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I. INTRODUCTION 
Quantum 'Chromodynanies is a renormallsable non-Abelian gauge field 

tbeory of quarks and gloom, based on the principle of exact local 
SU(3)-color symmetry.1 From tne experimental standpoint, there Is now 
Impressive evidence2 that QCD is a viable theory of badronlc phenomena. 
The most important phenomenologlcal evidence for QCD comes from Inelastic 
lepton scattering, e e~ annihilation processes* and those high momentum 
transfer exclusive and Inclusive reactions where the structure of pertur-
batlve quark and gluon subprocesses can be studied in relative isolation 
from the bound state dynamics of the hadrons, From the theoretical stand­
point, the elegant structure of QCD makes it appear almost compelling as 
a fundamental theory of hadronlc phenomena, even though many crucial 
questions concerning quark and gluon confinement, and the effects of non-
perturbative phenomena remain unanswered.3 

A critical feature of QCD is asymptotic freedom,4 i.e., the logarithmic 
decrease of the effective quark and gluon coupling constant a (Q ) pith 
momentum transfer which implies that the strong Interactions become weak, 
and even calculable in perturbatlve tbeory at short distance. The fact 
that the annihilation ratio 

R _(B) - J ( ^ V ha^Ul> (1.1) 
e e o(e e •* u u ) 

is empirically5 close to the zeroth order QCD prediction R » 3 £ e for 
q q 

energies above the heavy quark thresholds is a crucial check of asymptotic 
freedom and the color, 'charge, and spin assignments of the quark quanta 
In QCD. Critical features of QCD are also confirmed by the observed 
logarithmic breaking of scale-invariance in deep inelastic lepton-
scattering2 and the measurements of two-jet and three-jet structure of 



a V annihilation final states.5 The recent observations of jet structure6 

in two-photon reactions (consistent with tY * 0.5 subprocesses), and 
measurements7 of the photon structure function also provide fundamental 
checks of predictions Which are essentially unique to QCD. However, 
despite these successes, there is no direct experimental evidence for 
(near) aeale-invariant 'quark-quark, quark-gluon, or gluon-gluon scattering 
amplitudes aa predicted by QCD; the cross section for largo transverse 

hadroa production in badron-badron collisions appears to reflect 
much more complicated dynamical mechanisms. On the other hand, aa ve 

2 discuss in Section IV, the fact that the proton form factor GL.(Q ) scales 
aa (Q~)~ reflects the fact that the minimum Fock state in the nucleon 
contains 3 quarks, and that the internal quark-quark interactions which 
control the nucleon wavefunction at short distances are consistent with 
scale invarianee.6'9 Thus far experiments are not sufficiently sensitive 
to distinguish a logarithmically decreasing a (Q ) from a constant; i.e., 
fixed point behavior. The sensitivity of the nucleon form factors to the 
form of a is discussed in Section VI. 

Although there have been remarkable technical achievements in pertur-
batlve <JCD calculations In the past few years; 1* 2* 1 0 there has alao been 
the realisation that precise and detailed comparisons with experiment 
require consideration of effects and phenomena not readily computable 
with present methods. There are, in fact, only a very few large momentum 
transfer processes which can be studied rigorously to all orders in 
perturbation theory such as X . (s), 1 the meson form factors F„ 

* « e -
(and g M(Cr))» the two photon processes12 ry * MM at large momentum 
transfer, the photon structure function,13 and the Q -evolution of the 



hadron structure functions. Although* In principle, these processes ess 
be calculated to arbitrary' orders In perturbation theory, in practice, 
there are serious complications involving the dependence of predictions 
Bade to finite order on the choice of renormalisatlon scheme and the scale 
parametrization chosen fox the argument of a - 2 * 1 3 Be shall discuss a new 
method1 ** for avoiding the ambiguities in Section XX. Aside from this, 
there is always the question of the radius of convergence of the pertur­
bation expansion. Even for processes which can be calculated to arbitrary 
orders in « , there are (presently) [incalculable power-law suppressed 
(higher twist) contributions15 which must be Included in detailed fits to 
experiment, especially at the edge of phase space. 1 6 

In the case of jet production, QCD-based predictions based on the 
elementary features of e e" * qq and qqg, yy * qq, etc., must also take into 
account higher twist contributions, model-dependent non-pertuxbative 
effects intrinsic to hadron formation and decay,s and possibly dynamical 
effects due to quark confinement.3 In the case of some exclusive processes 
such as the baryon form factor there are non-leading QCD contributions 
which are asymptotically suppressed by Sudafchov form factors. 9* 1 0 The 
precise evaluation requires an all orders resumption of perturbation 
theory. QCD predictions for elastic hadron-hadron scattering are compli­
cated by Che presence of Lsndshoff 1 7 pinch singularity contributions which 
are only partially suppressed by Sudakbov form factors.*' Despite these 
complications, we can still derive general properties for exclusive 
reactions such as hadron-helicity conservation10 and the leading power-
law behavior.19 

An even more interesting (and perplexing) situation occurs for all 
Inclusive hiph momentum transfer Inclusive reactions involving hadronlc 



jnH-^1 states such as !)rell-*an massive lepton pair production, direct 
photon .production, sad large p_ hadron production* As shown In Reference 
20, initial state Interactions violate the usual QCP factorization theorem 
order by order in perturbation theory and affect the normalization and 
transverse momentum dependence of the Inclusive cross sections. In 
addition, final state interactions also affect the associated multiplicity 
and transverse momentum dependence of the outgoing jets in deep inelastic 
lepton scattering reactions. A detailed report on these effects_is _ 
given in Reference 20. 

Perhaps the most serious complication to QCD phenomenology is the 
presence of higher twist euhprocesses, since power-lav suppressed contri­
butions can often mimic (and thus confuse the Identification) of the 
logarithmic modifications predicted for the leading twist contributions.16 

Examples of this for deep inelastic structure functions and fragmentation 
distributions are discussed in References 21 and 22 and Section v. I n _ 
the case of three-Jet production in e e~ annihilation, higher twist terms give 
contributions23 dH/dk •*• <kf)~ for the Jiadron transverse momentum distri­
bution In quark and-gluon jets. These bard components can-complicate the 

+ — — + — — separation of thee e -*• a.<Jg and e e •*• qq-subprocesses. In the case of 
hadron production at large ttansverse momentum, "direct-coupled" higher_ 
twist subproeesses auch as gq + irq actually dominate21* the leading twist 
qq -»- qq -» qirq subprocess at large x^ » 2p_/i/s. Evidence for direct-

+ — coupled irq * r*q subprocesses in irp •* u u x reactions is discussed in 
Section V and Reference 22. 

Present QCD phenomenology is also Incomplete In Che sense that although 
2 much attention fs paid to the Q evolution of hadron structure functions 



there la no real understanding of the basic x-dependent form of the quark 
and gluon distribution in hadrons, or how to relate them to other hadronic 
phenomena. The relation of the x - 1 behavior of structure functions to 
the exclusive fixed tr, high Q domain Is only roughly understood.25 The 
x « ( behavior of structure functions and the connection to the phofeoab— 
sorption cross section at fixed Q , high v» and nuclear shadowing phenomena 
is also not well understood.26 

The main purpose of these lectures la to begin to extend QCD phenomen­
ology by taking' Into account the physics of hadronic wavefunctions.27 Our 
eventual goal is to obtain a parametrization of the wavefunctions which 
will bridge the gap between the non-perturbative and perturbative aspects 
of QCD. The lack of knowledge of hadronic matrix elements is the main 
difficulty in computing and normalizing dynamical higher twist contributions 
for many processes. 

In Section III we emphasize the utility of a Fock state representation 
of the meson and baryon wavefunctions as a means not only to parametrize 
the effects of bound state dynamics in QCD phenomena, but also to inter­
relate exclusive« inclusive, and higher twist processes. It is particularly 
convenient to choose a momentum space Fock state basis 1 9* 2 7 

'%&Ai*x2 ! i > i - x • £* A *-° ----: -5 •••-, 

i-i i-i 
defined at equal "time" t • t + z o n the light-cone. Here 
x. • (k° + k^j/Cp** + v i t fc"^. and A^ specify the longitudinal and trans­
verse momenta and spin projection S of each (on-mass-shall) quark and 

z 
gluon in the n-particle Fock state (n & 2 for mesons and n i 3 for baryons). 
We also choose the light-cone gauge A = A 0 + A - 0 so that only physical 



polarizations of the gluons occur. The color singlet vavefunctions are 
regulated so that they ace finite in both the infrared and ultraviolet 
regfaaa.2" 

there are a number of reasons why this representation of hadrons In 
j tens of the quark, and gluon degrees of freedom is useful: 

(1) In light-cone, perturbation theory, the perturbative -vacuum is 
alio an elgenstate of the total QCD Hamiltonian on the light-cone; pertur-
bative calculations are enormously simplified by the absence of vacuum to 
pair production amplitudes. 

(2) All form factors, charge radii, magnetic moments, etc.. have 
exact expressions in terms of the <• . 

(3) The structure functions G (x,Q) and C (x,Q) (and more general 
m.jltiparticle distributions) which control large momentum transfer (lead­
ing and higher twist) Inclusive reactions, and the distribution amplitudes 
•(*»Q) which control large momentum transfer exclusive reactions (and 
directly coupled inclusive reaction?) are each specific, basic 
measures of the * . Examples of these calculations axe schematically 
illustrated in Figures 1 through 3. 

(4) Other physical quantities such as decay amplitudes provide . 
rigorous sum ru'e or local constraints on the form of the valence com­
ponents of meson and baryon wavefunctions.2 

The outline of these lectures is as follows. In Section II we give 
• brief Introduction to QCD and asymptotic freedom. We then discuss a new 
method to avoid scheme and scale ambiguities in perturbative QCD predic­
tions • In Section III we give a detailed discussion of light-cone pertur­
bation theory and the Fock state expansion of hadronic wavefunctions. 
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Fig. 1. Calculable large momentum transfer meson processes In QCD, and 
their connection Co the meson Fock state wavefunction <|i _ and 
distribution amplitude $(x,Q). Only a representative " 
diagram for thi hard scattering amplitude T H is shown, (a) The 
Y * *° transition form factor (measurable in single tagged ee * ee n° 
expexlmencs), Cb) Che meson form factor» (c) the yy •*• MR scattering 
amplitude. Details are discussed In Section IT. 
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Fig, 2. Baryon processes at large moKse-.tjm transfer in QCD and the con­
nection to the baryon Fock a fate wavefunction, (a) Baryon form 
factors, (b) heavy quarkonium decay T •> pff, (c) deep inelastic 
lepton-baryon scattering. Only representative contributions are 
•horn. The inclusive,cross section and structure function G - y„(x»Q) 
Is Computed from tha square of the baryon wavefunction 
ausned over all contributing Fock states. 

V B V 



x|""fl-x 

pp—ir„X» - g - f ^ " ^ ) r 
Gg/pfl'o.Q' T„tg<j-~Tro) Gq^lx^p) 

(o) 

V -rtra -*QZ t C L A l-x 
^U.Q) TH(qq+q-^y*q) G a / p(x b,Q) 

(b) 

tr0p—qqX: -£{£ ^>~. * b - ^ ) r 

l-X N q 
^(x,0) TH(qq+g.—-q+q) Gg / pUb.Q) 

^<x,Q) T H(q+qqq—qq) Ga/p(xb,a) 
(d) 

Example of QCD-coaputable higher twist "direct-coupled" sub-
processes for Inclusive reactions. The subscript J> indicates 
that the hadronlc wavefunctlon is Involved direccly in the 
high momentum transfer subprocesses. (a) Direct production of 
high pj mesons In hadron-hadron cross section• The predicted 
cross section is proportional to the meson form factor F«(Px) 
times the leading twist cross section, 00 Higher twist contri­
bution to meson-induced massive lepton pair production. The 
predicted cross section is equivalent to a contribution F, (x,Q2) * C/Q 2 

to the longitudinal structure function of the meson, 
(c) Direct meson production of quark jets in neson-baryon 
collisions. All of the meson energy lo used to produce jets at large 
transverse momentum. The cross section is proportional to F

M(p£) 
times the leading twist qq * qq cross section, (d) Direct 
production of anti-quark jets in BB collisions. The cross section 
la proportional to G§(p£) times the leading twist qq * qq cross 
section• In each case the direct process dominates over the 
leading twist contribution in a large x kinematic region. 



The QCD equation of motion is also discussed. In Section IV we discuss 

measures of the hadronic wavefunction (form factors, magnetic moments, 

etc.), and the <JCD analysis of high momentum transfer exclusive processes* 

We also show how meson distribution amplitudes can be measured in yy + MK 

reactions. The connection of the Fock state basis to leading and higher 

twist contributions to deep inelastic scattering is given in Section V. 

'. In Section VI we discuss how many different QCD processes are interrelated 

(as In Figures 1 through 3) through the hadronic Fock states. He also 

discuss a novel type of QCD subprocess—direct coupled hadron-induced 

reactions.29 A new prediction for the proton form factor is also given. 

In Section VI we also introduce a simple phenomenology of hadron wavefunctions 

and discuss present constraints on the form and normalization of the 

valence meson and nucleon Fock states. An important conclusion is that 

the valence Fock state as defined at equal time or the light cone appears 

to have a significantly smaller radius than that of the physical hadron;'' 

higher Fock states thus play an essential role in low momentum transfer 

phenomenology. Applications to quark jet diffraction excitation30 and 

the hidden heavy quark Fock state structure of hadrons are also discussed.31 

The effects of "initial "and final state Interactions on QCD inclusive reac-
i 
'tions are discussed in Reference 20. 



II. BASIC MEATUSES OF QCD 
In quantum chromodynamics the fundamental degrees of freedom of 

hadrons aad their Interactions are the quanta of quark and gluon fields 
whiih obey an exact Internal SU(3) (color) symmetry. The spin-1/2 quarks 
are in the fundamental (triplet) representation of SU(3) , the spin-1 
jluons are In the adjoint (octet) representation, and badrons are identi­
fied with singlet states; e.g., mesons |H> ~ 2|q.q.> and baryons 

1=1 x * 
|t> "•£**4vl*t*|flfc^« In addition, gluonlum (color-singlet bound states 
of 2 and 3 gluons) should exi*t. As we discuss In Section VI, new types 
of "hidden color" nuclear states are also predicted in QCD. The different 
types of quarks u,d,s,cab,... are distinguishable by their flavor label 
and mass. It is well known that the general structure of QCD meshes remark­
ably with the facts of the hadronic world, especially quark-based spectro­
scopy (Including the charm and beauty quark systems); current algebra; the 
dimensional-counting parton-model structure of lartje momentum transfers 
- reactions (up to computable logarithmic corrections to scale-invariance); 
the scaling and magnitude of a(e e~ •+• hadrons) and large transverse momen-
turn YY reactions), the general feacures of jet production in e e collisions 
as well as the narrowness of the iji and T. Experiments at large momentum 
transfer, both exclusive and Inclusive, are consistent with the QCD postttr 
lace that the electromagnetic and weak currents of Uadrons are carried by 
point-like spin-1/2 quarks which interact via a Dlrac coupling to spin-1 
gluons. 

