

Conf - 900528 - 6

Invited Talk (H.H.W.) at the
International Conference on Organic Superconductors
May 20-24, 1990, South Lake Tahoe, California

CONF-900528--6
DE91 006004

NEW AMBIENT PRESSURE ORGANIC SUPERCONDUCTORS:
 α -(BEDT-TTF)₂(NH₄)Hg(SCN)₄, β -m-(BEDO-TTF)₃Cu₂(NCS)₃, and
 κ -(BEDT-TTF)₂Cu[N(CN)₂]Br

Hau H. Wang, Mark A. Beno, K. Douglas Carlson, Urs Geiser, Aravinda M. Kini, Lawrence K. Montgomery, James E. Thompson and Jack M. Williams

Chemistry and Materials Science Divisions, Argonne National Laboratory,
Argonne, Illinois, 60439, U. S. A.

INTRODUCTION

More than one hundred and twenty conducting salts based on the organic donor-molecule BEDT-TTF are known, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene (abbreviated herein as ET). Several of the early salts possessed tetrahedral and octahedral anions, such as (ET)₂ClO₄(TCE),¹ (ET)₂PF₆,² (ET)₂ReO₄,³ and (ET)₂BrO₄.⁴ The perchlorate salt is metallic to 1.4 K,¹ and the perrenate derivative was the first ET based organic superconductor (T_c 2 K, 4.5 kbar).³ Since the discovery of ambient pressure superconductivity in β -(ET)₂I₃ (T_c 1.4 K),⁵ other isostructural β -(ET)₂X salts have been prepared with higher T_c 's. These salts are β -(ET)₂IBr₂ (T_c 2.8 K),⁶ β -(ET)₂AuI₂ (T_c 4.98 K),⁷ and β^* -(ET)₂I₃ (T_c 8 K).⁸ A structure-property correlation for the β -type salts has been reviewed in this volume;⁹ it predicts that T_c 's higher than 8 K are possible if β -salts with linear anions longer than I₃⁻ can be synthesized. During the search for new linear anions, a variety of compounds was discovered with polymeric anions. For example, with the Ag(CN)₂⁻ anion, in addition to the expected (ET)₂Ag(CN)₂ salt,¹⁰ afforded the first ET salt with a polymeric anion, (ET)Ag₄(CN)₅.¹¹ The linear AgI₂⁻¹² or cubic Ag₄I₆²⁻¹³ anions, yielded (ET)₃Ag_{6.4}I₈.¹³ In a similar fashion the CuI₂⁻ anion leads to (ET)₂Cu₅I₆.^{14,15} The latter two compounds are good metals to low temperatures and consist of layers of donor molecules and polymeric anions. The report of superconductivity in κ -(ET)₄Hg₃X₈ (X = Cl, T_c 5.3 K 29 kbar¹⁶ and X = Br, T_c 4.3 K ambient pressure¹⁷ and 6.7 K 3.5 kbar¹⁸) and κ -(ET)₂Cu(NCS)₂ (T_c 10.4 K)¹⁹ further stimulated the search for novel polymeric anions. A general synthetic strategy for

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

The submitted manuscript has been authored
by a contractor of the U. S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

MASTER

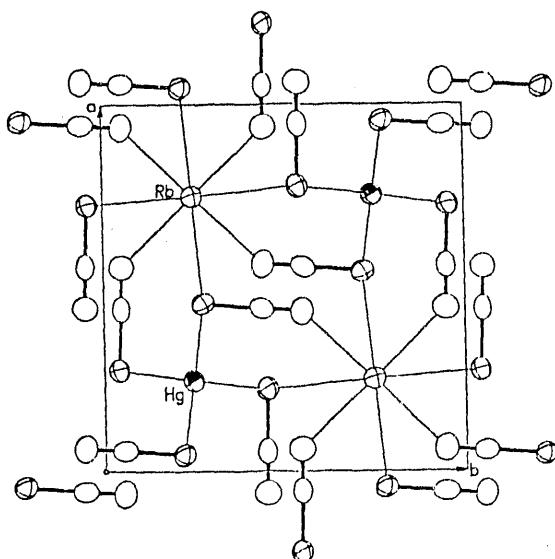
JAN 1 1991

preparing new salts containing polymeric anions is to couple a coordinatively unsaturated neutral transition metal halide/pseudohalide with a simple halide or pseudohalide during an electrocrystallization synthesis. A number of new compounds have been made in this way, for example, (ET)BiI₄,²⁰ (ET)Ag_{1.6}(SCN)₂,²¹ and (ET)Ag_{2.4}Br₃.²² In an attempt to replace the halide in κ -(ET)₄Hg₃X₈ with a pseudo halide, a β -like (ET)₄Hg₃(SCN)₈^{23,24} compound was obtained. Using slightly different experimental conditions during electrocrystallization, two entirely different salts, α -(ET)₂(M)Hg(SCN)₄ (M⁺ = K⁺ and NH₄⁺), have been reported by Oshima *et al.*^{25,26} In this article, we discuss three new ambient pressure organic superconductors with novel polymeric anions, α -(ET)₂(NH₄)Hg(SCN)₄,²⁷ β m-(BO)₃Cu₂(NCS)₃,²⁸ and κ -(ET)₂Cu[N(CN)₂]Br.²⁹

