photosphere were a rigid boundary. Einaudi and van Hoven (1981) imposed parity constraints on ξ_{\parallel} that allow $\xi_{\parallel} \neq 0$. Hood (1984a,b) did not explicitly restrict ξ_{\parallel} at all.

In this paper, we discuss the influence of the photospheric boundary condition on stability by assuming that both the upper and lower atmosphere are ideal fluids. It is clear that material in the solar atmosphere does not

always behave adiabatically. Radiative processes, thermal conduction, and some form of heating all play roles in the structure. Mass flow is often present. The two-fluid treatment in this paper is an idealization, but it is an idealization which is consistent with the MHD energy principle, and should be a good approximation as long as the MHD time scales are rapid compared to the time scale on which mass exchange occurs between the two fluids. Equilibria with flows, and nonadiabatic perturbations, cannot be studied with the ideal MHD energy principle.

We find that for coronal stability problems in which gravitational stratification is included, the effect of nonzero ξ_1 is to force the lower atmosphere to be perturbed. This arises in a natural way from the conditions at the boundary between the two fluids.

In Sec. II, we use the MHD energy principle to demonstrate the existence of a surface integral and a perturbation of the lower atmosphere when ξ_1 is not zero at the boundary. In Sec. III, we discuss the effect of the boundary terms on various results in the literature. Section IV is a discussion together with conclusions.

II. BOUNDARY CONDITIONS AND ENERGY PRINCIPLE ANALYSIS

We first describe the equilibrium model, including the conditions which must be fulfilled at the coronal base. We then derive the corresponding conditions in the presence of small perturbations. Finally, we use the MHD energy principle of BFKK to assess the effect of the boundary conditions on stability. Ideal MHD (adiabatic, inviscid, infinite electrical conductivity) is assumed to hold throughout.

a) Boundary conditions

The equation of mechanical equilibrium in a stratified atmosphere is

$$\nabla \cdot [\vec{B} \vec{B} - \vec{I}(p + B^2/2)] + \rho \vec{g} = 0 \quad (1)$$

where p , \vec{B} , ρ , and \vec{g} are the gas pressure, magnetic field, gas density, and gravitational acceleration, respectively. For a surface of discontinuity with normal direction n in the fluid, it follows from $\nabla \cdot \vec{B} = 0$ and from equation (1) that

$$\langle B_n \rangle = 0 \quad (2a)$$

$$\langle B_n B_t \rangle = 0 \quad (2b)$$

$$[(B_n^2 - B_t^2)/2 - p] = 0 \quad (2c)$$

where the notation $\langle S \rangle$ refers to the jump in quantity S across the discontinuity and the subscripts n and t refer to normal and tangent directions to the surface, respectively. Note that if $B_n = 0$, B_t may be discontinuous, but if $B_n \neq 0$, B_n , B_t , and p are each continuous separately. These conditions are discussed, e.g., by Roberts (1967).

Now consider a small displacement $\vec{\xi}$ of the fluid. The Eulerian perturbations of p , \vec{B} , and ρ are (BFKK)

$$\delta p = -\gamma p \nabla \cdot \vec{\xi} - \vec{\xi} \cdot \nabla p \quad (3a)$$

$$\delta \vec{B} = \nabla \times (\vec{\xi} \times \vec{B}) \equiv \vec{Q} \quad (3b)$$

$$\delta p = -\nabla \cdot \rho \vec{\xi} \quad (3c)$$

Faraday's law implies that, to first order in ξ ,

$$\langle \hat{n} \times (\vec{\xi} \times \vec{B}) \rangle = 0. \quad (4)$$

Furthermore, ξ_n must be continuous.

Conditions for the perturbed system analogous to Eqs. (2) were derived by BFKK for a fluid-vacuum interface tangent to \vec{B} , and by Goedbloed (1979) for a fluid-fluid interface, again with $\vec{B} \cdot \hat{n} = 0$, while Roberts (1967) gives conditions for $\vec{B} \cdot \hat{n} \neq 0$. Equations (2) must be linearized and satisfied at the perturbed boundary, with reference to the perturbed normal. The relevant perturbations of the fluid variables here are the Lagrangian perturbations, which follow the boundary elements to their new positions. The Lagrangian perturbations Δp , $\Delta \vec{B}$, and $\Delta \vec{p}$ can be obtained from their Eulerian counterparts (3a,b,c) by the usual relationship for any quantity

$$\Delta S = \delta S + \vec{\xi} \cdot \nabla S. \quad (5)$$

As Roberts (1967) shows in detail, for the case $\vec{B} \cdot \hat{n} \neq 0$,

$$\langle \Delta \vec{B} \rangle = \langle \Delta p \rangle = 0 \quad (6)$$

Equation (6) is the analog of Eqs. (2) above; the Lagrangian perturbations of p and \vec{B} as well as P and \vec{B} themselves are continuous across the interface.

