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, I. INTRODUCTION
Quantun ‘Chromodynamics 1s a renormalizable non-Abelian gauge field . l
theory of quarks snd gluons, based on the principle of exact local :
8U(3)=color symmetry.! From the experimental standpoint, there is now
impressive evidence? that QCD is a viable theory of hadronic phenomena.
fhe most important phenomenological evidence for QCD comes from inelastic
lephonkscattering, ete” annihilation processes, and thosa high momentum
transfer axclusive and ineclusive reactions where the structure of pertur-
bative quark and gluon subprocesses can be studied in relative isolatiom
from the bound state dynamics of the hadrons, From the theoretical stand-
point, the elegant structure of QCD makes it appear almost compelling as '
a fundamewtal theory of hadronic phenomena, even though many crucial
questions concerning quark and gluoa confinement, and the effects of non-
perturbative phenomena remain unanswered.? ‘
A critical featura of QCD is asymptotic freedom," 1.,e., the logarithmie
decrease of the effective quark and gluon coupling coustant a () with
uomentum transfer which implies that the strong interactions become wzak,
end even calculable in perturbative theory at short distamce. The fact

that the annihilation ratio

o+ -
R, () = gfe e -+ hadrons) a.1)
e

ate’e™ + h)
is empirically’ close to the zeroth order QCD prediction R® = 3 E e: for
energies gbove the heavy quark thresholds 1s a crueial chack of asymptotice
freedom and the color, ‘charge, and spin assignments of the guark quanta
in QCD. Critical features of QCD are also confirmed by the observed
logarithmic breaking of scale-invatiance in deep inelastie lepton~ '

lcntte::l.ngz and the measurements of two-jet and three-jet structure of



a'e” annihilation final states.’ The recent observations of jet structureS
in two-photon reactions (consistent with Yy + q4 subprocesses), and
messurements? of ihe photon structure function also provide fundamental
checks of predictions which are csse'ntially unique to QCD. However,
despits these successes, there is no direct experimental svidence for
(near) scale-invariamt ‘quark-quark, guark-gluon, or gluon-gluon scattering
all-ﬁ:lmdes as predicted by QCD; the cross section for large transverse
somentul hadron production in hadronm-hadron collisions appears to reflect
mich more ennpucated dynamical mechanisms. On the other hand, as we

g

discuss in Section IV, the fact that the proton form factor GM(Q ) scales
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an {Qz) =2 teﬂecte the fact that the minimum Fock state in the nucleon
contains 3 quarks, snd that the internal quark_-qu interactiona which
control the nucleon wavefunction at short distances are consistent with
scale invariance,®'9 Thus far experiments are mot sufficiently sensitive
to distinguish a logarittmically decreasing aB(Qzl fron a constant; 1.e.,
fixed poiot behavior. The sensitivity of the mucleon form factors to the
forn of c.(Qzl is discusged in Section VI.

Although there have been remarkable technical achicvements in pertur-
bative QCD calculations in the past Few years.l*2»19 there has also been
ghg realization thnt precise and detailed comparisons with experiment
require consideration of effects amd phenomena not readily computable
v.l.l:i: present methods. There are, in fact, only 8 very few large momentum
transfer proceases which can be studied rigorously to all orders in .
perturbation theory such as R 4 {s),! the meson form factors Fu(Qz)u

W(anp the two photon procasm" vy Mt at large momentum

tranasfer, l:he photon structure function,!3 and the Q -evo].u:ion of the



hadron structure functions. Although, in principle, thaese processes ean
be ca.lcuial:ed to arbitrary orders in perturbation thecry, in practice,
there are serious complications involving the dependence of predictions
made to finite order on the choice of renormalization scheme and the scale
parametrization chosem for the argument of us.z'“ We shall discuss a new
methodl® for avoiding the ambiguities im Section II. Aside from this,
:h;u is always the question of the radius of convergence of the pertur-
bation expansion. Even for processes which can be calculated to arbitrary
orders in a g» there are (presently) uncalculable power-law suppressed
(higher twiat) contributious!S which must be included in detailed fits to
experiment, especially at the edge of phase space.“

In the case of jet production, (CD-based predictions based on the
alemenltary features of e'e” - qq and qqg, YY * 949, etc,, must also take inte
aceount higher twist contributions, model-dependent non-perturbative
effects intrinsic to hadron formation and déeay,s and possibly dynamieal
effects due to quark confinement.? In the case of some exclusive processes
such as the baryon form factor there are non-leading QCD centributions
which are asymptotically suppressed by Sudakhov form factors.?'10 The
precise evaluation requires an all orders resumption of perturbation
theory. QCD predictions for elastic hadron-hadron scattering are compli-
‘cated by the presence of Landshoffl? pinch singularity contributions which
are only partially suppressed by Sudakhov form factors.:? Despite thege
conplications, we can still derive general properties for excluaive ‘
reactions such as hadron-helicity conservation!® and the leading power-
lavw behavior.!®

An even more interesting (and perplexing) situat:lon' oceurs for all

inclusive high mcmentum transfer inclusive reactions involving hadronic




inicial states such as Drell-Yan massive lepton pair production, direct
photon .production, snd large Py hadroa production., As shown in Reference
20, initial nac; interactions violate the usual QCD factorization theorem
' order by order in perturbation theory and affect the normalization and
transverse momentun dependence of the inclusive cross sections. In
addition, final state 1nqeractiuns also afgect the assoclated multiplicity
and transverse momentum dependence of tha outgoing jets in deep inelastic
lepton soattering resctions. A detailed report on these effects is _
given in Reference 20.

Perhaps the most serious complication to QCD phenomenology is the
presence of higher twist cubprocesses, since power~law suppressed contri-
butions can often mimic (and thus confuse the identificntion)lof the
logatithmi; modifications predicted for the leading twist contzibutions.16
Examples of this for deep inelastic structure functions and fragmentation
distributions are discussed in References 21 and 22 and Section_!t__!g“;
the case of three-jet production in efe” annihilation, higher twist terms give
contributions?? d!ldkf-~ (gf)fz-for the hadron transverse mcmentum distri-
bution in quark aud.gluon fets. These hard components cam-complicate the
separation of the-e'e” + qig and e'e” + q3 subprocesses. In the case of
hadron production at large transverse momentum, “dfrect-coupled” higher
twist subprocesses such as gq + 7q actually dominate? the leading twist
qq *+ qq + qnq subptoceéa at large Xp ¥ 2911151 Evidence for direct~
coupled 7q + y*q subprocesses in mp + u'p x reactions is discussed in
‘Section V and Reference 22. _

Present QCD phenomenology is also fncomplete in the sense that although

much attention iz paid to the Qz evolution of hadrom strueture functions
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there 18 no real understanding of the basic x-dependent form of the quark
and gluon distribution in hadrons, or how to relate them to other hadronic
phenomena. The relation of the x ~ 1 behavior of structure functions to
the exclusive fixed W2, high ¢° domain 1s only roughly understood.25 The
x ~ 0 behavior of structure functions ami the comnection to the photoab-
sorption cross section at fixed Qz, high v, and nuclear shadowing phenomena
is also not well understood.26

The main purpose of these lectures is to begin to extend QCD phenocmen-
ology by taking into account the physics of hadronic wavefunctions,2? Our
eventun! goal is to obtain a ﬁarametrizatinn of the wavefunctions which '
will bridge the gap between thc.-: non~perturbative and perturbative aspects
of QCD. The latk of knowledge of hadronic matrix elements 1s the main
difficulty in computing and normalizing dynamical higher twist contributions
for many processes.

In Section III we emphasize the utility of a Fock state representation
of the meson and baryon wavefunctions as a means pot only to parametrize
the effects of bound state dynamics in QCD phenomena, but also to i.nter-‘
relate exclusive, inclusive, and higher twist processes. It is parucl_ﬂ_.a.rly

convenient to choose a momentum space Fock state basisl9s27

n
g (x,u.sl) Zx -1 , ztu"" ge--T e} 272

i=] =1

defined at equal “time™ r = t + z on the light-cone. Here

- —

= (k% + ka) I «® + ps), f_l 4» and X, specify the longitudinsl and trans-

verse momenta and spin projectinn sz of each (on-mass-shall) quark aand

gluon in the p-particle Fock state (n > 2 for mesons and o > 3 for baryons).

We also choose the light-cone gange AF =24 A3 = 0 go that only physical

- . . wt e m ca——— - . D ———— e
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polarizations of the gluona occur. The color singlet wavefinctions are
regulated so that they are finite in bc;th the infrared and ultraviolet
regimes, 28 .

There are a mnbct of reasons why this tepre;entation of hadrons in
j terms of the quark and gluon degrees of freedom is usefuli

{1) In light-cone perturbation tkeory, the perturbative vacuum is
also an eigenstate of the‘ cotal QCD Hamiltonian on the light-cone; pertur=
bative calculations are enormously simplified by the absence of vacuum to
pair production amplitudes.

(2) ALl form factors, charge radii, magnetic moments, etc., have
exact expressions in terms of the w .

(3) The structure functions G (x,Q) and G (x,Q) {and more generel
miltiparticle d:l.stri‘hut:l.nns) wh:lch cantrol 1arge momen.tum transfer (lead-
ing and higher twist) inclusive reactions, and the distribution amplitudes
#{x,Q) which control large momentum transfer exclusive reactions (and
directly coupled inclusive reactioms) are;' each spet_:ific,_ b.asliq.
meagsures of the wn. Fxamples of these calculations are schematically
1llustrated in Mu 1 through 3.

(4) Other phyaical quantities such as decay amplitudes provide .
rigorous sum ru'e or local constraints on the form of the valence com-
p‘ox;enta of meson and baryon wavefunctions.2

The cutline of these lectures is as follows. In Section IX we give
& brief introduction to GCD and asymptotic freedom, We them discuss a new
method te evoid scheme and scale ambiguities in perturbative QCD predic~
tions. In Section III we give a detalled discussion of light-cone pertur=

bation theory and qhe FPock state expansion of hadronic wavefunctions.
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Fig. 1. Calculable large momentum tramsfer meson processes in QCD, and
their conrection to the meson Fock state wavefunction ¢ 3 and
distribution amplitude ${x,Q). Only a representative
diagram for ch: hard scattering amplitude T, is shown. {a) The
y¥ *+ 7° transiction form factor (measurable in single tagged oe -+ ee 79
experiments), (b) the meson form facter, (c) the yy + M¥ scattering
anplitude. Details are discussed in Section IV.
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Fig. 2. Baryon processes at large mowearam transfer in QCD and the con-
nection to the baryon Fock stute wavefunction. (a) Baryon form
factors, (b) heavy quarkonium decay T + pP, (e) deep inelastic
lepton~baryon scattering. Only representativa contributions are
shoum. The inclusive cross section and struecture function G ,B(x.q)
is eomputed from the Square of the baryon wavefunction 1

. summed over all contributing Fock states.
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Example of QCD-computable higher twist "direct—coupled" sub-

processes for inclusive reactions. The subscript D indicates

that the hadronic wavefunction is invglved directly in the

high womentum tranefer subprocesses. (a) Direct production of

high pp mesons in hadren-hadron cross section, The predicted

cross section is proportional to the meson form factor FM(PT)

times the leading twist cross section. (b) Higher twist cofitri- .
bution to meson-induced massive lepton pair production. The

predicted cross gection is equivalent to a contribution 1? (x.Q%) ~ C/q2
to the longitudinal structure function of the meson.

{c) Direct meson production of quark jets in meson—baryon

colligions. All of the meson energy ic used to produca jets at large
transverse momentum. The cross section is proportional to F (p%)
timas the leading twist qq + qq cross section. (d) Direct
production of anl::l.-qum:k jets in BB collisions. The cross section
ia proportional to Gu(p ) times the leading twist qq » qq cross
section, In each case the direct precess dominates over the
leading twist contribution in a large X kinematic region.

t
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The QCD equation of motion is also discussed. In Section IV we discuss

measures of the hadronic wavefunction (form factors, maguetic moments,

" ete.), and the QCD analysis of high momentum transfer exclusive processes.

We also show how meson distribution amplitudes can be measured in yy + M4

" reactions. The connection of the Fock atate basis to leading and higher
twist contributfons to deep inelastic scattering is given in Section V. )

""In Section VI we discuss how many different QCD processes are interrelated

(as in Figures 1 through 3) through the hadronic Fock states. We also
discuss a novel type of QCD subprocess—~direct counpled hadron-induced
reactions.2® A new prediction for the proton form factor is aleo given.
‘.In_Séctiop_YI_wg also 1ntrodﬁée.gisimp1e phenomenologylof hadron wavefunctions
and discuss present constraints on the form and normalization of the
valence meson and nucleon Fock states. An important conclusion is that

the valence fock state as defined at equal time or the light cone appears
to have a significantly smaller radius than that of the physical hadrom;27
higher Fock states thus play an essential rele in low momentum transfer
.phenomenology. Applications to quark jet diffraction excitation3? and

the hidden heavy quark Fock state siructure of hadrons are aleo discussed.3!
zTh_e- effects of initial ‘and final state interactions on QCD inclusive reac-

‘tions are discussed in Reference 20.
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_ II. BASIC FEATURES OF QCD
In.qml:um chromodynamics the fundamental degrees of freedon of
hadrons and their intersections are the quanca of quark and gluon fielde
whi-h obey an exact internal SU(3) (color) symmetry. The spin=1/2 quarks
are in the fundemental (triplet) representation of SU(S)c. the spin-1

luons are in the adjoint (octet) representation, and badrons are identi-

' fied with ginglet states; e.g., mesons |[M> ~1§114131> and baryons

|z> ~Zeijqulqjqk>. In addition, gluonium (color-singlet bound states
of 2 and 3 gluons) should exi:.t. As we discuss in Seetion VI, new types

of "hidden color" auciear states are also predicted in QCD. The different
types of querks u,d,s,c,b,... are distinguishable by their flavor label

and mass. It is well known that the gemeral atructure of QCD meshes remark-
ably with the facts of the hadronic world, especially quark-based spectro-
scopy (including the charm and beauty quark systems); current algebra; the

dimensional-counting parton-model structyre of large momentum transfers

- reactions (up to computable logarithmic corrections to scale-invariance);

the scaling and magnitude of c(e+e" -+ hadrons) and large transverse momen-
tum yy reactions), the gemeral features of jet production in e'e collisions
as well as the narrowmesa of the p and T. Experiments at large momentum
tranafer, both exclusive and inclusfve, are consistent with the (CD postu-r
late that the electromagnetic and weak currént.s of ixadrons are carri~d by
point-like spin-1/2 quarks which interact via a Dirac coupling to spin-1
gluons. .
An essential feature of QCD 1is that SU(3), is an exact local

symsetry: rotations in color epace can be made independently at dany




space-time point. The mathewatical realization of this is the Yang-Mills
non-Abelian gange field theory. The QCD Lagrangian density 1g!