α -(ET)₂(M)Hg(SCN)₄, M⁺ = K⁺, NH₄⁺, and Rb⁺

The α -phase salts are prepared by electrocrystallization of ET (one eq.), Hg(SCN)₂ (10 eq.), MSCN (20 eq. M⁺ = K⁺, NH₄⁺, and Rb⁺), and 18-crown-6 (10 eq) in 1,1,2-trichloroethane with 10% (vol) ethanol. The applied current density is maintained in the range of 0.2 to 0.5 μ A/cm². Crystal growth is carried out at room temperature for approximately two to six weeks. The resulting crystals are shiny black thick platelets. The room temperature ESR peak-to-peak linewidth falls in the range of 55 to 85 G for all three compounds (*vide infra*). Screening of crystals employing ESR spectroscopy reveals a second minor unidentified phase with a linewidth of less than 10 G. The typical morphology for the minor phase is thin needle-like platelets. It is worth noting in this regard that a 3:1 salt, (ET)₃[Hg(SCN)₃], has been reported.²⁵

The α -phase potassium and ammonium salts were identified by their unit cell parameters,²⁵⁻²⁷ and a single-crystal structural determination was carried out on the rubidium salt. Detailed structural results of the rubidium salt will be published elsewhere. The unit cell parameters of all three compounds are listed in Table 1.


DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Table 1. Unit Cell Parameters for α -(ET)₂(M)Hg(SCN)₄

	K ⁺ 25	NH ₄ ⁺ 26,27	Rb ⁺
<i>a</i> (Å)	10.082	10.089	10.087 (<i>b</i>)
<i>b</i> (Å)	20.565	20.613	20.642 (<i>c</i>)
<i>c</i> (Å)	9.933	9.968	9.998 (<i>a</i>)
α (°)	103.70	103.67	103.54 (β)
β (°)	90.91	90.47	90.53 (γ)
γ (°)	93.06	93.36	93.23 (α)
<i>V</i> (Å ³)	1997.0	2010	2020.1

The unit cell volume increases by approximately 0.5% in going from potassium to ammonium and another 0.5% in continuing from ammonium to rubidium. The two-dimensional polymeric anion layer is shown in Figure 1. The mercury atoms are located in tetrahedral sites with four sulfur bonded SCN⁻ ligands. The rubidium atoms on the other hand are located in eight coordination sites with four sulfur bonded SCN⁻ ligands on one side and four nitrogen bonded NCS⁻ ligands on the other side in an overall square antiprism configuration. The donor layer belongs to a typical α -type packing motif.

Figure 1. The anion layer of α -(ET)₂RbHg(SCN)₄ viewing along c^* axis

An oriented single-crystal ESR study has been carried out on the rubidium salt. A square platelet crystal of α -(ET)₂RbHg(SCN)₄ was mounted on a quartz rod with the crystal plane oriented vertically in the microwave cavity. The *b* axis (see Table 1, Rb salt) pointed upward. The zero and ninety degree orientations correspond to the static magnetic field parallel and perpendicular to the crystal plane, respectively. The measured g-values (circles) and peak-to-peak linewidths (triangles) are plotted in Figure 2. The corresponding solid curves are the least squares fit to the measured data with the following equations:

$$g_{\text{obs}}^2 = \sum_{i,j=1}^3 g_{ij}^2 l_i l_j \quad \text{and} \quad \Delta H = \sum_{i,j=1}^3 \Delta H_{ij} l_i l_j$$

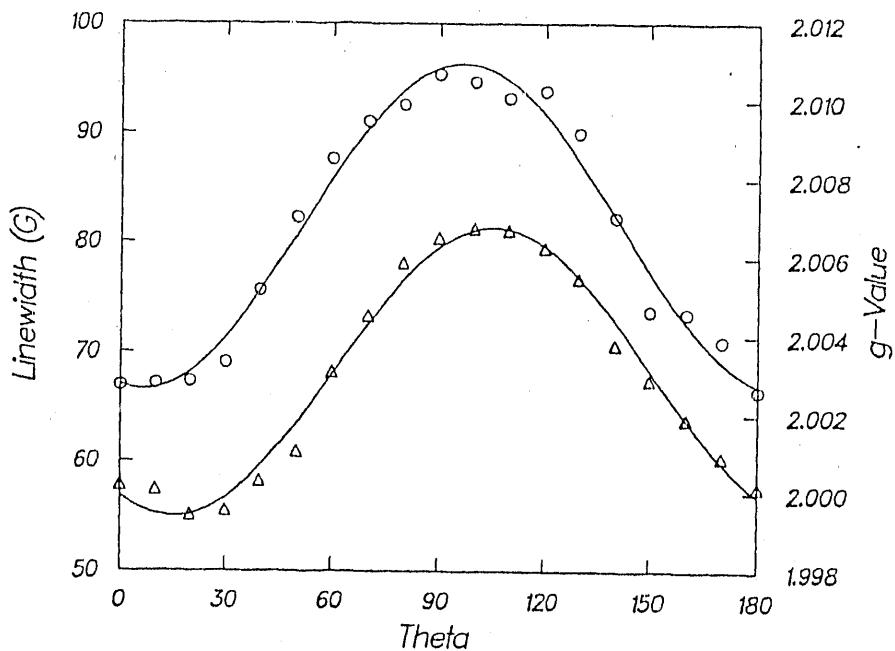


Figure 2. Orientation dependence of g-values (circles) and linewidths (triangles) of α -(ET)₂RbHg(SCN)₄ at room temperature.

