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SQtS REMARKABLE SPIM PHYSICS WITH MDJWPOLES AND

H.S . GUIGIE*

Department of Physics
Brookhaven National Laboratory

Upton, NY 11973

Abstract - This review will cover the following topics, which follow the his-
torical evolution of the subject: the Dirac monopole; the Kazama-Yang
Goldhaber problem in electron-monopole scattering; the 't Hooft-Polyakov
monopole and spin, from isospin; the Rubakov analysis; monopole catalysis
of proton decay "the Rubakov-Callan effect"; the role of exactly solvable 2-
dimensional QFT's and finally observable consequences.

I am going to talk about an intriguing aspect of the gauge theories we believe might
describe the fundamental interactions of nature. As most of us have learnt, such
gauge theories have magnetic monopole soliton-like states. The latter have remark-
able properties as regards spin and angular momentum. In fact, a charge boson inter-
acting with a monopole carrying one Dirac unit of magnetic charge forms a system
with half integer .total angular momentum, i.e. it behaves like a fermion. The cata-
logue of the phenomena of this kind associated with monopoles seems limitless. A
detailed study of fermions interacting with heavy nonopoles leads to some fascinat-
ing lessons in non-perturbative spin physics, through exactly solvable two-dimen-
sional quantum field theories. The latter is the .first case of such theories being
directly relevant to observable elementary particle physics. This is in contrast to
condensed matter physics, where there are nitoerous such examples.

About three years ago, Valerie Rubakov and independently Curt Callan predicted that
a remarkable phenomenon would occur if a monopole of a grand unified theory passed
through nuclear matter, namely it would cause protons to decay into an electron and
pions at rates more characteristic of strong interactions, rather than the "ultra-
weak" forces of the grand unified theory, which are known to give rise to baryon
number violation. In the last part of this talk I will sketch how these deductions
were made and discuss the consequences, but let me begin by describing briefly how
Dirac introduced the monopole concept in the 1930's.

THE DIRAC MOHOPOEE

In 1931 Dirac /I/ asked the following question. Sinse Maxwell's equations are almost
symmetrical with respect to the exchange of the electric and magnetic fields, is it
not possible to have a point magnetic pole analogue of the electron? This would
make the Maxwell system completely symmetrical (see Table I). However, he met with
a very important technical problem, the solution of which pointed.to the mononole
having some topological character. '



Table I - Equations governing a Dirac magnetic monopole

Modified Maxwell's equations (in units ft * c

7 • E - JMT e 6(3)(r")

D

7 • B m 6 (3)(?)

=*• * 3E
*X 5 ~ 3t

m nVr 2 - 2^ m 5(x) 6(y)Magnetic field: B

Vector potential with string singularity: r cos6

(The string singularity along the z-axis feeds in Uirm units of
magnetic flux.)

Dirac quantization condition:
(In order that the string singularity be invisible in an Aharanov
experiment)

e <p A . d£ * 2ir ,

around
string

i .e . eg = 1/2 (g * m/Uir).

The difficulty I am referring to is that once one tries to write down the corre-
sponding vector potential A (required for a gauge invariant description of QED),
then one finds that it must have a string singularity. One can think of
this string as a solenoid, feeding in a so to speak the monopole's
km units of. magnetic flux. In order that this fictitious solenoid be un-
observable, for example in an Aharanov electron interference experiment, the line
integral of the vector potential around it should be a multiplet of 2ir. This has
the immediate consequence that the electric and magnetic charges are quantized ac-
cording to eg « 1/2. Notice that the line integral maps the U(l) gauge group around
a circle (i.e. in homotopy theory this is denoted by I? (U(l)) = Z =' { 0,1,2,3,...})
and this is what I meant above by "the monopole has a topological character".