An essential feature of QCD is that SD(3) is an exact local 
symmetry: rotations in color space can be made independently at any 



apace-time point. The mathematical realization of this Is the Yang-Hills 
non-Abelian gange field theory. The <JCD Lagranglan density is* 

ilP m i 3»* I + gA P (2.2) 

P^ - 3 V - » V + g[AW.AV] (2.3) 
Here 

•<x) -k«] 
\q R(x)/ 

Is the color triplet of quark fields, and AM(jc) - T~] *„*!!<*) i s t n e " 2 Va< 
color octet eluon field summed over the 3 x 3 traceless matrices X 

a 
satisfying [ X ^ X ^ - i f

a b c * c
 a n d Tr[X aX b] - 26 a b. SS ^ is obviously a 

color singlet. Local gauge invariance and color symmetry follows from the 
invariance of &DCS under the general gauge transformation 

•(x) + D(x) *<x) (2.4) 
A w(x) •*• W(x) A*(x) U - 1 ( X ) + i U(x)(911 U - 1(x)) (2.5) 

where the unitary matrix U(x) = exp i V X 9 (x) Is an arbitrary function 
a . 

of space and time. Bote that the field strength F p v(x) -t- U(x) f w v U (x) 
Is not invariant since it Is in the adjoint representation of SU(3) . 
The local gauge invariance of the Yang-Hills Is an essential ingredient 
In proving the renonr<: ' -^ability and consistency of the theory.1 

In general, a aim jvcr quark flavors 1 «• u,dlslc,b... is understood 
In •̂ jfin- • (In fact the mass matrix at.. is not diagonal when the weak and 
electromagnetic interactions are taken into account.) 3 2 The fundamental 



origin of the quark flavors and their masses remains an outstanding 
problem In hadron physics. 

In a sense QCD can be regarded as the non-Abelian generalisation of 
({ED: 

£ , Q E D " * ( 3 0 ( i , * - m > * " I ^ V 
where ID*1 - ia v + eA p, P V I V - 8 MA V - aV.. From the point of view of . 
formal perturbation theory there are close similarities In the Feynman 
rules and treatment of ultraviolet renormallzation and infrared divergences. 
The Feynman rules for QCD are given in Table I, In the case of covarlant 
gauges one most formally include "ghost" scalar particles in loops, or 
else unitarity of amplitudes involving the non-Abelian-couplings will be 
lost. In the case of axial gauges (IVA • 0 where n is a fixed 4-vector) 
there are no ghosts, but renormalization is somewhat more complicated. 
The color trace algebra for any Feynman diagram can be done almost auto­
matically using toe graphical rules given by Cvitanovic.33 The main 
algorithm is that as far as color is concerned, the gluon propagator - in 
SU(N) is equivalent to two quark lines £ minus 1/N times the identity (to 
remove the 0(H) singlet). The complete rules are given in Reference 33. 

Although QCD and QED perturbation theory have many similarities, there 
are non-perturbative aspects of the non-Abelian theory which have no 
analog in electrodynamics, e.g., classical ("instanton") solutions to the 
pure gauge theory. These solutions can have profound consequences for the 
QCD vacuum state. 3 U Furthermore, the absence of asymptotic color states 
Implies that, at best, the perturbation rules are only valid in a far-off-
shell short-distance regime. 



Table 1 
* Feynman rules for quantum chronodynanics. 

Fermlon s 9 r B I » 
Prcpegotpr p y-m+lf ^ * 

• 2 . , I %»5&n£ - i[g f w-(|^jJf£L]J»at 
Fiopagaiar p p v "•v** ' p**kJ p*+l« 

**"• i «..—,.,* 'gab 

Amnion 'A " £#«* 

r c + •»y*lr"M|r] 
10 

_ » 

f|k 
Vtotws ' V < « f «*«fr 

b' . e 

From A. J. Buras, Reference 1. 



Fortunately for many processes of experimental interest it is pos­
sible to prove factorisation theories which separate the long-distance 
dynasties associated with the hadxon wavef unction and color confinement ' 
from quark and gluon subprocesses which only Involve short distance propa­
gation of color. 3 8 If this factorisation can be proved to all orders in 
perturbation theory, it is reasonable to assume that the corresponding' 
perturbative predictions are legitimate predictions of the complete 
theory. Zn the case of predictions dependent on hadronic fragmentation 
from quark or gluon jets one has to make an extra assumption that the 
essential effects of color confinement are restricted to large distances.3 

As in QED, one can sum the effects of vacuum polarization into a 
2 "running" coupling constant (o = g /4ir) 

2 a,«fy 
a 8«n 2 T 2 71 < 2 ' 7 ) 

i - oe«n|w((r) - IT(QO)J 
2 - • • • - , .. -, 

where ir(Q ) can be computed (in some gauges) from the single-particle-
irreducible contributions to the gluon propagator. Given the gluon 

2 propagator at any scale Q Q one can use Eq. 2.7 to determine the effective 
interaction at the scale Q . To lowest order In perturbation theory the 
quark and gluon loop Insertions give JQ ,Q„ » m., 1 = 1, 2...n*j 

irtt 2) - r(0j) - £ log ^ [ f n f - l l ] + 0&J <2.» 
% 

2 2 
i . e . , for n» < 33/2, a (Q ) decreases with Q , exactly opposite to QBD. 

2 
(fore generally, one can* calculate the q dependence of « in higher orders 

2 - 2 a g(Q 2) = B[o s(Q2}] = ^ * W ) - - ^ - * a^Q2) ' (2.9) 
aiogQ L S J 4-t s < 4 i ( ) z s 

+ ... 



Where1 &» - 11 - 2/3 n f, B, - 102 - 38/3 n£. The solution for « a<Q 2) at 
2 large Q to two loop accuracy then has the form 

^ ( p ? , . *L — CM, 

2 where A le Introduced as a constant of Integration. The fact that « (Q ) 
'decreases at large momentum transfer Easymptotlc freedom] is an extra­
ordinary feature of QCD which in principle allows a systematic computation 

2 of short distance processes. A graph of a (Q ) showing the effect of the 
0J/B.Q term le shown in Figure 4. It should be emphasised that perturbation 

2 theory does not determine the form of a at small Q wbere Its magnitude 
becomes large. As noted by Farisi and Petronzio,36 consistent calculations 

2 
of perturbative loops demand that a (Q ) remains finite at all values of 

s 
the loop integration. Thus far there is no direct experimental evidence 
dut « W ) decreases logarithmically. 

9 
2 

If wa choose 0= to be the ultimate ultraviolet cutoff scale of QCD 
then agOty - a* is the "bare charge" of the theory. He can then identify 

2 afl(Q ) as the effective coupling constant which takes into account all 2 2 2 2 vacuum polarization contributions of Invariant ma.»s *ff : Q < *4t < Q£. 2 Similarly« we can define the running quark mass n(Q ) which takes into 
account all self-energy insertions In the range Q < *M < Q_. 

-.' Let us now define a cutoff Lagraogian SB^~. density for QCD by 
2 2 excluding all Intermediate states with. U ? > * . The fact that the 

theory is renormallzable implies that 

^QCD ' * ( W + 8W< - »<*>) * - J Tr F2 

!_ _,... = _ .,v . .. «« U> + 0 -^ m(ie) * <»„/* * + •" 
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Pig. 4. The QCD coupling constant « S(Q 2) for n £ = 4 to one- and two-
loop accuracy. Empirical specifications of A in a given scheme 
should always use the two loop formula Eq. (2.10), 



2 2 
I.e., all effects of vary high mass states utt > ie are completely con­
tained in the effective coupling constant g(ti), the quark running mass 

2 4 m(r), and "higher twist" power-law suppressed 1/K , 1/K , etc., terns. 
2 2 " K 

If K Is taken at the ultimate cutoff scale,Q; then &0CD is the bare 
2 

Lagraagiaa, If K IS chosen sufficiently large then the higher twice . 
terms are negligible in (2.U). 

The classic perturbative calculation in QCD is that of the annihila­
tion cross section 0 . which can be computed from the hadronlc 

e Te •+• hadrons 
+ — + — 2 

absorption part of the forward e e •* e e amplitude to order a • Since 
there are no external color charges there can be no gluon-mass infrared 
divergences or quark mass singularities. Thus the orly relevant scale 
is q - s » E~_, and we can compute perturbatlvely from &nm with K = Q . 2 2 The result to order a (Q ) is 

V . - ( Q 2 ) - 3 L e
Z 

q 
«f(Q 2) ajcq2) 

1 +-3-^ + 2 ( B + A V + (2.12) 

' where the A a. term arises from virtual quark loops. An essential and 
unique prediction of asymptotic freedom Is that Jt~w R«T) » 3 2 e = R , 
the free quark prediction. The specific value? of B and A in Eq. (2.12) 
depend on the method of implementing the ultraviolet cutoff. In the MS 
scheme (a particular dimensional regularization scheme) one finds 
B = 1,98, A S -0.115. However, in analogy to QED, it is clear that the 
An. term should be Identified with the fermlon loop vacuum polarisation 
contribution to the running coupling constant in the a (c)/ir term, the 
particular'numerical value for A is rather arbitrary since we could have 

2 2 2 chosen any scale K • f Q for the perturbation expansion. In QCD, a 
is essentially a function of S Q = 11 - 2/3 n.. Thus we write B + An. = 
-3/2 BQA + C, where C - (33/2)A + B = 0.0825 must be scheme independent 



(since to the order of Interest the cutoff schemes can only- differ by the 

definition of the scale constant A ^ . Ve thus have the QCD prediction*** 

R . + e - ( Q } * 3 2 L , \ I I + ~ ^ — + ° - 0 8 2 5 ^ + • • "J ( 2 ,13> 

1 
3A 

where f • f _ •* a SO.71 In the MS scheme. Let us imagine that eventually 
measurements of « . ' ,. will be.sufficiently accurate that we e"*"e~ •* (Q*) hadrons 
can choose R(Q ) to define a "canonical" measurement of the QCD running 
coupling constant: 

9 

(2.14) 

Our goal is than to show that all observables In QCD which have a pertur-
B o batlve expansion in a can (in principle) be expressed In terms of a„(Q ) 

B S 

without any schema or scale ambiguity. He will define the scale parameter 
A - A R using Eq. (2.10) for « R. 

We thus propose the following pt scripticn for making scheme and 
scale independent perturbative QCD predictions:1* For any observable 
p(Q ) which has a perturbative expansion in « (Q ) one can compute in a ; 

given renormalizatlon scheme 

* « _ « 2 ) ^ ( Q 2 ) 
•«r> - - ~ — + <Ap»f + y 2 + . . . (2*i5> 

As in the case of R(Q ), we identify (-3/2)0 A as the vacuum polarization 
. u P 

correction to the running coupling constant in the a fa term. Thus 
s 

* IF p \ Tf / P(QZ> --^T-^+cl-?/ + ... (2.H) 



Where 

<3J - e p * QZ (2.17) 

C

p " f A p + B p »•»> 
2 

are scheme-Independent. The leading order predic t ion for p(Q ) can thus 
R he t - r l t t en unambiguously In terms of a . I : C a /ir i s reasonably small , 
3 P a 

then we expect that Eq. (2.16) gives a meaningful perturbative QCD predic­
tion. An important task will be to carry out the above procedure to 
higher orders In a . 

As an example of the above method, let us consider the decay rate 
for pseudoscalsr quarkonium states which 1$ computed in terms of QQ •* gg 
plus higher order subproces»ses. In the MS scheme: 2 9 (C Is a known color 
factor) 

(l7.1*-fn£) + 
(2.19) 

I.e.: the effective scale in the vacuum polarization contributions 
is -0.37 K relative to the scale i« e e* + hadrons. If a -0.2, then 

T»C s 

the correction term in Eq. (2.19) gives only a 1% correction to the deter-
mination of a . In the case of the hadronic decays of J = 1 heavy 
qvarkonlum states, the correction to the QQ -* 3g decay amplitude appears 
to be very large so that the leading order expressions may not be meaning­
ful. One finds'10 



r{T f hadrons) ,. 10 (it2 

(T * u V~) 81» 2 ̂ •[•:(<-"v , )] J 

<1 - 13.94 — + . . . > 

(2.20} 

For a S 0.2, the correction term gives a. correction of order 30% to the 
determination of a . Note chat even In QED, the radiative corrections to 

3 
orthopositroniua decay are very large: 

r3y " ̂  { l ~ U"61 C 3 > 7 + •"} <2,21) 

so this appears to be an Intrinsic problem to this type of decay proceas. 
Additionally, the QCD prediction for quarkooium decay is complicated by 
some uncertainties from relatlvistic and hdLgher Fock state components In 
the quarkonlum wavefunctioa. 

One of the most important predictions from QCD is the logarithmic 
variation of structure function moments, M (Q ) - f dx sJ^-Cx.Q). 
Using the above renormaliaation procedure wi find 1 4 

^-Jlos •^-^(^-^.••••l d log q*-
vhere the Y axe known anomal.Otts dimensions (see Section IV), The coef-

n 
ficient C varies from -0.27 to 1.1 for non-singlets moments n = 2 to 10, 
thus giving reasonably small corrections to the lowest order predictions. 
The monotonic decrease of f with n reflects the fact that the momentum 

n 
scale for gluon amission becomes increasingly restricted at large n 
(<1 - z> ~. 0(l/n)) due to phase-space effects.1*1 Further applications 
and discussions will be given in Reference 14. We also note that in 
processes with several large momentum transfer scales, the effective 



argument for a In the leading order predictions can be very complicated. 
For example In the case of large p„ jet production due to qq •* qq scatter­
ings the subproeess scattering amplitude Involves a evaluated at the 
subprocess Invariants t and u, whereas the evolution of each hadronic 
structure function is sensitive to its respective x-dependent phase-space 
boundary aa veil as the quark momentum transfer. 