The l_i and l_j are the direction cosines of the principal axes. The g-values and linewidths for the rubidium salt range from 2.002 to 2.011 and 55 G to 81 G, respectively. The results are very similar to that of the ammonium salt.²⁷ As shown in Figure 2, the minimum and maximum g-values correspond to the static magnetic field parallel to the crystallographic *a* and *c** axes. The g-value maximum near 90°, where the static field is approximately parallel to the central C=C double bond of each ET molecule, is commonly observed in other ET salts, such as α -(ET)₂(NH₄)Hg(SCN)₄²⁷ and α -(ET)₂I₃.³⁰

The temperature dependences of the ESR linewidth (ΔH) and the relative spin susceptibility (χ) of α -(ET)₂RbHg(SCN)₄ from 300 to 100 K are plotted in Figure 3. The

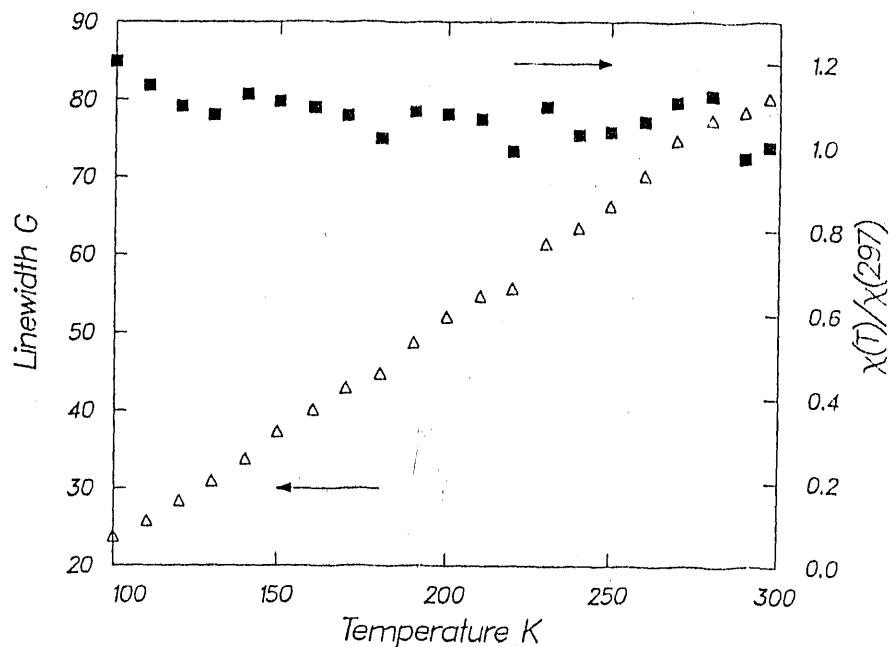


Figure 3. The temperature dependence of linewidth and relative spin susceptibility of α -(ET)₂RbHg(SCN)₄.

peak-to-peak linewidth decreases monotonically with decreasing temperature from 81 G at 300 K to 24 G at 100 K. The spin susceptibility remains constant in the temperature range measured, which is consistent with the Pauli paramagnetism of a metallic sample. This behavior is a common feature of the α ,²⁷ β ,^{31,32} and θ -phase³³ salts of ET. The decrease in linewidth with decreasing temperature can be qualitatively understood by use of the Elliott formula:^{34,35}

$$\Delta H \sim (\Delta g)^2 / \tau \quad \text{and} \quad \sigma = n e^2 \tau / m_{\text{eff}}$$

where $\Delta g = g_{\text{obs}} - 2.0023$ (a constant within experimental error) and τ is the conduction electron relaxation time. Since the conductivity (σ) increases with decreasing temperature, the linewidth is expected to become sharper as the temperature is lowered. Low temperature ESR measurements have been carried out on α -(ET)₂(NH₄)Hg(SCN)₄ from 150 to 4.2 K. The behavior between 150 K and 20 K is identical to that of the 300 K to 100 K, namely, the linewidth decreases with decreasing temperature and the spin susceptibility remains constant. Below 20 K, the relative spin susceptibility starts to drop, which is very likely due to a microwave penetration depth effect.³⁶ The penetration depth becomes smaller when the conductivity increases significantly, and only outer portion of

the sample is measured. The linewidth decreases at a much slower rate below 20 K and is 0.33G at 4.2 K. This linewidth is even sharper than some of the β -phase crystals at a similar temperature.³⁷ One possible reason for the extremely sharp linewidth of α -(ET)₂(NH₄)Hg(SCN)₄ is that the contribution from the conduction electrons becomes negligible at 4 K (*vide supra*) and only the residue linewidth (similar to the residue resistivity) remains. The residue linewidth could be caused by chemical impurities or crystal defects. Further experiments are needed to clarify this point.