THE KAZAMA-YANG-GOLDHABER PROBLEM IN ELECTRON-MONOPOLE SCATTERING

Another unforeseen feature of a Dirac monopole emerges when one considers an elec-
tron scattering off it. The total angular momentum is made up of three pieces:

i.e. J - L + 5 + ? ,

where L is the usual orbital piece, S * 1/2 a* is the spin of the electron, while
the extra piece is due to the interaction of the charge of the electron with the
monopole magnetic field. This is given by

? - eg * |

By virtue of the Dirac condition eg = 1/2, T also corresponds to half a unit of
the angular momentum. Thus the lowest value of the total angular momentum J can take
is zero, when the two spin 1/2 pieces exactly compensate one another (L * 0 wave)
or together compensate an L * 1 orbital angular momentum. However, Kazama, Yang
and Goldhaber /2/ pointed out a problem. If one inspects T\ one notices that its



sign depends on the direction r, i.e. it changes sign if r points in instead of
out. This means as an electron passes the core (say in the s-wave), then in order to
conserve angular momentum, either

e •*• -e (charge exchange, i.e. T'flip)

° r S z -»• -S z (helicity flip, i.e. S flip)

i.e. there appears to be an ambiguity.

The problem can be viewed in another way. If one examines the Hamiltonian of the
system, namely:

then as it stands it does not give rise to a deep self-ad,joint Hamiltonian scatter-
ing problem. It has to be modified or equivalently one must supplement the problem
with a special boundary condition at r = 0. However, there is an arbitrariness in
doing this, which can be characterized by a phase angle 9.

To be explicit, let us recall some work of Kazama and Yang /3/ on the partial wave
analysis of the equation

By virtue of the fact that the total angular momentum, which commutes with H, has
two spin 1/2 pieces, the orbital series for a monopole will, in fact, run over
integer values

i.e. L = |5|-l/2, |q] + 1/2, |q| + 3/2, ...

where q = eg n with eg = 1/2 for a Dirac monopole. The relevant harmonics are of
the Jacob and Wick type or equivalently those proposed by Yang (see Ref. .'3 ' and re-
ferences therein), namely Y _(8,f). Let us concentrate on the lowest partial

wave, since only this sector has the interesting physics, due to the fa f that the
corresponding wave function is non-vanishing at r = 0. We can write the s-wave
function in the form

T0 r |_ V(T) n

where n is a two-component spinor and is a solution of the equation

a • n n = q 17

The Dirac equation in two component form x = can be written in the form
a L v J

H X - E x

* -s d
where H = iqyc — + y~ m.

5 or 0
The solutions are thus classified according to the eigenvalues v = ± 1 of qYc
and take the form (for m = 0):

.iS(t+vr) , - , ; v = ±



This means that they decompose into either in-movers or out-"»overs, in principle with
no outgoing wave for a given incoming wave. One has to impose a boundary condition .to
relate the in and out sectors. In order to figure out what would be the appropriate
one, let us consider the self-adjointness of 8, i.e. consider

- (Hx.x)

n * X (Oj X (0) "" X (0/ »Q)

Thus only if we choose x+(0) * « X (0) do we obtain a self-adjoint Hamiltonian
and consequently well defined physics? However, the physics depends in an important
way .on the value of this arbitrary angle 9 as has been demonstrated /h/ by the
work of Yang, Wu and others. For example the fermion ground state (i.e. the
Fermi sea around the monopole) varies as we change 9. Further the possible bound
state spectrum depends on its value.

When there are more than one flavour of charged fermion in the problem, then
more complex boundary conditions emerge and consequently quite a different physics.

•t HOOFT-POLIAKOV MONOPOLE AND SPIN FROM ISOSPIN

Certain non-Abelian gauge theories in their Higgs can have monopole configurations
of their gauge fields /5/. These are topologically excited stable soliton soluticns
of the equations of motion, which carry one or two Dirac units of magnetic charge,
depending on the gauge group. The origin of this phenomenon lies in the self-inter-
actions of the gauge fields. The underlying non-linear system of equations admit
soliton solutions, which are characterized by a topological charge. This discovery
in 197^ caused considerable excitement, because of the success non-Abelian gauge the-
ories were having, by providing a description of all elementary interactions in
nature.

