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ABSTRACT

It is becoming clearer with time that non-locality of the
nucleon-nucleon interaction can play a significant role in
nuclear properties. In this talk we review evidence for such non-
locality. Then, using a Gaussian interaction, we discuss the
effect of non-locality on two body matrix elements in the nuclear
shell model. Finally, we mention some applications. For example,

non-locality leads to faster convergence of off-diagonal matrix
elements.,

I. WHAT IS NON-LOCALITY?
1. Definition

Let us begin with discussing what non-locality is. Basically,
the Schroedinger equation for a particle in a conventional
(local) potential has the well known form:

- (h2/2m)Y(E) + V(L) $(T) = Ep(Z) . | | | (1)
which can also be written as:

- (h2/2m)(T) + [V(E)6 (F-L)$(F")d®c" = Ey(T) . (2)
For a non-local interaction, we have, instead:

-(N2/2m)$(E) + [V(E, T OY(E )ar " = Ey(F) . (3)
ie. r and 7' don't ﬁave to be at the same point.

2. Relation to momentum dependence
Instead of writing the interaction as a non-local operator,
we can express it in the form of a local, but momentum dependent

interaction. Thus, for example, a non-local Gaussian interaction
of the form:

- ->
V(2D = e- (FHE1)2/ba2y o= (T-17)2/bc? %)

is equivalent (apart from a multiplicative constant) to a
momentum dependent Gaussian interaction of the form:

. (5)
V(f,g) = e-r?/a%x o-pPe?



(Actually, this interaction has to be properly symmetrized
w.r.t. r and p, so that it is Hermitean.) The connection between
non-locality and momentum dependence is more complicated for a
non-Gaussian interaction.

3. Relation to c¢nergy dependence

Instead of writing the interaction as momentum dependent, we
can also try to represent it as local, but energy dependent.
However, when we do this, we lose the orthogonality property of
wavefunctions of different energy.

IT. WHY DO WE NEED NON-LOCALITY?
1. Theory
a. A simplified quark model for non-locality.

Some non-locality of the NN interaction at short distances is
expected on account of the quark structure of nucleons, that is
to say, due to the nucleon compositeness. To illustrate this
point, consider a very crude model, in which each nucleon is
replaced by a cluster consisting of two (not three) particles.
The two particles have masses M and m, re-pectively. If there is
a harmonic interaction between them, V = Zuw?r?, where p is the
reduced mass = Mm/(M+m) and r is the spacing between the
particles, then the wavefunction of relative motion is a Gaussian
proportional to e-Mwr?/2h L o-1?/2b%  Now consider the
interaction between two clusters whose centers of mass are
separated by a distance R. We suppose that the interaction
between the particles has a range very long compared to the
cluster size b, and that it involves exchanging the light
particles on the two clusters. Using standard cluster model
methods, it can then be shown that the interaction between the
clusters is just of the non-local form discussed above:

e + >

V(ﬁ’ﬁv)ne—(KFR')?/QaQX e~ (R-R")2/4c? , (6a)
with

a2=2b2/[1+§]2 , 4c2=2b2/[1+f‘—4\]2

(6b)
Two particular limits are of interest.
i. For m << M, we obtain a2 =2b?, ¢ = 0, i.e. the interaction is
local, with a '

> .
V(R,R') = e R2/2b% x 5R -R") (7)
range governed by the overlap of wavefunctions between the
two clusters. This case corresponds to the interaction between
atoms. Since the atomic nucleus has a much larger mass than an
electron, the interactions between atoms are nearly local.




ii. For m=M, which more closely corresponds to the quark

model of nucleons, (except for containing 2 quarks instead of 3),.
we find a? =c?~=b2?/2. For this case, the interaction is
separable,

V(R,R') = e~ (RZHR"2) /b? (8)

b. Relativistic Model
Alternatively, some non-locality also arises in relativistic
nuclear models, due to relativistic retardation effects.

2. Experimental evidence: Deuteron radius

There are only a few well-known examples of non-local
interactions known in nature. The best evidence (to date) for non-
locality of the N-N interaction comes from the analysis of the
deuteron charge radiusl. With traditional (basically local)
interactions, it is possible to fit N-N scattering phase shifts
very well, but one obtains a deuteron radius about 1% larger than
the empirical value. This is illustrated in Figure 1. The’
problem of the deuteron radius can be easily resolved, without
destroying the fit to phase shifts, by making the potential non-
local?. For example, there are simple unitary transformations on
the wavefunction which change the short distance behavior, but
keep intact both the orthogonality properties of non-degenerate
pairs of wavefunction, and the wavefunction at large distances,
which 1is what determines the phase shifts,