The possible presence of superconductivity in the three α -phase salts was explored with RF penetration depth measurements at 0.5 K. In this method, superconductivity is exhibited by an increase in resonant frequency over that of the empty coil caused by the exclusion of the RF field from the sample by the persistent shielding currents. Only the ammonium salt displayed a strong superconducting signal (onset 1.15 K).

All known α -phase ET salts are listed in Table 2 along with their conductive properties. The $a \times b$ cross section area of the unit cell is also included so that the packing of the donor layers of different salts can be compared directly. A cross section area near 100 \AA^2 seems to favor conductivity. One remaining question is that why does not the structure-property correlation for the β -phase salts, i.e., larger unit cell volume give rise to higher T_c 's apply to the α -(ET)₂(M)Hg(SCN)₄ salts. No apparent structural disorder is observed in these materials. One difference among the K⁺, NH₄⁺ and Rb⁺ salts is that the NH₄⁺ cation is a molecular species and might provide a unique phonon mode that leads to superconductivity.

Table 2. Summary of α -Phase ET Compounds

Compounds	Conductance	Unit Cell Volume (\AA^3)	Cross Section		Reference
			a x b	(\AA^2)	
α -(ET) ₂ [RbHg(SCN) ₄]	metal	2020.1	100.85		this work
α -(ET) ₂ (NH ₄)Hg(SCN) ₄	$T_c = 1.15$	2010	100.54		27
α -(ET) ₂ [KHg(SCN) ₄]	metal at 1.5K	1997	100.14		25
θ -(ET) ₂ I ₃	metal	3386	100.03		38
α -(ET) ₂ I ₃	$T_{MI} = 135\text{K}$	1698	99.21		39
α -(ET) ₂ I ₂ Br	$T_{MI} = 245\text{K}$	1688	98.9		40
α -(ET) ₂ Cu(NCS) ₂	$T_{MI} = 200\text{K}$	1672	98.25		41
α -(ET) ₂ IBr ₂	semiconductor	1652	107.14		42
α -(ET) ₂ BrICl	semiconductor	1647	106.86		43

$\beta_m\text{-}(\text{BEDO-TTF})_3\text{Cu}_2(\text{NCS})_3$

The new donor molecule BEDO-TTF, bis(ethylenedioxy)tetrathiafulvalene (abbreviated herein as BO) contains four outer oxygen atoms and four inner sulfur atoms⁴⁴. The BO donor molecule is more susceptible to oxidation than ET. Electrocrystallization syntheses of BO salts are preferably carried out under inert atmosphere. Three BO salts have been characterized structurally, i.e., $(\text{BO})_2\text{AuBr}_2$,⁴⁵ $(\text{BO})_{2.4}(\text{I}_3)$,⁴⁶ and $(\text{BO})_3\text{Cu}_2(\text{NCS})_3$.²⁸ Several other BO salts suffer from inferior crystal quality, e.g., $(\text{BO})_2\text{AuI}_2$, $(\text{BO})_2\text{PF}_6$. In the case of $(\text{BO})_2\text{ClO}_4$ ⁴⁵ only the structure of the donor layer can be solved. The $\beta_m\text{-}(\text{BO})_3\text{Cu}_2(\text{NCS})_3$ crystals are prepared by electrocrystallization of BO (one eq), CuSCN (10 eq), KSCN (10 eq), and 18-crown-6 (10 eq) in 1,1,2-trichloroethane and 10% (vol) ethanol. The current density employed is $\sim 0.1\mu\text{A}/\text{cm}^2$, and the crystal growth is carried out in a nitrogen-purged drybox. Typical crystals are rectangular boxes. Moreover the crystal size is generally very small due to facile nucleation. During sample preparation, the electrode polarity was inadvertently reversed for one of the cells for a period of two days. The polarity was subsequently switched back. The polarity switch substantially reduced the rate of nucleation and larger crystals were obtained. It is interesting to note that this observation is reproducible. The larger crystals were used for structural determinations.

The detailed crystal structure of $\beta_m\text{-}(\text{BO})_3\text{Cu}_2(\text{NCS})_3$ has been reported elsewhere.²⁸ The novel polymeric anion layer is shown in Figure 4. Both Cu1 and Cu2 are three coordinate with a trigonal planar configuration. The Cu1 atom coordinates to two sulfur and one nitrogen atoms, while the Cu2 atom coordinates to two nitrogen and one sulfur atoms. All SCN⁻ ligands are bridged. The resulting anion network is an infinite two-dimensional layer. This is in contrast to the anion layer in $\kappa\text{-}(\text{ET})_2\text{Cu}(\text{NCS})_2$, where $\text{Cu}(\text{NCS})_2^-$ forms a zigzag chain with one bridging and one terminal SCN⁻ group. Two different anion layers ($\text{Cu}_2(\text{NCS})_3^-$ and $\text{Cu}(\text{NCS})_2^-$) are both "self-assembled" considering the almost identical synthetic conditions for both salts. Apparently the anion cavity created by the donor packing predetermines the appropriate polymeric anion to be accommodated.