- 1
B =P -w y-L P @.n
¥ - 197 + ga¥ (2.2)
Y o %A - %A% 4 glat,A") 2.3
Here
9y (x)
v(x) =1 q.(x)
qB(x) F

is the color triplet of quark fields, and &Y (x) = ; A aA'a"(x) is the

8
color octet gluom field summed over the 3 x 3 traceless matrices A a
antisfyi’ng D‘a"‘b] =1f e and T[22 ] = 26 EQCD is obviously a
color singlet. Local gauge invariance ‘and color symmetry follows from the
invariance of '?QCD under the zeneral gauge transformation

v(x) + U(x) v{x} (2.4)
M) + U M@ Ul + L 2 vl v 1x) (2.5)

where the unitary matrix U(x) =exp 1 z A8 (x) is ar arbitrary function
of space and time. Note that the fre1d strength PV(x) + u(x) ¥ v i)
is not invariant since it is In the adjoint representation of SU(B)C.
The local gauge invariance of the Yang—!ﬂ.llé is essential ingredient
in proving the renorr. ‘zebility and comsistency of the theory.l

In general, = oun uver quark flavors { = y,d,s,c,b... i8 uur.lerstoor:l
in ‘QQCD‘
electromagnetic interactions are takem into account.)32 The fundamental

. {In fact the mass matrix ":lj is not diagonal when the weak aund




origin of the quark flavore and their masses rerains an outstanding

problem in hadron physics.

In a sense QCD can be regarded as the non-Abelian generaligzation of
QED: .

Logp = VOB - w) ¥ - F o

where 10" = 13" + eA¥, F*Y = 3¥a” - 3Va¥. From the point of view of
formal perturbation theory there are close similarities in the Feymman
rules and treatment of ultraviolet renormalization and infraved divergences.
The FPeynman rules for QCD are given in Table I, In the case of covariant
gauges one must formally include "ghost™ scalar particles in loops, or
else unitarity of amplitudes involving the non-Abelian-couplings will be
loat. In the case of axial gauges (n“Ap = 0 where n* s a f:l.:éed b=yactor)
there are no ghosts, but renormalization is somewhat mora compliceted.
The’color trace algebra for any Feynman diagram can be done almost auto-
matically using the graphical rules givea by Cvitanovic.?® The main .
algorithm is that as far as color is concerned, the gluon propagator ~ in
SU(N) 1s equivalent to two quark lines T minus 1/N times the identity (to
remove the U(N) einglet). The complete rules are given in Reference 33.

Although GCD and QED perturbatfon theory have many similarities, there
are non-perturbative aspects of the non-Abelian theory which h;we no

analog in electrodynmamics, @.g., classical (“instanton") solutions to the

pure gauge theory, These solutions can have profound consequences for the

QCD vacuum state.3% Furthermore, the absence of asymptotic color states
implies that, at best, the perturbation rules are on'ly valid in a far-off-

shell short-distance regime.
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Fortunately for many processes of experimental interest it is pos-
sible to prove factorization theoriles which separate the long-distance
dynantcs associated with the hadron wavefunction and rolor confinewent °
from quark and gluon subprocesses which only imvolve short distance propa-
gation of color.35 If this factorization can be proved to all orders in
perturbation theory, it is reasonahle to assume that the corresponding
perturbative predictions are legitimate predictions of the complete
theory. In the case of predictions dependent on hadronic fragmentation
from quark or gluon jets one has to make an extra assumption that the
essential effects of color confinement ara restricted to large distances.? '

Ae in QED, one can sum the effects of vacuum polarization into &
Yrunning” coupling constant (a_ = 32/411)

us(Qg)
1 - o @[re? - z(ed)]

8, = (2.7

wherae w(Qz) can be computed (1n__scpze gaugf.s) from Ehg_'éihgle-;a—aéi:iél;a;-'_
irreducibls contributions to the gluon propagator. Given the gluon
propagator at any scale Q: one can use Eq. 2.7 to determine the effective
iateraction at the scale Qz. To lowest order in petturbation theory the
quark and gluon loop insertfons give [qz,qo >> m ,1=1, 2...11!]

" at - aed = 10 2 2, - 1] + 0 2.0

i,e., for ng < 33/2, cB(Qz) decreases with Qz, exactly opposite to QED.
More generally, mae camr calculate the Qz dependence of e, in higher orders

)
2 log Q

5 0, = 8o, @] = 22 oXedd - ?—‘*;— addh T @9
G

+ ...




vhere! 8 = 11 - 2/3n,, B, = 102 ~ 38/3 n,. The solution for gacqﬁ at

large Qz to two loop accuracy then has the form

ay(@h = =z & 2 @0
8, log + == log log
N+ Az ﬂo AZ

where A 19 introduced as a comstant of integration. The fact that us(qz)
'decieasas at large momentum transfer [asymptotic freedom] is an extra-
ordinary feature of QCD which :Ln'principle_allowa a systematic computation
of ghort distance processes. A graph of u‘s(Qz) gshowing the effect of the
“1”0 term 15 shown in Figure 4. It should be emphasized that perturbation
rheory does not determine the form of A at small Q2 where its magnitude
becomes large. As noted by Pariasl and Petronzio.“ consistent calculations
of perturbative loops demand that us(Qz) remains fiunite at all values of
the .loolp integration. Thus far there is no direct experimental evidence
that a,(Q’) decreases logaritimically. ) .

If we choose Q: to be the ultimate ultraviolet cutoff scale of QCD
then °9(Q§) = ¢: is the "bare charge™ of the theory. We can then identify
a‘(Qz) a8 the effective coupling comstant which tekes into account all
vacuun polarization contributione of invariant ma.s .47 2: Q2 < .Jtz < Qg.
Similarly, we can define the ruaning quark mass m(Qz) which takes into
acuountallself-energyinsertionsintherangeqzc.ll2<qg.

- Let us pow define a cutoff Lagranmgian s"&m density for QCD by
excluding all intermediate states with uﬂz > xz. The fact that the

theory is renormalizable implies that

2501) - ;5(13 + gl)L - m(l:)) ' '%Tr F°
(2.11)
+ 5"1"'!!(-;) ¥ awr‘“’ V...
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Pig. 4. The QCD coupling constant «_(Q?) for ng = 4 to one- and two-
loop accuracy. Empirieal cpecifications of R in & given scheme
should always use the two loop formula Eq. (2,10).
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i.e., 81l offects of very high musc states u(fz > k% are completely con-

tained in the effective couvpling counstant g(x), the quark ruaning mass
n(r), and "higher twi:at" power-law suppressed 1/1:2, 1[::", etc., terms.

1 ? is taken at the ultimate cutoff scale,qg then QECD 15 the bare
Lagrangien, If “2 is chosen sufficiently large then the higher twist ..
V téms -are nesl.is:l.l;l_e in (2.11?_._ )

The classic perturbative calculation in QCD is that of the annihila-

tion crose gection o‘,‘_ - + hadrons which can be computed from the hadronic
absorption part of the forward e'e —+ e'e  amplitude to order a?, Since

there are no external eo].or charges there can be no gluon-mass infrared

d:lvergencee or quark mass s:l.ngularitim.  Thus the orly relevant scale
is Qz -g= B:m' and we can compute perturbatively from .? Qe with |= = Qz.

The result to order u:(qz) is

[ Beh oeh
,,__(Q)-SE [1+ Tt T3 (B+Anf)+... (2.12)
q

T o —————

wbere the A nf term ari.sea fmm vl.rtual quark 1oops.' A; _e's;t.a'ntial‘ end

un:l.que p:eueuon of asymptotic freedom is that Q2 R(QY = 3 Ee = R°,
the free quark prediction. The specific values of B and A in Eq. {2.12)
depend on the method of implementing the ultraviolet cutoff. In the MS
scheme (8 particular dimensional regularization scheme) one £inds®?

B= 1,98, A= ~0.115. However, in analogy l;o QED, it is clear that the
Ant term should be 1den.t:l.£1ed with tae fermion loop vacuum polarization
contribution to the running coupling constent in the us(x)/n term, the
particular numerical value for A is rather arbitrary since we could have
chogen any scale Kz = tzqz for the perturbation expansion. Im QCD, a

1s essentially a function of By = 11 - 2/3 ng, Thus we write B + Ang =

-3/2 BOA + C, where C = {33/2)A + B = 0,0825 must be scheme independent



R ":i.

(since to the order of interest the cutoff schemes can only differ by the

definition of the scale constant Az). We thus have the QCD predictioni!®
2

2 2 : 2 ;:s(fzqz) s
R.+‘.(Q ) -3 eq 1+ ——"— + 0.0825 -i + e (2-13)
L4
q

Where £ m £ = en 2 0.71 in the MS acheme. Let us imagine that eventually

u3
measurements of T e » (0?) badrons
can choose R(Qz) to define a "camonical™ measurement of the QCD running

will be.sufficiently accurate that we

coupling constant:

uz(qz) - [mz—)—i] [1 - 0.0825 (5—:0"—0)]

o
o R - R (2.14)

ulf(fznzl .
Our goal is then to show that all observable;s in QCD which have a pertur-
bative Iexpansion in a  can (in principle) be expressed in terms of a::(Qz)
without any schems or scale ambiguity. We will define the scale parameter
A = AR using Eq. (2.10) for o’

We thus propose the following pr scripticm for making scheme and
scale independent perturbative QCD predictions:“ For auy observable
a(Qz) which has a perturbatfve expansion in us(qz) one can compute in a :
glven renormalizetion scheme . T -

«, @ a3(Q

p(Qz) £ ] . - + (Apnf + Bp) 'z + v (2’15)

As in the case of R(Qz), we identify (-3/2) BOAp as the vacuum polarization
correction to the running coupling constant ia the qslu term. Thus

R, 2 '
@
O(Qz) = aB QD + cp(:"g) + aen (2116)

g
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-~ 3A - .
Gme® e C (2an
and :
c =324 4+
s =2 A Y (2.18)

are scheme—indegel::dent. The leading order prediction for p(Qz) can thus
be vritten unambiguously in terms of a.g. I cp c.l'ir is .reasonably small,

then we expect that Eq. (2.16) gives a meaningful parturbative QCD predic-

“tion. 4n 1mporr.an:' task will be to carry out the above procedure to

higher orders in a_.

As an example of the above method, let us consider the decay rate
for peeudosealar quarkonium states which ie computed in terms of Q3 + gg

plus higher arder subprocesses, In the ¥S scheme:2? (C 1s a known color

factor)
‘ -
. Ms
T'{n_ + hadrons) - 2 Q.
c - MS 5 ¢ ._8
—e " [us (Mic):l 1+ (7 -8a )+ .

(2.19)

= c|e® (¢.am )2 21+2461:~+ g
s \ (37 -46 — )
f.e.: the effecti;'é'sélé in the vacuum polhfizatibti ‘contributions

ig ~0.37 H“ relative to the scale in e'e” + hadroms. If a = 0.2, then
¢

the correction term in Eq. (2.19) gives only a 7% correction te the deter~
mination of c_. In the case of the hadronic decays of I% = 17 heavy
quarkonium states, the correction to the QQ =+ 3z decay amplitude appears
to be very large se that the leading order expressions may not be meaning-

ful, One Finds*?

e e 4

Sy




‘»_r ——. eere a

I(T = hadrons) , ng 2 [ (('2%)2)]3

o+ Blx °

R
a
{1 - 13.9aT’+ }

For a s = 0.2, the correction term gives a correction of order 30% to the

(2.20)

determinagtion of L Wote that even in QED, the radiati;re carrections to
orthopositronium decny are very large:

F3, = 13y {1 -6 @+ } (2.21)

3y "
o this appears to be an intrinsic problem to this type of decay process.
Additionally, the QCD prediction for quarkonium decay is -complicated by
some uncertainties from relativistic and higher Fock state components in
the quarkonium wavefunction.

One of the most important predictions from QCD is the logarithmic

. 2 1
variation of structure function moments, Mn(q ) = _/; dx x“FSCx,Q).

_Using the sbove renormalization procedure wa find!®

dlogQ

vhere the Y, are known anomalous dimensions (see Section 1V). The coef-
ficient Gn variea from ~0,27 o 1.1 for non-singlets moments n = 2 to 10,
thus giving reasonably small corrections to the lowest order predictions.
The monotonic decrease of fn with n reflects the fact that the momentum
scale for gluom emission becomes increasingly zeal:ricfed at large n

(€1 - x> ~ 0{1/n)) due to phase-space effects.*! Further applications
and discussions will be _given in Reference i4. We 1ilso note that in

processes with geveral large momentum transfer scales, the effective
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argument for uf in the leading order predictions caun be very complicated.

For example in the case of large Py jet production due to qq + gqq scatter-

':lng. the subprocess scatteriung amplitude involves Sg evaluated at the

subprocess invariants t and G, whereas the evolution of each hadronie

structure function is semnsitive to Its respective x-dependent phase-space

boundary as well as the guark momentum transfer.

r



III. HADRONIC WAVEFUNCTIONS IN qc_:n”r -
Even though quark and gluen perturbative subprocesses are simple in

QCD, the complete description of a physical hadronic process requires the

conelderation of many different coherent and incoherent amplitudes, as

well as the effects of non-perturbative phenomena assoclated with the

hadronic wavefunctions and color confinement. Despite this complexity,

it is still possible to obtain predictions for many exclusive and Inclusive

reactions at large momentum transfer provided we make the ansatz that the

effect of non-perturbative dynamics is negligible in the short-distance

and far-off~shell domain. (This assumption appears reasonable since a

linear confining potential V ~ r is negligible compared to perturbative

1/r eontributions.) For many large momentum transfer processes, such as

deep inelastic lepton-hadron scattering reactions and meson form factors,

§ue can then figorousiy isclate the long-distance confinement dynamics

from the short distance quark and gluon dynamics--at least to leading order

in l/Q2.35 The essential QUD dynamics can thus be éém uted from (irreducible)
- - - - - - —— - - - P B - . - . -

" quark and gluon subprocesses amplitudes as a perturbative expansion in an

asymptotically small coupling constant us(Qz).