To describe such a monopole, let us consider an SU(2) gauge theory, couple to a
charged scalar field, chosen to be in a Higgs phase, in which only a long range U(l)
gauge field remains manifest at long wave lengths. The" set of equations governing
this system is given in Table II, together with 't Hooft-Polyakov monopole solution.

If the vacuum expectation value of the scalar field in the Higgs phase < <j) > • $Qn
takes on the hedgehog configuration shown in Fig.2, in which the isospin points
along the radial direction everywhere, then a stable monopole configuration of the
gauge fields sits at the centre. For tljose familiar with homotopy theory in mathe-
matics, this situation is characterized by E2(SU(2)/U(l)) which is equal to
II (U(l)) - Z, i.e. this is a mapping of a surface of a sphere in real space into the
Su(2) group, with winding number Z = 1,2,3,... The latter defines the stability
class of the monopole, because it cannot be unwound by quantum fluctuations of the
system. The U(l) gauge group that is left manifest a long way from the centre,,
corresponds to rotations around the radial directions as indicated in Fig.2. Refer-
ring to the set of equations governing this system in Table II, we notice unlike a
Dirac monopole the vector potential does not have a string singularity. This is due
to the presence of the scalar field, which in a sense replaces the Dirac string.

By virtue of the fact that these non-Abelian monopoles are non-singular at r * 0
and have finite core radius, there should be a unique solutions to the Kazama-Yang-
Goldhaber problem, even as we let the -core radius (i.e. I/mass) go to zero.

Let us consider N^ SU(2) doublets of left-handed two-component fsrmion fields,
coupled to the SU(2) monopole system we have just described. The f -ion part of
the action is given by:

• J-
k-l

where a11 = (41 jff1); A^(x) is the monopole static potential given in Table II
and a (x) is the quantum fluctuation of this configuration. If we do a partial



wave analysis of fermions scattering off the monopole centred at r = 0, then we see
that the total angular momentum is made up of the three pieces:

where L is the usual orbital piece, S = 1/2 aft is the fermion spin and T * 1/2 -Mi
is half a unit of angular momentum coming from the interaction of the fermion charge
with the -monopoles static magnetic field. Thus the monopole promotes isospin to
spin. This means, just like to theDirac case and unlike the usual central potential
problem, in which the lowest partial wave is J = 1/2, for a monopole the lowest
partial wave is a J • 0, i.e. s-wave. The latter is built up either by L = 0,
S + T = 0 or L = 1, S + T = 1 . This is reflected in the two independent functions
g(r) and h(r) in the following decomposition of the s-wave field /6/

<Mr)ai = l/v/87[g(r)€a. + h(r) i(a.n)a6eBaJ/r ,

where a refers to spin and i to isospin.gif we collect the functions g and h
in the form of a two component spinor f = [̂  1, then f(t,r) satisfies a free
Dirac equation on the half space (t,r) (0 < r < •»), namely

[ f f
3ft + i a l l r - ] f(t'r) " °

where so far we have only taken into account the monopoles static field. Thus we
appear to have a free two-dimensional fermions, except for a special boundary con-
dition at the monopole core r = 0. The latter is given by the solution to the clas-
sical scattering problem and if we express each fermion doublet- in terms of an upper
component of charge Q = + 1 and a lower component of charge Q = - 1, the boundary
condition corresponds to pure charge exchange Q •*• -Q. If we stay within the one
particle scattering system, then this charge 2e must go somewhere. It has been
knovzi for some time that a 't Hooft-Polyakov monopole has also a dyon degree of
freedom, which when excited corresponds to a monopole with both electric and ma-
gnetic charge. However, the energy required to excite this degree of freedom is of
order 10-^ nu. On the other hand, in order to conserve probability in the s-wave
sector some process must take place. Clearly the answer is particle creation occurs
and one needs a full quantum treatment of the problem.