b) Energy principle

The linearized equation of motion for the displacement vector $\vec{\xi}$ is

$$\rho \frac{\partial^2 \vec{\xi}}{\partial t^2} = \vec{F}(\vec{\xi}), \quad (7)$$

where

$$\vec{F}(\vec{\xi}) = \vec{\nabla}(\gamma_P \nabla \cdot \vec{\xi} + \vec{\xi} \cdot \nabla P) + (\nabla \times \vec{Q}) \times \vec{B} + (\nabla \times \vec{B}) \times \vec{Q} - \vec{g} \nabla \cdot \rho \vec{\xi} \quad (8)$$

and it is assumed that \vec{g} is produced by external sources and remains constant. The perturbed potential energy is

$$\delta W(\vec{\xi}, \vec{\xi}) = - \frac{1}{2} \int d^3x \vec{\xi} \cdot \vec{F}(\vec{\xi}) \quad (9)$$

where the integral extends over the volume of the fluid. In the general case, both the photospheric and coronal fluids contribute to δW .

BFKK proved (see also Freidberg 1982) that the system is unstable if and only if $\delta W(\vec{\xi}, \vec{\xi})$ is negative for a displacement vector $\vec{\xi}$ which satisfies appropriate boundary conditions. In the most restricted sense, $\vec{\xi}$ must satisfy continuity conditions such as Eqs. (4) and (6) and continuity of ξ_n at an interface. However, BFKK proved an extended energy principle for the plasma-vacuum problem with $\vec{B} \cdot \hat{n} = 0$. They showed that $\vec{\xi}$ need not satisfy the Lagrangian force-balance condition [(Eq. 2.32) in their paper; Eq. (6) here] by proving that it is possible to correct $\vec{\xi}$ in a thin layer near the interface in a way which enables $\vec{\xi}$ to satisfy the pressure balance condition. In their construction [see also Roberts (1967)], $\vec{\xi}$ is augmented by a vector $\vec{\epsilon} \hat{n}$ which goes to zero within a distance ϵ from the boundary. Then, the normal gradient

of $\hat{\xi}$ is of order ϵ^{-1} , and the contribution of $\hat{\xi}^{\perp}$ to δW_F is of order ϵ . The extended energy principle makes it possible to choose trial functions $\hat{\xi}$ for δW which do not satisfy the force balance condition. Roberts (1967) discusses the extended energy principle in cases where $\hat{B} \cdot \hat{n} \neq 0$. Since the Lagrangian force balance condition involves both $\hat{\xi}$ and its derivatives, and takes some care to satisfy, the extended energy principle is easier to work with and is used in most applications.

When the extended energy principle is written in its usual form [BFKK, Eq. (3.16)], surface integrals involving the pressure balance condition appear. These integrals are related to the change in plasma potential energy caused by the PdV work done at its surface. We now consider the role of these boundary terms. According to Eqs. (8) and (9),

$$2\delta W(\hat{\xi}, \hat{\xi}) = - \int d^3x [\hat{\xi} \cdot \nabla (\gamma_P \nabla \cdot \hat{\xi} + \hat{\xi} \cdot \nabla P) + \hat{\xi} \cdot (\nabla \times \hat{Q}) \times \hat{B} + \hat{\xi} \cdot (\hat{V} \times \hat{B}) \times \hat{Q} - \hat{\xi} \cdot \hat{g} \nabla \cdot \rho \hat{\xi}] \quad (10)$$

Integrating by parts, this can be written

$$2\delta W(\hat{\xi}, \hat{\xi}) = 2\delta W_F + 2\delta W_S$$

$$2\delta W_F = \int d^3x [(\nabla \cdot \hat{\xi}) (\gamma_P \nabla \cdot \hat{\xi} + \hat{\xi} \cdot \nabla P) + Q^2 - \hat{\xi} \cdot (\nabla \times \hat{B}) \times \hat{Q} + \hat{\xi} \cdot \hat{g} \nabla \cdot \rho \hat{\xi}]$$

$$2\delta W_S = - \int d^2x [(\hat{n} \cdot \hat{\xi}) (\gamma_P \nabla \cdot \hat{\xi} + \hat{\xi} \cdot \nabla P) + \hat{Q} \cdot [\hat{n} \times (\hat{\xi} \times \hat{B})]] \quad (11)$$

The surface integral δW_S is taken over the boundary between the upper and lower atmosphere, plus terms at infinity, which we assume vanish. If the horizontal extent of the structure is finite, we can impose horizontal periodic boundary conditions. The volume integral δW_F contains contributions

from both fluids.