An eegsential part of the QCD predictions 1is the hadronic wavefunctions
which determine the probability amplitudes and distributions of the quark
and gluons which enter the short distance sgbprocesses. The hadrenic
wavefunctions provide the link between the long distance non-perturbative
and short distance pertﬁrbative physiecs. Eventually, one gan hope to
compute the wavefunctions from the theory, e.é., from lattice or bag models,
or directly from the QCD equations of motlons, as we shall outline below.

Knowledge of hadronic wavefunction will alse provide explicit commections




between exclusive and inclusive processes, and will alliow the normaliza=
tion and specification of the power iaw {higher twist) cozrecticns to the
leading iwmpulse apprqximntion results. As we shall discuss in Section VI,

" there are s nmmber of novel QCD phenomena associated with hadronic wave-

functions, including the effects of intrinsic gluons, intrinsic heavy
quark Fock components, diffraction dissociation phenomena, and "direct™
hadron processes where the valence Fock state of a hadron enters coherently
duto a short-distan;:e quark-gluon subprocess.

The most convenlent representation of a wavefunction in a relativistic
field theory is to use a momentum space Fock state basls defined at equal

“time" t = t + z on the light come (see Figure S5a);:%?

{0z 2} (3.1
Momeutum conservation requires
: g =0 Z;xu, D<x, <1 . (3.2)
= 14 £ 4 1

The 'i“ are the transverse momentum of the {on-mass-shell) constituents

re:l.;tive to the bound state 3-momentum ¥ = PI3, The x; are the light-

cone momentum fractions (k* =-1% s k3, A'B = %(A"'B' + A-B"') - Il . ﬁl )

k': «° + k3)1
X, »=—xB (3. 3)
1 1’+ P + P3

{In & frame where Ps + o, the x 5 a-.ra the lonéitudinal momentum fractions.)
The usss shell condition 18 k% = n?, or &~ = (k2 + u?)/k*. 4s we sball
see, the equal-t formalism is equivalent to the usual Schroedinger equal;.
time theory in the non-relativistic limit.

A unique and remarkable advantage of quantizing a relativistic theory

at equal v 1s the fact that the perturbative vacuum state o> is aiso an



Fig. 5.
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(a) The n—-particle Pock state amplitude defiuved at equal 1.

The state is off the p~ light-cona energy shell (see Lg. (3.12)).

(b,c) Examples of light-cone time-ordered perturbation theory
calculations. The frame 1s chosen so that k¥ > 3, {d) qQCb
equation of motion for the meson wavefunction.



eigenstate of the full Hamiitonian. Matrix elements where particles
are créated out of the vacuum are excluded because of the fact that
all particles must have RI > 0. Furthermore, the.charge operator and

the current J* = 3% + 3% are diagonsl in the Fock state basts. It 1s

parvicularly advantageous to choose the light-cone gauge at =2+ A’ =¢
since unphysical degrees of frecdom do not appear. A cowparison between
time-ordered snd t~orfered perturbation theory is givem in Tsable II.

Thus at a given “time” we can defipe the {(eolor singlet) basis

lo>
- + +
> =2, b, .. |0 (3.4)
k 'tj. k ,t

The pion state, for example, can be expanded as

[v> = lqa> ¥ gz + [agg> ¥ st (3.5

where v <nfr> is the emplitude for finding the Fock state |nd in [m

at tima 1. The full Fock state wavefunction which describes the n-particle

state of a hadron with 4-momentum P¥ = (P+,P_,§1) and constituents with

momenta
(xP + E ¥+ mz
+ *
- (k) - ( > o +k1) (2.6)
ar;.d spin prejection Ai is
u(x? ,x? -i-z:'.)A
(=0 ks %) fermions
- -_‘f": . .1
(x » Xy .1: + k i)i\ -
gl \
A .




Table I1

Time-ordered perturbatiomn theory.

N Equal t Bqual T = ¢ 4+ 2
2 2 -
° - ﬁ§z4_uz particle K = kl +m particle
wass shell j Kt masg shell
¥ T conserved z:g;,k?'conserved
°a2b - v;b ““%h = Vab
+ v -——-——l———————-v + v g——fl—- V.
aczko - 3x° +ie b =/ ac 3k =) k™ 4+ i¢ ¢b
a € a <
u! time-ordered contribucions xt > 0§ only
ol F
Fock states wn(ki) Fock states wn(kl i'xi)
Y E=Feo0 x=X, D x =1 K, =0
=1 T ST R
(0 < x; < 1)
n n
=’ -V i enp‘“(p - k')
i
i=1 i=1
2 2
n n [k +m
cxe BT e 3 (5
=1 i=1 i

o




‘Rote that #n(x .i t;l :I.) is {independent of P+'3.|.‘ The general normaliza-

L
tion condition is
T 2 . > 2
B> S [P eaxtle x5 0002 =2 @9

where by momentum conservation

2 gl . v & Sy, 3.9

\i=1

1! ] n -
[dx] = § (1 - x) ox (3.10)
E ™ S

In the non-relativistic limit the equal v = t + z/c and equal time t
theories coincide. For example, for the Fock state wavefunction im the

rest system we can ldentify

) 3 3
Ktk wm K
x M =X + _I'.I- (3.11)
and the off-shell light-cone energy is
2 2
oo n ik’ +mn
6‘-?"'[1"'- > k]=n2- 2(‘1‘—-)1
=1 1=1 (3.12)

2, .2
n (k" + k
= L3
=M [‘gﬂk - gi( 2m )1]

Thus, in the non-relativistic limit, the hydrogen atom wavefunction is

€3.13)

¥, ° £
1s [2 2, 2] 2
: k. +-_(me - xM)”+ om,
Iight-cone perturbation theory rules can be Jderived by either evalu-
ating standard equal-time time-ordered perturbation theory for an observer

in a fast moving Lorentz frame (the "infinite momentum" method),“? or more

directly, by qwatizing at e.1al 1. The LCPTh rules are:l9:44




T T T — T ———— - t——

(1) Por each Feynman diagram assign particle 4-momentum k' such
that k?;;; is econserved at each of the n vertices. (This is the analogue
of 3-pomwentunm ¢onservation.) Since all particles are on the (positive
energy) mass shell (kz = mz) we have

- kf + mz
kK =—=—7—>0 {3.14)
k

{2) Construct all time orderings (up to nl) such that > 0 for

all parcicles,

‘3) For each intermediate state assign a propagator

—_ 1 (3.15)

‘ -
k, - E k1+ic

oy

initial intermediate
and a factor llk+ for each internal line. (This is the analogue of

/¢ ¥ E, - E, + ie) and 1/(2E) in TOPTh,)
initial intermediate S e e -

(4) For each loop integrate

2 L3
dk
f Lsf axt (3.16)
2(2m 0

and sum over intermediate state spins and polarization.

{5) The vertex factors depend on the theory. In the case of g¢3
interaction, assign & factor g at each vertex. In gauge theories the
gluon~fermion vertices are

gufu, -gvév, gufv, -gvéu . (3.17)
The trigluon and quartic-gluon vertices are given in Table I. '

{6) Finally, there are instantaneous gluon contributions in A* =0

gauge:



. .
Yosaek : (3.18)
. } (k)" .
{analogous. to Coulomb interael:ﬂms) and instantaneous fermion contzributfons
__7:'72!:"' {the resnant nf backward-moving “Z~-graph" fermion lines). For

example, the slectron-electron scattering diagrams of Figure 5h give

-.2.&1‘;'_;1“—'1“ +e2£¥:.1’_“1.5’. (3.19)
. Heeree ™| W ach? o

- ~

where the polarization sum is

S ; Fel, et kewo (3.20)
. =1,2 | IR .

and the light-~cone and energy denomdinator is
De=p ~k -p +1c - ' (3.21)

Similarly, the Comptom scattering diagrams of Figure 5c give

" - - - +
2 u‘e“l “lda.“ 2 u‘c ¥ ‘au
W= QT e T
' i=1,2 PP S M (3.22)

D-k;'i-p;-p--l-ie
(This is analogous to the decomp;?sition of the Feynman propagator
(fro + :I.:)-l into positive and negative frequency components.)

. Celculations in light-cone perturbation theory are often surprisingly
gimple since one can usually choose Lorentz frames for the externai par-
tdcles such that only a few time-orderings need to be considered. All
the variables have a direct physical interpretation. The formalism is '
aleo ideal for computing helicity amplitudes directly without trace nro-
jection technigues. A list of all the gluon fermion vertices which are

required as gauge theory calculations is given in Tables I and II of

- Reference 19.
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It 1s straightforward to implement ultraviolet remormal.zation in
1ight-cone perturbation theory. We define truncared wavefunctions ¢
end a truncated Hamiltonian B such that all intermediate atates with
lal > «® are excluded.%s Thus :;1 is analogous to the lattice spacing
in lattice field theory. Since QCD is renormalizable the effects of the
negleél:ed states are accounted for by the use of the running coupling
constar* us(nz) and running mass m(n:z). a:,s long as :2 is sufficiently

large compared to all physica’ wass thresholds. Completeness implies

Z f [o*,] f Laxdfefex, k3 AP =1 - 0(1:-) (3.23)
n,li ®

The equation of state for the meson or baryon wavefunction in QCD is a

set of coupled multiparticle equations (see Figure 5d):

', n kz-l-m
AT e e
=1 i Y :

2

" where Mz is the aigenvalue and vnn. is the set of diagomal (from Instan-

tanedus gluov: and fermion exchanpe) and off-diagonal (from the 3 and 4
particle vertices) momentum-space matrix elements dictated by the QCD
ruleg, Because of the « cutoff the equations truncate at finite n,n'.

In analogy to mon=-relativistic theory, one can imagine startirg with a
trial wavefunction for the lowest-lqﬁ) or |qaq) valence state of 'a meson
or baryon and iterating the equations of motion to determime the lowest
elgenstate Fock state wavefunctions and mass M, Invariance under changes
ia the cutoff scale provides an important check on the conaisr..ency of

the results. Note that the gemeral solution for the hadron wavefunction
in QCD is expected to have Fock state components with arbitrary numbers

of gluons and quark-antiquark pairs.




T SRR

Tha two-particle "valence" light-cone Fock state wavefunction for
umbrmi:roummalaoberehm to the Bethe-Salpeter wave~

funceion evaluated at equal x:
o ulx,, %) ¥ix,,-k) .
S wpe(kip) = wix,, k) (3.25)
. s A&

‘+ negative energy components,

where § satisfies an exact bound state equation!?

kz + kz +
["z - "]. .2] wx :{ ) (3.26

*2
f dyf 16 “ K( i) .|.1' 71' J.i. Mz) ?(yit J-i)

The kermel K is computed from the sum of a11 two~particle-irreducible

contributions to the two-particle scattering amplitude. For example, the

equation of mntion for the |e+e.—> Fock state of positronium reduces in

the non=relativistic limit to (kl.,zl ~ Omm), x = x, - %, ~ O(G).)

uz - lmz + 4me

' kf + xzmz
€ - ~

Plx .,k )
] 1y (3.27)

p s, 2 (
o By v = s %y,,8)
‘ ‘xl 2) -1 _[(21)3 (k.l.'tx.)z + (x-y)z -2] ol

The non-relativistic solution is (8 = am/2) 19
. Uy, - v,

. o /TR,
B X
»(x .k) \‘ xl v (3.28)
: N e e i S ,
v %

for para and ortho states, respectively.

T




Yore generally, we can make an (approximate) commection between
‘the equal-time wavefunction of a composite system and the light-cone wave-
function by equt:l.n; the off-shcll propagator €= Hz (g in the

two frames:

' 0 o 2 n
_(’Zq(")) s Y, =0 rcad
=1 1=1

&= . (3.29)
vaes: L i n kz + mz > .
: HZ_:(.L: ). E,=0 D ox =1IlLc.]
L I . 1-1 1 .
In addirfon we can identify
+ ] 3
q +4q
Xy LB, T, (3.30)
. ’ 2.
=2 '

For a relativietic two particle state wi“h a wavefunction which {s a

function of the off~-ghell varlable &only, then we can identify
Gy = mp = mx = xy - ¥

k2 2

+ m

N.c. -a') 2 Yc.u. @ (3.3

‘In the non-relativistic limit th:l.s corresponds to the identification

= xfu,

L3
Q'L .- 1.’ q3
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¥V, MEASURES OF HADRONIC WAVEFUNUTIONS

- A. Yorm Factors of Composite Systems

If we cou’d golve the QCD equation of wmotien-[Eq. (3.24)] for the
light=cone wavefunctions- “n of a hadron then we could (in principle)
calculate all of ite electromegnetic properties. For example, to compute
the elastic form factors <p|J¥(0)|ptq> of a hadron we chooss the Lorentz
fmus :

- (pm.pl)-( . B 3)

(‘I+?‘l-;€1) = (09 %‘1 s .‘;‘l)

(4.1)

where pz = (p!-q)z - Hz and -q2 = Q2 = iff. Then the only time ordering
vhich contributes to the <p| J+l piq> matrix element 1is where the photon
ll:taches directly to the aj j’f uy currents of the constituent quarlis.

The ap:l.n averaged form factor :l.l""‘g (see i?:l.g. 6a)

vhere i‘;' - ﬁ;+ (.1-::1)1;1 for the struck quark and f"i - xﬁ"’ (143 for
the spectator quurks. (The -xﬁ"‘ terms occur because the arguments P’
sre calculated relative to the direction of. the final state hadron.)

We choose ¥2 >> QZ,M?. We mote here the special advantage of light-cone
perturbation theory: the current J* is diagonal in the Fock stete bas:@s.
Because of Eq. (3.23) the form factor 1e normalized to 1 at zero

momentum transfer. We can also compute the helicity flip form factors

in the seme manner.}9+*? For example, the anomalous moment a = F,(0) of

]
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(a) Calculation of current matrix elements in liglt-cone
perturbation theory. (b) Valence Fock state contribution to
the large momentum transfer meson form factor. Ty is computed
for gero mass quarks q and § parallel to the pion momentum.



any spin 1/2 system can be written®?