III. HADRONIC WAVEFUNCTIONS IN QCD 2 7 

Even though quark and gluon perturbative subprocesses are simple In 

QCD, the complete description of a physical hadronic process requires the 

consideration of many different coherent and incoherent amplitudes, as 

well as the effects of non-perturbative phenomena associated with the 

hadronic wavefunctions and color confinement. Despite this complexity, 

it is still possible to obtain predictions for many exclusive and inclusive 

reactions at large momentum transfer provided we make the ansatz that the 

effect of non-perturbative dynamics is negligible in the short-distance 

and far-off-shell domain. (This assumption appears reasonable since a 

linear confining potential V ~ r is negligible compared to perturbative 

1/r contributions.) For many large momentum transfer processes, such as 

deep inelastic lepton-hadron scattering reactions and meson form factors, 

one can then rigorously isolate the long-distance confinement dynamics 

from the short distance quark and gluon dynamics—at least to leading order 

in 1/Q . 3 S The essential QU) dynamics can thus be computed from (irreducible) 

quark and gluon subprocesses amplitudes as a perturbative expansion in an 

asymptotically small coupling constant a (Q ) . 

An essential part of the QCD predictions is the hadronic wavefunctions 

which determine the probability amplitudes and distributions of the quark 

and gluons which enter the short distance subprocesses. The hadronic 

wavefunctions provide the link between the long distance non-perturbative 

and short distance perturbative physics. Eventually, one can hope to 

compute the wavefunctions from the theory, e.g., from lattice or bag models, 

or directly from the QCD equations of motions, as we shall outline below. 

Knowledge of hadronic wavefunction will also provide explicit connections 



between exclusive and inclusive processes, and will allow the normaliza­
tion and specification of the power Ian (higher twist) corrections to «:he 
leading impulse approximation results. As we shall discuss in Section VI, 
there are a number of novel QCD phenomena associated with hadronic wave-
functions, including the effects of intrinsic gluotts, Intrinsic heavy 
quark Fock conponents, diffraction dissociation phenomena, and "direct" 
hadron processes where the valence Fock state of a hadron enters coherently 
into a short-distance quark-gluon subprocess. 

The most convenient representation of a wsvefunction in a relativistic 
field theory Is to use a momentum space Fock state basis defined at equal 
"time" t • t + s on the light cone (see Figure 5a) J**2 

k^i-v v} < 3-» 
Komettcum conservation requires 

n n 

§^i-° ' kx> (3.2) 

.The k,. are the transverse momentum of the (on-mass-shell) constituents 
relative to the bound state 3-momentum P" = p-'z. The x. are the light-

momentum fractions (k* «= k e ± k 3, A«B = y(A +B~ + A~B +) - 1± • B^ ) cone 

k+ (k° + k 3 ) . 
* « - - £ - — 7 i r 1 0.3) 

(In a frame where ?-*•», the x are the longitudinal momentum fractions*) 
2 2 — 2 2 + The mass shell condition is k • • , or k = <k? + m )/k . As we shall 

see, the equal-r formalism is equivalent to the usual Sehroedinger equal-. 
time theory* in the non-relativistic limit. 

k unique and remarkable advantage of quantizing a relacivistlc theory 
at flqual T is the fact thai: the perturbative vacuum state |0> is aiso an 
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Fig. 5. (a) The n-particle Fock state amplitude defined at equal T. 
The state is off the p~ light-cone energy shell (see Eq. (3.12)). 
(b,c) Examples of light-cone time-ordered perturbation theory 
calculations. The frame is chosen so that fe+ > .1. <d) <JCD 
equation of motion for the meson wavefunction. 



eigenstate of the full Hamiltoniau. Matrix elements where particles 
are created out of the vacuum are excluded because of the fact that 
all particles must have k. > 0> Furthermore, the.charge operator and 

+ o 3 the current J = J + J are diagonal in the Fock state basis. It la 
+ o 3 particularly advantageous to choose the light-cone gauge A a A + A • 0 

since unphyslcal degrees of freedom do not appear. A comparison between 
time-ordered and -c-or£ered perturbation theory la given In Table II-

Thus at a given "time" we can define the (color singlet) basis 
|0> 

l«S> " *.*+ * b +
+. +. |0> <3.4) 

k*.^ k +
 wtx 

The plon state, for example, can be expanded as 

|*> - k5> V q- + |qqg> T q_ g + ... (3.5) 

where ¥_ » <nJTr> is the amplitude for finding the Fock state |n> in |ff> 
at time T. The full Vock state wavefunction which describes the n-particle 
state of a hadron with 4-momentum FV = (p ,P~,F ) and constituents with 
momenta 

and spin projection A. is 

*n " +n(xi'kl±5 h) tJLn* ~ P = 
. • .?li. 

n K y W ^ ^ \ 
* gluon8 i ^ - :. ~-l * I 

(3.6) 

^ (3.*) 



Table II 
Tine-ordered perturbation theory. 

Equal t Equal x «• t + a 

b 2 . 2 
k ~ x M / part ic le \ 

k + I mass s h e l l / 
J . M . . J / part ic le \ 

b 2 . 2 
k ~ x M / part ic le \ 

k + I mass s h e l l / 

i ^ K conserved J^k ,k conserved 

**ab * V ab •^ab - V ab 

l ^ * * V 1 V + V v • . i. y 
c a c £ k ~ - Lk" + u d b 

a c 
a c 

+ V v • . i. y 
c a c £ k ~ - Lk" + u d b 

a c 
n! tine-ordered con t r ibu t ions k >• 0 only 

Fock s tates I|I (k.) 
YV X 

Fock s t a t e s IJJ (k ..x.) T n l i ' i 
n 

x = — , 2u *± = *• 2 ^ Ui 4 • 0 
P i = l l i=l 1 1 

£ K - * - o 
±- i 

x = — , 2u *± = *• 2 ^ Ui 4 • 0 
P i = l l i=l 1 1 

' (0 < x ± < 1) 

<? - p° - E k° 
i - i *• *- ,+('"-£^) 

- • ? . f ^ + ^ -«-£>;--J - • ? . f ^ + ^ -«-£>;--J SI * A 

rT 



Bote that * (x.,11, .;X.) is Independent of P ,P, > The general normaliza-n x xx x ± 
tion condition is 

• 5 / [ d S J f c w i * « c , B A i ' V * - 1 ( 3- 8 ) 

where by momentum conservation 

and 

Cdx] = 6 (l - £ x j JT d^ (3.10) 

In the non-relatlvlstic limit the equal x = t + z/c and equal time t 
theories coincide. For example, for the Fock state wavefunctlon In the 
rest system we can Identify 

"-T^I + T <3-"> 
,uid the off-shell light-cone energy Is 

#- P <3.12) 

Thus, in the non-relativlstic limit, the hydrogen atom wavefunction is 

*ls ' r ^—T~ T2 ° - 1 3 ) 

L k X + ( m e - x M ) + a V J 
Light-cone perturbation theory rules can be derived by either evalu­

ating standard equal-time time-ordered perturbation theory for an observer 
In a fast moving Lorenta frame (the "infinite momentum" method), 4 3 or more 
directly, by q sunt is lug at et jal T. The LCPTh rules are;19'1'1* 



(1) For each Feyitman diagram assign particle 4-momentum k such 

that k •,&, is conserved at each of the n vertices. (This is the analogue 

of 3-aomeatum conservation.) Since all particles are on the (positive 
2 2 energy) mass shell (k = m ) we have 

i2 . 2 k + m 
W - - ^ ^ r — > 0 (3.14) 

k 

(2) Construct all time orderings (up to nl) such that k > 0 for 

all particles. 

,3) For each intermediate state assign a propagator 

1 

12 ki- X) ki 
(3.15) 

+ ie 
i 

initial intermediate 

and a factor 1/k for each internal line. (This is the analogue of 
i / ( 5Z E i - £ E i + ± e ) a n d i-/* 2© i n T 0 P T h . ) 

initial intermediate X . ~ .. -
(4) For each loop integrate 

,2. f 

(3.16) 
J2(2TT) J J O 

and sum over intermediate state spins and polarization. 

(5) The vertex factors depend on the theory. In the case of g$ 

Interaction, assign a factor g at each vertex. In gauge theories the 

gluon-fermion vertices are 

guVu, -gvgv, gurfv, -gvtfu . (3.17) 

The trigluotk and quartic-gluon vertices are given in Table I. 

(6) Finally, there are instantaneous gluon contributions in A = 0 

gauge: 



(k+r 
(analogous to Coulomb Interactions) and Instantaneous fermion contributions 

yTfZk (the remnant of bsefcward-movlng "Z-graph" fermion lines). For 
extnple, the electron-electron scattering diagrams of Figure 5b give 

vfeere the polarization sum Is 

- ;" •'-- duv . " N g» ;
e» f e

+ - 0 , k«€ • 0 (3.20) fel ...... 
and the light-cone and energy denominator Is 

D - p~ - k~ - p~ + is • (3,21) 

Similarly* the Compton scattering diagrams of Figure 5c give 
....„ 2 V KaX "A" , 2 K *X" 
" **ve-»ve * 7 ^ + + e ? Y ^ Kx »*» 2* (3.22) 

*. + Pb - *' + le 

(This Is analogous to the decomposition of the Feynman propagator 
(p-a + le)~ into positive and negative frequency components.) 

. Calculations in llght-cone perturbation theory are often surprisingly 
simple since one can usually choose Lorents frames for the external par­
ticles such that only a few time-orderings need to be considered. All 
the variables have a direct physical interpretation. The formalism is 
also ideal for computing helicity amplitudes directly without trace pro­
jection techniques. A list of all the gluon fermion vertices vhlch are 
required as gauge theory calculations is given in Tables I and II of 
Reference 19. 



It Is straightforward to Implement: ultraviolet reoormalUzation in 
light'cone perturbation theory. We define truncated wavefunctions v

r 

end a truncated wywfUiwftm a K such that all intermediate states with 
\&\ > K are excluded. * s Thus K~ is analogous to the lattice spacing 
In lattice field theory. Since QCD is reoormallzable the effects of the 

neglected states are accounted for by the use of the running coupling 
2 2 2 constar.* a (K ) and running mass m(ie ) , as long as K IS sufficiently s 

large compared to all physical vase thresholds. Completeness implies 

] C f t A J f W x 3'<n< 3Vkli ! V I 2 ' X " ^(7) ( 3 - 2 3 > 
The equation of state for the meson or baryon wavefunction in QCD is a 

set of coupled multiparticle equations (see Figure 3d): 

n A 2 . 2\ "I 

i=l J n' 
where a is the eigenvalue and V , is the set of diagonal (from instan­
taneous gluo«; and fermioa exchange) and off-diagonal (from the 3 and 4 
particle vertices) momentum-space matrix elements dictated by the QCD 
rules. Because of the K cutoff the equations truncate at finite n,n*. 
In analogy to non-relativistic theory, one can imagine starting with a 
trial vavefunctlon for the lowest |qq> or |qqq> valence State of a meson 
or baryon and iterating the equations of motion to determine the lowest 
eigenstate Fock state wavefunct'ions and mass M. Invariance under changes 
in the cutoff scale provides an important check on the consistency of 
the results. Note that the general solution for the badron wavefunction 
In QCD is expected to have Fock state components with arbitrary numbers 
of gluone and quark-antiquark pairs. 



The two-particle "valence" light-cone Fock state wavefunction for 
or positroolum can also be related to the Bethe-Salpeter wave-

function evaluated at equal x: 

dk" «Oh»t,) v(x_,-k" ) 

(3.26 

/ ' 

+ negative energy components, 
where f satisfies* an exact bound state equation19 

The kernel K 1B computed from the sum of all two-partide-lxreduclble 
contributions to the two-particle scattering amplitude. For example, the 
equation of nntlon for the |e e~> Fock state of posltronlun reduces In 
the noa-relativlstic limit to ( k , i . ~ 0(am), x *> x- - x- ~ 0(a),) 
M 2 - 4m2 + 4me 

f kf + * V 1 
I « J 1 A < 3 2 7 ) 

• <4VP I d v • / — T I - * 2 " e FT I*< W 
X l J(2*>3 [ C*,-*,/ + (*-y>2*2J l A 

The non-relatlviatic solution Is (8 = am/2) 19 

V + " V t 

Cjr 64* B x ^ 

for para and ortho s ta tes , respectively. 

</2 XJXJ 

(3.28) 



Wore generally, we can make an (approximate) connection between 
the equal-time wavafunction of a composite system and the light-cone wave-
function hy equating the off-shell propagator in the 
two frames: •/-<£•* 

& 
Vr>£ 

(3.29) 

S x l - 0, 2 * ± « 1 (L.C.l 

In addition we can Identify 

x 
S 1° + <l3 

_ _£, + __ 1 + + n P £<«> 
1 g -+ * 
~ • fexi * *ii (3.30) 

For a relatlviatlc two particle state wJ-.h a wavefunction which j.s a 
function of the off-shell variable <f only, then we can identify 
'(mj - nij n,'x - x t - x ^ ) 2 7 

^ • ( T T Z " * 2 ) **.«•<*> (3.31) 

In the non-relativist ic Unit this corresponds to the identification 

V"^.* q3 " ^' 



TV. MEASURES OF HADRONIC WAVEFUSLTIONS 

A. U n a Pactors of Composite Systems 

If we couT.d solve the QCD equation of motion-[Eq. (3.24) 3, for the 
light-cone wavefunctions • $ of a hadron then we could (in principle) 
calculate all of its electromagnetic properties* For example, to compute 
the elastic form factors <p|j (0)|p+q> of a hadron we choose the Lorentz 
frame*6 

(4.1) 

2 2 2. 2 2 •+•2 
where p » (p+q) » IT and -q = Q = q , Then the only time ordering 
which contributes to the <J>| J Jp+q> matrix element is where the photon 
attaches directly to the e., u. y u, currents of the constituent quarks. 
The spin averaged form factor is** 6* 1 9 (see Fig. 6a) 

* 
FCQ2) - 2 S ej / c « i K d \ ] S C^^Il'V'w/V^Li-'V ' f l*2) 

where IS' * £ + (l-x.)q1 for the struck quark and t^ - x±<i (ii* j) for 
the spectator quarks. (The -x.q terns occur because the arguments k 
are calculated relative to the direction of the final state hadron.) 
tfe choose K » Q%Hr. we note here the special advantage of light-cone 
perturbation theory: the current J is diagonal in the Fock state basis. 

Because of Eq. (3.23) the form factor Is normalized to 1 at aero 
momentum transfer. He can also compute the helicity flip form factors 
in the same manner.19*'*'' For example, the anomalous moment a • Fjtt)) of 



(0 ,q x ) 

= 2 
p+q 

(o) 

* —or 
12-8 > 

/ l-x TH(x,y,Q2) \-y 

(b) 4239A9 

fig. 6. (a) Calculation of current matrix elements In light-cone 
perturbation theory, (b) Valence Fock state contribution to 
the large momentum transfer meson form factor. TJJ is computed 
for zero mass quarks q and q parallel to the pion momentum. 



any spin 1/2 system can be written1'7 

Explicit calculations of the electron anomalous moment In QED using tbls 
result are given In Reference 47, We notice that In general all Fock states 
* contribute to the anomalous moment of a system, although states with 
R much larger than the mean off shell energy <<&> are not expected to be 
Important. The general result (4.3) also Includes the effects of the 
Loxentz boost of the wave function from p H to (p+q) . la particular, 
the Wigner spin rotation ontributes to F-(q) and the charge radius 
F!(q ) In the q •*• 0 limit and can only be neglected In the Unit of 
non-relatlvlatlc binding <£> « Mr. This effect gives non-trivial 
relatlvistic corrections'*8 to nuclear magnetic moment calculations based 
on simple additlvity y - / £ u. \ . 