Proceeding similarly to BFKK (see also Roberts, 1967), we rewrite the surface integral in Eq. (11) using the boundary conditions satisfied by $\hat{\xi}$. Note that even if we use the extended energy principle, so that we allow trial functions in the volume integral δW_F which do not satisfy the boundary conditions (6), we must evaluate δW_S assuming that these conditions are satisfied. This has not always been done in the literature.

According to Eq. (4), $\hat{n} \times (\hat{\xi} \times \hat{B})$ is continuous at the interface. Using Eqs. (5) and (6), Δp and $\hat{Q} + \hat{\xi} \cdot \Delta \hat{B}$ are continuous as well, as is $\hat{\xi} \cdot \hat{n}$. These results enable us to write

$$2\delta W_S = - \oint d^2x \{ (\hat{n} \cdot \hat{\xi}) [\hat{\xi} \cdot \nabla (p + B^2/2)] - (\hat{n} \cdot \hat{B}) (\hat{\xi} \cdot \nabla \hat{B}) \cdot \hat{\xi} \}$$

Using the equation of mechanical equilibrium, this becomes

$$2\delta W_S = \oint d^2x \{ (\hat{n} \cdot \hat{\xi}) [(\hat{B} \cdot \nabla \hat{B}) \cdot \hat{\xi} + \rho \hat{\xi} \cdot \hat{g}] - (\hat{n} \cdot \hat{B}) (\hat{\xi} \cdot \nabla \hat{B}) \cdot \hat{\xi} \}$$

or

$$2\delta W_S = - \oint d^2x \{ (\hat{n} \cdot \hat{\xi}) (\hat{\xi} \cdot \hat{g}) \rho + [\hat{n} \times (\hat{\xi} \times \hat{B}) \cdot \nabla \hat{B}] \cdot \hat{\xi} \} .$$

Evidently, the second term involves only tangential derivatives of \hat{B} at the interface. But the tangential derivatives of B are continuous; this term is therefore zero. If we take $\hat{g} = yg$ and let the boundary lie in the x - z plane, then δW_S takes the final form

$$2\delta W_S = \int dy dz \hat{\xi}_y^2 g (\rho_L - \rho_U) \quad (12)$$

where ρ_L and ρ_U denote the densities in the lower and upper atmosphere, respectively.

Equation (12) is exactly what is expected when one considers the Rayleigh-Taylor instability between two media of different density (e.g., Chandrasekhar, 1961). Since $\rho_L \gg \rho_U$ in the problem considered here, the surface term is positive. Thus we have shown that for nonzero g , the presence of flow across the unperturbed fluid boundary (nonzero ξ_1) tends to be stabilizing. The surface term given in Eq. (12) arises naturally from the dynamics of the problem, and must be included in any evaluation of δW .

We can write

$$\delta W = \delta W_{FC} + \delta W_{FL} + \delta W_S$$

where δW_{FC} and δW_{FL} are the contribution of the corona and the lower atmosphere to δW_F as given in Eq. (11), and δW_S is the surface term given in Eq. (12).

It is clear that if the problem of the stability of isolated coronal structures has any meaning, we must be able to make δW_{FL} vanishingly small.

This requires, in general, that ξ be nonzero only in an infinitesimally thin layer below the boundary. Can the argument used in deriving the extended energy principle be applied to this situation? That is, is there always a displacement ξ of the lower atmosphere which satisfies the interface conditions but which makes δW_{FL} arbitrarily small in magnitude?

In general, there is not. Recall from the discussion of the extended energy principle following Eq. (9) that the correction vector to ξ is assumed to be of order ϵ and localized to a layer of width ϵ . Its contribution to δW_F is then of order ϵ . But in the present case, if ξ is of order 1 at the

interface, and $\hat{\xi}$ is again localized to a layer of order ϵ , δW_{FL} will be order ϵ^{-1} . We cannot always make δW_{FL} negligibly small.

The case $\hat{\xi} \cdot \hat{n} = 0$ is an exception. In this case, $\hat{\xi}$ can be zero on the boundary and of order ϵ in a layer of width ϵ . For example, take $y = 0$ to be the surface; $y \rightarrow -\infty$ with depth. Take the Lagrangian pressure and magnetic field perturbations $\Delta p_s(x, z)$, $\Delta B_s(x, z)$ to be prescribed by the displacement of the upper atmosphere. Then, for $y < 0$, let

$$\xi_x(x, y, z) = -\frac{\epsilon}{B_y} \left(\Delta B_{xs} - \frac{B_x \Delta p_s}{\gamma p} \right) e^{y/\epsilon} (1 - e^{y/\epsilon})$$

$$\xi_y(x, y, z) = \frac{\epsilon \Delta p_s}{\gamma p} e^{y/\epsilon} (1 - e^{y/\epsilon})$$

$$\xi_z(x, y, z) = -\frac{\epsilon}{B_y} \left(\Delta B_{zs} - \frac{B_z \Delta p_s}{\gamma p} \right) e^{y/\epsilon} (1 - e^{y/\epsilon}),$$

where the functions multiplying the exponentials are evaluated at $y = 0$. This choice of $\hat{\xi}$ gives δW_F of order ϵ for $y < 0$.