2. -; ajf[dx][dzk_l] " 12;‘2 2, (;:T"' 1 a_:z)’;* . (4.3
. 1 . 1

Explicit calculations of the electron anomalous moment in QED using this
result are given in Reference 47, Ve not:lca.that i generil all Focki states .
1;: contribute ‘t:) the anomalous moment of & systeu, although states with
‘2 much larger than the mean off shell energy <£> are not expected to be
important. The general result (4.3) also includes the effecte of the
Lorentz boost of the wave function from p¥ to (p-l-q)". In particular,
the Wigner spin rotation .ontributes to Fz(qz) and the charge radius
F{(q®) 1n the ¢ + 0 1init and can only be neglacted in the limit of
non-relativistic binding (e << M°. This effect gives non-trivial

relativistic corrections"® to nuclear magnetic moment calculations based

on simple additivity 1 = (2}:1) .

B. Foxm Factors of Mesons

Results such as Eqs. (4.2) and (4.3) are formally exact but useless
tnless we have complete knowledge of the hadronic or nuelear wave func-
tion. However, by making use of the impulse approximation and the
smallness of the QCD rumming coupling constant, we can caleculate features
of elastic and inelastic large momentum transfer pl't--.«:esses19 without
explicit knowledge of the wave function. For exsmple consider the [qq>
Fock state component contribution to the pion form factor. Choosing -

:2-Q2.veh¢va

-




L 84
F,@% = f a [ E’—; o 0% ) ¢k + (100,
0

4+ higher Fock state contributions * . (4.4)

The bound state wave functions are peaked at low transverse momentum,

t.e., small off-shell energy €. Thus the leading contribution at large

- ' 2
‘ : _ Qz cone from the regimes (a) ﬁf << I]f and (b) (fl+ (1-::)'5;) << Ef.
: Thus '
| 1 |
» @@ F foxoomo Ynaod) | @
! 0 -
wherel?d
' a%, Q
4x,Q = f Lk (4.6)
16w .
If we simply iterate the ome=gluon exchange kermel Vy in the equation of
motion for ¢, then for qf > <9.f)

1 q e v (x (1-x)q, ;¥, 2 )lﬁQ(y £
Q = L I\ g 3925y '
Ftron) = fo s e

1
¥, (x,(1-x)q, ;¥,0
= fdy 1 ,7:9,) 10 SN (6.7
o

~ @2 (1=x) /x

Thee we can write the gluon exchange contribution to the form factor in

the form;}!s19 [see Figure 6(b)]

1
1,(0) = farey 6.0 R0 40,0 .8
L :




“‘l’c’a (Qz) ey e,
:' - Qz = [(1_’) g ) +'§] (’o’)

is the "hard lcal:uring anplitude” for scattering-eouinear constitients
q and q from the intitial to the firal direction. The color factor is -
c, = ﬁ wl-1) - 4/3. The “aistribution mmplitwie” $(x,Q) is the
amplitude for finding the |qq> Fock state in the pion collinear up to
the scale Q. (It 1z analogous to the wave function at tie origis in
non=relstivistic calenlations.) The distribution amplitude enters
universally :Ln all large momentum trapnsfer exclusive amplitudes and is
& process—-independent measure of the valence quark dastyibution in eack
hadron; ite (logarithmic) dependence on Q2 can be determined directly
from the opazaltr.\: product expansion or the i:lght-cone or from an evolu-
tion equation, as we &iscuss below.

Thus the simplest estimato for the asympt tic behavier of the
peson form factor is F'(Qz) ~ us(Qz) IQZ. To see 1f :his is correct
ve oust examine the higher order corrections- 2

{1) Contributions from higher particle number Fock states Iqas).
|4249>s etc. are power-law suppressed since (in light-cone gauge) the
oumerator couplings camnot compensate the extra fall-off in Q2 from the
‘eitra energy denominators.

(2) All infrared singularitﬁs and contributions from soft (l.]_ + Q)
gluons cancel in color sinrlet matrix elewents. [Yt is interesting to
note that the quark (Sudakov) form factor falls faster at large Q than

7,@.2

v




-

(3) Vertex and vacaum polarization corrections to '!n are higher
order in cs(Qz) since we choose k2 = Qz. The effective arzument of a
in Ty us Qz = xyqz or (l-x)(l‘!’)Qz corresponding to the actual momentum
transfer carried by l:he gluen. )

{4) By definition, ¢(x.:2) sums all (reducible) contributions from

low momentum transfer gluon exchange in the qq wave function. Hard gluon

2 and the irreducible {cross-graph, ete.) give

contri.bu!:ims with |&] > «
contributions to Ty which are higher order as(Qzl. By analyzing the
denominators in Ty one can show that the natural & cutoff for $(x,x)
which minimizes h:lgherA order contributions i:s \:2 - Qi - Q2 m{Tf; ,l;—E -
(5) Although T, is singular at x =+ 0,1, the endpoint behavior of
Oﬁc,Qz) ~ 2%, (1-x)¢ (c > 0) 1s sufficient to render this region

harmless,

C. The Meson Distribution Amplitude
- The essential prediction of QCD for the pion form factcr is the
power-Law behavior® ¥, ~ 1/q%, with logarithadc corrections from the
explicit powers of a’(QZ) in '.l‘u and the Qz dependence of the distribution
amplitudes $(x,¢%). -
The variation of ¢ with Q2 comes from the upper 1imit of the E,

integration (since ¢ ~ llkf) and the remormalization scale dependence:

Z,( )
Q e M PR
oix,k) Z,00p ¥ L) _ (4.10)

due to vertex and self-erergy insertions. Thus

. 2
2 3 Q > d .
Q #(x,Q) = P (x.q,) + log 2,(Q") ¢(x,Q5 . (4.11)
gt —q--l 7 VA + g los 2 o) ¢(x, Q3



To order cB(Qz) we can compute in from one-gluon exchange [as in
8q. (4.7)1, and dlogZ,(@P)/d t0gQ? = us(Qz)YFIfm. Setting ¢(x,Q) =

x(1~x) ;(x,Q) = xl_xz?, we obtain an "evolution equation™!?

2. 1
2 ) ~ uB(Q )
X, K, Q g $(x.,Q) = ——— J [dy] V(x,,y.) ¢(7,Q) (4.12)
1%2 along 4 &n 3[ 1074

where
a
Vix,,z,) = 2Cr{x1yz Bly,~x,) (chlﬁ 7= ) + (14—»2)} (4.13)
[Bh g - 1 when the g and q helicities are oppositel and
142

ﬂz()'i.Q) = E(Yi.Q) - E(xi,Q) . {4.14)

The ?(xl,Q) subtraction is due to the 7F¢ term - i.e., the infrared
dependence at ¥y =Xy is cancelled for color singlet hadrons. Thus
given the initial condition cb(xi,Qo), perturbation theory determines
the evolucion of ¢(x,3) for Q > Qo The solution to the evolution

equation 1sl?

o
) 3/2
$0x,.Q) = x;x, E:o a, @ 632 (x,x)) (10g */2H) T (4.15)
where the Gegenbauer polynomials c3’ 2 (orthogonal on f [dx]x ) are
n 1%2
sigenfunctions of V(xi.yij. The corresponding eigenvalues are the
"non-ainglet" anomalous Jimersioms:

. e N
1
Y, " E;[l-"kzz:i“m] 20 . {4.16)

._‘[Ihese Tesults can also be derived by using the operator product expansicn

for the distribution amplitude.? By definition




e0,@ = A f E_ 1= 12 solicanm|nY 4+ w0, 2esZe0t-10h) @1

;(Ati.s the positive energy spinor projection operator). The relative

separation of the q and q thus approaches the light-cone az=0 as Q2 & @,
Equation (4.16) then follows,by expanding ¢(z)${0) in local operators.]

The coefficients a ,, are determined from ¢(xi,Qo)=

2\ u 1
an<lo.g ilz—) = -(53—1%%% f d(xl—le Cgiz(xl-xz) Q(xi,Qo) . (4.18)

For Q2 e, unly. the leading Yg=0 term survives:

lim ¢(x,Q) = agx X, (4.19)
QZre
where
1 1 Q.2
a d“k
2= fax o = fox f —4 0@ (4.20)
0 0 l6nw

is the meson wave function at the origin as measured in the decay m-+pv!

% 1
L = £ . (4.21)
6 Y

More generally, the leptonic decay ° ~+ e+e_, etc,) of each meson

normalizes its distribution amplitude by the "sum rule"

1
u
d x,Q) = ’ (4.22)
_of % gy (x 2/

indeperdent of Q. The fact that £ # 0 implies that the probability of

Eindinz the lqE) Fock stat= in the pion is non-zero. Im fact all the




'y

Fock state wave functions t:(xi.kli} de] < nz) are well-defined, aven
in the nfrared limit x, - 0 (since [&] ~ <k2>/x, and <kZ> 1s non-gero
for a state of finite radius).

The pion form factor a high Q2 can thus be written!l*19+50

1
@ = [ax 6,0 10750 46,0
J A

(4.23)
16 %(Q-0a-ne?)
Tx 3u (1-x) (l—}')fl2 )
Thus )
— 2 a_ (D)
¥ (0% = n;n a log @ /a2 1T SQ2

2
a (Q°) 2
*[1 +0(-3;Q——)+6(%)] (4.26)
Q

vhere 52 " ((1-x)(1-y))Q2. Finally, for the asymptotic limit where only

the leading ancmalous dimension contributes:®!

a_(@)

? )

1m p (0D = 16v £ 4.25
n £, = lov €] *.25)

The analysis of the FiY(Qz) form factor, measurable in ee + eer®
reactions proceeds im a similar mammer. [See Figure 1{a).] An
interesting result is19

2. 2
F_(Q%) [ (a @ ))]
2 L s
a Q) = e {1 40 (4.26)
o iy, @I "

which provides a definition of a_ independent of the form of the distri-
bution function 6,. Higher order corrections to F'(Qz) and F"(Qz) are

diecussed in Reference 50.




D. Large Momentum Transfer Exclusive Processesl?

The meson form factor calculation which we outlined above is the
prototype for the calculation of the QCD hard scattering contribution
for the whole range of exclusive processes at large momentum transfer.
Away from possible special points in the xy integrations (see below)

a general hadronic amplitude can be written to leading order in IIQ2
as a convolution of a connected hard-scattering amplitude TH convoluted

with the meson and baryon distribution amplitudes:

2
- |&] <Q dzk,‘ 0 N
- _ , 4.
tyoo0 = [ —5 Ygg k) (4. 27a)
and 2
l&l<a \
¢p (x> = f LA, 3 Wy g Oxi0kyg) {4.27b)

The hard scattering amplitude TH is computed by replaeing each external
hadron line by massless valence quarks each collinear with the hadron's
mementum p:'E xip;. For example the baryon form factor at large Q2 has

the form?'1? [see Figure 2(a) an¢ Figure 7]
2, _ * - 2 = .
6@ = f1ad [ay] %05, 0 T,00y:9D) 806D (4.28)

where T, is the 3q+Y + 3q" amplitude. [The optimal choice for q is
discussed in Reference 19.] For the proton and neutron we have to

leading order {CB = 2/3]

2.2
P

128x2C2

T, = ;(—(-!—2-:;%")—2['1-1-12] (4.30)
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(a) Leading contributions to Ty for the baryon form factors
corresponding to the four terms of Eq. (4.31) and (4.32),
respectively. (b) Contributions to the kernel for the evolu-
tion of the baryun distribution amplitude.




vwhere
o (7,02 o ((1-x) (1-y)0%)

x3(1-xl)2 73(1-y1)2

207 =, (e -ye’)
xz(l—xl)2 yz(l-yl)2

2 2.
- ns(xzyzq ) “s(x3}'3q ) (4.31)

x,%,(1-x,) y2y3(1-71)

and
2 2
_ a_{x,7,Q7) o (x;3,07) (4.32)

xx3{1-xy) yyy3(l-yg)

Tl corresponds to the amplitude where the photon interacts with the
?uarks (1) and (2) which have helicity parallel to the nucleon helicity,
and T2 corrasponds to the amplitude where the quark.with opposite
helicity is struck, The running coupling constants have arguments Qz
corresponding to the gluon momentum transfer of each diagram. Only the
targe Q2 behavior 15 predicted by the theory; we utilize the pavameter
“0 to represent the effect of power—law suppressed terms from mass
ingertions, higher Fock states, etc.

The Qz-evolution of the baryon distribution amplitude can be
derived from the operator product expansion of three quark fields or

from the gluon exchange kernel, in parallel with the derivation of

(4.12). The baryon evolution equation to leading order in o £s!?

1
C C
xyxpns 1B 0x,,0) + %%3(:,.@) } - ;;1 f [dyd Vex;,3,) $ly @ (4.33)
0
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Fig. 8. QCD contvibutions to meson-meson scattering at large momentum
tranafer., Diagram (e¢) corresponds to the Landshoff pinci: singu-
larity whica is suvppressed by quark form factr effects,
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However, this is not true for all hadron~hadron scattering amplitudes
since one can have multiple quark-quark scattering processes which allow
nanr-on-shall propagation in intermediate states at finite values of the
xi." The classic eiample is meson-meson scattering, where two palrs of
quarks scatter through the same angle [see Figure 7(c)]. However, the
near-on~shell region of integration is agaln suppressed by Sudakov
factors. [Physically this suppression occurs because the near-on~shell
quarks must scatter without radiating gluons.] A model calculation by
Mueller!? for nen scattering in QCD (using an exponentiated form of the
Sudakov form factor) shows that the leading contribution comes in fact
from the off-shell region |kZ] ~ 0D vhere & = (2c41)71,

cm= BCF/(II - %nf) (for four flavors € ¥ 0.281). This region gives

the contribution!?

-3/2 = ¢ #n (2c+1/2e)

2
HAmrmm ™ Q")

~1.922 (4.38)

= (@}
coupared to (02)"2 from the hard scattering |k2| ~ 0(Q%) region.

Thus even when pinch aingularities are present the far-off-shell
hard scattering quark and gluon processes dominate large momentum
transfer hadron scattering amplitudes. Given this result we can abstract
some general QCD features common to all exclusive processes at large
womentum transfer:

{1) All of the non-perturbative bound state physics is isolated
in the process-independent distribution amplitudes.