B. Form Factors of Mesons 

Results such as Eqs. (4.2) and (4.3) are formally exact but useless 
unless we have complete knowledge of the hadronic or nuclear wave func­
tion. However, by making use of the Impulse approximation and the 
smallness of the QCD running coupling constant* we can calculate features 
of elastic end Inelastic large momentum transfer processes19 without 
explicit knowledge of the wave function. For example consider the |qq> 
Fock state component contribution to the pioh form factor. Choosing 
K - Q , we have 



1 Q ^ 

+ higher Fock state contributions * . (4.4) 

The bound state wave functions are peaked at low transverse momentum, 

i.e., small off-shell energy S. Thus the leading contribution at large 
?2 „ +2 M J „. /* _,. -, „.+ \2 _ *2 Q come from the regimes (a) k « IJX and (b) (k ± + (l-x)qÂ  « q^. 

I 
F J ° ( Q 2 ) - /<te *(x,Q) *Q(x,U-x)qJ (4.5) 

Thus 
1 

0 
where19 

*(x,Q) 5 / ^f*(x,k) . (4.6) 

If we simply iterate the one-gluon exchange kernel V« in the equation of 
9 ? 

motion for ^, then for q̂  » <t±> 

* x lx , ( l -x)q 1 - / d y f j 5 
V U J

n

 J 16* 3 - q 2 ( l -x) /x 0 

~ A Ti(«.g-*>yy.o 1 ) . 
- Idy = Ky.Q) . (*..-> 

•£ - q|(I-x)/x 

Thus T-re can write the gluon exchange contribution to the form factor in 
the form;11*19 [see Figure 6(b)] 

1 

/ 
0 

F„(Q2) - /dxdy /(y.Q) TH(x,y;Q) *(y,Q) (4.8) 



where 

* 
lftrCgCt^Q2) c.«.co r et e2-i 

<? La-y)(l-«) + a y j < 4' 9' 

Is tin "hard scattering amplitude" for scattering colliaear constittents 
q and q fron the ««<*<«1 to the final direction. The color factor is 
Cp " 2n7 < n c - D " 4/3. The "distribution amplitude" •<x,Q) is the 
amplitude for finding the |qq> Foek state In the pion colllnear up to 
the scale Q. (It la analogous to the wave function at the' origin in 
non-relativistlc calculations.) The distribution amplitude enters 
universally in all large momentum transfer exclusive amplitudes and is 

a process-independent measure of the valence quark distributor* la each 
2 hadronj its (logarithmic) dependence on Q can be determined directly 

from the operator product expansion or the light-cone or from an evolu­
tion equation( as we discuss below. 

Thus the simplest estimate for the asympt tic behavior of the 
2 2 2 meson form factor is F_(Q ) ~ a (Q )/Q . To see if jhis is correct 

ws must examine the higher order corrections- 9 

(1) Contributions from higher particle number Fock states |qqg>» 
K<w5>» atCnare power-law suppressed since (in light-cone gauge) the 
numerator couplings cannot compensate the extra fall-off in Q from the 
extra energy denominators. 

(2) All Infrared singularities and contributions from soft (1, * 0) 
gluons cancel in color singlet matrix elements. [It is interesting to . 
note that the quark (Sudakov) form factor falls faster at large Q than 



(3) Vertex end vacuum polarization corrections to Tg are higher 
2 2 2 

order In <*S(Q ) since we choose K* = Q . The effective argument of a & 

in T H *s Q ^ xyQ or <l-x)(l-y)Q corresponding to the actual momentum 
transfer carried by the gluon. 

(4) By definition, $(X,K ) sums al1. (reducible) contributions from 
low momentum transfer gluon exchange in the qq wave function. Bard gluon 
contributions with ]#| > K end the irreducible (cross-graph, etc.) give 
contributions to T« which are higher order a (Q ) . By analyzing the 
denominators in T_ one can show that the natural 4 cutoff for 4(X,K) 
which minimizes higher order contributions is K • <JZ " Q B l n|T^r»~^"f* 

(5) Although TJJ is singular at x + 0,1, the endpolnt behavior of 
*(x,Q ) - x e, (l-x) c (e > 0) is sufficient to render this region 
harmless• 
C. The Mason Distribution Amplitude 

The essential prediction of QCD for the pion form factor is the 
power-law behavior8 P_ ~ 1/Q » with logarithmic corrections from the 

2 2 
explicit powers of a (Q ) in I™ and the Q dependence of the distribution 
amplitudes 4(x,<T), * 

The variation of • with Q cones from the upper limit of the % 

integration (since <|> ~ 1/k ) and the renormallzation scale dependence: 

due to vertex and self-energy insertions. Thus 
2 

Q 2 -2y *<x,Q) - -S^- # Q(x,t) + **-*• log Z^Q 2) •(x.Q) . (4.11) 
9<T 16* dlogQ* •* 



2 2 

To order a (Q ) we can compute Q t from one-gluon exchange [as in 

Sq. (4*7)], and dlogS 2(Q 2)/dlogQ 2 = O B ( Q 2 ) Y F M I T . Setting *(x,Q) -

x(l-x) ?(x,Q) •= Xj^j*. we obtain an "evolution equation"19 

2 a ~ a

s

w 2 > r 
XftQ* = -2 $(x±,Q) = - ^ - j Wy] V ^ . y ^ *(y,Q) (4.12) 

where 

V(xi,y±) - 2 0 ^ 9 ( 5 ^ ) ( ̂  + _A_ ) + <1~2)J (4.13) 

[6 _ • 1 when the q and q helicities are opposite] and 
nl f i2 

${yv<8 - ?(y±,Q) - K x ^ Q ) . <4.W) 

The $(x<,Q) subtraction is due to the lrF4> term - i.e., the infrared 

dependence at y. = x, is cancelled for color singlet hadrons. Thus 

given the initial condition $(x.,Q0), perturbation theory determines 

the evolution of *(x,Q) for Q > Q-. The solution to the evolution 

equation i s 1 9 

• (x^Q) = X l x 2 £ an(Qj) O^Otj-XjXlog Q ^ A 2 ) " ^ " (4.15) 
n=0 

where the Cegenbauer polynomials C (orthogonal on J Cdx] x.x, \ are 

elgenfunctions of V(x.,y.). The corresponding eigenvalues are the 

"non-singlet" anomalous dimersions: 

c r rtfl 25 h -. -i 

fThese results can also be derived by using the operator product expansion 

for the distribution amplitude.*9 By definition 



" •OCQ) - A + / | £ e J X 2 ' 7 2 « 0 | ? ( « J v < 0 ) | * > Q | 1 + ^ , I ^ ^ _ I ^ (4.1?) 

{A -is the positive energy spinox projection operator). The relative 
" 2 2 

separation of the q and q thus approaches the light-cone z = 0 as Q •*••», 

Equation (4.16) then follows,by expanding #{z)#(0) in local operators.! 

The coefficients a are determined from $(x.,Q-): 

~"(2+n) *hi) - i 

2 • For <J *•>, only the leading y- = 0 term survives: 

11m. *(x,Q) = a 0 x x x 2 (4.19) 

where 

16ir 

ao r r r d k i Q 
-^ = Jdx *(x,Q) " jtej j f l x . y (4.20) 

o o ,fi" 
is the meson wave function at the origin as measured in the decay n-*-uv8 

e 

More generally, the leptonic decay (p° •*• e e , etc.) of each meson 

normalizes its distribution amplitude by the "sum rule" 

Jdx ^(x.tf = — ^ r , (4.22) 
0 c 

independent of Q. The fact that f t 0 implies that the probability of 

finding the }qq> Focfc stats in the pion is non-zero. In fact all the 



Focle state wave functions # n ( x ^ > k

x l } t|<?| < K ) are well-defined, even 

in the .Infrared limit Xj ' 0 (since \ff\ - <!£>/*£ and <k̂ > i s non-aero 

for a state of finite radius). 

The pion form factor a high Q can thus be w r i t t e n 1 1 , l , , w 

1 
F/Q 2) - fd* **(x,Q) T^U.ysQ) *(y,Q) 

i6 " 6((i-')a-y)Q 2) 
" 3* (l-«)(l-y)Q2 

(4.23) 

Thus 
« <Q2> 

V* > - U- an lo8 « / A 1 7T 
|«=0 I Q 

where § '* <(l-x)(l-y)Xj . Finally, for the asymptotic limit where only 
the leading anomalous dimension contributes:51 

2 2 as«> 2> 
$ T „ F * < Q > ° 1 6 ' € ' " ^ ~ • ( 4 , 2 5 ) 

2 A The analysis of the F (Q ) focn factor, measurable in ee + eev •Y 
reactions proceeds in a similar manner. [See Figure 1(a).] An 
interesting result i s 1 9 

8 M 2 F (Q 2)| 2 L X * n 
(4.26) 

which provides a definition of a independent of the form of the dlstrl-
2 2 butlon function $_. Higher order corrections to F_(Q ) and F__(Q ) are *• s wy 

discussed in Reference 50. 



D. large Momentum Transfer Exclusive Processes 1 9 

The meson form factor calculation which we outlined above is the 
prototype for the calculation of the QCD hard scattering contribution 
for the whole range of exclusive processes at large momentum transfer. 
Away from possible special points in the x. integrations (see below) 
a general hadronic amplitude can be written to leading order in 1/Q 
as a convolution of a connected hard-scattering amplitude T„ convoluted 
with the meson and baryon distribution amplitudes: 

l^|<Q2
 d 2 k 

and 
\e\ <Q2 

The haTd scattering amplitude T„ is computed by replacing each external 
h*dron line by massless valence quarks each collinear with the hadron's 

U ~ v 2 
momentum p, = x p . For example the baryon form factor at large Q has 
the form 9' 1 9 [see Figure 2(a) am' figure 7] 

(^(Q2) - ft**] [dy] **( y i,Q) T H( X,y;Q 2) <Kx,Q) (4.28) 

where T„ i s the 3q + Y •+ 3q' amplitude. [The optimal choice for <j i s 

discussed in Reference 19.] For the proton and neutron we have to 

leading order [C f l = 2/3] 
2 2 128it CT 

T P =

 2 2 2 T 1 ( 4 ' 2 9 ) 

P (Q +MQ) 

T 

2 2 128ir Cg 

° 3 ( Q 2 + MJ) 3 

[ T J - T J J ] (4.30) 
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Fig. 7. (a) Leading contributions to T« for the baryon form factors 
corresponding to the four terras of Eq. (4.31) and (4.32), 
respectively, (b) Contributions to the kernel for the evolu­
tion of the barygn distribution amplitude. 



Where 
•9*V& '.(O-̂ Hl-ypq2) 

Tj j 2 "" 
XjCl-Xj) y3(l-yj) 

+ _ -
x 2 ^ 1 _ x i * y 2 * 1 - y i * 

\ ( Y / » a s ( V 3 ^ 
x ^ d - x ^ ) y 2y 3(l- y i) 

(4.31) 

and 

T 2 - - s 1 1 ^-2-2 . (4.32) 
x ^ d - x j ) yjy 3{l-y 3) 

T< corresponds to the amplitude where the photon interacts with the 
quarks (1) and (2) which have helicity parallel to the nucleoli helicity, 
and T« corresponds to the amplitude where the quark with opposite 
helicity is Struck. The running coupling constants have arguments Q 
corresponding to the gluon momentum transfer of each diagram. Only the 
large Q behavior is predicted by the theory; we utilize the parameter 
M_ to represent the effect of power-law suppressed terns from mass 
insertions, higher Fock states, etc. 

The Q -evolution of the baryon distribution amplitude can be 
derived from the operator product expansion of three quark fields or 
from the gluon exchange kernel, in parallel with the derivation of 
(4.12). The baryon evolution equation to leading order in a is 1 9 

W 3 J ^ * ( : V Q ) + 1 ^ " • ( x i » Q ) j " lP~fldyl v< xi»7i> •(yi.Q>* W-33) 
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Fig. 8, QCD contributions to meson-meson scattering at large momentum 
transfer. Diagram (c) corresponds to the Landshoff pint.:-, singu­
larity which is suppressed by quark form fact>r effects. 



However, this Is not true for all hadron-hadron scattering amplitudes 
since one can have nultiple quark-quark scattering processes which allow 
near-on-shell propagation In intermediate states at finite values of the 
X J . 1 7 The classic example is meson-meson scattering, where two pairs of 
quarks scatter through the same angle [see Figure 7(c)]. However, the 
near-on-shell region of Integration is again suppressed by Sudakov 
factors. [Physically this suppression occurs because the near-on-shell 
quarks must scatter without radiating gluons.] A model calculation by 
Mueller 1 0 for Ti-ir scattering in QCD (using an exponentiated form of the 
Sudakov form factor) shows that the leading contribution comes in fact 
from the off-shell region |k2l ~ < 7 ( Q Z ) 1 _ e where e • (2C+1)" 1, 
C - 8Cp/(ll - -J ti f\ (for four flavors e = 0.281). This region gives 
the contribution10 

Jf -v /7/ 02 r3/2 - c in (Zc+l/2c) 

a (Q2j-1.922 ( A 3 8 ) 

compared to (Q~) from the hard scattering |k | ~ <?(Q ) region. 
Thus even when pinch singularities are present the far-off-shell 

hard scattering quark and gluon processes dominate large momentum 
transfer hadron scattering amplitudes. Given this result we can abstract 
some general QCD features coonon to all exclusive processes at large 
momentum transfer: 

(1) All of the non-perturbative bound state physics Is Isolated 
in the process-independent distribution amplitudes. 