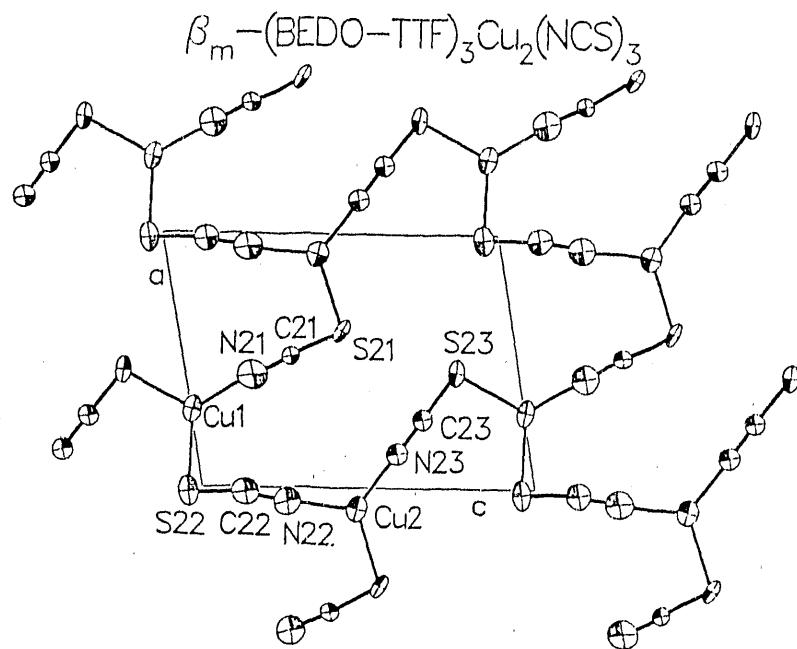


Figure 4. The polymeric anion layer of $(BO_3)_2Cu_2(NCS)_3$.

An oriented single-crystal ESR study was carried out on $\beta_m\text{-}(BO)_3Cu_2(NCS)_3$. The measured g-values (circles) and peak-to-peak linewidths (triangles) are plotted in Figure 5. The platelet crystal of $\beta_m\text{-}(BO)_3Cu_2(NCS)_3$ was mounted horizontally in the microwave cavity. The 0° and 90° positions correspond to orientations where the static magnetic field is approximately parallel and perpendicular to the *b* axis, respectively.²⁸ The correlation between crystallographic axes and the crystal morphology in this BO salt is different from the majority of the $(ET)_2X$ derivatives. The two solid lines in Figure 5 are the least square fits employing the same equations as discussed above. The linewidths range from 17.5 to 26.6 G and the g-values from 2.002 to 2.012. It is worth noting that the ESR linewidth for $\beta_m\text{-}(BO)_3Cu_2(NCS)_3$ is different from all other BO salts.⁴⁵ This is reasonable, since the linewidth is sensitive to the crystal symmetry and crystal structure. Accordingly, a linewidth near 20 G might well serve as an indication of new BO-based superconductors.

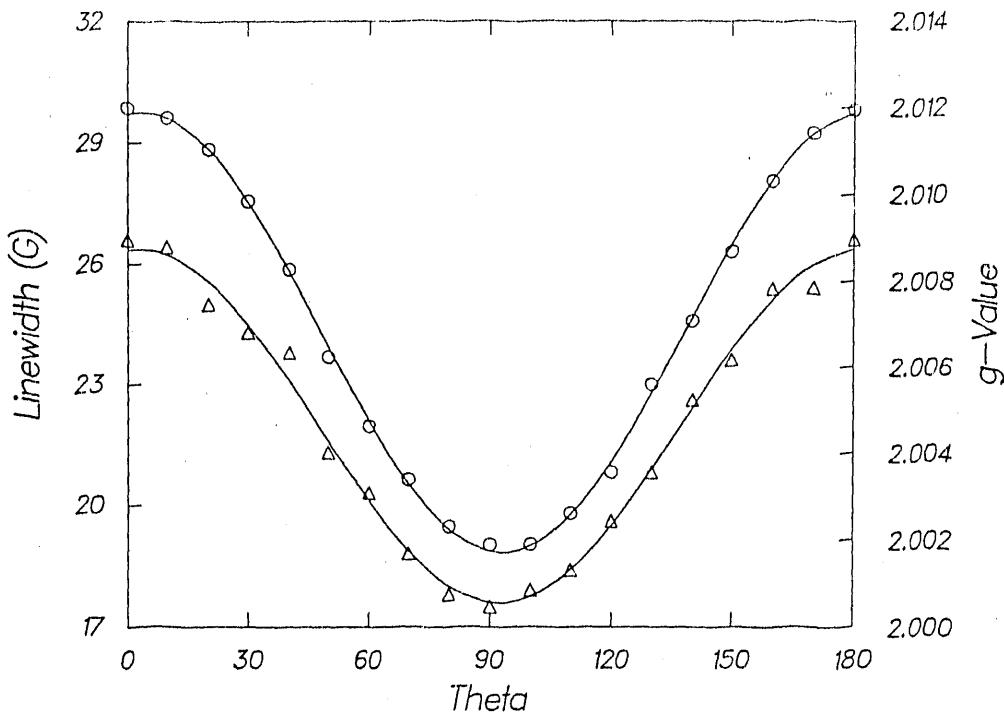


Figure 5. The orientation dependence of g-values (circles) and linewidths (triangles) of $(\text{BO}_3\text{Cu}_2(\text{NCS})_3$ at room temperature.