These arguments have the following implications for MHD stability analysis of the solar corona. If we restrict ourselves to displacements with $\hat{\xi} \cdot \hat{n} \neq 0$, then δW_S and δW_{FL} can both be made zero, and it is both necessary and sufficient for the stability of the "isolated" coronal modes that $\delta W_{FC} > 0$. If we consider displacements with $\hat{\xi} \cdot \hat{n} \neq 0$, the positive definite term δW_S [c.f. Eq. (12)] must be added to δW_{FC} . In addition, δW_{FL} must also be minimized. This requires an explicit model of the lower atmosphere, but none of the presently available coronal equilibrium models include the lower atmosphere. Thus, the stability of modes with $\hat{\xi} \cdot \hat{n} \neq 0$ is indeterminate. In summary, it is sufficient but not necessary for the stability of the isolated ($\hat{\xi} \cdot \hat{n} = 0$) displacements with unrestricted $\hat{\xi} \cdot \hat{n}$.

Modes with $\xi \cdot \hat{n} \neq 0$ cannot properly be tested for stability without a model of the lower atmosphere.

III. EFFECT OF SURFACE TERMS ON CORONAL STABILITY

In this section, we discuss the relevance of the term δW_S and δW_{PC} derived in Sec. II to a number of studies of coronal MHD stability in the literature in which different lower boundary conditions were assumed. We first consider the conditions originally used by Einaudi and Van Hoven (1981) and then discuss the conditions used by Schindler et al. (1983). Finally, we treat the work of Hood (1984a,b), for which the necessary analysis is somewhat more involved. In all the papers we will treat, the components of ξ perpendicular to the magnetic field are assumed to vanish at the base of the atmosphere. The physical motivation for this is that the fieldlines are assumed to be fixed in dense, infinitely conducting photospheric gas.

a) Line tying with flow at lower boundary

Einaudi and Van Hoven (1981) studied the stability of coronal loops idealized as cylinders of finite length with twisted magnetic fields. They did not include gravitational stratification, an approximation which applies when the thermal scale height much exceeds the size of the system. The conditions they imposed at the ends of the cylinder are

$$\xi_1 = 0 \text{ at } z = \pm L$$

$$\xi_1(-L) = \xi_1(L) \quad (13)$$

$$\frac{d}{dz} \xi_z(-L) = \frac{d}{dz} \xi_z(L)$$

where z is along the axis of the cylinder and ξ_1 and ξ_1 are the components of ξ parallel and perpendicular to B . These conditions have also been used by Migliuolo *et al.* (1984), Einaudi and Van Hoven (1983), and references therein. Since $\xi \cdot \hat{n} \neq 0$ in their model, they can derive sufficient but not necessary stability conditions for the isolated modes.

b) Rigid boundary condition

Schindler *et al.* (1983) used the condition $\xi = 0$ on the lower boundary, which corresponds to treating the photosphere as a rigid, perfectly conducting wall. It is clear in this case that δW_S and δW_{FC} vanish. Thus, none of the stability results arising from their minimization of δW_F are affected by addition of the corresponding δW_S or δW_{FC} . In a sense, the $\xi = 0$ boundary condition is a limiting case of the two-fluid analysis for $\rho_\ell + \infty$. If $\rho_\ell + \infty$, δW_S becomes large unless $\xi_n \rightarrow 0$. One must also impose $\xi_1 = 0$.

c) Line tying with unrestricted ξ_1

Hood (1983a) derived a form of δW including gravitational stratification. He used the lower boundary condition $\xi \times \hat{B} = 0$, although only in the approximate sense described below, and did not restrict ξ_1 . Although his formulation (as does that of Schindler *et al.*) extends to systems in which the magnetic fields have three spatial components, the analysis here is restricted to systems in which the field lines lie in parallel, vertical planes, such that

$$\hat{B} = +\hat{x} \frac{\partial A}{\partial y} - \hat{y} \frac{\partial A}{\partial x} \quad (14)$$