(2) The nominal powar-law behavior of an exchange amplitude is 
(1/Q) where, n is the number of external elementary particles (quarks • 



gluons, leptons, photons in TH)« This Immediately implies the dimensional 
counting rules:8 

n-2 
dt * - » " " 1 " - l ^ j ^ ' c . i ' 4a (AfB+OTO) - [-V1 f(«„ - ) (4.39) 

where n - n^+ng+np+iip, end 

Fa(Q2) - (Af* (4.40) 'H* 

vhere F„ is the helicity-conserving18*1' form factor. These power-law 
predictions are modified by (a) the Q -dependence of the factors of a 

2 
In T«. (b) the Q -evolution of the distribution amplitudes and (c) a 
possible small power associated with the almost complete Sudakov 
suppression of pinch singularities in badton-h&dron scattering. The 
dimensional-counting rules appear to be experimentally well-established 
for a wide variety of processes (see Reference 19 end Figure 9): 

^ ( Q 2 ) ~ ( Q 2 ) " 2 , F B(Q 2> - (Q 2)" 1 (4.41) 

and 

(4.42) 
f£ (up • up) - (Q 2)" 8 

g(pp*pp) ~ <qV 1 0 

ff (w*YP)/d7<YP**p> - <12 

at fixed 8 _ . The application to rif •*• *M processes is discussed in 
CBS* 

Section XV-B. 
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Fig. 9. Hadronlc form factors multiplied by ( Q 2 ) n _ 1 . (From Ref. 1.) 



(3) Since the distribution amplitudes K, and 4. are L »0 angular 
momentum projections of the hadronlc n m functions* the sum of the quark 
spin along the hadron's momentum equals the hadron spin: 1 8 

16H * H 

(In contrast In incisive reactions there are any number of non-interacting 
quark and gluon spectators, so that -the -spin of the Interacting constituents 
is only statistically related to the hadron spin - except possibly at the 
edge of phase-space x — 1.) Furthermore since all propagators in T„ are 
ha?', the quark and hadron masses can be neglected at large Q up to 
corrections of order ~n/Q. The vector gluon interactions conserve quark 
helicity when all masses are neglected. Thus total quark helicity is 
conserved In T„ at large Q . Combining this with (4.A3), we have the 
QCD selection rule: 

initial B final 

i.e.., total hadron helicity is conserved up to corrections of order 
<?(m/Q). 

Badron helicity conservation thus applies for all large momentum 
transfer exclusive amplitudes involving light meson and baryons. Notice 
that the photon spin is not important: QCD predicts that yp -»• irp Is 
proton helicity conserving at fixed 6 , s *• •>, independent of the 

ca. 
photon polarizatlo Exclusive amplitudes which involve hadrons with 
quarks or gluons in higher orbital angular momentum states are also 
suppressed by powers of the momentum transfer* An Important corollary 

s 
of this rule is that helicity-flip form factors are suppressed, e.g.: 



F 2 < Q 2 ) / F J ( Q 2 ) ~ <?(m2/Q2) . (4.45) 

The helicity rule, Eq. (4.44), Is one of the most characteristic 
features of QCD, being a direct consequence of the gluon's spin. A 
scalar or tensor gluon-quark coupling flips the quark's helicity. Thus, 
for such theories, helicity may or may not be conserved in any given 
diagram contributing to T„, depending upon the number of interactions 
involved. Only for a vector theory* like QCD, can we have a helicity 
selection rule valid to all orders in perturbation theory. 

The study of. timelike hadronic form factors using e e~ colliding 
beams can provide very sensitive tests of this rule, since the virtual 
photon in e e" + y •* h J L always has spin £1 along the beam axis at high 
energies. Angular momentum conservation implies that the virtual photon 
can "decay" with one of only two possible angular distributions in the 
center of momentum frame; (1 + cos *6) for l* A-A B| " 1* and sin'B for 
fx. ~ X»| - 0 where X, . are the helicities of hadron h. _» Hadronic 
helicity conservation, Eq. (4.44), as required by QCD greatly restricts 
the possibilities. It implies that *A +*g ** 0 (since the photon carries 
no "quark helicity"), or equivalently that X. - Xfl = 2X, «= -2* B. Con­
sequently, angular momentum conservation requires |*A| " |*B| = 1/2 for 
baryons, and |X,| = |X_| - 0 for mesons; furthermore, the angular dis­
tributions are now completely determined: 

j ~ r <e +e~ •»• B§) = l + cos29 (baryons) (4.46) 

d ( ^ e (e +e~ + MM) » sin2e (mesons) (4.47) 

He emphasize that these predictions are far from trivial for vector mesons 



and for all baryons. For example, one expects distributions like 
1+ocos 6, -1 < a < 1» in theories with a scalar or tensor gluon. 
So simply verifying these angular distributions would give strong 
evidence in favor of a vector gluon. 

The power-law dependence in s of these cross sections is also 
predicted In QCD, using the dimensional counting rule. Such "all orders" 
predictions for QCD allowed processes are summarised in Table III. 
Processes suppressed In QCD are also listed there; these all violate 
hadronlc hellcity conservation, a w are suppressed by powers of nr/s in 
QCD. This would not necessarily be the case in scalar or tensor theories. 

TABLE III 
Exclusive channels in e e~ annihilation. The hJigY* couplings in allowed 
processes are - i e ( p * - p B ) w F ( s ) for mesons, -te^TP]$)Y,lS<s)u(p£> for baryoms, 
and-ie^uvpjjpjJeOp^FMyCs) fc ' " *" " 
tions apply to decays of hea 
produced in e+e~ co l l i s i ons . 

and ~ i e 2 £ y v p a p $ e p p ^ F M Y ( s ) for meson-photon final states- Similar predic 
t ions apply to decays of heavy-quark vector s ta tes , l ike the ty,ty\..., 

• V * HA<»A> V V Angular Distribution 

f « • * Wit JCK. ain2e MFC)I2 - c/s 2 

i p*(0>P*(0),K*V" 2 Mr<«) | z -c /s 2 

L AitD.w.o'r I + cos*» ( T O / 2 ) S 1 F H Y ( S > | 2 - c/» 

Allowed < 

In QCD F e e " * ^ ^ p C ^ h i m , . . . 1 + CM 2* | G ( s ) | 2 - c /s* 

rCltttoU.ot,..., I + eos'6 |e(,)| 2 - e/ 8* 
V A(±WJ<?W,»*J*.". 1 + eos ' e |G(S} | 2 - C/6* 

| eV*»*{0)»~(*l).irVjf*K*-,.. 1 + coo'e « c /» 3 

• 
Suppressed 1 »*<«>»"(«).... »H»2B <c/» 3 

la qcn 
s i n 2 * < «/« 5 

1 p(±Wl(iJ|).4S.... 1 + a n 2 * <c/» 5 

1 i<±k)S<*k>..., • l n Z e < c/«S 



the exclusive decays of heavy quark atoms ftp,*',...) Into light 
hadrons can also he analysed in QCD. 1 8 The decay $ •*- pp foe example 
proceeds via digrams such as those in Fig, 2(b). Since t's produced 
in e e collisions must also have spin ±1 along the beam direction and 
since they can only couple to light quarks via gluons, all the proper­
ties listed in Table XII apply to ¥>» <i*, T, T',.,. decays as well. There 
are considerable experimental data for the <i> and 41' decays. 5 5 

Perhaps the most significant tests are the decays #,•* •+• pp,an,... . 
2 2 

The predicted angular distribution 1 + 8 cos 6 is consistent vitb published 
data. 3 5 This is important evidence favoring a vector gluon since scalar 
or tensor gluon theories would predict a distribution of sin26+(7(a ) . 

8 

Dimensional counting rules can be checked by comparing the v and f* rates 
into pp, normalized by the total rates Into light-quark hadrons so as to 
remove dependence upon the heavy-quark wave functions. Theory predicts 

where 

« » * • » * r (» * light^ua^hadrons) • <*•"> 

Existing data suggest a ratio (K^i/M,)11 with n - 6 ± 3, In good agreement 
with QCD. 

Many more examples of exclusive reactions which test the basic 
scaling laws and spin structure of QCD are discussed in References 18 
and 19. The essential point is Chat exclusive reactions have the 
potential for isolating the QCD hard-scattering processes in situations 
where the helicities of all the interaction constituents are controlled. 
In contrast, in inclusive reactions the absence of restrictions on the 



spectator quark and gluons allows only a statistical correlation between 
the constituent and hadronlc felicities* 

E, Pro-Photon Processes** 

One of the most important applications of perturbative QCD Is to 

the two-photon processes do/dt (YY •* MM), M » v,K,p,ia at large 
s » (k. + k_) and fitted 8 , These reactions, which can be studied i z cm. 
In e e" * e e~MM processes, provide a particularly important laboratory 
for testing QCD since these "Compton" processes are, by far, the simplest 
calculable large-angle exclusive hadronic scattering reactions. As we 
discuss below, the large-aomentum-transfer scaling behavior, the helicity 
Structure, and often even the absolute normalization can be rigorously 
computed for each two-photon channel. 

Conversely, the angular dependence of the YT "* MR amplitudes can be 
used to determine the shape of the process-independent meson "distribution 
amplitudes," 4u(x,Q), the basic short-distance wave functions which 
control the valence quark distributions in high momentum transfer 
exclusive reactions. 

A critically important feature of the YY + MM amplitude is that the 
contributions of Landshoff17 pitch singularities are power-law suppressed 
at the Born level - even before taking into account Sudakov form factor 
suppression. There are also no anomalous contributions from the x - 1 
endpoint integration region. Thus, as in the calculation of the meson 

form factors, each fixed-angle helicity amplitude can be written to 
2 2 leading order in 1/Q in the factorlzid form [<J *" p™ = tu/s; 

^ « min(xQ,(l-x)Q)] (see Figure 5)i 



r̂ YY +MM f dx fiy •gty.Qy) T H(».yi..e e < D | i) * M(x,Q x) (4.50) 

where T~ is the hard-scattering amplitude YY "*" (qq)(qq) for the production 
of the valence quarks collinear with each meson and $M(x,Q) is the 
(process-independent) distribution amplitude for finding the valence q 
and q with light-cone fractions of the meson's momentum, integrated over 
transverse momenta k < Q. The contribution of nonvalence Fock states 
are power-law suppressed. Further, the spin-selection rule (4.44) of 
QCD predicts that vector mesons M and M are produced with opposite 
helicities to leading order in 1/Q and all orders in a (Q )• 

Dimensional counting6 predicts that for large s, s do/dt scales 
2 at fixed t/s or 6 up to factors of an s/A , c.m. 

Some forty diagrams contribute to the hard-scattering amplitudes 
for YY "*" MM (for nonsinglet mesons). These can be derived from the four 
independent diagrams in Fig. 10(b) by particle interchange. The resulting 
amplitudes for helicity aero mesons are: 

M 1 6 n a s 32«a 
3s x ( l -x )yU-y) 

2 • 
(«1 - e 2 ) a 

(4.51 d 
1 6 n a s 32«a 

3s x ( l -x )yU-y) l - cos e 
c m . . 

(4.51 

vl s 3 2 IT a ( e 1 - e 2 ) 2 < l - a ) ^ ^ ( y d - y J + xd-jO) 

T-+J 3s x U - x ) y ( l - y ) 1 - cos 8 
e ra . 

2 . 2 2 n j - b cos 8 c m . 

(4.52) 

where ?{ = (l-x)(l-y) ±xy, the subscripts ++,—,... refer to photon 
helicities, and e,, e„ are the quark charges [i.e., the mesons have 



(o) 

k2 P 2 

Fig, 10, (a) Factorized structure of the YY + MM amplitude In OSD at 
large momentum transfer. The T H amplitude is r:roiputed with 
quarks calllnear with the outgoing mesons, (b) niagram con­
tributing to T H ( Y Y * MM) to lowest order in a . 

i 



charges ±(e 1-e 2)]. To compute the YY * MM amplitude « ^ A » [Eq. (4.50)], 

we now need only know the x-dependence of the meson's distribution 

amplitude f H(x,5); the overall normalization of #„ is fixed by the 

"sum rule" (nc - 3) 

/* v*.« - ^ (4.53) 

where f„ is the meson decay constant as determined from leptonic decays• 

Note that the dependence In x and y of several terms in I.., is quite 

similar to that appearing in the meson's electromagnetic form factor 

(4.23): 

F M(s) 
16"na 

! 
3s 

when $M(x,Q) •» $,.{l-x,Q) is assumed. Thus much of the dependence on 

•(x>Q) can be removed from ot(±** by expressing it in terms of the meson 

form factor - i . e . . 

16iraFM(s) 
< ( e i - e 2 ) 2 > 

>At. q 16uaFH(s) 

l - cos2e. 

"<(ea-e 2 )2> 

(4.55) 

i - cos2e 
+ 2(6262) g 

c m . 

2 , 

[ e , .m.=*M]] <'' 5 6> 

up to corrections of order a and m /s. How the only dependence on $„, 

and indeed the only unknown quantity, is in the 6-dependsnt factor 



f +M < X '^ *M (y.^ a[ yg-y)-Htd-iQ] 
J t o < * x( i - * ) , ( l -y> a 2 _ b 2 c o s a e 

gffl S O - * s = ****- " W-57) 

J * * * * x(i-x) y(i-y) 
0 

The spin-avr,raged cross section follows immediately from these expressions; 

dt s dcose , , 2 * f!»J M*' 
cm. 16«s AXr 

16na 2 V s > 2 / <K- c a) 2 > 2 . 2<V2)<(V^) 2) 
cm. 

(i-cos2e „ ) 2 i-cos2e 
\ cm./ c 

* < 6 c.m. »*M] + 2 <-l e 2> 2 i ^ c . . . ••*„] J • <*•*«> 

In Figure 11 the spin-averaged cross sections (for yy * irir) are plotted 

for several forms of $„(x ,q) . i t very large energies, the distribution 

amplitude evolves to the form 

and the predictions [curve (a)1 become exact and parameter-free. However 

this evolution with increasing Q i s very slow (logarithmic), and at 

current energies $ M could be quite different in structure, depending upon 

the deta i l s of hsdroitic binding. Curves (b) and (c) correspond to the 
it 

extreme examples fy. « £x(l-x}'Jr and * B * S(x-lj) , respectively. Remark­
ably» the cross section for charged mesons Is essentially independent of 
the choice of &,, making this an essentially parameter-free prediction 
of perturbatlve QCD. By contrast, the predictions for neutral hellclty-



! 0 4 -

I 0 3 r 

I 
JO 

T 3 I " 0 O 

(0 

10' -

0.2 0.4 0.6 
z 2 = cos2 (0) 

0.8 1.0 
1(41*1 

Fig. 11. QCD predictions for yy •+ tin to leading order In QCD. The 
results assume the pion form factor parametrlaation F„(s) ^ 
0,4 GeV 2/s. Curves (a), (b) and (c) correspond to the distribu­
tion amplitudes * M - x U - x), ix(l - x)] 1'*, and 6(x - 1/2), 
respeccively. Predictions for other helicity zero mesons are 
Obtained by multiplying with the scale constants given in 
Kef. 15. 



caro mesons are quite sensitive to the structure of •„. Thus we can 
study the x-dependence of the meson distribution amplitude by measuring 
Che angular dependence of this process. 