(2) The nominal power-law behavior of an exchange amplitude is

(I.IQ)“'4 vhere n 48 the number of external elementary particles (quarks,



Bl T T

*e

gluons, leptons, photons in l'“). This immediately implies the dimensional

counting rules;®
%{- (a+B+ 04D} ~ (é)n-z“‘c'd. (4.39)
vhere o = n, +ng+a,+n,, and
Ped ~ ('qiz)'n"-1 (4.40)

vhere Fy is the helicity—consexving! 9+ form factcr. These power-law
predictions are modified by (a) the Qz-dependence of the factors of o,
in Tll' (b) the Qz-evolution of the distribution amplitudes and (c) a
possible small power associated with the almost complete Sudakov
suppression of pinch singularities in hadron-hadron scattering. The
dimensicnal-counting rules appear to be experimentally well-established

for & wide variety of processes (see Reference 19 and Figure 9):

6@ ~ @2, r @~ @H? (4.61
and

Ewmrm ~ @D

F s ~ @
(4.42)

~10

8

E o ~ @

%%(w»vp)l%%h‘p*w) ~ ¢

at fixed 6 . . The application to yy + MH processes is discussed in
Section IV-E.
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Fig. 9. Hadronic form factors multiplied by (Q2)™ Y, (From Ref. 1.)



(3) Since the distribution amplitudes ¥ and 43 are L, =0 sngular
monentum projections of the hadvonic wive functions, the sum of the quark

spin along the hadron's momentum equals the hadron epin:18

LI z
& si Sn q - (4.43)

{In comurast in inclv,ive reactions thers are any number of non~-interacting

quark and gluon spectatoré, so that the apin of the Interacting constituents

18 only statistically related to the hadron spin - axcept possibly at the
adge of phase-space x ~ 1.) Furthermore since all propagators in 'I‘“ are
har’, the quark and hadrou masses can be neglected at large Qz up to
correccions of order ~m/Q. The vector gluon interactions conserve quark
helicity when all masses are neglected. Thus total quark helicity is

consurved in 'l‘H at large Qz. Combining this with (4.43), we have the

QCD selection rule:

2 Ay, = 2 Ag (4a44)

initial final
i.e., total hadron helicity is conserved up to corrections of order
(n/Q).

Hadron helicity conservation thus applies for all large momentum
transfer exclusive amplitudes involwing lLight meson and baryons, Notice
that the photon spin is not important: QCD predicte that yp > np is
proton helicity conserving at fixed Bc.u.' s + =, independent of the
photon polarizatio Exclusive amplitudes which involve hadrons with
quarks or gluons in higher orbital angular mowmentum states are also

suppresgsaed by powers of the momentunm transfer, An fmportant corollary
L]

‘of this rule is that helicity-£flip form factors are suppressed, e.g.:

A



Fpp@ [ 7@ ~ oty . (4.45)

The helicity rule, Eq. (4.44), is one of the most characteristic
features of QCD, being a direct consequence of the gluon's spin. A
scalar or tensor gluon-quark coupling flips the quark's helieity. Thus,
for such theories, helicity may or may not be conserved in any given
disgram contributing to TH' depending upon the number of interactions
involved. Only for a vector theory, like QCD, can we have a helicity
selection rule valid to all orders in perturbation theory.

The study of timelike hadronic form factors using e+e' ¢colliding
beams can provide very sengitive tests of this rule, since the virtizl
photon in ete” » Y* - hAEB always has spin %1 along the beam axis at hizn
energies. Angular momentum conservation implies that the virtual photon
can "decay" with one of only two possible angular distributions in the
center of momantum frame: (1+cosze) for |AA-J\B| = 1, and sin8 for
hA-ABl = D vwhere AA,B are the helicities of hadrom hA.B‘ Hadronic
helicity conservation, Bg. (4.44), as required by QCD greatly restricts
the possibilities. Xt implies that 1A+ An = 0 (since the photon carries
no "quark helicity™), or equivalently that A=y = 22, = -2, Con-
sequently, angular womentum conservation requires “AI = [2g] = 172 for
baryons, and IAAI = Ilal = 0 for mesons; furthermore, the angular dis-

tributions are now completely determined:

'd"c__zass (e+e' + BE) « 1+cosze (baryons) {4.46)
dc% ) (B+e. + M) = sin29 (mesons) (5.47)

We emphasize that these predictions are far from trivial for vector mesons




and for all baryons. For example, one expects distributions like

l-l-ncoa_lze, -1 ¢ a ¢ 1, in theoriles with a scalar or tensor gluomn. !

So simply verifying these angular distributions would give strong

evidence in favor otla vector gluon. : ;
The power-law dependence in s of these cross sections is also :

predicted in QCD, using the dimensional counting rule. Such "all orders” .

predictions for QCD allowed processes are summarized in Table III.

Processes suppressed in QCD are alsc listed there} these all violate f

hadronic helicity conservation, anu are suppressed by powers of mzls in

QCD. This would not necesserily be the case in scalar or tensoxr theories.

TABLE IIL

Exclusive channels in e'e annfhilation. h,fig¥* couplings in allowed
processes are -ie(? )“P(s) for mesons, -uv pB)y“G(s)u(p )} for baryons,
and ~ieZe vp oD epp % v(5) for meson-photon final states. Similar predic~
tions app'iy to d'-cayl of heavy-quark vector states, like the y,¢',...,

produced in ete” collisions,

otete™ LS

& -
YRS W) El(ln) Angular Matribucion st Y
f ote » vt atn’e K[ F()]? ~ /8t
o¥ (0" (0) ¥ sin’e KHs)|? ~ ofe®
' 2% (22) oy, 0"y I+ cos®® (wal2) 8] rm(snz ~cls
Allowed <
in G0 efe™ » p(aIP(H) 0ly 1 0n 1+ eoa®s letsr|? ~ erst
Ty TUR T TN 1+ cos®e I6(s)}? ~ efst
\ A 3D T 1+ cos?d Ifa‘(a)l2 ~ efsd
e+ pHoem ) st ... 1 + cos®e < ela? :
. s (12,0 sin?e < /s’
Suppressed
in QD v
e'e” » p(BOF(5),pE, 6800 sinlp < o/ad
pleipReedd n“u-" 1 4 coede <e/dd =

azla®,... sinle < e/o® - ’




The exclusive decays of heavy quark atoms (¥,¥’,...) fato light
hadrons can also be analyzed in QcD.1® The decay ¥ + pp for example
proceeds via disgrams such as those in Fig., 2(b). Since ¥'s produced
in e'e” collisions must also have spin i1 along the beam direction and
since they can only couple to light quarks via gluons, all the proper-
ties listed in Table III apply to ¢, %', T, T',... decays as weil., There

are considerable experimental data for the ¢ and y' decays.?S

Perhaps the most significant tests are the decays ¥,p' + pl-:,nﬁ,... .

26 is consistent with published

The predicted a;rrgular distribution 1+szcos
data.’5 This is important evidence favoring a vector gluon since scalar
or tensor gluon theories would predict a distribution of sinze +0(u).

Dimensional counting rules caa be checked by comparing the ¢ and $' rates
intn pp, normalized by the total rates into light-quark hadrons so as to

remove dependence upon the heavy—quark wave functions. Theory predicts

me-m _ (Y
SR(Y > -
BR(¢" 5 p5) ( ¥, ) (4.48)
where
BR($ > pp) = I(y = pp) ] (6.49)

I(y » light-quark hadrons)

Existing data suggest a ratio (MW.IM¢)“ with n~ § + 3, in good agreement
with QCD.

Many more examples of exclusive reactions which test the basic
scaling laws and spin structure of QCD are discussed in References 18
and 19. The essential point is that exclusive reactions have the
potential for isolating the GCP hard-scattering processes in sitvations
where the helicitles of all the fnteraction constituents are coatrolled.

In contrast, in inclusive reactions che absence of restrictions on the



spectator quark and gluons allows only & statistical correlation between

the constituent and hadronic helicities.

E. Iwo-Fhoton Processesl? .

One of the most important applications of perturbative QCD 1s to

the two-photon processes do/dt {yy » M), M = n,k,p,uw at large

B = (kl-i-kz)z and fixed 6c.m.* These reactions, which can be studied

in e+e- -+ e+e-m7l processes, providz a partfcularly important laboratory
for testing QCD since these "Compton" processes are, by far, the simplest
calculable large—~angle exclusive hadronic scattering reactions. As we
discuss below, the lerge~momentum~transfer scaling behavior, the helieity
structure, and often even the absolute normalization can be rigorously
computed for each two-photen chamnel, '

Conversely, the angular dependence of the yy + MH amplitudes can be
used to determine the shape of the process-independent meson "distribution
amplitudes,™ OH(R.Q). the basic short-distance wave functions which
control the valence quark distributions in high momentum transfer
exclusive reactions.

A critically important feature of the yy + MM amplitude is that the
contributions of Landshoff!? pitch sinpularities are power-law suppressed
at the Born level -~ even before taking into account Sudakov form factor
suppression. There are also no anomalcus contributions from thg x~1
endpoint inte‘gration region. Thus, as in the calculation of the meson
form factors, each fixed-angle helicity amplitude can be written to
leading order in 1/Q in the factorizad form [Q2 - p; = tu/s;

'ﬁx = min(xQ, (1-x)Q)] (see Figure %}:




1 1

Ay 2yt 'fd* fdl' ¢ Q) Ty(x,yisaB o ) 4(x,Q)  (4.50)
o 0

where Ty is the hard;scatter:[ng amplitude yy + (qa) (qq) for the production
of the valence quarks collinear with each meson and ¢M(x,Q) is the
(process~independent) distribution amplitude for finding the valence q
and g with Iight-cone fractions of the meson's momentum, integrated over
transverse momenta kl < Q. The contribution of nonvalence Fock states
are power-law suppressed, Further, the spin-selection rule (4.44) of
QCD predicts that vector mesons M and M are produced with opposite
helicities to leading order in 1/Q and all orders in as(Qz).

Dimensional count:lngB predicts that for large s, 54 do/dt scales
at fixed t/s or ec'm‘ up to factors of 2n s/Az.

Some forty diagrams contribute to the hard-scattering amplitudes
for yy + MM (for nonainglet mesons). These can be derived from the four

independent diagrams in Fig, 10(b) by particle interchange. The resulting

amplitudes for helicity zero mesons are:

Co.2
1;+ 16ﬂcs 32na (ell-ez) a .51
T 3s  x(l-x)y{l-y) 1-c0526
— c.m
T 16wa {e1 -2 )2(1-6) e aly(l-y) +x(1-x))
+{ . s 3210 1-=2 A A

3s x(1-x)y(l-y) 2 T 2 .2 2

T—+ l=cos’@ a2 =-b"cos" 8
Ca C

. M.

{4.52)

where :} = (1-x)(l-y) ¢ xy, the subscripts ++,--,... refer to photon

helicities, and e)» e, are the quark charges [i.e., the mesons have
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Fig. 10, (a) Factorized structure of the yy + MM amplitude In €7D at
large momentum transfer. The Ty amplitude s -omputed with
quarks collinear with the outgoing mesons. (h) Diagram con-
tributing to TH('YT + MM) to lowest order in &g



charges t(el—ez)]. To compute the yy + MM amplitude .lln, [Eq. (4.50)1,
we now need only know the x-dependence of the meson's distribution
amplitude ¢H(x,§); the overall normalization of L is fixed by the

"gum rule' ('nc = 3)

1
u
dx ¢,.(x,Q) = — (4.53)
b[ H 2/3

where fM is the meson decay constant as determined from leptonic decays.
Note that the dependence in x and y of several térms in T,,, is quite

similar to that appearing in the meson's electromagnetic form factor

(4.23):

l ~ +* o

16ma (%00 oy (v-Q)

FM(s) = 335 fdx dy X% y(i=y) 14.54)
0

when ¢M(x,Q) = ¢M(1-x,Q) is assumed. Thus much of the dependence on
$(%,Q) can be removed from .,-!{u, by expressing it in terms of the meson

form factor - {.e.,

oy (tey - e222) (4.55)

= l6wa F, —_—
} e M(s) 1- coszec_m_

ey - [ley-ep?
.l(.q.} = 1l6na FH(S) 'i—-—c;s—ze—c—: + 2(21&2) g[e.c.m‘;%i!] (4.56)

up to corrections of order L and mzls. Now the only dependence on "M'

and indeed the only unknown quantity, is in the 6-dependent factor




T o

— f ‘;(3.6) O;(y.a) a[y(].-y)-l-;:(l—::)]

7 X1 y(@-y) at- bzcosiﬂ

0 % 1Y »
. " - 4.57)
8[ C.m. H] ‘H(x,a) QH(YnQ)
f dx dy “x{1x) y(I-y)

The spin-avcraged cross section follows immediately from these expressions:

d 2 d
d: s dcosgc'm‘ - 161102 ry §'lv¢u.l
= 160> Fu @ |? <(°1"e2) ) 2(‘1 2)((‘ ) ),
(1 cosze n. 27 l~cos e e.m.
2 2
x gfo, o i0y]+ 2¢e0p)° 876, o 30y ] . (4.58)

In Figure 11 the spin-averaged cross sections (for yy + wx) are plotted
for several forms of q»u(x.q). At very large emergies, the distribution

emplitude evolves to the form
(@ 53% V3 £ x(1-0) (4.59)

and the predictions [curve (8)] become exact and parameter-free. However
this evolution with increasing Q2 1s very slow (logarithmic), and at
current encrgles L could be quite different im structure, depending upon
the detalls of hadramic binding. Curves (b) and {c) correspond to the
extreme examples ¢, = Lx(l-x)* ond #y = 8(x-%), Tespectively. Remark-
ably, ﬂ;e cross gection for charged mesons is essentially independent of
the choice of ‘H' making this an essentially parameter—free prediction

of perturbstive QCD. By contrast, the predictions for neutral helicity-
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QLD predictiona for yy + un to leading order in QCD. The
results assume the pion form factor parametrization F,(s) ~

0.4 GevV?/s, Curves (a), (b) and (c) corre,gond to the distribu-
tion amplitudes ¢, = x(1 - x), fx(1 - /%) and 6(x - 1/2),
respectively. Predictions for other helicity zero mesans are
ob:ained by multiplying with the scale constants given in

Ref. 15.



zerc mesons are quite sensitive to the structure of 4,. Thus we can
study the x-dependence of the meson distribution amplitude by measuring
the angular dependence of this process.