All the equilibrium quantities are functions of x and y only, and the magnetic

field lines are assumed to form loops which are symmetric in x . These systems resemble solar magnetic arcades. Defining A_1 as $\xi \cdot \nabla A$ and using (14), Hood's boundary condition becomes $A_1 = 0$ on the boundary. Using only this boundary condition, he writes δW_{FC} as

$$2\delta W_{FC} = \int d^3x \left[\left(\frac{\partial A_1}{\partial s} \right)^2 + \left[\nabla A \cdot \nabla \left(\frac{J}{B} \right) - \frac{2J^2}{B^2} - \frac{\partial J}{\partial A} \right] A_1^2 + (B \cdot \nabla \xi_z)^2 + \left(\frac{\partial \xi_z}{\partial z} - \frac{\nabla A \cdot \nabla A_1 + JA_1}{B} \right)^2 + P \left[(\gamma - 1) (\nabla \cdot \xi)^2 + e^{2y/H} (\nabla \cdot \xi e^{-y/H})^2 \right] \right] \quad (15)$$

Here, J is the current density, H is the thermal scale height, and $\partial/\partial s = 1/B \hat{B} \cdot \nabla$ is the derivative along a field line.

To derive stability criteria, Hood assumes that the perturbations are isothermal ($\gamma = 1$) and minimizes with respect to $\partial \xi_z / \partial z$ and $\nabla \cdot (\xi e^{-y/H})$. This results in the conditions

$$\nabla \cdot \xi = \frac{\xi_y}{H} \quad (16)$$

$$\frac{\partial \xi_z}{\partial z} = \left(\frac{\nabla A \cdot \nabla A_1 + JA_1}{B^2} \right) \quad (17)$$

He then takes the limit of infinitely large wave number in the z direction; $k_z \rightarrow \infty$. Since condition (17) requires that the product $k_z \xi_z$ be finite, the magnetic tension term $(B \cdot \nabla \xi_z)^2$ in δW , which corresponds to bending the field lines out of their equilibrium plane, becomes negligible. (See Gilman 1979, Asseo et al. 1980, Zweibel 1981). Thus, δW is reduced to the form

$$2\delta W = \int d^3x \left\{ \left(\frac{\partial A_1}{\partial s} \right)^2 + \left[\nabla A \cdot \nabla \left(\frac{J}{B} \right) - \frac{2J^2}{B^2} - \frac{\partial J}{\partial A} \right] A_1^2 \right\} \quad (18)$$

which is considerably simpler than Eq. (15), since only the perturbation variable A_1 and its derivative along a field line appear. When δW in the form (18) is minimized subject to the normalization condition $\int d^3x A_1^2 = 1$, the resulting Euler equation for A_1 is an eigenvalue equation. The solution of the eigenvalue problem is the basis of Hood's stability analysis (Hood 1984b) of the Zweibel and Rundhausen (1962) equilibrium solutions.

The minimizing conditions (16) and (17), together with the assumption that $\gamma = 1$ and $\xi_1 = 0$ at the lower boundary, guarantee that δW_S , as it appears in Eq. (11), vanishes. However, as we showed in Sec. II, the appropriate form of δW_S is really Eq. (12) because of the Lagrangian force balance condition. Since ξ_1 is unrestricted, δW_S will generally not vanish, and δW_{FL} will not vanish either.

We should also note that when $\delta \xi_z / \delta z$ is given by Eq. (17), ξ_z will not vanish on the lower boundary (because ∇A_1 does not). Therefore, the condition $\xi_1 = 0$ is technically violated. However, since ξ_z is small [see the discussion following Eq. (17)], it appears consistent to neglect ξ_z on the boundary when dropping $(B \cdot \nabla \xi_z)^2$ from δW_{FC} .

Suppose that when δW_F as given by Eq. (18) is minimized over A_1 , the resulting ξ [which can be calculated from A_1 using conditions (16) and (17), as we do below] satisfies $\xi \cdot \hat{n} = 0$. In this case, δW_{FC} itself will be a true minimum. On the other hand, if $\xi \cdot \hat{n} \neq 0$, the minimization is unacceptable because δW_S and δW_{FL} must be included.

We now discuss the conditions under which the minimization of Eq. (18) will permit $\xi \cdot \hat{n} = 0$. Since δW_{FC} in Eq. (18) only contains derivatives of A_1 along a field line, we can consider perturbations which are localized to a single flux-tube. To solve for $\xi \cdot \hat{n}$ in terms of any given A_1 , we eliminate $\delta \xi_z / \delta z$ between conditions (16) and (17) to give

$$(\vec{B} + \vec{v}\vec{\xi}) \cdot \vec{B} - (\vec{B} + \vec{v}\vec{B}) \cdot \vec{\xi} = \frac{B^2 \xi_y}{H}. \quad (19)$$