The cross sections shown in Figure 8 are specifically for yy •*• nit, 
where the pion form factor has been approximated by Ffl(a) - 0.4 Geir/s. 

+ — The ir ir cross section is quite large at moderate s: 

J§(YY*MV> l-cos4ecm# 

„ 0.6 CeV a t e ^/2 f 

2 cm. 

Similar predictions are possible for other hellcity-zero mesons. The 
normalisation of yy •* MM relative to the rr + *» cross section is 
completely determined by the ratio of meson decay constants (fu/fJ 
and by the flavor-symmetry of the wave functions, provided only that 
t M and •„ are similar in shape. Note that the cross section for charged 
p's with hellcity aero is almost an order of magnitude larger than that 
for charged r's. 

Finally notice that the leading order predictions tEq. (4.58)] have 
no explicit dependence on « . Thus they are relatively insensitive to 
the choice of renormalization scheme or of a normalization scale. This 
is not the case for either the form factor or the two-photon annihilation 
amplitude when examined separately. However by combining the tvo analyses 
as in Eq. (4.58) we obtain meaningful results without computing 0(a) 
corrections. The corresponding calculations for heliclty one mesons are 
given in Reference 12. Hadronic heliclty conservation implies that only 



helicity-2ero mesons can couple to a single highly virtual photon. So 
F u , the transverse form factor cannot be measured experimentally. For 
simplicity we will assume that the longitudinal and transverse form 
factors are equal to obtain a rough estimate of the YY "•" P.P. cross 
section (Figure 12). Again we see strong dependence on fc. for all 
angles except 8 ~ ir/2, where the terms involving g vanish. Con­
sequently a measurement of the angular distribution would be very 

sensitive to the x-dependence of <JM , while measurements at 8 _ » n/2 
M^ c m . 

determine P u (s). Notice also that the number of charged p-pairs (with 
any helicity) is much larger than the number of neutral p'e, particularly 
near 8 » ir/2. The cross sections are arain quite large with c.m» 

(4.61) 

Results for other mesons are given in Reference 12. 
The YY -*• MM and y u + M processes thus provide detailed checks of 

the basic Bom structure of QCD, the scaling behavior of the quark and 
gluon propagators and interactions, as well as the constituent charges 
and spins. Conversely, the angular dependence of the YY + MM amplitudes 
can be used to determine the shape of the process-independent distribution 
amplitude $u(x,Q) for valence quarks in the meson qq Fock state. The 
c o s 9 » - -dependence of the YY * M* amplitude determines the light cone 
x-dependence of the meson distribution amplitude in much the same way 
that the x. dependence of deep Inelastic cross sections determines the 
'llght-cone x-dependence of the structure functions (quark probability 
functions) G./ufe'Q)-

do/dt ( Y Y ^ P ^ P ^ 5 GeVA 

do/dt (YY + H u") s 
6 c .m. = t 
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Fig. 12. QCD predictions for yy •* p.p. with opposite helicity ±1 to 
leading order QCD. The nonnalization given here assumes 
that the p distribution amplitude is helicity independent. 



The font of the predictions given here are exact to leading order 
la «_(Q ) • Power-law (m/Q) corrections can arise from mass insertions, 
higher Focfc states, pinch singularities and nonperturbative effects. 
In particular, the predictions are only valid when s-channel resonar s 
effects can be neglected. It is likely that the background due to 
resonances can be reduced relative to the leading order QCD contributions 
If one measures the two-photon processes with at least one of the photons 
tagged at moderate spacelike momentum q , since resonance contributions 
are expected to be strongly damped by form factor effects. In contrast, 
the leading order QCD Y,Y, * MM amplitudes are relatively insensitive to 
the value of fl? or q? for |q.| « s. 

Finally, we note that the amplitudes given above have simple crossing 
properties. In particular, we can immediately analyze the Compton ampli­
tude Yh* •* yM in the region t large enough with s >> 11[ in order to study 
the leading Regge behavior in the large momentum transfer domain. In the 
case of helicity ±1 mesons, the leading contribution to the Compton 
amplitude has the form (s » \ t|) 

""YM-YM = 1 6 7 I a V 0 ^ ^ ^ 
(4.62) 

which corresponds to a fixed Regge singularity at J = 0. 5 6 In the case 
of helicity zero mesons, this singularity actually decouples, and the 
leading J-plane singularity ia at J •= -2. 



V. DEEP INELASTIC LEPTQH SCATTERING 
Th* crucial evidence that the electromagnetic current within nadrons 

la carried by point-like spin 1/2 quarks comes from deep-Inelastic 
electron, ouon and neutrino scattering. At latge momentum transfer, 
Q 2 > 2 GeV 2 the lepton-nucleon Inelastic cross section displays a scale-
invariant behavior consistent with the simplest type of Impulse approxi­
mation—where the electron scatters directly against point-like quark 
constituents of the target. 5 7 The deviations which are observed at very 

2 
large Q are consistent with the color radiative corrections predicted 

2 by QCD. la addition at low values of Q , there is evidence for power 
law "higher twist" corrections associated with coherent multiauark 
processes, interference effects, and final state corrections—quite in 
analogy to the corrections to impulse approximation expected in nuclear 
physics inelastic breakup calculations. 

The Pock state representation we discussed in Section III provides a 
particularly simple and elegant basis for calculating the deep inelastic 
cross section in QCD. We first consider the forward Compton amplitude 

2 2 Y*P + Y*P With virtual photon mass q = -Q < 0, and then calculate the 
ep •+ eX cross section from the absorptive part. An ideal Lorentz frame 
Is 

p " (P +»P".PJ = (p+» ^ T ' O ^-^ 

q - (q\«f.<0 - (o. ̂ - 0 <5.2) 
2 2 with q • Q and p*q » mv. For the diagram 13b which has no final state 

interactions, the (light-cone) energy denominator between the photon 
interactions is 
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Fig. 13. Calculation of the forward virtual Comptoo amplitude. Diagram 
(b) gives the impulse approximation, neglecting final state 
and nultiquark interactions. 
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where m Is the struck quark mass, and the sum over* 1^1 gives the spec­
tator quark and gluon contributions. For states with 
(#| - (M2 -Y\— | « 2mv and kf « q 2 we can write 

i x x 

~ ^ + i c D ft 2mv - X- + ie (5.4) 

I . e . , the electron scattering on a quark with light-cone momentum traction 

The corresponding Impulse approximation cross section i s (x + x_.) 

-f2— «P + *'X) - V * Grt. (x,a) - ^ (lq * t'q) 
0 2 At £^t VP d 0

Z 

4Q' dx * ? " V F * T 

where*1 

(5.7) 

P q " * P 

,(x,Q> - y ^ / [/kJtdxJli^x,^) W * ' Q ) "2-* / L d A J ' : d x : , l v x ' k i ) f * ( x - V (5-&y 

n i 3 ' 

gives the probability distribution for finding the quark with fractional 
2 2 light-cone momentum cclllnear up to the scale k < Q , l̂ l < 2mv. Unlike 

large momentum transfer exclusive amplitudes, all Fock states contribute 
to the Inclusive cross section. The subt.ocess cross section 
do/dQ (Iq -*• l'q) Is evaluated for a quark colllnear with the proton 
momentum p • xp t k o» 0. Since all the loop corrections to the sub-+ -f 

2 2 process cross sect lot* are hard (k > 0(Q )), It can be developed as a 
2 power series la a (Q ) . Thus the only correction to perfect scale-



2 2 2 
invariance of da/dx dQ at large Q «»nd fixed x_. comes for the Q depect-2 dence af the probability distribution G(x,Q ). This in turn can only 
arise from the wavefunction renormallzation or from contributions 
il> " 0{\I\L ) at large k. . In QCD these occur only from t" perturbative n 1 J-
processes q + qg, and g •+ gg, g •+ iq, as illustrated in Figure 14. In 
parallel to the derivation of the evolution equation for the distribution 
amplitude, we then can derive evolution equations for the distributions 
Oq/H(x,Q2) and G g / H(x,Q 2) of the form 5 8' 5 9 

3 logCT 
a (Q2) T 1 

For example, for ths "non-singlet" distribution 
Gq/H(x,Q) G q / H( X,Q) - G./H(x,Q) 

(5.9) 

(5.10) 

we have to lowest order in a (Q ), (C_ 4/3) 

W z ) 
( ^ ) + 

1 + z S(l - z) 
^0 

(5.11) 

(The subtraction term, which ensures finite behavior at x =0, arises 
2 from the wavefunction renormalizatlon, as in Eq. (4.14)). The Q depen­

dence can be displayed most simply by taking moments: 

'dx H (QZ) = f G(x.Q2> xnc 
n Jo (5.12) 

Then 

,2/.M-T_ 
•c - *«&$) (5.13) 
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Fig. 14. Contributions to the hadron Fock state wavefunction which give 
<p 'v 1/Je, at large tc, and thus structure function evolution. 



where the y are defined In Eq. (4.16). The higher order corrections n 2 to the Q -evolution of M_ are discussed in References 1 and 2. A critical 
feature 2 1 Is the fact that the higher loop corrections (e.g., from the 

2 2 higher Fock states) are constrained kineraatically to k < (l-y)Q < 
2 (l-x)Q > where y is labelled in the figure; I.e., the evolution is 

reduced at large x and for large n. A detailed discussion is given in 
Reference 41. 

Equation (5.7) displays an essential feature of Che <JCD predictions 
for Inclusive reactions: the factorization of the physical cross section 
into a hard-scattering subprocess cross section, controlled by short-

2 distance perturbative QCD, convoluted with structure functions G(x,Q ) 
which contain the long distance hadronic bound state dynamics. Notice 

2 
that the Q -evolution of G(x,Q) is also completely specified by tY- per­
turbative QCD processes and is independent of the nature of the target. 

All the corrections to the perturbative QCD impulse approximation 
2 

from final state interactions, finite k^ effects, interference contribu-
tlons, mass corrections, etc, are of higher order in 1/Q , at least when 
analyzed using perturbative methods. In the operator product analysis 
these contributions correspond to matrix elements of "higher twist" 
operators which have non-minimal dimensions. The most important higher 
twist terms for deep Inelastic lepton scattering are expected to cor­
respond to processes where the lepton scatters on mulciparticle clusters 
in the target (qq, qq, virtual mesons, qg, etc.). We thus obtain a sum 
of contributions (see Figure 15): l s 

pa " K p H 



P 2 ( * , Q 2 ) ~ ( I - X ) 3 

+ QCO evolution 
+ € [as(Q2)J 

F 2 ( x , Q 2 ) ^ i i ^ 

12-81 
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F Z U G 2 ) - 1 ^ 
- I 

Tig. IS. QCD contributions to inelastic electron-nucleon scattering, 
Including radiative and higher twist (diquark, triquar'O 
corrections. 



2 2 
where, in general de /dQ falls in Q according to the compositeness of a: 

- ^ ( t a + ^a) - *S_ |Fa(Q2) | 2 (3.15) 

For example, the "dlquark" eqq t- eqq gives a contribution to ep + «X 
2 2 2 of relative order (m /Q ) . Since the qq can carry a large fraction of 

the proton's momentum, this contribution can be significant at large x. 
For a guide to this effect one can use the spectator counting rule: 6 0 >* 

2n - 1 
e a / a < x ) v—- ( 1 ~ x > s ( 5 * 1 6 > 

x+1 

where n is the minimum number of spectator quarks (or gluons) in the 
Fock state required to stop at x + 1. The minimal Fock states containing 
a gives the dominant contribution. 

The simplified rule (5.16) can be derived from minimally connected 
tree graph diagrams, ignoring spin effects, or from simple phase space 
considerations if one ignores the spectator quark masses 6 1 (see Section VI). 
Using this simple counting we can then classify the contributions to the 
hadron structure functions, as illustrated in Figure 15. The dlquark con­
tribution is expected to give a large contribution to the longitudinal 
structure function since it acts coherently as a boson current. The order 

9 
a (Q ) contribution from the hard gluon radiative corrections with 
s 2 2 k, > (l-x)Q also gives a significant contribution to <JT. A detailed derivation of the behavior of structure functions at x «• 1 
from perturbative QCD is given in Reference 21. At x ~ 1 all of the had-
ron's momentum must be carried by one quark, and each quark and gluon 
propagator which transfers this momentum becomes far off shell: 



^(-4^) • 
Perturbative QCD predictions thus become relevant. An important result 

p 

is that at large x the struck quark tends to have the same hellcity as 
the target nucleon: 2 1'* 2 

W ~ ( 1 - ">s* W " ( 1 - "» 5 <5*17) 

This type of spin correlation is consistent with the SLAC-Yale polarized 
electron/polarised target data. Combined wir'tt ci«s SU{6) symmetry of the 
nucleon wavefunction this implies that the leading quark in the proton 
is five times more likely to be an np quark than a down quark, and thus 6 2 

(F2 " ? V C J 
F 2 n(x,Q 2)/F 2 p(x,Q 2) • 3/7 (5.18) 

For the case of mesons, the perturbative QCD gluon exchange prediction i s 6 3 

Gq/« ~ ( 1 " * > 2 ( 5 ' 1 3 ) 

In addition, the same QCD analysis predicts a large C/Q contribution to 
the meson longitudinal structure function (see Figure 3b) i 2 2* 6"* 

FL 
2 r * 

(*,Q2> - %T CT I dk 2 n f l(k 2) F/k 2) (5.20) 
*o 2/a-K) 

2 2 _2 
which numerically is F, " x /Q in GeV units. This contribution, which 
can dominate leading twist quark distributions in mesons is normalized in 
terns of the meson distribution amplitude, which in turn is normalised 
by the pion form factor. 