κ -(ET)₂Cu[N(CN)₂]Br

κ -phase compounds similar to the 10.4 K superconductor κ -(ET)₂Cu(NCS)₂ have long been actively sought since 1988. The Cu(NCS)₂⁻ polymeric network consists of tri-coordinated Cu(I) with two bridging SCN⁻ ligands that form a zigzag chain and a terminal SCN⁻ that completes the third coordination site. Many attempts to replace the terminal SCN⁻ group with other halides or pseudohalides such as I⁻ or CN⁻ and maintain the zigzag chain, have been in vain. The resulting products are usually a mixture of the κ -(ET)₂Cu(NCS)₂ and intractable materials. During attempts to prepare (ET)₂Cu[N(CN)₂]₂, κ -(ET)₂Cu[N(CN)₂]Br was isolated.²⁹ The synthesis will be published elsewhere.

The crystal structure has been determined²⁹ and yielded the following unit cell parameters: orthorhombic space group *Pnma*, *a* = 12.942 Å, *b* = 30.016 Å, *c* = 8.539 Å, *V* = 3317 Å³. The donor packing motif is typical of κ -phase salts. The polymeric anion layer is shown in Figure 6. The Cu[N(CN)₂]Br⁻ layer consists of tri-coordinated Cu(I) with two bridging (NC)₂N(CN)⁻ ligands forming a zigzag chain and a terminal bromide to complete the coordination around Cu atom. The terminal bromine atom has a close contact with a nitrogen atom from an adjacent chain so that each zigzag chain is not totally isolated.

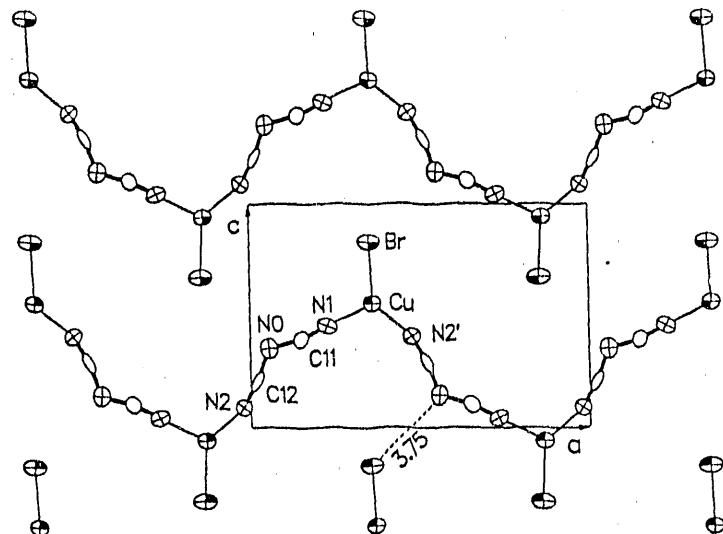


Figure 6. The polymeric anion layer of κ -(ET)₂Cu[N(CN)₂]Br viewing along *b* axis.

An oriented single-crystal ESR study was carried out on κ -(ET)₂Cu[N(CN)₂]Br. The typical crystal morphology is a thick diamond-shaped platelet. The *b* axis is normal to the crystal plane and the *a* axis is coincident with one of the diagonals of the platelet. A platelet crystal was mounted vertically in the microwave cavity (*a* axis pointed upward). The measured g-values (circles) and peak-to-peak linewidths (triangles) are plotted in Figure 7. The 0° and 90° angles correspond to the static magnetic field parallel and perpendicular to the crystal plane, respectively. The two solid lines are the least squares fit to the experimental values. The maximum g-value occurs at 90°, where the static magnetic field is parallel to the *b* axis and the central C=C double bond of the ET molecules. This observation parallels what is observed in other ET salts. The maximum g-value at 90° corresponds to the minimum linewidth. This behavior appears to be unique to the κ -phase and has also been observed in κ -(ET)₂Cu(NCS)₂.⁴² The linewidth varies from 60 G to 80 G, which is characteristic of κ -phase salts.