Then, ξ_x may be written in terms of A_1 and ξ_y and eliminated from (19). The result is a first order differential equation for ξ_y as a function of A_1 , with solution

$$\xi_y(s) = B_y(s) e^{y/H} \int_{-s_0}^s \frac{ds'}{B} e^{-y'/H} \left(\frac{A_1}{BB_y} \frac{dB_x}{ds} - \frac{B_x}{B} \frac{d}{ds} \frac{A_1}{B_y} \right) \quad (20)$$

We assume here that B_x does not vanish anywhere on the field line, so s is a single valued function of x ; the field lines Hood studied have these properties. Let the field line end at s_0 . Then, if ξ_y vanishes at the endpoints, we must have

$$\int_{-s_0}^{s_0} \frac{ds'}{B} e^{-y'/H} \left(\frac{B_x}{B} \frac{d}{ds} \frac{A_1}{B_y} - \frac{A_1}{BB_y} \frac{dB_x}{ds} \right) = 0 \quad (21)$$

Since, in the geometry assumed, B_x and B_y are even and odd functions of x (or s), respectively, Eq. (21) will be satisfied only if A_1 is an odd function of x .

We now consider Hood's study of the Zweibel and Hundhausen (1982) equilibria (Hood 1984b). These equilibria form a one parameter family in which the parameter measures the volume electric current, or distortion of the field lines from a potential field at the base of the atmosphere. The only previous stability analysis of these equilibria was a local analysis (Zweibel 1981) which showed that some portion of all the ZH equilibria were locally unstable. However, this analysis did not consider the stabilizing effect of magnetic tension. Hood found that instability along an entire field line only

exists if the parameter $2\alpha H$ which measures the current exceeds a certain threshold. His solutions for A_1 are even rather than odd, functions of x . According to the arguments above, the stability boundary for isolated coronal modes should be at a larger value of the current parameter than that found by Hood. The stability boundary for these modes can be found by solving the Euler equation for the integral (18) with $A_1 = 0$ at the end and apex of a field line. Within the framework of the present analysis, Hood has found a sufficient, but not necessary, stability condition.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have considered the lower boundary condition for coronal MHD stability problems. These systems are characterized by magnetic field lines which connect the corona to a much denser, underlying atmosphere. Their ideal MHD stability has been studied using the BFKK energy principle.

The lower atmosphere has simply been modeled as a rigid, conducting wall in some previous treatments (e.g., Schindler *et al.* 1983) on which the fluid displacement ξ vanishes. Other studies have allowed a nonvanishing fluid displacement parallel to the magnetic field at the lower boundary, but required the perpendicular components ξ_\perp to vanish.

If displacement of the lower boundary is permitted, there are two basic ways in which this can be interpreted physically. One approach is to consider the boundary as a contact surface between two ideal fluids of different temperatures and densities. We pursued this approach here. The alternative is to consider the lower boundary as a source or sink of mass. This is only possible if heat gain or loss mechanisms are available to effect a phase change between the two fluids. Although the latter viewpoint certainly has

elements of physical realism, the ideal MHD energy principle is inapplicable to such systems.

We reviewed the boundary conditions which apply to a fluid-fluid interface and pointed out that these boundary conditions lead to surface integrals in the perturbed potential energy δW which represent PdV work done at the interface between the fluids. These terms [(Eq. 12)] can be written in a form which involves the density contrast between the two fluids, and is the same term one derives in an analysis of the Rayleigh Taylor instability at an interface between unmagnetized fluids. Since the lower atmosphere is much denser than the upper atmosphere, the surface term is strongly stabilizing. It vanishes when the displacement normal to the boundary vanishes.

We also found that δW_{FC} cannot be ignored for displacements with $\xi \cdot \hat{n} \neq 0$. Thus, there are two types of displacements; the isolated coronal modes, with $\xi \cdot \hat{n} = 0$, for which δW_S and δW_{FC} can legitimately be set equal to zero, and the displacements with $\xi \cdot \hat{n} \neq 0$. For the latter, the stability problem consists of jointly minimizing δW_{FC} , δW_{FL} , and δW_S .

If the volume term δW_{FC} alone is minimized, as was done by Hood (1984a,b), the result can be used to give a sufficient, but not necessary, condition for stability of the isolated coronal modes. We showed that Hood's minimization of δW_{FC} for a particular set of equilibria (Hood 1984b) led to nonvanishing $\xi \cdot \hat{n}$. The imposition of $\xi \cdot \hat{n} = 0$ on the boundary requires that Hood's trial functions A_1 have odd parity. We would argue, therefore, that some of the equilibria that Hood predicted are unstable are actually stable, according to the two-fluid analysis.