Fig.l - Potential in Higgs phase

I \
Fig.2 - Hedgehog configuration of Higgs field around a monopole



Table II - The 't Hooft-Polyakov monopole system

uagranffian

* --K.'"'•* Dab

where

a a,
• )

A A
11 V

Classical equation of motion

• t, Hooft-Polyakov monopole solution

2e (A; = o)

The monopole*s magnetic field

Magnetic charge

i.e. e.g. = 1/2 (the Dirac condition)

THE RUBAKOV ANALYSIS

In order to study this Rubakov noted 111 that the quantum electro-dynamics of s-wave
fermions is governed by the following action

CO 00 _ ,

= dt dr 2irr2/e E«E + /

where* x = (t,r) and

(k)

, ) . Theb.c. at r = 0 is (l+Y5)f(0) * 0;

YK = iffs* Tiie Rubakov system is in fact exactly integrable and is very similar to
tae 2-dimensional QED model of Schwinger. They differ in two essential respects.
Firstly for the monopole the fermions live on a half space with a special boundary



condition at r = 0 and secondly the dimensional coupling constant of the- Schwinger
model is replaced by e/r2, which becomes indefinitely large as we approach r » 0.
These differences are the ones that are responsible for the unexpected new physics.

The system is solved by simply making a rotation of the fermion field so it becomes
a'free.field, i.e.

f(x) = exp[ia(x) + oaB(x)]fQ(x) ,

where the functions a(x) and S(x) are chosen to cancel the gauge interaction. The
appropriate choice is a (x) = & 3 a(x) + 3 8(x), where the second term is simply
a gauge choice. Thus the^only non-trivial dynamical variable is a(x). The action
splits into two parts S = S(a) + S(fQ), where S(fo) is the action of free fermions
and S(a) is given by

00 00

S[a]
f C 2 2 Nn
I dt I dr { Uur^/eO a) + ̂  a Q a)

n • '2 " °
where LJ = — ^ s- .
The fact that this action is Gaussian means that the system is integrable and can be
studied non-perturbatively. In fact, the underlying differential equations can be
solved exactly and consequently all fermion Green's functions explicitly computed.
By these means Rubakov was able to demonstrate that the pairing or condensate para-
meter <f.(r)f2(r)> ^ r

- 1 for the case of two^fermion doublets. This corresponds to

an anomaly in the fermion number current <T - \ ' f ŷ f' , namely as

k=l

3 Ju " 2 7 E U )

2ir

Integrating this equation gives the change in fermion number, namely

On can show that the above condensates correspond to instanton-like configurations
in the monopole's U(l) radial quantum gauge field. This in turn corresponds to the
monopole being in a superposition of states with different fermion number characte-
rized by multiples of 1L.

The condensate

<fj.1}(r) f^2)(r)...f±
 D ( r ) > ̂ t D

correlates fermions with the same helicities and is associated with virtual fermion
number violating processes occurring in the vacuum around the monopole. These have
probabilities which fall off very slowly as we move away from the core.

To see the implication of the above phenomenon, let us consider the case of a mono-
pole in the SU(5) grand unified theory of Georgi and Glashow, which is the minimal
one that contains the SU(3) xSU(2) x U(l) gauge theories of strong, weak and elec-
tro-magnetic interactions. The lightest generation of fermions i.e. e, v, u^» u ,

u,, d^, d , d_ form the following SU( 5) multiplets
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where we have indicated the SU(3), SU(2) and lepto-quark transitions, respectively.
The corresponding gauge bosons form a 5 x 5 matrix which.* in addition to the 8 strong
interaction massless bosons, the 3 heavy weak interaction W and 7. bosons and the-pho-
ton,contain 12 very heavy lepto-quark bosons.The latter for example can turn a d-quark
into an electron. This enlarged gauge symmetry only becomes manifest at mass scales
of lO1? m-, at which all the interactions are said to be unified into a single matrix
gauge field, which is coupled to a real scalar field $ in the same 2k representa-
tion. The latter has a very large vacuum expectation value, which loosely speaking
breaks the SU(5) symmetry to the. observed low energy SU(3) & SU(2) Q U(l) symmetry
of nature. The only effect of the heavy gauge bosons is to very occasionally cause
a nucleon to decay and to give rise to monopoles as relics of the very early uni-
verse. The latter arise from a particular lepto-quark subgroup, e.g. in the space
(d^,e~) as indicated above, finding itself in the topologically excited state. In
this case the light fermions form the following k SU(2) monopole doublets:

(V)
A remarkable feature of the monopole, which is not yet fully understood is that it
breaks the SU(3)C strong interaction gauge symmetry to SU(2)? © U(1)Y C. In fact, the
s-wave fermions experience the following SU(2)C © U(1)YC O U(l)o gauge interactions,

interactions turn to the two u-quark doublets into one
factor is the monopoles electromagnetism and it is made up

in which the SUt2)d
another. The last U(l)Q
of the ordinary electric charge generator Q e m plus the SU(3)C strong interaction
hypercharge Yc. If we only take into account this U ( 1 ) Q interactions, then one can
simply repeat Rubakov's analysis with N D = U and discover the baryon number violat-
ing condensates < U]_U2d3e~ > <v r"° surrounding the core of the monopole. This cor-
responds to the virtual process p -*• e~. The first attempt to take into account the
other interactions,made by Callan /8/, in which he replaced the above gauge group by
U(l)T x U(l)y x U(l)Q and used the so called bosonization transformation confirm-

3c c

ed that the catalysis process will occur unhindered and that the monopole can be con-
sidered to be in a state of indefinite baryon number. Subsequently, Rubakov, Nahm
and myself /9/ showed that one can treat the SU(2)C 2-dimensional field theory and
we also confirmed that the above additional interactions do not in principle switch
off the effect. However, they do impose some important selection rules, which could
in principle have considerable consequences once we include the heavier fermion
generations observed in nature /10/.
Very recently Nahm and I realized that the 2-dimensional SU(2) gauge theory above is
actually also exactly solvable as far as its relevance to the s-wave fermion-monopole
dyamics is concerned. The reason is an SU(2).gauge group has a hidden global symme-
try under u •*• a u + b#u*, with |a| + |b| • 1, described by
the conservation conditions

by currents satisying

and the Kac-Moody algebra

[Ja(x), JD(y)] abc



which has central charge" k » 1. Such algebraic systems have been extensively studied
in recent years by mathematicians and from their representation theory ve know that
we are dealing with a unique dynamical system, which can be equivalently described
by the following 2-diiaensional non-linear sigma model

Jd2x F 2A <dg(x)/dx dg~' (x)/dx> + g! I dt fd
0

d2x

where F * l/2ir and the matrix field g(x)1>' is an element of a global
SU(2) (SSU(2) symmetry group. The above fermionic currents are described equivalent-
ly by J 3 g (x)dg(x)/dx. Tn the case of free fermions, this non-Abelian generali-
zation of bosonization was recently pointed out by Witten /ll/. However,
Polyakov and Wiegmann /12/ have given arguments that indicate that the above non-
linear sigma model represents a wider class of fermion theories and is exactly solv-
able. Thus the full SU(5) monopole-s-wave fermion action separates according to

S = S[a] + S(e,d] + S [g]
uu

where S[at] is the Rubakov action; S[e,d] is essential for the free electron d,
quark action (i.e. there are no instanton-like effects in their remaining U(l) inter-
actions); S ji[g] is a 2-dimensional non-linear sigma model action describing the
di-u-quark zero mass SU(2)C singlet bound states, which interact with the monopoles
core.

The basic currents satisfy the conservation condition

3+J a - 2 £.. _ a J b = ~ • a <5a3 for the uu system- ab3 - " "̂̂

and
3 J ®r = — Q a for the e.d system

Thase anomalous conservation conditions-can be solved in a factorized way and the
exact solvability of the above actions can be used to compute arbitrary massless
s-wave fermion Green functions in the case of an SU(5) monopole [10].