III. NON-LOCALITY AND SHELL MODEL CALCULATIONS
1. Two-body interaction matrix elements

It is well known that if we use harmonic oscillator single
particle wavefunctions, then the two body matrix elements for
Gaussian interactions can be calculated analytically. This also
holds for a non-local Gaussian, in fact, the expressions are only
slightly more involved. It is readily shown that in the short
range limit; i.e., when both the range a and the non-locality
range c are small compared to the oscillator length b, then the
two body matrix elements reduce to those for a Skyrme interaction
(without density dependence). It turns out that non-locality
increases the even state matrix elements, but reduces the odd
state matrix elements. If a = ¢, then only matrix elements with
relative orbital angular momentum zero survive. In fact, in this
case, the interaction is separable. Another case of interest
occurs for a long range. Here the interaction effectively reduces
to a quadrupole-quadrupole interaction. Finally, for ac = 2bZ2,
all two body matrix elements connecting different oscillator
shells vanish identically. An interaction with these (somewhat
unrealistic) values of the parameters gives rise to a mean field
but no splitting between states belonging to the same irreducible
representation of SU(3) but different L values.



We discuss here the Talmi integrals for non-local Gaussian
interactions. Suppose we have the following non-local Gaussian
interaction: :

(r+r')? r-r')?
V= -Vgexp -[ S (9)
in even states, and nV in 6dd states.

Then the integrals involving relative motion can be
calculated analytically. For non-local interactions, they are
only slightly more complicated that for a local interaction.

We obtain:
Ioo=VoAd/2(1-p)8/2 (10a)
where , 2
A=t S (10b)
AT azyopee c242b2

Here is an expression for another Talmi integral:
Ii1/Too=n{A-p) (11)

Note that if A=y, i.e. if a=c, (local and non-local ranges
are equal), then I,, =0. Similarly, all other Talmi integrals
with relative angular momentum larger than 0 vanish. This is not
surprising, since this case corresponds to a separable
interaction, which acts only in relative S-states. Thus, for
example:

T,5/T00= (A-p)? . (12)

On the other hand, the Talmi integral I,, is finite even for a
separable interacgion.
Tp0/Tg= (A-p)2 + 5 (L1-A-p)2 | (13)

However, there is another interesting limit, that where A+ pu=
1. This corresponds to the condition ac =2b2. For this case, we
see that I,,=1,,, and, more generally, Iyy is independent of £.
Furthermore, all off-diagonal matrix elements connecting
different oscillator shells vanish.

For example, s
Too-20/Too =/3(1-A-p) (14)
which equals 0 in this case.

It is well known that for an infinite range interaction, i.e.
A=1, p=0, all off-diagonal matrix elements vanish. However, as
is shown here, this result holds more generally, even for a
finite range interaction, provided the range of the non-locality
is chosen equal to c¢=2b?/a. In this limit, the interaction
provides a mean field, but there is no pairing.



Finally, it should be noted that a finite range space
exchange interaction, a=r,, ¢=0, n=-1, (A=2X,, p#=0) has the
same Talmi integrals, and thus two-body matrix elements, as a
zero range, but finite non-locality range a=0, c=r,, n=1, (A=
0, #=2Xxy) interaction. This indicates that, to some extent the
effect of non-locality can be simulated by a local but space
exchange range interaction.

2. Connection with Skyrme Interaction

In this talk we will restrict our consideration to a density
independent interaction. For a short range interaction, i.e. with
both a and ¢ << b, we obtain: for the two parameters A and u:

a? a2 a?

A= 321002 T 2p2 [1 - EQ] (15a)
c? c? .

h=o7op2 b2 (15b)

The Skyrme parameters are defined as follows for a local short
range interaction:

to= | V(r) d&r = V,(ra?)’/? | (16a)
t, = -3 [ V(x)r2d®r = -tya2/2 (16b)
t,= 5 | V(r)r2ddr - ntya?/2 (16c)

n is the ratio of odd state to even state interaction.

Then 273/2 9 ‘

) ra 3 a

Too =Vor®/2(w /22 (5750 x (17 34 an
Ino = | $n(X)V(x,r" )¢y (r')d3rd®r | (18)

For a short range but non-local interaction
we must make the following changes:
in t,, replace a? by a? +c?, and,
in t,, replace a? by a? - c?.
Also, 1,5, is now given by:
ra?)3/2 3 a?+c?
Thus non-locality increases the apparent range of the even-

state interaction, but decreases that of the odd-state
interaction.




In the Skyrme approximationB, the density independent part of
the interaction {s written as:
V(p,r) =t 6(r) +5[p26(xr) +6(x)p2)t, +p-6(x) pt, (20)
If t,=-t,, i.e.1n==1, then
V(p,r) =to8(r) + 5[p26(r) - 2p-6(x) p+6(r)p?lt,
=ty6(r) - 5[V26(r)]t,. (21)
which is just a local interaction.