The rigid boundary condition with $\xi = 0$ has a vanishing surface term. This assumes that the rigid boundary condition with $\xi = 0$ leads to a self-consistent problem in which δW_{FC} alone is minimized. This seems to be the

simplest approach to treating the corona as an isolated system. The full problem, involving thermal exchange and dynamical forcing by motions of the fieldline endpoints, will have to be explored by other methods than the MHD energy principle.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge discussion with P. J. Cargill, D. A. D'Ippolito, D. G. Gough, T. E. Holzer, A. J. Hundhausen, R. M. Kulsrud, and B. C. Low, as well as the comments of the referees. This work was supported in part by NASA's Solar Terrestrial Theory Program, under grant NAGW-91 to the University of Colorado, and by DoE's Contract DE-AC02-76-CHO-3073 with Princeton University for the Princeton Plasma Physics Laboratory, where the author enjoyed a visit.

REFERENCES

Asseo, E., Cesarsky, C. J., Lachieze-Rey, M., and Pellat, R., "Energy Principle and the Interstellar Medium. II. Curved Equilibria," *Astrophys. J.* **237**, 752-764 (1980).

Bernstein, I. B., Frieman, E. A., Kruskal, M. D., and Kulsrud, R. M., "An Energy Principle for Hydromagnetic Stability Problems," *Proc. Roy. Soc. London*, A244, 17-40 (1958) BFKK.

Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, London, Oxford, 1961.

Einaudi, G. and Van Hoven, G., "The Stability of a Diffuse Linear Pinch with Axial Boundaries," *Phys. Fluids* **24**, 1092-1098 (1981).

Einaudi, G. and Van Hoven, G., "The Stability of Coronal Loops: Finite Length and Pressure Profile Limits," *Solar Phys.* **88**, 163-178 (1983).

Freidberg, J. P., "Ideal MHD Theory of Magnetic Fusion Systems," *Rev. Mod. Phys.* **54**, 801-902 (1982).

Gilman, P. A., "Instability of Magnetohydrostatic Stellar Interiors from Magnetic Buoyancy. I," *Astrophys. J.* **162**, 1019-1029, (1970).

Goedbloed, J. P., Lecture Notes on Ideal Magnetohydrodynamics, Nieuwegen, Form-Institut voor Plasmaphysica (1979).

Hood, A. W., "An Energy Method for the Stability of Solar Magnetohydrostatic Atmospheres," *Geophys. and Astrophys. Fluid Dyn.*, in press (1984a).

Hood, A. W., "The Stability of Magnetohydrostatic Atmosphere," *Solar Phys.*, in press (1984b).

Krall, N. A. and Trivelpiece, A. W., Principles of Plasma Physics, New York, McGraw Hill, 1973.

Migliuolo, S., Cargill, P. J., and Hood, A. W., "Magnetohydrodynamic Stability of Line-Tied Coronal Arcades II. Shearless Magnetic Fields," submitted to *Astrophys. J.*, 1984.

Priest, E. R., Solar Magnetohydrodynamics, Dordrecht, D. Reidel, 1982.

Roberts, P. H., An Introduction to Magnetohydrodynamics, New York, American Elsevier, 1967.

Rosner, R., Low, B. C., and Holzer, T. E., "Physical Processes in the Solar Corona," to be published in The Physics of the Sun, ed. T. E. Holzer, D. Mihalas, P. A. Sturrock, and R. K. Ulrich, Reidel, Dordrecht, 1984.

Schindler, K., Birn, J., and Janicke, L., "Stability of Two-Dimensional Pre-Flare Structures," *Solar Phys.* 87, 103-134 (1983).

Zweibel, E. G., "MHD Instabilities of Atmospheres with Magnetic Fields,"
Astrophys. J. 249, 731-745 (1981).

Zweibel, E. G., and Hundhausen, A. J., "Magnetostatic Atmospheres: A
Family of Isothermal Solutions," *Solar Phys.* 76, 261-299 (1982).