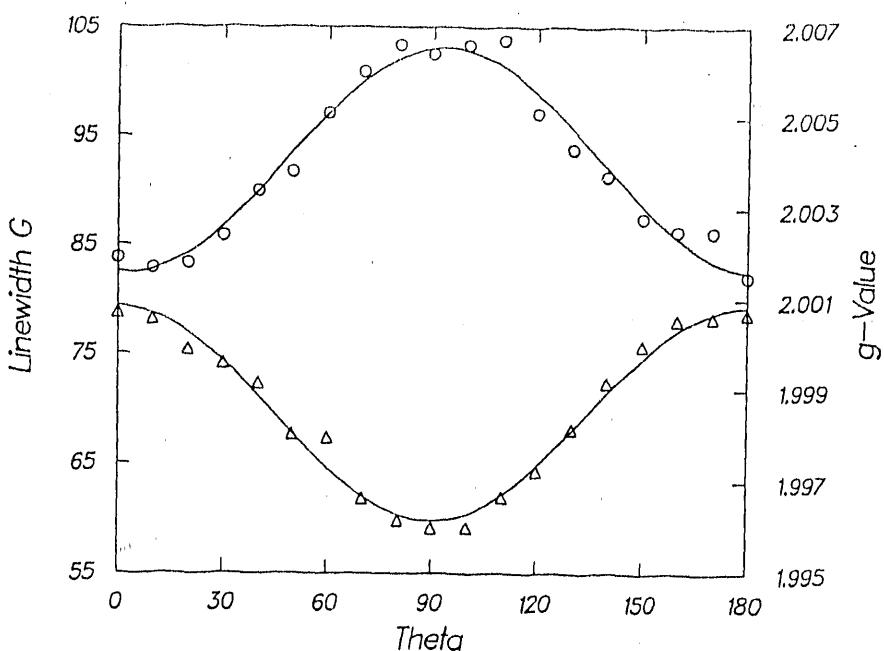


Figure 7. The orientation dependence of g-values (circles) and linewidths (triangles) of κ -(ET)₂Cu[N(CN)₂]Br at room temperature.

Four probe conductivity measurements on a single crystal of κ -(ET)₂Cu[N(CN)₂]Br reveal metallic character between 300 and \sim 220 K, a large resistive hump near 100 K, and strongly metallic behavior below 60 K.⁹ The superconductive onset temperature is 12.5 K, with midpoint at 11.2 K and zero resistance at 10.5 K. Superconductivity was also detected with RF penetration depth measurements and low field dc magnetization experiments employing single crystals weighing \sim 200 μ g.²⁹ The onset temperatures for these two measurements were both 11.6 K. The RF signal reaches saturation near 9.8 K. All the measurements for superconductivity indicate a very sharp transition.

The single crystal that was used for the RF penetration depth measurements was also used for low temperature ESR studies. It was oriented with the *b* axis (90° in the aforementioned orientation study, parallel to the static magnetic field. The linewidth increases slowly with decreasing temperature from 60 G at 300 K to 79 G at 60 K with a rate of increase of about 0.08 G/K. The linewidth and relative spin susceptibility are plotted against temperature in Figure 8. The ESR behavior of κ -(ET)₂Cu[N(CN)₂]Br between 300 and 60 K is similar to that of κ -(ET)₂Cu(NCS)₂^{47,48} and κ -(ET)₄Hg_{2.89}Br₈.³³ Below 60 K, the linewidth starts to decrease with decreasing temperature. At 40 K, in addition to the main absorption peak, a second peak with a sharper linewidth and \sim 3% intensity starts appearing. The second peak behaves in a

paramagnetic fashion between 40 and 15 K. The origin of the new peak could be either a small amount of chemical impurities or crystal defects. It should be pointed out that a sharp uncharacterized peak has also been observed in κ -(ET)₂Cu(NCS)₂ below 20 K.^{47,48} Further experiments are in progress. The linewidth of the main absorption peak decreases with decreasing temperature from 79 G at 60 K to 40 G at 10 K with a rate of decrease at 0.8 G/K, which is one order of magnitude faster than the aforementioned linewidth increase rate between 300 and 60 K. The observed linewidth decrease in κ -(ET)₂Cu[N(CN)₂]Br below 60 K contrasts with the behavior of κ -(ET)₂Cu(NCS)₂ and κ -(ET)₄Hg_{2.89}Br₈. Nevertheless, the linewidth behavior of the title compound is totally consistent with the conductivity measurements, i.e. the apparent semiconductive to metallic behavior.⁹ The spin susceptibility (squares) shows a slight increase between 300 and 100 K. Below 100 K, it starts to drop. At 15 K, it reaches 80% of the room temperature value. Below 10 K the main ESR absorption disappears, which is in agreement with the onset of superconductivity.