The dominance of the longitudinal structure functions in the fixed W 
limit for mesons Is an essential prediction of perturbative QCD. Perhaps 
the most dramatic consequence is in the Drell-Yan process *p * I t~X; one 
predicts 2 2 that for fixed pair mass Q, the angular distribution of the I 

2 (in the pair rest frame) will change from the conventional (1 + cos B.) 
2 

distribution to sin (8.) for pairs produced at large x,. A recent analysis 
of the Chica"/-Illinois-Princeton experiment*5 at FNAL appears to confirm 
the QCD high twist prediction with about the expected normalisation. 
Striking evidence for the effect has also been seen in a Gargamelle analy­
sis 6 6 of the quark fragmentation functions In vp + n u~X. The results 
yield a quark fragmentation distribution into positive charged hadrons 

+ 2 
which is consistent with the predicted form: dN /dzdy ~ B(l- z) + 
(C/q )(l-y) where the (1-y) behavior corresponds to a longitudinal 
Structure function. It is also crucial to check that the e e" •* MX cross 
section becomes purely longitudinal (sin 9) at large z at moderate Q . 5 Z 

The results (5.17) and (5.19) for G ,_ and 6 ,„ give the behavior 
of the leading QCD contribution 10 the structure function before QCD 2 2 evolution is applied; e.g., the results are valid for F,(x,Q ) at Q of 

2 2 
order of <k: >. The large Q behavior is determined by the evolution 
equations (5.9) t taking account of the phase space limits of the radiated 
gluons at x •> l.1*1 



VI, THE PHENOMENOLOGi OF HADR0HIC WAVEFUHCTIOHS 
Thus far, most of the phenomenologlcal tests of QCD hove focused on 

the dynamics of quark and gluon subprocesses in Inclusive high momentum 
transfer reactions. The Focfc state wavefunctions <r*f<ac_ B^ _ $ X.) which 
determine the dynamics of hadrons in terms of their quark and gluon 
degrees of freedom are also of fundamental importance. If these vave-
f unctions were accurately known then an extraordinary number of phenomena, 
including decay amplitudes, exclusive processes, higher twist contributions 
to inclusive phenomena, structure functions, and low transverse momentum 
phenomena (such as dlffractive pcocases, leading particle production in 
hadron-hadron collisions and heavy flavor hadron production) could be 
interrelated. Conversely, these processes can provide phenomenological 
constraints on th» ?ock state wavefunctions which are important for 
understanding the dynamics of hadrons in QCD. In addition, as we discuss 
in Reference 67, the structure of nuclear wavefunctions in QCD is essen­
tial for understanding the syntheses of nuclear physics phenomenology with 
QCD. 

A. Measures of Hadron Wavefunctions 
As we have shown in Section III the central measures of the hadron 

wavefuuetions are the distribution amplitudes 

-Q 
•CXJ.Q) -J [ A j •5 t x i , *n ) ( 6 - 1 } 

which control high momentum transfer form factors and exclusive processes: 
Uf s n 4 © TR 

and the quark and gluon structure functions 
Of S n i © T R (6.2) 



G q / H ( X , Q ) ° T ^ I [ d 2 k±] C d J°l* n
( xi' kll >l *<* " V (6-3> 

which control high momentum transfer Inclusive reactions 
dtf S n G © d 5 (6./s) 

Examples are shown in Figures 1 through 3. A summary of the basic 
propertiesf logarithmic evolution, and power law behavior of these 
quantities is given in Table IV. 

The exclusive formula (6.2) also includes applications to large 
momentum transfer.multlparticle production 6 8' 8 e e~ + H-...H with 
p. • p. ~ f?(Q ) , and the elastic and inelaBtlc weak and electromagnetic 
form factors. We also note that hard scattering higher twist subprocesses 
to inci .iSivs reactions such as Y1 "•" Mq> g1 * Ml> 11 * *Mi 11 * B1>» etc., 
are absolutely normalized in terms of the distribution amplitudes.69 In 
particular, some amplitudes such as yq •* sq, qq •+ jig and gq •+ nq can be 
rigorously related to the pion form factor sin<:e the same integral 

JQ 
X _ x •,<*><» (6.5) 

enters In each of the quantities.70 The p~ processes2"* gq •+• Mq (see 
Figure 3a) and qq + Mq are particularly interesting and important in 
high-p_ meson production processes such as pp -*• MX since the meson is 
produced directly in the subprocess without the necessity for quark or 

—A gluon jet fragmentation. In fact the contributions of standard p™ 
scaling processes such as qq •* qq, gq •+ gq, and gg * gg are strongly 
suppressed by two to three orders of magnitude relative to the "directly 
coupled" contributions because of the suppression of Jet fragmentation 
D,.> (z) at large momentum fraction z and the fact that the subprocesses 



TABLE IV 
Comparison of Exclusive and Inclusive Cross Sections. 

Exclusive Amplitudes inclusive Cross Sections 
at ~ n •<X 1,Q) ® Tgfc^Q) do ~ Jl C<xa,Q) ® do(xa,Q) 

•<*.Q> • / [AJ-J^cv G<x,Q) - £ j " d^CdxJ'IfrJOt^))2 

Measure f In YY • MB Measure 6 in ip + IX 

S"»"« S1*"* 
EVOLUTION 

'•<*'*>•• - a f i fCdyMx.yHCy) 
8 log q 4 '^ 

y ( x A - o a f dy P(x/y)G(y) 
3 log <r *J 

Q " 1 «*.<» - I ! " ! ' flavor Q""„ C(x,Q> - «<*> C 

POM>:K. LAW BEHAVIOR 

2n-1 
(1 - x ) 

£ ( A + B * C+D) = - ^ f(6cH) - ^ CAB - o o s ^ — r f c r £ ( < W 

n «• n, + n _ + n _ + 'A + ^ + "C + -D 

T_: expansion in o B 

End point singularities 
Pinch singularities 
Higher Vock states 

CO 2) 

d p/E *•* (Q 2)"""* 

"act " aa 4 % + \ + a d 
« » 2 

do: expansion in o.'Q ) 

COMPLICATIONS 
Multiple scales 
Phase-space limits on evolution 
Heavy quark thresholds 
Higher twist <nultipartide processes 
Initial and final state interactions 



must occur at a significantly larger momentum transfer than that of the 
triggered particle.71 

Despite much effort there is at this tine no systematic understanding 
of high p_ had roil production in QCD. A comprehensive attack must take 
into account not only leading twist subprocesses and directly coupled 
higher twist contributions such as those listed above, but also the effects 
cf initial state multiple scattering effects. One of the most important 
experiments which could clarify the nature of these affects la the measure­
ment of the ratio of direct photon to meson at high P-.S (x_ = 2pu/Vs") 

\ / , < V 8 ' 6 c m > " ̂  ( P P + y X ) / ^ ( P P * ¥ X ) < 6- 6 > 

For example, if leading twist QCD processes dominate these reactions then 

R j ~ f(sO ~ ( l - O at fl *• ir/2. If directly-coupled processes 
2 such as gq + wq dominate the meson production then one predicts R , ~ p_ 

at fixed x_, and 0 , 7 2 Measurements of this ratio in nuclear targets is * cm 
Important for clarifying the contribution of final state multiple scatter­
ing processes. 

The photon probe plays a crucial role in high-p„ hadron reactions 
since the photon couples directly to the quark and gluon subprocesses 
at short distances. The most dramatic example of these point-like phenomena 
la the recent observations at PETRA 6 - 8 of high transverse momentum hadrons 
in y-f collisions. The results at p_ a 3 GeV appear to be consistent with 
the scale invariant QCD prediction73 

do(yy •» jet + jet) , V * * * 
do<YT + u u ) *"* s 

(6.7) M=£)] 



These results also Indicate that, unlike typical meson-induced reactions, 
an incident photon often produces high p_ hadronic jeta without leaving 
hadronic energy In the beam fragmentation direction.71* One also expects 
analogous results for directly coupled photons In yp + HX and YP •* J e t + X 
reactions. The point-Ilka behavior of on-shell photons is in ditect con­
trast to the predictions of vector meson dominance models. 

A surprising feature of QCD Is chat even a hadron can produce jets 
at large p~ without beam fragmentation.70 For exampls, the existence of 
high twist subprocesses such as Hq -*- gq and Mg •+ qq leads to high p_ jet 
events in meson-induced collisions Mp •*• Jet + Jet + X where there is no 
hadronic energy left in the meson beam fragmentation direction (see 
Figure 3c). The inclusive cross section, which scales as pZ. at fixed 
x- and 6 > is absolutely normalized to the meson form factor. As in the 
case of the photon-induced reactions the directly coupled meson has no 
associated color radiation or structure function evolution. An experi­
mental search for these unique and highly klnematlcally constrained events 
is very Important in order to confirm the presence of these subprocesses 
which involve the direct coupling of meson qq Fock state to quarks and 
glbons at short distance. 

In general, we can replace any direct photon interaction by a direct-
coupled meson interaction in the subprocess cross section by the replace-
ment a J F (p™)« Furthermore, one can compute direct-coupled processes 
which isolate the valence Fock state of baryons, e.g., pp -*- pX 
(production of isolated large p_. protons .via the qq •* pq subprocesses), 
and reactions pp -*• qqX (from qp •+ qq) (see Figure 3b), pp + qqqX (t.-ora 
gp •* qqq),etc.. each of which produce jets at high p_ without beam 
spectators or fragmentation. 



B. Constraints on the Pion and Proton Valence Wavefunction 7 

The central unknown in the QCD analysis of hadronic matrix elements 
Is the hadron wavefunction In the non-perturbative domain K < 1 GeV . 
For Illustration we shall assume that in this region the • fall off 
exponentially In Che off-shell energy: 

*<C* r
kU> = A n e n « (6.8) 
n A2 . 21 

1=1 

The parametrlzation Is taken to be independent of spin; the full wave-
function is then obtained by multiplying by free splnors u/vT* . The 
form (6.8) has the advantage of analytic simplicity: For example, the 
resulting baryon distribution amplitude at small K is 

3 «? 

• (xi,ic) - k^ XJL^XJ e 3 ^ i *i (6-10) fSl »1 

At large *, $ is determined from the evolution equation (4.33). At very 
large k the $ for non-valence Fock states should match onto the power 
law fall-off k~ predicted by perturbative QCD. It should be emphasised 
that the form (6.8) is chosen just for simplicity. An equally plausible 
parametri2ation is A *» A ^*"p with p = 3, which is suggested by the 
Schroedinger equation assuming a linear potential and the correspondence 
given In Eq. (3.41). 

In the case of the plan we can derive two important constraints on 
the valence wavef unction from the ir •* uv and n" •* YT decay amplitudes: 



J l«ir* Jo 2"^T [-(ft] (6.11) 

Sid 2 7 

Z («& ^T •to.k. - 0) -*-Z~ - -r 6 

1 z <K Z) fu 
(6.12) 

The derivation o£ the second constraint assumes that the radius of the 
pion is much smaller than its Cotapton length: 

t • 
K1i <l 

Let us now assume the form 

where 

#*_ « e " v 

rq«i 

dQ 2 " | Q Z = 0 

\xU - x)/ f ( K 2 < x G e V 2 } 

\(&f 

(6.13) 

(6.14) 

(6.15) 

is the contribution to the slope of the meson form factor from the valence 
Fock state (see E<j. (4.2)). The two conditions (6.11) and (6.12) then 
determine R q c I = 0,42 fin, and 2 7 

r-. (x.t) 
(6.16) 

Thus the probability that the pion contains only the valence Fock state 
at small ic is less than 1/4. Furthermore the radius of the valence state 
turns out to be smaller than that of the total states R*!xpt = °- 7 fo­il 



One can also verify that the bound F -,_ £ 1/4 is also true for power law 
wavefunctiona <l> ~&~P, p > 2. 

The existence of other Fock states at equal T in the pion is to be 
expected considering the fact thr" its quark and gluon constituents are 
relativlstic. The existence of large m /m and A./DL. spin splittings 
(due to transverse-polarized gluon exchange) also implies that there is 
a non-zero gluon component .'ntrinsic to both meson and nucleon bound 
states. 

In the case of the baryon wavefunction, one can obtain non-trivial 
constraints on the form of the 3-quark valence wavefunction by making a 
simultaneous analysis of the proton and neutron form factors and the 
$ •+ pp deca> amplitude, assuming the i|> decays via a 3-gluon intermediate 

state (see Figure 6). The observed angular distribution55 for î  •+ pp is 
2 ? 

in fact consistent with the predicted form 1 + 8 c c -. (where 6 is the 
nucleon velocity) and is a non-trivial check of hadron helicity conserva­
tion for exclusive processes in QCD. 

The iC •* PP ratio is given to leading order in a by (Figure l b ) 1 8 

T(4> * 3R ->• TO) _ , , , i n 6 3 , . 1 W <T>2

 (, . . . 
Tit+H + Ei) ~ 3 ' 2 X 1 0 a s ( S > ^ ~ ~ ~ 4 ~ ( 6 ' 1 7 ) 

where \VnAtS* "• . 4 , s - 9.6 GeV , and 

J a 

* * ( * . , . s) x .y , + x-y, 
<T> s I [dx][dy] * ^ *-± 

x 

y i y 2 y 3 C x i c i - ; , i ) + y^ 1 - x i>][ x 3< 1 -y3 ) + 5 ' 3 ( 1 " x 3 ) 3 

« l V s 

file:///VnAtS*


is a well defined function of the baryon distribution amplitude. In the 

case of the nuclear form factors (see Eqs. (4.31, 4.32)) it Is Important 

to use the correct argument for each a in the herd scattering amplitude 

T_ corresponding to the actual momentum transfer which flows through each 

exchanged gluon in Figure 7b. This efface is expected to yield the most 

Important contribution to next to leading order in a and is an Integral 

part of the QCD predictions. It is interesting to note that if 

$- •= A x.x.x, and if all the o_ have the same argument (which is in fact 

the situation in the asymptotic Q •+» limit 9' 1 9) then Eqs. (4.28-4.32) 

give a2 ^ t Q ' ' G M ^ ) • 0. However, the fact that <» is not a constant 

and has different arguments for each diagram in T- allows one to obtain 
P 2 n 7 

empirically consistent results for the normalization7* of <kA<Z >» C„(q ) 
and the <f> * pp decay rate. To ficst approximation one requires27 

- . ( a - v » - » X ) " ° s ^ 2 / 9 ; (6.i9) 

~ 1.5 to 2.0 at Q 2 = 10 GeV 2 . 

The QCD predictions (4.28-4.30) for the proton and neutron form 
2 

factors are only valid at large Q where the effects of mass corrections, 
higher Fock states and finite transverse momentum can be neglected. In 

order to understand these effects we extend the parametrizatlon of* the 
2 2-2 3 quark valence Fock state contribution hy using (Q + M.) in the 

2 2 2 denominators of (4.29, 4.30) and replacing « (Q ) •* «„ (Q + M ) » 

4n/B„ log ((Q 2 + n ) / / . ) to reflect the fact that at low Q the trans­

verse momenta intrinsic to the bound state wavefunctions flow through 

all the propagators. 



Although «e have not tried to optimize the parametrizations, a 
typical fit which is compatible with the proton and neutron form factors 
(see Figure 16) and i|> •+ pp decay data areM_ = l.S GeV, y = 450 MeV, 
a = 300 MeV, and A = 280 MeV, so that a^(Q 2 = 10 GeV 2) = 0.29. [Analyses 5 0 

of higher order QCD corrections to the meson form factors suggest that one 
can identify the A used here with A = 2.16 A_ .3 The computed radius 

mom H!> 

of the 3-quark valence s-ate (computed from G\ via Eq. (4.2)) is however 
quite small: IL, = 0.21 fn, and the valence Fock state probability is 
P . > 1/4. If this preliminary analysis is correct, then, as in the 
meson case, the valence state Is much smaller in transverse size than the 
physical hadron (which receives contributions to its charge radius from 
all Fock states) . 