The Talmi integrals for relative angular momentum zero are
given as follows:

Tno 2 Y0 (0) to - Bre (0)V29,, (O E, | (22)
Now
Vi, (0) = - BEZ (o) (23)
Thus

Ino=:¢go(0) (t0_+I£%%Zz t1)‘”¢;o(0)to (1‘ ”thlg (32+02))(24)
Also, 2 _ 2
Tyy= W1, (0)) e, = gt (25)

It is interesting to list here ratios of the Talmi integrals
in the Skyrme approximation:

' 3 3 2 4 ¢?
Lo/Too = -w)?4 3(La-p)? » 2 x (12545 (26a)
I,,/150 = (X-p)?2 » G(at) (26b)
3 3 1 a?+c?
Too-20/Too = /E (l'x“ﬂ)'*/i [1' 5 “—g?__] (26¢)
2 .02
1,1/Tg0 nO-p) v an S (26d)

Finally, we discuss two possible applications of non-local
interactions in the nuclear shell model.

3. Overlap integrals

Consider the filling of shells in the A = 100 region. Here we
have 40 to 45 protons, filling the pl/2 and g9/2 shells, while
there are 55 to 60 neutrons which fill the g7/2 and d5/2 shells.
There are, of course, interactions between protons and neutrons,
and there is some empirical evidence from study of Zr and Mo
isotopes that the interaction between the proton g9/2 and
neutron g7/2 shells is especially 1arg,e.4 As the neutron g7/2
shell fills, the proton g9/2 shell drops in energy. The apparent
special overlap between these shells is larger than calculated
for a local zero or finite range interaction. It requires that
the interaction is short range in phase space; i.e., the combined
r and p space. We discuss here the overlap integrals for a
simpler case, but one which has the essential physics, namely
particles in the oscillator (s,d) shell.




As can be seen from Table 1, for a local interaction, the
overlap integrals are only slightly smaller between s and d than
between two particles in the same orbits. lowever, non-localitly
enhances the difference, (though not by much unless the non-
locality range is large). In the extreme case of a zero range
interaction with infinite range non-locality, the overlap
integral wvanishes unless the two particles are in the same
spatial state. It is like a zero range interaction in phase
space; i.e., the combined p and r space.

4. Convergence of model space expansion

For a finite non-locality range, the two body matrix elements
connecting different oscillato: shells disappear faster than for
a purely local interaction. This should lead to more rapid
convergence of shell model energies as we increase the size of
the model space. Table 2 indicates how non-locality increases
.the rate of convergence for the simple case of 4He, where, in
lowest approximation, the nucleons are in the oscillator ground
state. Such a faster convergence of the matrix elements can be
readily understood. Intermediate states correspond to larger
momenta. Now, a non-local interaction can be expressed as a
momentum dependent one; i.e., it falls off faster with momentum,
(not just momentum transfer, as with a local interaction)
then a momentum dependent one. Since the intermediate states
have larger momenta, the matrix elements involving such states
will be reduced.

IV. SUMMARY

We have discussed the evidence for non-locality in the NN
interaction, and the effect of a simple form of non-locality with
Gaussians on nuclear shell model calculations. It remains to
apply these ideas quantitatively to realistic NN interactions
which fit scattering data, as well as the deuteron radius. Of
course, this requires consideration of the density dependence in
the NN interaction®.
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TABLE 1

Illustrating that non-locality leads to largex

between particles in the same orbit.

overlap

a? c?
Taze2bz MY Toeion?

Vas/Vag a O /b 2o Jeb

c | n A0 0.25 0.5 0.75

0 0 : 0.595 0.891 1.022 1.018 .000
/%b 0.25 1 0.561 0.816 0.971 0.078 .018
J2b 0.5 : O.a96 0.728 0.921 0.971 1.022
J6b 0.75 l 0.192 0.445 0.728 0.816 ;891
w 1.00': 0.000 0.192 0.496 0.561 .595

Vss/Vad a 0 /gb J2b J6b ©

c m A0 0.25 0.5 0.75

0 0 | 2.440 1.386 1.133  1.040 .000
ng 0.25 : 2.663 1.336 1.065 1.009 .040
J2b 0.5 : 3.7a5 1.993 1.316 1.065 .133
J6éb 0.75 { 4.750 3.219  1.993  1.336 .386
w 1.00 : 5.000 4,750 3.745  2.663 440

TABLE 2

Illustrating that non-locality speeds

the model space expansion.
a1 L
a?+2b? &' HTc2i0p?

3
Ioo/Toc = 5 (1-A-w2+ (-2 091

a==/§b; A 0

3
100-20/T00 = /5 (1-A-m) 0.92
1("
100-40/100 = 4 % (1-x-p)? 0.77
' 35 .
100-60/100 = 3z (1-A-w)3 0.62

up the convergence of

0.38

0.61

0.34

N1 =

Q.16
0.31

0.08

W

0.25
0.00
0.00

0.00
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FIGURE 1

Calculated triplet scattering length a and deuteron radius rpy for realistic
NN potentials, and comparison with empirical value. From Ref. ¥,

Calculated a and rp, for realistic potentfals (Klarsfeld et al.)
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