The cross seetit;ns shown in Figure 8 are spe:::lﬂcally for yy » mm,
where the pion form factor has been approximated by F, {s) ~ D.4 Gevzls.
The o crogs section is quite large at moderate s:

R afF (o)}

dg - - cos®
at (yry>u'v")  lecos™

4
~RB LV o 5 ma2 . a60)
&

Similar predictions are possible for other helicity-zero mesgons. The
normalization of yy + M relative to the yy + tn cross gection 1s
completely determined by the ratic of meson decay constants (fulf “)4
and by the flavor-symmetry of the wave functions, provided only that
’H and ¢, are similar in shape, Note that the cross section for charged
p's with heliecity zero 1s almost an order of magnitude larger than that
for charged v's,

Finally notice that the leading order predictions {Bq. (4.58)] have

no explicit dependence on o . Thus they are relatively insensitive to

8
the cholce of renormalization scheme or of a normalization scale. This
is not the cage for either the form factor or the two-photon annjihilation
smplitude when examined separately. However by combining the two analyses
as in Eq. (4.58) we obtain meaningful results without computing 0{a,)
corrections, The corresponding ulcu.;lal:ions for helicity one mesons are

given in Reference 12, Hadronic helicity congervation f{mplies that only



helicity-zero mesons can couple to a single highly virtusl photon. So

T,

gimplicity we will assume that the longitudinal and tramsverse form

» the tranaverse form factor camnot be measured experimentally. For

factors are equal to obtain a rough estimate of ﬂ.:e YY * p,p, cross
section (Pigure 12). Again we see strong dependence on ‘ML for all
angles except 0 o ™ n/2, where the terms involving g vanish. Con-
sequently a2 measurement of the amgular distribution would be very
sensitive to the x-dependence of ¢"1’ while measurements at 8, . = ¥/2
determine FMJ_ (8}, Notice alse that the number of charged p-pairs (with
any helicity) is much larger than the number o_f neutral p's, particularly

near 8 - 1/2. The cross sections are afrain quite large with

+ -
do/dt (yy~+pyp)) 5 gev”
— = (4.61)
5

do/dt (yy-+utuT)

Results for other mesons are given in Reference 12.

The yy + M and y*y + M processes thus provide detailed checks of
the basic Born atructure of QCD, the scaling behavior of the quark and
gluon propagatora and interactions, as well as the constituent charges
and spins, Conversely, the angular dependence of the yy + MY amplitudes
can be used to determine the shape of the process-independent distribution
amplitude m(x.Q) for valence quarks in the meson qq Fock state. The
cosd cm.-dependence of the vy + M{ ampijitude determines the light cone
x-dependence of the meson distribution amplitude in much the same way
that the x.Bj dependence of deep inelastic cross sections determines the
‘iight-cone X-dependence of the structure functions {(quark probability

functions) G‘l m(x,Q) .
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Fig. 12. QCD predictions for yy + p F, with opposite helicity 21 to
leading order QCD. The normalization given here assumes
that the p distribution amplitude is helicity independent.




The form of the predictions given here are exact to leading ordar
in u.(?z). Power-law (IIIQ)Z corrections can arise from wmass insertions,
higher Fock states, pinch singularities and nonperturbative effacts.

In particular, the predictions are only valid uhe;t s~channel resonar =
effects can be neglected, It is 1likely that the background due to
resonances can be reduced relative to the leading order QCD contributions
1if one measures the two-photon processes with at least one of the photons
tagged at moderate spacelike momentum qz, since Tesonance contributions
are expected to be strongly damped by form factor effects. In contrast,
the leading order- QCD Yy MM amplitudes are relatively insensitive to
the value of q% or qg fo_r !qil << 3,

Pinally, we note that the amplitudes given above have simple crossing
properties. In particular, we can immediztely analyze the Compton ampli-
tude yM + yM in the region t large enough with s >» |t| in order to study
the leading Regge behavior in the large momentum transfer domain. In the
case of helicity #1 mesons, the leading contribution to thLa Compton

amplitude has the form (s >> |¢})

2, 2
IG"GFH‘_ (t) (e1 + ez)

"”ﬂ{-ﬁ M =
(4.62)
= = v
Ay =2y » =2y
which corresponds to a fixed Regge singularity at J=0.°% 1In the case
of helicity 2ero mesons, this singularity actually decouples, and the

leading J-~plane singularity 13 at J = -2,
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V. DEEP INELASTIC LEPTON SCATIERING

The ¢rucial evidence that the electromagnetic current within hadroms
is carried by point-like spin 1/2 quarks comes from deep-inelastic
electron, muon and n;u:rino scattering. At Iatge:momentum transfer,

Qz 22 Gevz the lepton-nucleon inelastic cross section displays a scale-
invariant behavior consistent with the simpleat type of Impulse approxi-
mation—where the electron scatters directly against point-like quark
constituents of the target.57 The deviations which are obsarved at very
large Q2 are consistent with the color radiztive corrections predicted
by QCD., In addition at low values of Qz, there is evidence for power
1av "higher twist™ corrections associated with coherent multiquark
processes, interference effects, and final state corrections-—quite in
analogy to the corrections to impulde approximation expected in nuclear
physica inelastic breakup calculations.,

The Pock state representation we discussed in Section III provides a
particularly simple and aelegant basis Eor calculating the deep inelastic
cross eection in QCD. We first consider the forward Compton amplitude
y*p + y*p with virtual photon mass q,2 = —Qz < 0, and then calculate the

ep + eX cross section from the absorptive part. An ideal lorentz frame

is

2
pe(tenB) - (p+. St 'ﬂl) (5.1)
P
q=(a"q"g,) = (0. 32_';‘1,11) 15.2)
P

with q,f - Qz and p-q = my. For the dizgram 13b which has no final state
interactions, the (light-cone) energy denomfnator between the photon

interactions is
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Fig. 13. Calculation of the forward virtual Compton amplitude. Diagram
(b) gives the Impulse approximation, aeglecting firnal state
and multiquark interactioms.
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& +3)7 +4l W ¢ a?
D=nl+ 2my - —2 ; -E (-Lx—-)1+u (5.3
i¥1

where m is the struck quark mass, and the sum over 1 ¥ 1 gives the spec-
tator quark and gluon contributions. For states with

k2 + n?
|g|-|uz-zlx |«2mandkf<<qzwecanwt£te
i

D & 2ov *ﬁx + i¢ (5.4)
ImD'l---’-‘-T-'-G( _.292_ (5.5)
2uv amy *
i{.e., tha electron scattering on a quark with light-cene momentum rraction
] 3 2
— k + k P d rs
x = =9_. x {5.6)
P° + 03 2oy B3

The corresponding impulse approximation cross section is (x + xBj)

do
* -z {tq > 2’ 5.7
e v - Z () @ (tq > 2'q) (5.7)
Pq = P
where?!
2
G /p(x,Q) -Zf[dzkl]{dﬂlwg(x,k‘)f &(x - xq) (5.8}
n23

gives the probability- distribution for finding the quark with fractional
light-cone momentum collinear up to the scala kf <Q? €] < 2av. Unlike
large momentum transfer excluaive amplitudes, all Fock states contribute
to the inclusive cross section. The sub,.ocess cross sect-ion

dclsz(lq + 2'9) is evaluated for a guark collinear with the proton
momentum p: = xp+, 'l: o 0. Since all the loop corrections to the sub~
procees cross sectior are hard (k 2 O(Qz)). it can be developed as a

power series !n a (Q )+ Thus the only correction to perfect scale-

- ———



favariance of do/dx dQ* at large QF and fixed Xgq Comes for the % depen-
dence of rhe probability distribution G(x.Qz). This in turn can only
arise from the wavefunction remormalization or frgm contributions

'pn ~ 0(1/&1) at large kl. In QCD these occur only from t° perturbative
processes q + qg, and g + gg, g + «E, as 1llustrated in Figure 14. In
parallel to the derivation of the ev-~lution equation for the distribution

amplitude, we then can derive evolution equations for the distributions

Gq/n(x,Qz) and Gg/H(x,Qz) of the form38>5%
2 1
()]
2 % x d
—_— G(X.Q) = f Pl= G(Y:Q) £ (5‘9)
3 log QZ 2n x (y) y

For example, for the "mon~-singlet" distribution

Gq/H(X.Q) = Gq/H(x'Q) - GE/H(K’Q) (5.10)

we have to lowest order in GS(QZ), Cg = 4/3)

[. .2 2
.=(:F|_1+z -6(1—2)] a LEX {5.11)
0

(The subtraction term, which ensures finite behavior at xg = 0, arises
from the wavefunction renormalization, as in Eq. (4.14)}. The QZ depen-

dence can be displayed most simply by taking moments:

2 1 2
u_(Q%) =I 6(x,Q) x"dx (5.12)
n 0
Then
S s 21 1og gzlnz “Tn
Ll (%) 2,2 .13
n n log quln
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Fig. 14. Contridotions to the hadron Fock state wavefunction which give
v .‘llk_L at large I:J_ and thus structure function evoluticen,



where the ¥, are defined in Eq., (4.18). The higher ovder corrections

to the VQz-evolut:lon of Hn are discussed in References 1 and 2. A eritical
feature?! is the fact that the higher loop corrections (e.g., from the
higher Fock states) are constrained kinematically' to kf < (1--:.v)Q2 <
(1-::)(12, where y is lebelled in the figure; i.,e., tha evolution is
reduced at large x and for large n. A detailed discussion is given ln
Reference 41.

BEquation (5.7) displays an essential feature of the QCD predictions
for inclusive reactiona: the factorization of the physicel cross seetion
into a hard-—scattc'ering subprocess cross section, controlled by short-
distance perturbative QCP. convoluted with structure functions G(x,Qz)
which contain the long distance hadronic bound state dynamics. Notice
that the Qz—evolution of G(x,Q) 1s8 also completely specified by tl- per-
turbative QCD processes and is independent of the nature of the target.

Al]l the corrections to the perturbative QCD impulse approximation
from final state interactiong, finite szL effects, interference contribu-
tions, mass corrections, ete. are of higher order in llqz, at least when
analyzed using perturbative methods. In the operator product analysis
these contributions correspond to matrix elements of "higher twist"
operators which have non-minimal dimensions. The most important higher
twist terms for deep Iinelastic leptan scattering are expected to cor-
respond to processes where the lepton scatters on wultiparticle clusters
in the target {qq, qﬁ, virtual mesons, qg, etc.). We thus obtain a sum

of contributions (see Figure 15):15

dy dg
(IR »2'%) = 6, (x) —= (eca -+ ea) .
Z LTL AR (5.1%)

2
€Qdx acH Pa = po
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Fa(x, @2) ~(1-x)3
+ QCD evolution
+ 0 [a4(@2)]

2., fi-x}
FZ(xio ) 04

AR
Fa(x,02) ~ 12X
Q

Fig. 15. QCD contributions to inelastic electron-nucleon scattering,
including radiative and higher twist (diquark, triquark)

corrections.
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vhere, in general da.lsz falls in Qz according to the composfteness of a:
2
:‘:f,- (sa + 2'a) ~ i'—:— e, @d? (5.15)
Q

For example, the "diquark™ eqq + eqq gives a contribution to ep + &X
of relative order (m2102 2. Since the qq can carry a large fraction of
the proton's momentum, this cortribution can dbe significant at large x.

For a guide to this effect oune can use the spectator counting rule: 60,8

S g — (1-::)2““—1 (5.16)
x+1
w‘nere-ns is the minimum number of spectator quarks (or gluoms) in the
Fock state requirad to stop at x + 1. The minimal Fock states containing
a gives the dominant contribution.

The simplified rule (5.16) can be derived from minimally connected
tree graph diagrams, ignoring spin effects, or from simple phase space
considerations if one dgnores the spectator quark wasses®! (see Section VI).
Using this simple counting we can then classify the contributions to the
hadron structure functions, as 1llustraced in Figure 15. The diquark ccen-
tribution is expected to give a large contribuvtion to the longitudinal
structure function sinece it acts coherently as a boson current. The corder
ua(QZ) contrib.uti.on. from the hard gluon radiative corrections with
k: > (1-::)()2 algo gives a significant contributiom to ap.

A detailed derivation of the behavior of structure functions at x ~ 1
from perturbative QCD is given in Reference 21. At x ~ 1 all of the had-

ron's momentum must be carried by one quark, and each guark and gluon

propagator which transfers this momentum becomes far off shell:

.



2 ( kf + nz)
k"~ o\~ 1 = x .
Perturbative QCD predictions thus becowe relevan(. A4n important result

is that at large x the struck quark tends to have'the same helicity as

the target nucleons21262

3 5

This type of spin correlation is consistent with the SLAC-Yale polarized
electron/polarized target data, Combined witia tiwe SU(6) symmetry of the
nucleon wavefunction this implies that the leading quark in the proton

is five times more likely to be an up quark than & down quark, and thus52

2
(Fz = zq: equq t.)

T 5@ /7y (5,07 — (5.18)

For the case of mesons, the perturbative QCD gluon exchange prediction 1e63
- 2 _—
qum a-x (5.i9)
In addition, the same QCD analysis predicts a large (:IQ2 contribytion to

the meson longitudinal structure function (see Figure 3b):22:6%

2
2 Q
F(x,0%) = 2 a? o (k) F_(&%) (5.20)
L QZ T 8 7
~a?/(1x)
vhich numerically 1is Fl. ~ leqz in Gev2 wnits. This contributio.., which

can dominate leading twist quark distribytions im mesons is normalized in
terms of the meson distribution amplitude, which in turn is normalized

by the pion form factor.