4 P 2 The most crucial prediction from this analysis is that Q G M(Q ) 
2 2 2 should decrease by a factor of 2 for Q = 10 to Q = 4 0 GeV , a trend not 

2 
at all indicated by the data! Further measurements of G(Q ) are clearly 
crucial in order to check this essential prediction of asymptotic freedom. 

Given the above parameterization of the nucleon valence Fock state 
we can use Eq. (5.8) to compute the 3-quark non-perturbative contribution 
tc the proton structure function at large x (see Figure 17): 

\X 1 -X / v 2 3 -*&( 
G' / p(x,Q*) « x(l - x ) J e W * *' (6.20) 

2 2 Since t a b ~ 0.05, the exponential factor is not very important away 
from the edge of phase space and so it is difficult to distinguish between 
the non-perturbative and (1-x) perturbative contributions at large x 
(see Section V). Higher Fock states |qqqg>, |qqq qq> are e? ected to 
give the dominant contribution at lower x. Despite the freedom in this 
parametrization It is reassuring that one can simultaneously fit a 
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number of diverse nucleoli properties with QCD formulae and parameters 
which are the expected range. 

At low Q the exact formula (4.2) can be used as a further constraint 
on the baryon Focfc states. Eventually one hopes to extend the pred?<-i.lons 
to other domains of baryon phenomenology such as the baryrn decay ampli­
tude in grand unified m. lels and the normalisation of. higher tvist sub-
process contributions to inelastic lepton-nucleon scattering. 

C. Quark Jet Diffractive Excitation30 

The fact that the wavefunction of a hadron is a superposition of 
(infrared and ultraviolet finite) Focfc amplitudes of fixed particle 
number but varying spatial and spin structure leads to the prediction of 
a novel effect in QCD. 3 0 We first note that the existence of the decay 
amplitude IT •* uv requires a finite probability amplitude for the pi -ix to 
exist as a quark and diquark at zero transverse separation: 

*(x,r ±- 0) = Ai" 1'5~'x<l-x)f i r (6.22) 

In a QCD-based picture of the total hadron-hadron cross section, the com­
ponents of a color singlet wavefuncnion with small transverse separation 
interact only weakly with the color field, and thus can pass freely 
through a hadronic target while the other components interact strt y. 
A large nuclear target will thus act as a filter removing from th tarn 

all but the short-range components of the projectile wavefunction. The 
associated cross section for diffractive production of the inelastic 
states described by the short range components is then equal to the elas­
tic scattering cross section of the projectile on the target multiplied 
by the probability that sufficiently small transverse sep >n 



configurations are present In the wavefunctlon. In the case of the plon 

interacting In a nucleus one computes the cross section 

d q - £ o??12* f*x 2(-x> 2 (6.23) 

corresponding to the production of two jets just outside the nuclear 
2 volume. The x distribution corresponds to d<i/d cos8 ~ sin 6 for the Jet 

angular distribution In the qq center of mass. By taking into account 

the absorption of hadrons in the nucleus at ^ i1 0 one can also compute 

the k distribution of the jats and the mass spectrum of the dillrective 

hadron system. Details are given in Reference 30. 

D. The "Unveiling" of the Hadronic Wavefunction and Intrinsic Charm 

The renormalizabllity of QCD Implies that all of the dynamics of the 
K 2 

hadron wavefunctions • <x,,k,j) at scales < much larger than mass 
thresholds is completely contained in the structure of the running coupl-

2 2 

ing constant a (K ) and running mass m(< ) and the quark and gluon external 

line .renormallzatloa constants. Nevertheless, the fact that there are 

different hadronic scales and thresholds In QCD does imply noti-trivial 

dynamical structure of the wavefunctions. In the case of Cpmpton scatter­

ing, yp •*• TP, the energy denominators Csee Eq. (5.3)) are a function of 

2Mv - £? , so that the cross section is sensitive to wavefunctions up to 
2 

the scale K - 2mv. 
As an example of the change of wavefunction physics with the resolu-

2 
tlon scale let us consider a deuteron target. For very low K « 2 M e B E > 

2 
the deuteron acts as a coherent object. At the scale K >> 2Me_ E , thu 

wavefunction corresponds to a n-p bound state. As the scale increases 



2 2 tQ K < 1 CeV , the quark degrees of freedom become relevant and the 
deuteron vavefunctlon In QCD must be described In terms of six quark (and 
higher) Fock states: 7 6 

|d> - a|(uud)1(ddu)1> + b|<uud)8(ddu)8> 

+ c|(uuu)1(ddd)1> + d|(uuu>8(ddd>g> (6.2A> 

v . .. _:• . + • • • 

pie first component corresponds to the usual n-p structure of the deuteron. 
Xhe second component corresponds to "hidden color" or "color polarized" 
configurations where the three-quark clusters are in color-octets, but 
the overall state is a color-singlet. The last two components are the 
corresponding Isobar configurations. If we suppose that at low relative 
momentum the deuteron Is dominated by the n-p configuration, then quark-
quark scattering via single gluon exchange generates the color polarized 
states (b) and (d) at high k j -I.e., there must be mixing with color-
polarized states in the deuteron wavefunction at short distances.67 

The deuteron1s Fock state structure is thus much richer in QCD than 
it is in nuclear ph>sics where the only degrees of freedom are hadrons. 

It is interesting to speculate on whether the existence of these new 
configurations In normal nuclei could be related to the repulsive core 
of the nucleon-nucleon potential,76 and the enhancement76 of parity-
violating effects in nuclear capture reactions. One may also expect that 
there are resonance states with nuclear quantum numbers which are dominantly 
color-polarized. The mass of these states is not known. It has also been 
speculated70 time such long-lived states could have an anomalously large 
interaction -irosH section, and thus accou t for the Judek 7 9 anomaly la 
cosmic ray ai.d heavy Ion experiments.60 Independent of these speculations, 



It fs clearly Important that detailed high-resolution searches for these 

States be conducted, particularly in inelastic electron scattering and 

tagged photon nuclear target experiments, si -.h as yd -•• yd scatter at large 
m 

angles. 

The structure of the photon's Fock states in QCD is evidently richer 

than that expected in the vector meson dominance model. 8 7 For example, 

consider the one-gluon exchange correct lor. to the Y * 19 vertex. For 
*2 * ~ 2 
S. > <7(K ) the vertex correction renormalizes the point-vertex. For the 
*• • « 2 

soft domain A < 1?(K ) one expects large corrections which eventually by 

dispersion theory correspond to the usual p, to, £, .>• interpolating 

fields. The soft corrections thus give the usual hadron-llke component 

of real photon interactions. Nevertheless, the point-like component 

survives at any momentum scale, 6 8 producing point-like correctioos to 

photon shadowing, J = 0 fixed pole phenomena in the Compton amplitude, 

and the "antiscaling" QCD structure function of the photon.89 As the 
2 

resolution seal K increases past the heavy quark thresholds, one adds 

the y -• cc, bb, etc., components to the photon's wave function s. 

It is also interesting to consider the dynamical changes to the 

nucleon wavefunction as one passes heavy quark thresholds. For 
2 2 ic > 4ta the proton Fock state structure contains charm quarks, e.g., 

states |p> ~ |uud cc>. He can distinguish two types of contributions to 

this Fock state. 9 1 (1) The "extrinsic" or Interaction-dependent component 

generated from quark self energy diagrams as shown In Figure 18b—a com­ponent which evolves by the usual QCD equations with Che photon mass scale 
2 Q ; and (2) the "intrinsic" or interaction-independent component which is 

generated by the QCD potential and equations of motion for the proton, as 



STL 
/HK 

1C-8I (a) ( b ) 4239A6 

Fig. 18. Intrinsic (a) and extrinsic (b) contributions to the proton 
juudcc) Pock state. 



In Figure 18a—a component which contributes to the proton Fock state 
without regard to QCD evolution. Since the intrinsic component is maximal 
for minimum off-shell energy & • VT - ^ K k l + m J/x^the charm quarks 
tend to have the largest momentum fraction x in the Fock state. (This 
also agrees with the physical picture that all the constituents of a bound 
state tend to have the same velocity in the rest frame, i.e., strong cor­
relations in rapidily.) Thus heavy quarks (though rare) carry most of 
the momentum In the Fock state in which they are present—In contrast to 
the usual parton model assumption that non-valence sea quarks are always 
found at low x. One can also estimate using the bag model and perturbative 
QCD that the probability of finding intrinsic charm in the proton is -1-2%. 

The diftractive dissociation of the proton's intrinsic charm state 3 1» 3 0 

provides a simple explanation why charmed baryons and charmed mesons which 
contain no valence quarks in common with the proton are diffractlvely pro­
duced at large x^ with sizeable cross sections at 1SR energies. Further 
discussion may be found in Reference 31. 



» 

VII. CONCLUSION 
In these lectures we have discussed the application of QCD to hadron 

dynamics at short distances where asymptotic freedom allows a systematic 
perturbative approach. We have shown that it is possible to define the 
perturbative expansion In » (Q ) *» such a way as to avoid ambiguities 
due to choice of renormalisation scheme or scale, at least In the first 
non-trivial orders. 1 4 Our main emphasis in these lectures, however, has 
been on how to systematically Incorporate the effects of '.he hadronic 
wsvefunction in large momentum transfer exclusive and inclusive reactions— 
thus leading to a broader testing ground for QCD. We have particularly 
emphasized the Pock state wavefcnctions \& (x.,k .; k.) which define the 
hadron in terms of its quark and gluon degrees of freedom at equal time 
on the light-cone, it Is clear that a central problem of QCD Is to deter­
mine not only the spjctrum of the theory but also the basic bound state 
wavefunctions of the color singlet sector. Such solutions may be found 
in the near future using lattice numerical methods, particularly by quan­
tizing at equal tine on the light-cone, or by more direct attacks on the 
QCD equations of motion for the f , as discussed in Section III. 

Even without explicit solutions for the * , we van make a number of 
basic and pbenomenological statements concerning the form of the wave-

27 functions: 
(1) Given the ip we can compute the single and multiple quark and 

gluon distribution amplitudes and structure functions which appear as 
the coefficient functions in the QCD predictions for high momentum trans­
fer exclusive and inclusive reactions, including dynamical higher twist 
contributions. We have also emphasized general features of these distri­
butions, Including hellclty selection rules, Lorentz properties, connections 



with the Bethe-Salpeter amplitudes, renormalization properties, and cor­
respondence limits in the non-relativlstic weak binding approximation. 

(2) The perturbative structure of QCD leads to predictions for the 
* 

high V, x •* 1 and far-off shell behavior of the wavefunction. In par-
ticulir, the large k power-lav behavior f - k, of the valence wave-
functions and the \<l>\ •» k~ behavior of the higher Fock state contributions 
lead to QCD evolution equations and light-cone operator product expansion 
for the essential measures of the wavefunctions, the distribution amplitudes 
• M(x,Q) and 4j.(x.,Q), and the structure functions. We have also emphasized 
the fact *hat the valence wavefunction behavior *„ - k| implies that the 

2 2 4 
high k behavior of quark and gluon jet distributions dN/dk. is ~l/k,, 
not exponential or gaussiati. 

(3) Important boundary values and constraints on hadronic wavefunc-
tions are obtained from the weak and electromagnetic decay amplitudes, 
including i|> •* BB. The distribution amplitudes are measurable in detail 
from the angular behavior of the ry •* MH and 8 3 yv •*• BB amplitudes. 

(4) By assuming simple anilytic forms for the valence wavefunctions 
in the non-perturbative domain, we have found consistent parameterizations 
which are compatible with the data for hadron form factors, decay ampli­
tudes, etc. An important feature which emerges from these studies is that 
the valence state is more compact in transverse dimensions than the physi­
cal hadron. Even at a low momentum transfer scale, hlghor Fock stacc-* 
play an important role, i.e., there is no scale where the pro-,on can 
be identified as a 3-quivrk valence state. This observation may be com 

patible with the traditional nuclear physics picture of the nucleon as A 

central core, surrounded by a light-meson cloud. 



(5) The fast that there is a finite probability for a hadron to exist 
as Its valence state alone, implies the existence of a new class of 
"directly-coupled" semi-inclusive processes where a meson or baryon is 
produced singly at large transverse momentum, or interacts in a high-
Domentum transft . reaction without accompanying radiation or structure 
function evolution.29 As in the ease of dire'.-tly-coupled photon reactions, 
the hadron can interact directly with quark and gluons in the short-
distance subprocess, with a normalization specified rigorously in terms 
of the distribution amplitudes or form factors. Examples of these sub-
processes are qq + Bq, gq -*• Mq, Hg + qq, Bq •*• qq. We have also discussed 
an Important contribution tc the longitudinal meson structure function 
M 2 

t. ~ C/Q , involving direct-coupling of the meson• somewhat analogous to 
the photon-structure function. The finite probability for a meson to 
exist as a qq Fock state at small separation also implies a new class of 
diffractive dissociation processes. 

(6) The Fock stote description of hadrons in QCD also has interesting 
implications for nuclear states, especially aspects involving hidden solar 
configurations. Mora generally, we have emphasized the idea that the far-
off shell components of hadron wavefunctions can be "unveiled" as the 
energy resolution scale is increased. For example! the existence of heavy 
quark vacuum polarization processes within the hadronlc bound state 
implies finite probabilities for hidden charm Fock states even In light 
mesons and baryons. The diffractive dissociation of these rare states 
appears to provide a natural explanation of the remarkable features of 

31 
the charm production cross sections measured at the ISR. 



(7) We have also emphasized the impor :ance of initial state inter­

actions In ell inclusive reactions involving hadron-hai con collisions. 

The initial state interactions disturb the color coherence, k, distribu­

tions, and at low energies the x-dependence of the incoming hadronic 

distributions. Despite these profound effects on the hadronic Focfc 

states, some of the essential features of the QCD predictions still ara 

retained, A detailed discussion is given in Reference 20. 

'•"'Thus, in summary, we have found that the testing ground of perturba-

tlve QCD where rigorous, definitive tests of the theory can be made can 

how be extended throughout a large domain of large momentum transfer 

exclusive and inclusive lepton, photon, and hadron reactions. With the 

possible exception of hadron production at large transverse momentum, a 

consistent picture of these reactions Is now emerging. By taking i.»to 

account the structure of hadronic wavefunctions, we have the opportunity 

of greatly extending the QCD testing ground, unifying the short and long 

distance physics of the theory, and eventually making contact with the 

realm of hadronic spectroscopy, low momentum transfer reactions, and 

non-perturbative physics. 
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