SUMMARY

If one tries to embed the observed S U ( 3 ) Q C D © [SU(2) Q U( l } ^ e l e c t r o w e a k system

of forces in some semi-simple grand unified gauge group, e.g. SU(5), S0(10) or
SU(l6), which has no elementary U(l) to begin with, then inevitably these unified
theories have magnetic monopole configurations of the gauge field, which are topolo-
gically stable. If these theories have anything to do with the observed elementary
particle spectrum, it is clear that this higher gauge symmetry can only become mani-
fest at mass scales M ̂  l(P-° GeV. The corresponding monopole state has a mass of
order M/e and can be thought of as a dense coherent state of the very heavy gauge
boson quanta. The radius of such a system is very tiny indeed namely less than
10 en., in fact one could even contemplate monopoles, which sit inside their
Schwarzchild radius, so they would in addition be black holes. Leaving the latter
possibility aside, for most practical purposes one could imagine that this tiny non-
Abelian monopole would in the laboratory look like a Dirac monopole. This is certain-
ly true as regards its long range electro-magnetic fcrce, however at typical number
scales they behave in quite a different way. As Hubakov pointed out in 198l these
monopoles will catalyze proton decays as they pass through nuclear matter, at rates
typical of strong interactions, rather than the ultra-weak effects associated with the
massive gauge boson, which are responsible for ordinary spontaneous proton decay. The
latt&r causes a proton to decay only once every 10^ years or so. Of course, a mono-
pole is a very unlikely configuration to occur in the first place. However, once it



exists, it has bottled up in its core a system, which violates baryon and lepton con-
servation and this profoundly changes the structure of the fennion sea around its
core for some distance. We have tried to depict this situation in Fig.3.

CORE OF THE MO1IOPOLE
a dense condensate
of very heavy lepto
-quark gauge bosons

r < 10~ 3 0 CM

DISTORTED FERMI SEA
fermion pairing outside
the core

REGION OF QCD AND QED
MAGNETIC FIELDS
in this region a-vare
electron and quark states •
reach the core of the
monopo'le and the system
can undergo a fermion
number violating transition

r < 10 CM

Fig.3 depicts a monopole.

Needless to say due to the Rubakov-Callan effect, an abundant source of these vir-
tually indestructible objects will have some quite astonishing consequences, not to
mention a mind boggling new source of nuclear energy. Let me end this talk by men-
tioning the limits on the flux of monopoles in the universe that have been obtained
on the basis of the Rubakov cross-section.

Rubakov "• ' ;
p

millibarns

The first kind of limit comes from the giant proton decay detectors. If a magnetic
monopole of the type we have been considering above passes through such a chamber,
then every 10 cm to 10 meters, depending on the above cross-section, there will be
an induced proton decay, corresponding to one of the following interactions:

1). p + M-*M + e'+ pions

2). P + M + M + P + e+e~ + pions

The signature being suggested here is shown in Fig.U and all the proton decay expe-
riments have put limits on the monopole flux [13], close to the so-called Parker
bound, namely < 10"1' cm" sr~^ sec~l. The latter corresponds to the maximum flux
of magnetic monopoles, that the observed galactic magnetic fields can tolerate before
being quenched. These limits are summarized in Fig.5 taken from the IBM proton decay
experiment [lU],

Other limits, come from astrophysical observations. By virtue of the Rubakov-Callan
effect objects like neutron stars and white dwarfs and are very efficient monopole
detectors. The essential point is that the monopoles captured by the gravitational
fields of these objects, can cause them to considerably heat up and radiate. From
the observation of radiation from known neutron stars and white dwarfs, limits of



<5 1 Q

between 10 and 10 smaller than the Parker bound have•been•obtained [15]. If
correct, this means that monopoles are very rare indeed and unlikely to be observed
on earth.

Fig.U - A schematic drawing of a monopole passing through a giant proton decay'
detector

10* K>* 104 103 10

Fig.5 - Upper limits on the monopole flux as function of its velocity B
obtained by looking for multiple interactions in the IBM.

Let me end by saying that the phenomenon we have just discussed is one of the most
fascinating examples of spin physics., in which we saw that a U-dimensional problem
in elementary particle physics can be reduced to an exactly solvable 2-dimensional
QFT problem. The latter enables us to predict some really remarkable new phenomena.
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