The dominance of the longitudinal structure functions in the fixed W
1limit for mesons is an essential prediction of perturbative QCD. Perhaps
the most dramatic conseguence is in the Drell-Yan process ¥p *+ tY27%; one
pt'e'.'l:l.c-.l:sz2 that for fixed pair mass @, the angula; distribution of the l.+
(in the pair rest frame) will change from the conventional (1 + cosze +)
disttibutio;l to ainz(B +) for palrs produced at large x . A recent analysis
of the Chica~r~Illinois~Princeton experiment®> at FNAL appears to confirm
the QCP high twist prediction with about the expected normalization,
Striking evidence for the effect has also been seen in a Gargemelle analy-
51856 of the quark fragmentation functions in vp —+ 'n+u-x. The results
yleld a quark fragmentation distribution into positive charged hadrons
which 18 consistent with the predicted form: dN'/dazdy ~ B(l-g)? +
(C/QZ)(l-y) where the (1-y) b‘ehavior corresponds to & longitudinal
structure function. It is alsc crucial to check that the ete™ MX cross
section becomes purely longitudinal (sinze) at large z at moderate 02.52

The resulte (5.17) and (5.19) for GqIB and Gq " give the behaviox
of the leading QCD contribution vo the structure function before QCD
evolution is applied; e.g., the results are valid for Fz(x.Qz) at Q2 of
order of (kf)u. The large Qz betavior is detcrmined by the evolutiun
equations (5.9), taking account of the phase space limits of the radiated

gluons at x ~ 1,%¢



VI. THE PHENOMENOLOGY OF HADRONIC WAVEFUNCTIONS

Thus far, most of the phenomemological tests of QCD have focused on
the dynamics of quark and gluon subprocesses in inclusive high momentum
transfer reactions. The Fock atate wavefunctions &:(xi.ﬁl g 11) which
determine the dynamies of hadrons in terms of their quark and gluon
degrees of freedom are also of fundamental importance. If thess wave-
functions were accurately known then an extraordimary number of phenowmena,
including decay amplitudes, exclusive processes, higher twist contributions
to inclusive phenomena, structure functions, and low transverse momentum
phenorena (such as diffractive processes, leading particle production in
hadron—hadron collisions and heavy flavor hadron production) could be
interrelated. Conversely, these processes can provide phenomenological
constraints on the Fock state wavefunctions which are {mportant for
understanding the dynamics of hadrons in QCD. In addition, as we discuss
in Reference 67, the structure of nuclear wavefunctions in QCD 15 essen—

tial for understanding the syntheses of nuclear physics phenomenology with

QCD.

A. Measures of Hadron Wavefunctions

As we have shown in Section III the central measures of the hadron

wavefuuctions are the distribution amplitudes
? [dzk] Ux, & ) 1
$(x,Q) = ] Yok g (6.1)

which control high momentum transfer form factors and exclusive processes: i
M ENYO Ty (6.2

and the quark and gluon structure functions i



Q 2
Cm=Q = Z [ [dzkl][dx:llwn(xi.ku)l 6(x = x) (6.3

which control high momentum transfer inclusive regctions

dex N1 G@do (6.4)
Examples are shown in Figures 1 through 3. A summary of the dasic
properties, logarithmic evolution, and power law behavior of these
quantities is given in Table IV.

The exclusive formula (6.2) also includes applications to large

momentum transfer multiparticle production®8:8 e+e- - H]." .lln with
Py p_1 ~ t’(Qz), and the elastic and inelastic weak and electromagnetic
form factors. We also note that hard scattering higher twist subprocesses
to inci.sive veactions such as yq + Mg, gq + Mg, g + MM, qq > B, etc.,
are absolutely normelized in terms of the distribution enplitudes.59 1In
particular, some amplitudes suck as yq + 5q, qq -+ 7g &nd gq + uq can be

rigorously related to the pion form factor sime the same integral

1
f FE 9, (6,0 (6.5)
0

enters in cach of the quentities.’? The p;s processes?® gq + Mg (see
Figure 3a) and qq + Mq are particularly interesting and important in
high-—p.r meson production processes such as pp -+ MX since the meson is
produced directly in the subprocess without the necessity for quark or
gluon jet fragmentatfon. In fact the contributions of standard p;l'
scaling processes such &s qq + qq, g9 + gq, and gg + g are strongly
suppressed by two to three orders of magnitude relative to the “directly
coupled” contributions because of the suppression of jet fragmentation

DM/ q(z) at large momentuwm fraction z and the fact that the subprocesses

¢ ———— e
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TABLE IV

Comparison of Exclusive and Inclusive Cross Sections,

Exclusive Amplitudes

Inclustve Cross Sections

A~ T xg,Q O Tylx,,Q)

do ~ 1 Gl .0 ® 45(x,,Q

a Q
4.0 - [ ]faen) oo - Sf by ool

Measure ¢ in yy + MH

Eu":."‘n

Measure € in 2p + X

Eﬁ‘t’”‘n

EVOLUTION

ﬂL’T‘J_QLz -a f CdyIvix,y) $(y)
2 log Q

1im

Qe e $(x,Q) = l;i Xt cflavor

2600 o f dy P(x/y)6(y)

3 log Q

oan 6tx,Q) = st ¢

POW:IR LAW BEHAVIOR

4o = .
ax (A+B + C+D) = .n-Z f(em)

n=a, + oy + LY + ny

T,: expansion in nB(Qz)

Q-xy) o
1-~x
do T
- (AB -+ cx’s ——— e, 5(0 )
ap/E E (Qz)n-ct-z
LI nh + nb + n, + n,

do:  expansion in oa(QZ)

COMPLICATIONS

End poiné singularities
Pinch singularities
Higher Fock states

Multiple scales

Phase-space limits on evolution
Heavy quark thresholds

Higher twist multiparticle processes
Initial and final state interactions

-
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oust occur at a significantly larger momentum transfer than that of the
trigget_ed particle,7!

Despite much effort there is at this time uo systematic understanding
of high Py hadron production ia QCD. A eomprehens‘ive attack must take
into account mot only leading twist svbprocesses and directly coupled
higher twist comtributions such as those listed abovs, but also the effects
of initial state multiple scattering effects. One of the most important
experiments which could clarify the nature of these effects ia the measure-

ment of the ratio of direct photon to meson at high p.t (x. = 2p./v5)
Ppt \%p = SRy

do do
R, (x.,8,8 ) = (pp + ’rx)/ (pp + X) (6.6)
Yin Xpr8s¥on dapIE dspIE

For example, if leading twist QCD processes dominate these reactions then

Rem ™ EGrp) ~ 1 -%
such as gq + nq dominate the meson production then one predicts RT /x ~ p,‘:

Y% at O,y ~ /2. 1If directly-coupled processes
at fixed X, and am." Measurements of this ratio in nuclear targets is
important for clarifying the contribution of final atate multiple scattar-
ing processges.

The photon prodbe plays a crucial role in high-p,: hadron reactions
since the photon couples diractly to the quark and gluon subprocesses
at short distances. The most dramatic example of these point~like phenomena
is the recent observations at PETRAR—® of high tramsverse momentum hadrons
in yy collisions. The results at Pp 2 3 GeV appear to be consistent with

the scale invarfant QCD prediction?3

doCyy + jec + Jet) 32 ei » Q= ud,s,c

dalyy + wTu")
2
{pp)
[1 + ﬂ(a"“p" )]

6.7)
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These resulte &lso indicate that, umlike typical meson-induced reaetioms,
an incident photon often produces high Py hadronic jets without leaving

hadronic energy in the beam fragmentation direction.”™ One also expects

analogous results for directly coupled photons in yp + nx and yp + Jet + X

reactions. The point-like behavior of on-shell photons is in direct con-
trast to the predictions of vactor meson dominance wodela.

A surprising feature of QCD is that even a hadron can produce :jets
at large Py without beam fragmentation.”’? For exampls, the existence of
high twist subprocesses such as Mq + gq and Mg + qg leads to high Py Jet
events In meson-induced collisions Mp + Jet + Jet + X where there is no
hadronic ensrgy left in the meson beswm fragmentation direction (see
Figure 3¢). The inclusive cross section, which scales ag p;s at fixed
X and ecm' is absolutely normalized to the meson form factor. 4s in the
case of the photon-induced reactions the directly eoupled meson has no
assoclated color radiztion or structure function evolution. An experi-
mental search for these unique and highly kinematically constrained events
is very important in order to confirm the presence of these subprocesses
which involve the direct coupling of meson qq Fock state to quarks and
gluons at short distance,

In general, we can replace any direct photon firteraction by a direct~
coupled meson interaction in the subprocess cross section by the replace-
ment a 3 F'(p;). Furthermore, one can compute direct-coupied processes
which isolate the valence Fock state of .baryons, e.g., pp + pX
(production of isolated large Py ‘protons via the qq -+ pg subpro;:esses),
and reactions pp - qqX (from qp -+ qq) (see Fipure 3b), pp + 949X (Loom
gp -+ 999), etc., each of which produce jets at high Py without beam

spectators or fragmentation.



B. Constraints on the Pion and Proton Valence Wavefunction?’

The central unknown in the QCD analysis of hadronic matrix elements
is the hadron wavefunction in the non-perturbative domain ‘2 x1 cevz.
For {llustration we shall assume that in this regfbn the vn fall off

exponentially in the ofi-shell enerpy:

" bie,
:Pn(x k) =4 e (6.9)
. LI mz\
é -3 (T <o 6.9
1=1 i

The parametrization is taken to be indep.ndent of spin; the full wave-
function is then obtained by multiplying by free spinors oY, The
form (6.8) has the advantage of analytic simplicity: For example, the
resulting baryon distributien amplitude at small x is
Q(xi.:) - A’ X XXy @ 34ix {6.10)

At large x, ¢ is de.r.ermined from the evolution equation (4.33). At very
iarge kl the b for non-valence Fock states should match onto the power
law fall-off k:l predicted by perturbative QCD. It should be emphaasized
that the form (6.8) is chosen just for simplieity. An egually plausible
parametrization is ¢ ~ Anﬁ;l’ with p = 3, which is suggested by the
Schroedinger equation assuming a linear poteatfal and the correspendence
given in Eq. (3.41).

In the case of the pion we can derive two important constraiats on

the valence wavefunction from the w + pv and o vy decay amplitudes:



o

e oy e

. 2 1 2
O a’k f, )
— dx P7Cx,k ) = —Tm [1+ 0( z )] (6.11)
. 15,,5 j; 1 2/1-:: :i.
and?? -
L I .ot R P . -Zz'(n:) E: ,
a=—rw - po(n,k = Q) 0 — (6.12
ik zz(xi) fa

The derivation of the second constraint assumes that the radius of the

plon I8 much smaller than ite Cempton length:

& a ¢ ) 2,? .. &
. me - €= (6.13)
‘l‘."_.'_ Rﬁ
Let us now assume the form
. . . . 2(:2 + ‘2)
cee R U T T
Wgee * A - = (? <1 cevd) (6.14)
Where
-4 g¥eq? -1 (x99)2. 52
" rﬂ(q_)lqz=o g \Ry by (6.15)

is the contributfon to the slope of the meson form factor from the valence
Fock state {see BEq. (4.2)). The two conditiomns (6.11) and (6.12) then

determine RI? = 0,42 fm, and?’

R .. K zk ~1 2

. -] —3% j ax)v*_ ()
TP T 16 Jo /e ?

. {6.16)

2\ 2
Y o L R |
. . 4 2 4 7
32("1')

Thus the probability that the pion contains only the valence Pock state
at small ocz 15 less than 1/4. Furthermore the radius of the valence state

turns out to be smaller than that of the total state: R:"p" ¥ 0.7 fm.

b me— e



One can also ve:':l..fy thae the bound Pqﬁ I £ 1/4 1s also true for power law
wavefunctions ¢ ~2 P, p> 2.

The exlstence of other Fock states at equal T in the pion is to ba
expected consideriug the fact thr~ Lits quark and giuon constituents are
relativistic. .The existence of large mplnr\and nAImN spin splittings
(due to tramsverse-polarized gluom exchange) also implies that there is
non-zerc gluon compenent 'atrinsic to both messn and nucleon bound
states.

In the case o!:‘ the baryon wavefunction, one can obtain non-trivial
constraints on the form of the 3~quark valence wavefunction by meking a
simultaneous analysis of the proton and neutron form factors and the
Y -+ pi; decay amplitude, assuming the ¢ decays via a J-gluen Intermediate
state (see Pdgure 6). The observed angular distribution? for ¢ + pp is
in fact consistent with the predicted form 1 + 52 cofy_. (where B is the
nuclecn velocity) and is a nom-trivial check of hadron helicity conserva-
tion for exclusive proczesses in QCD.

The ¢ + pp ratic 18 given to leading order in ag by (Figure 1b)!®

<
TG > 32+ pp) 6 3, IPeul (2
T > 3g + a1y © 210 a8 g (6.17

where [;cullf; ~.4, s = 9.6 Gevz, aud

1

$*(y, ,8) XY, + Xy,

> s f [axI[dy] —= 13 31
0

¥y [} Q-3p - m)][xy(l-yp+y;3(1-x5]

’(xi's> (6'18)

X lxzx 3
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15 a wall defined function of the baryon distribution amplitude, 1In the
case of the nuclear form factors (see Eqs. (4.31, 5.32)) it is important
to use the correct argument for each ag in the hard scattering amplitude

T,, corresponding to the actual momentun transfer which flows through each

|
exchanged gluon iIn Figure 7b. This effact is expected to yield the most

important contribution to mext to leading order fn o and 1s an integral
part of the QCD predictions. It is interesting to note that {f

¢p = Abxlxsz and if all the o, have the same ergument (which {s in fact
the situation in the asymptotic 02 + o 1imit?1?) then EBqs. (4.28-4.32)
give Q%tn" G;(Qz;lcgﬂqz) = 0. However, the fact that Sg is not a constant
and has different arguments for each diagram in '1'1 allows one te obtain

empirically consistent resvlts for the normalization?$ of é;(qz), c;(QZ)

and tha p + pp decay rate. To first approximation one ;equire327

. as(xiquz) - aS(Q2/9)

2y 20
ag{-xp-y0¢%) o 4%/} (6.19)

~ 1.5 to 2.0 at Q2 = 10 GeV2 '

The QCD predictions (4.28-4,30) for the proton and neutron form
fectors are only valld at large Q2 where the effects of mass corrections,
higher Fock atates and finite transverse momentum can be neglected. In
order to understand these effects we extend the parametrization of the
3 quark valence Fock state contribution ty using (Q2 + Mg)-2 1n the
dencminators of (4.29, 4.30) and replacing as(Qz) - us(Q2 + Mz) =
4nan log ((Q2 + H?)Itz) to reflect the fact that at low Qz the trans-—
verse momenta intrinsic to the bound state wavefunctions flow through

all the propagators.

N
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Although we have not tried to optimize the parametrizations, a
typica; fit which is compatible with the proton and neutron form factors
{see Figure 16) and ¢ + pp decay data areM, = 1.5 GeV, u = 450 MeV,
m, = 300 MeV, and A = 280 MeV, so that u;_(Qz = 10 Gev®) = 0.29. [Analyses 5O
of higher order QCD correctioms to the meson form factors suggest that omne

can identify the A used here with A = 2.16 Aﬁs'] The computed radius

m
of the 3-quark valence s-ate (computed from Gﬁ via Eq. (4.2)) is however
quite small: Rv = 0.23 fn, and the valence Fock state probability is
quq/p 2 1/4, 1If this preliminary analysis is correct, then, as in the
meson-case, the valence state 1s much smaller in transverse size than the

physiral hadron {which receives contributions to its charge radius from

all Fock states).