EXTERNAL DISTRIBUTION IN ADDITION TO TIC UC-20

Plasma Res Lab, Austre Nat'l Univ, AUSTRALIA
Dr. Frank J. Faiconi, Univ of Wollongong, AUSTRALIA
Prof. I.R. Jones, Flinders Univ., AUSTRALIA
Prof. M.H. Brennan, Univ Sydney, AUSTRALIA
Prof. F. Cap, Inst Theo Phys, AUSTRIA
Prof. Franz Verhaest, Inst theoretische, BELGIUM
Dr. D. Falumbo, Og XII Fusion Prog, BELGIUM
Ecole Royale Militaire, Lab de Phys Plasmas, BELGIUM
Dr. P.H. Sakaneke, Univ Estadual, BRAZIL
Dr. C.R. James, Univ of Alberta, CANADA
Prof. J. Teichmann, Univ of Montreal, CANADA
Dr. H.M. Skarsgard, Univ of Saskatchewan, CANADA
Prof. S.R. Sreenivasan, University of Calgary, CANADA
Prof. Tudor W. Johnston, INRS-Energie, CANADA
Dr. Hannes Bernard, Univ British Columbia, CANADA
Dr. M.P. Bachynski, MPB Technologies, Inc., CANADA
Zhangyu Li, SW Inst Physics, CHINA
Library, Tsing Hua University, CHINA
Librarian, Institute of Physics, CHINA
Inst Plasma Phys, Academia Sinica, CHINA
Dr. Peter Lukac, Komenskoho Univ, CZECHOSLOVAKIA
The Librarian, Culham Laboratory, ENGLAND
Prof. Schatzman, Observatoire de Nice, FRANCE
J. Raetet, CEN-BP6, FRANCE
AM Dupas Library, AM Dupas Library, FRANCE
Dr. Tom Muul, Academy Bibliographic, HONG KONG
Preprint Library, Cent Res Inst Phys, HUNGARY
Dr. S.K. Trehan, Panjab University, INDIA
Dr. Indra, Mohan Lal Das, Banaras Hindu Univ, INDIA
Dr. L.K. Chaudhary, South Gujarat Univ, INDIA
Dr. R.K. Chhajlani, Var Ruchi Marg, INDIA
P. Kaw, Physical Research Lab, INDIA
Dr. Phillip Rosenau, Israel Inst Tech, ISRAEL
Prof. S. Cuperman, Tel Aviv University, ISRAEL
Prof. G. Rostagni, Univ Di Padova, ITALY
Librarian, Int'l Ctr Theo Phys, ITALY
Miss Cisella De Palo, Assoc EURATOM-CNEN, ITALY
Biblioteca, del CNR EURATOM, ITALY
Dr. H. Tameto, Toshiba Res & Dev, JAPAN
Prof. H. Yoshikawa, JAERI, Tokai Res Est, JAPAN
Prof. T. Uchida, University of Tokyo, JAPAN
Research Info Center, Nagoya University, JAPAN
Prof. Kyoji Nishikawa, Univ of Hiroshima, JAPAN
Prof. Sigeru Mori, JAERI, JAPAN
Library, Kyoto University, JAPAN
Prof. Ichiro Kawakami, Nihon Univ, JAPAN
Prof. Setsuji Itoh, Kyushu University, JAPAN
Tech Info Division, Korea Atomic Energy, KOREA
Dr. R. England, Ciudad Universitaria, MEXICO
Bibliotheek, Fom-Inst Voor Plasma, NETHERLANDS
Prof. B.S. Liley, University of Waikato, NEW ZEALAND
Dr. Suresh C. Sharma, Univ of Calabar, NIGERIA
Prof. J.A.G. Cabral, Inst Superior Tech, PORTUGAL
Dr. Octavian Petrus, ALI CUZA University, ROMANIA
Prof. M.A. Hellberg, University of Natal, SO AFRICA
Dr. Johan de Villiers, Atomic Energy Bd, SO AFRICA
Fusion Div, Library, JEN, SPAIN
Prof. Hans Williamson, Chalmers Univ Tech, SWEDEN
Dr. Lennart Stenflo, University of UMEA, SWEDEN
Library, Royal Inst Tech, SWEDEN
Dr. Erik T. Karlson, Uppsala Universitet, SWEDEN
Centre de Recherches, Ecole Polytech Fed, SWITZERLAND
Dr. H.L. Meiss, Nat'l Bur Stand, USA
Dr. W.H. Stacey, Georg Inst Tech, USA
Dr. S.T. Wu, Univ Alabama, USA
Prof. Norman L. Danson, Univ S Florida, USA
Dr. Benjamin Ma, Iowa State Univ, USA
Prof. Magne Kristiansen, Texas Tech Univ, USA
Dr. Raymond Askew, Auburn Univ, USA
Dr. V.T. Tolok, Kharkov Phys Tech Inst, USSR
Dr. D.D. Ryutov, Siberian Acad Sci, USSR
Dr. G.A. Ellseer, Kurchatov Institute, USSR
Dr. V.A. Glikhikh, Inst Electro-Physical, USSR
Institute Gen. Physics, USSR
Prof. T.J. Boyd, Univ College N Wales, WALES
Dr. K. Schindler, Ruhr Universitat, W. GERMANY
Nuclear Res Estab, Juelich Ltd, W. GERMANY
Librarian, Max-Planck Institut, W. GERMANY
Dr. H.J. Kaeppner, University Stuttgart, W. GERMANY
Bibliothek, Inst Plasmatorschung, W. GERMANY