The most crucilal prediction from this analysis is that Q‘G;(Qz)

should decrease by a factor of 2 for Q2 = 10 to QZ = 40 Gevz, a trend not
at all indicated by the data! Further measurements of GH(QZ) are clearly
crucial in order to check this essential prediction of asymptotic freedom.

Given the above parameterizatiqy of the nucleon valence Fock state
we caun use Eq. (5.8) to compute the 3—quark non-perturbative contribution
tc the proton structure function at large x {see Figure 17):

_zmzbz (!‘. + ...2_
x l-x

G:/p(x.Qg) o« x(1 - 1[)3 e {6.20)

2. 0.05, the exponential factor is not very important away

Since 4 mzb
from the edge of phase space and so it is difficult to distinguish between
the non-perturbative and (1-x)3 perturbative contributions at large x
(see Secticn V). Higher Fock states |qqqg>. Iqqq qi) are ey_ected to

give the dominant contribution at lower x. Despite the freedom in this

parametrization it is reassuring that one can simultaneously fit a
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nusiber of diverse nucleon properties with QCD formulae and parameters

vwhich are the expected range.

At low Qz the exact formula (4.2) can be used as a further constraint
on the baryon Fock séatea. Eventually one hopes éo extend the predf-.ioms
to other domains of baryon phenomenology such as the barycn decay ampli-
tude in grand unified mx Jels and the normalization of higher twist sub-

process contributions to inelastic lepton—nucleon scattering.

€. Quark Jet Diffractive Excitation®?

The facé that the wavefunction of a hadron is a superposition of
(infrared and ultraviolet finite) Fock amplitudes of fixed particle
number but varying spatial and spin structure leads to the prediction of
8 novel effect in QCD.3? We First note that the existence of the decay
amplitude ¥ » uv requires a finite probability amplitude for the pi u to

exist as a quark and diquark at zero transverse separatlon:
#(x, T~ 0) = fan /o x(l- 2, (6.22)

In a QCD-based picture of the total hadron-hadron cross section, the com~
ponenta of a color ginglat wavefunction with small transverse separation
interact only weakly with the color field, and thus can pass freely
through a hadromic target while the other components interact strc  y.

A large nuclear target will thus act as a filter removing from th am
all but the short-range components of the projectile wavefunction. The
assoclated cross section for diffractive production of the inelastic
states described by the short range components is then equal to the elas-—
tic scattering cross section of the projectile on the target wmulciplied

by the probability that sufficiently small transverse sep m

B



conflgurationg are present in the wavefunction. In the case of the pion

interacting in a nucleus one computes the cross section

do ~
3 =
dx d 5 ;f-o

o™ 120 £ £2(-0? {6.23)
corresponding to the production of two jets just outside the nuclear
volume. The x distribution corresponds to da/d cosé ~ sinze for the jet
angular distribution in the qa center of mass., By taking into account
the ghgorption of hadrons in the nucleus at ‘t.'.l ¥ 0 one can also compute
the k; distribufion of the ja2ts and the mass spectrum of the ditiractive

hadron system. Details are given in Reference 30.

D. The "Unveiling" of the Hadronic Wavefunction and Intrinsie Charm

The renormalizability of QCD implies that all of the dynamics of the
hadron wavefunctions oh:(x 1,1:1 1) at scales Kz much larger than mass

thresholds 1is completely contained in the structure of the running coupl-

ing :zonstant cs(xz) and running mass m(cz) and the quark and gluon external

line renormalizatfioa constants. Nevertheless, the fact that there are
different hadronic scales and thtresholds fn QCD does imply non~trivial
dynamical ~tructure of the wavefunctions. In the case of Compton scatter-
ing, YP * Yp, the energy denominators (see Eq. (5,3)) are a function of
My - d;. so that the cross section is semsitive to wavefunctions up to
the scale tz ~ 2mv.

As an example of the change of wavefunction physics with the resolu-
tion scale let us consider a deuteron target. For very low ‘2 << ZHEB.E.
:hg deuteron acts as a coherent object. At the scale K2>>2MEB.E‘. the

.

wavefunction corzesponds to a n—-p bound state. AS the scale increases

o -



to g? x1 Gevz, the quark degrees of freedom become relevant and the
deuteron wavefunction in QCD must be described in terms of six quark {and

higher) Fock states: 78
Lé;-' a[(uud)l(ddu)1> + bl(uud)szddu)s)

+ cI(uuu)l(ddd)l) + ﬁl(uuu}a(ddd)a) (6.24)

. _: +* aes
The first component correspivnds to the usual n~p structure of the deuteron.
The second component corresponds to "hiddea color" or "ecolor polarized"
configurations where the three-quark clusters are im color-octets, but
the o;erall state is a color-singlet. The last two components are the
corresponding isobar configurations. If we suppese that at low relative
momentum the deuvteron Is dominated by the n-p confipuration, then guark-
quark scattering via single gluon exchange generates the cclor polarized
states (b) and (d) at high k ; i.e., there must be mixing with color-
;olarized states in the deuteron wavefunction at short distances.5?
N The deuteron's Foek state structure is thus much richer in QCD than
it is in nuclear physics where the only degrees of freedom are hadrons.

It {s interesting to speculate on whether the existence of these new
configurations in normal nuclei could be related to tha repulsive core
of the nucleon-nucleon potential,”8 and the enhancement?® of parity-
violating effects In nuclear capture reactions. One may also expect that
there are resopance states with nuclear quantum numbers which are dominantly
color-polarized, The mass of these states is not known. It has also been
speculated?® thar such long~lived states could have an anomalously large
fateraction ~ross section, and thus accou t for the Judek?? anomaly in

cosmic ray ard heavy lon experiments,.80 Independent of these speculations,



it ’s clearly important that detailed high-resolution searches for these
states be conducted, particularly in inelastic electron scattering and

tagged photon nuclear target experiments, suth as yd + yd scatter at large

angles.

The structure of the photon's Fock states in QCD is evidently richer
than that expected in the vector meson dominance model.®? For example,
consider the one-gluon exchange correctior to the y + qa vertex. For

22 > ¢7(: ) the vertex correction remormalizes the point-vertex. For the

;oft domain 22 < ¢7(:2) one expects large corrections which eventually by
oispersion theory correspond to the usuval p, w, ¢, ... interpolating
g;elds. The soft corrections thus give the usual hadron-like component
of real photon interactions. WNevertheless, the point-like component
survives at any momentum scale, 98 producing veint-like corrections to
photon shadowing, J = O fixed pole phenomena in the Compton amplitude,
;nd the "antiscaling" QCD structure functiou of the photon.89 As the
;esolution scal :2 increases past the heavy quark thresholds, one adds
the y + ec, bb, ete., components to the photon's wavefunctions.

It is also interesting to comsider the dynamical changes to the
nucleon oavefunction as one passes heavy quark thresholds. For
FZ > 4m3 the proton Fock state structure contains charm quarks, e.g.,
séates |p> ~ qud cc>. We can distinguish two types of coentributions to
Fh{s Fock state.3! (1) The "extrinsic" or interaction-dependent component
generated from quark self energy diagrams as shown in Figure 18b~-a com—
ponent which evolves by the usual QCD equations with the photon mass scale
Qz; and (2) the "intrinsic" or interaction-indepemdent component which ia

generated by the QCD potential and equations of motion for the protom, as
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in Figure 1Ra-—a component which contributes to the proton Fock state
w&thou: regard to QCD evolutfon. Since the intrinsie component is maximal
for minimum off-shell energy € = M E[(k‘ + n®) /x 4 the charm quarks
tend to have the largest momentum fraction x in the Fock state. (This
also agrees wiih the physical picture that all the constituents of a bound
state tend to have the same velocity in the rest frame, i.e., strong cor-
relations in rapidi:y.) Thus heavy quarks (though rare) carry most of
the momentum in the Fock state in which they are present—-in contrast to
the usual parton medel assumption that non-valence sea quarks are always
found at low x. One cam also estimate using the bag model and perturbative
QCD that the probability of finding intrinsic charm in the protoa is ~1-2%.
The diffractive dissociation of the proton's intrinsic charm state3!:30
provides & simple explanation why charmed baryons and charmed mesons which
contain no valence quarks in common with the proton are diffractively pro=-
duced at large x with slzeable cross sections at 1SR energies, Further

digcussion may be found in Reference 31,
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VII. CONCLUSION

In these lectures we have discussed the application of QCD to hadron
dynamics at short distances where asymptotic freedom allows a systematic
perturbative approach. We have shown that it is ;ossible to define the
perturbative expﬁnsion in uB(QZ) in such a wey as to avoid ambiguities
due to choice of renormalization scheme or scale, at ieast in the first
non-trivial orders.!® Our main emphasis in these lectures, however, has
been on how to systematically incorporate the effects of _he hadronic
wavefunction in large momentum transfer exclusive and inclusive reactions--
thus leading to a broader testing ground for QCD. We have particularly
emphasized the Fock state wavefunctions wn(xi’kxi‘ li) which define the
hadron in terms of i:s quark and gluon degrees of freedom at equal time
on the light-cone. it is clear that a central problem of QCD is to deter-
mine not only the spactrum of the theory but also the basic bound atate
wavefunctions of the color singlet sector. Such solutions may be found
in the near future using lattice rumerical methods, particularly by quan-
tizing at equal time on the light-cone, or by more direct attacks on the
QCD equactions of motion for the *n‘ as discussed in Section III.

Even without explicit solutions for the ¥, Ve van meke a number of
basic and phenomenclogical statements concerning the form of the wave-

functionsz27

(1) Given the wn we can compute the single and multiple quark and
gluon distyibution amplitudes and structure funcilons which appear as
the coefficient functions in the QCD predictions for high momentum trans-
fer exclusive and inclusive reactions, including dynamical ﬁigher twist
contributions. We have also emphasized general features of these distri-

butions, including helicity selection rules, Loremtz properties, connections



with the Bethe-Salpeter amplitudes, renormalization properties, and cor=-
respondence limits in the non-relativistic weak binding approximation.
{2) The perturbative structure of QCD leads Eo predictiqns for the
high k;’ x » 1 and far-off shell behavior of the wavefunction, In par-
ticul ir, the large kl power—~law behavior #v ~ kIz of the valence wave-

2 behavior of the higher Fock state contributions

functions and the lez ~ k:
lead to QCD evolution equations and light-cone operator product expansion
for the essential measures of the wavefunctions, the distribution amplitudes
¢H(x.Q) and ‘B(xiﬂQ)' and the structure functions. We have also emphasized
the fact “hat the valence wavefunction behavior vv ~ kIz implies that the
high kf behavior of quark and gluon jec distributions dNIdki is ~1lk:.

not exponential or gaussiau.

(3) Important boundary values and constraints on hadronie wavefune-
tions ere obtained from the weak and electromagnetic decay amplitudes,
including ¢ ~ BB. The distribution amplitudes are measurable in detail
from the angular behavior of the yy + Mh and®? yy + BE amplitudes.

(4) By assuning simple anilytic forma for the valence wavefunctions
in the non-perturbative domain, we have found consistent parameterizations
vhich are compatible with the data for hadron form factors, decay ampli-
tudes, etc. An important feature which emerges from these studies is that
the valence state is more compact in transverse dimensions than thes plysi-
cal hadron. Even at a low momentum transfer scale, highoer Foek states
play an i{mportant role, 1i.e., there is no scale whare the pro-on can
be identified &5 & 3~qunrk valence state. This observation may be cim
patible with the traditional nuclear physics picture of the nucleon as &

central core, surrounded by a light-meson cloud.



(5) The fact that there is a finite probability for a hadron to exist
as its valence state alone, implies the existence of a new class of
"direetly~coupled" semi-inclusive processes where a meson or baryon is
produced singly at large transverse momentum, or interacts in a high-
momentum transf: . reaction without accompanying radiation or structure
function evolution.2? As in the case of dire:tly-coupled photon reactions,
fp. hagron can interact directly with quark and gluons in the ghort-
distance subprocess, with 8 normalization specifiad rigorously in terms
of the distribution amplitudes or form factors. Examples of these sub-
processes are-qq + Bq, gq + Mg, Mg + qq, Bg + qq. Ve have also discussed
an jmportant coatribution tc the longitudinal meson structure funetion

FH ~ C/Qz. involving direct-coupling of the mescon, somewhat analogous to

"L
the photon~gtructure function. The finite probability for a meson to
exist as a qa Fock state at small seraration also implies a new class of
diffractive dissociation processes.ao

{6) The Fock stete description of hadrons in QCD also has interesting
inplications for nuclear states, especlally aspects involving hidden zolar
configurations, More generslly, we have emphasized the idea that the far-
off stell components of hadron wavefunctions can be "unveiled” as the
energy resolution scale is increased. For example, the existence of heavy
quark vacuum polarization processes within the hadronic bound state
implies finite probabilities for hidden charm Fock states even ia light
nesons and baryons. The diffractive dissoclation of these rare states

appears to provide a natural explanation of the remarkable features of

the charm production cross secticns measured at the 1SR, 3

Vg 3
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(7) We have algo emphasized the impor:ance of initial state inter-
actions in all inclusive reactions involving hadron-ha ron collisions.
The initial state interactions disturb the coler coherence, kL distribu-
tions, and at low energies the x~dependence of the incoming hadronic
distributions. Despite these profound effects on the hadronic Fosk
states, some of the essential features of the QCD predictions still ar=
retzined, A detailed discussion is given in Reference 20.

“-*"-This, in summary, we have found that :he testing ground of perturba-
tive qQcp where rigorous, definitive tests of the theory can be made can
now be extended throughout a large domain ;f large mementum t-ansfer
éxclusive and inclusive lepton, photon, and hadron reactions. With the
possible exception of hadron preduction at large transverse momentum, a
consistent picture of these reactions is now emerging. By taking iaito
account the structure of hadronic wavefunctions, we have the opportunity
of greatly extending the QCD testing ground, unifying the short and long
distance physics of the theory, and eventually making contact with the

realm of hadronic spectroscopv, low momentum transfer reactions, and

non-perturbative physiles.
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