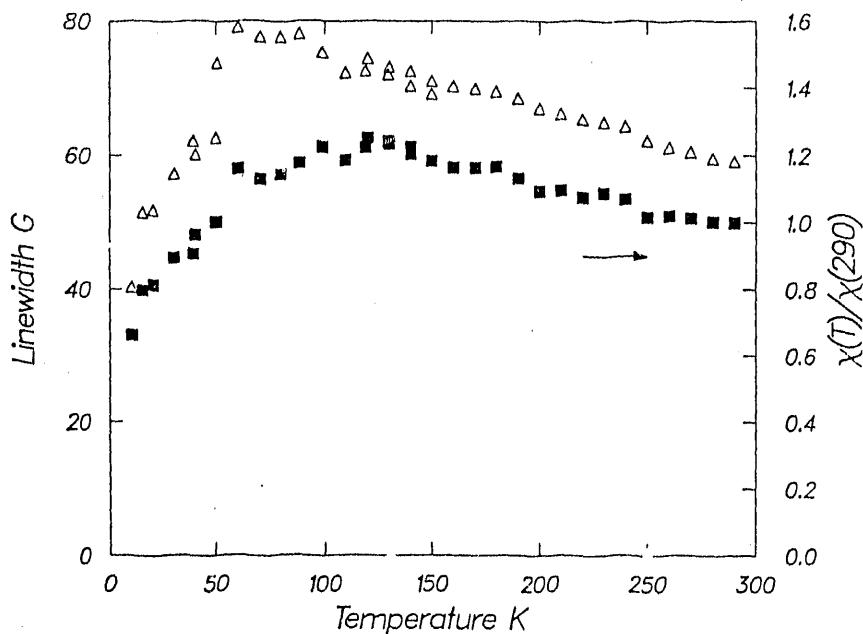


Figure 8. The temperature dependence of linewidths (triangles) and spin susceptibility (square) of κ -(ET)₂Cu[N(CN)₂]Br.

CONCLUSIONS

The use of polymeric anions continues to generate interesting new conducting materials, including the two highest T_c organic superconductors, κ -(ET)₂Cu(NCS)₂ and κ -(ET)₂Cu[N(CN)₂]Br. In contrast to the limited number of known linear monovalent

anions, the possibilities for synthesizing new and previously unknown polymeric anions are considerable. Further research along these lines should prove to be rewarding.

Over the past decade, the T_c 's of organic superconductors have increased by an order of magnitude from the 1.2 K value of $(TMTSF)_2ClO_4$ to 12.5 K for $\kappa-(ET)_2Cu[N(CN)_2]Br$. The oxide superconductors have made a greater jump from 11 K for $BaBi_{0.75}Pb_{0.25}O_3$ to 125 K of the Tl based high T_c materials. Considering the similarities among these two systems, it is not unreasonable to expect the organic superconductors to make major improvements in the future.

ACKNOWLEDGMENT

Work at Argonne National Laboratory is supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Contract W-31-109-ENG-38. L.K.M. is a scientist in residence, sponsored by the Argonne Division of Educational Programs, on leave from the Department of Chemistry, Indiana University, Bloomington, IN. J.E.T. is a student research participant sponsored by the Argonne Division of Educational Programs, from the University of Michigan, Ann Arbor, MI.

REFERENCES

1. H. Kobayashi, A. Kobayashi, Y. Sasaki, G. Saito, T. Enoki and H. Inokuchi, *J. Am. Chem. Soc.* 105:297 (1983).
2. (a) H. Kobayashi, T. Mori, R. Kato, A. Kobayashi, Y. Sasaki, G. Saito and H. Inokuchi, *Chem. Lett.* 581 (1983).
(b) H. Kobayashi, R. Kato, T. Mori, A. Kobayashi, Y. Sasaki, G. Saito and H. Inokuchi, *Chem. Lett.* 759 (1984).
3. S. S. P. Parkin, E. M. Engler, R. R. Schumaker, R. Lagier, V. Y. Lee, J. C. Scott and R. L. Greene, *Phys. Rev. Lett.* 50:270 (1983).
4. J. M. Williams, M. A. Beno, H. H. Wang, P. E. Reed, L. J. Azevedo and J. E. Schirber, *Inorg. Chem.* 23:1790 (1984).
5. E. B. Yagubskii, I. F. Shchegolev, V. N. Laukhin, P. A. Kononovich, M. V. Kartsovnik, A. V. Zvarykina and L. I. Buravov, *J.E.T.P. Lett.* 39:12 (1984).
6. J. M. Williams, H. H. Wang, M. A. Beno, T. J. Emge, L. M. Sowa, P. T. Coppers, F. Behroozi, L. N. Hall, K. D. Carlson and G. W. Crabtree, *Inorg. Chem.* 23:3839 (1984).
7. H. H. Wang, M. A. Beno, U. Geiser, M. A. Firestone, K. S. Webb, L. Nuñez, G. W. Crabtree, K. D. Carlson, J. M. Williams, L. J. Azevedo, J. F. Kwak and J. E. Schirber, *Inorg. Chem.* 24:2465 (1985).
8. (a) V. N. Laukhin, E. E. Kostyuchenko, Yu. V. Sushko, I. F. Shchegolev and E. B. Yagubskii, *J.E.T.P. Lett.* 41:81 (1985).
(b) K. Murata, M. Tokumoto, H. Anzai, H. Bando, G. Saito, K. Kajimura and T. Ishiguro, *J. Phys Soc. Jpn.* 54:1236 (1985).
9. J. M. Williams, A. M. Kini, U. Geiser, H. H. Wang, K. D. Carlson, W. K. Kwok, K. G. Vandervoort, J. E. Thompson, D. L. Stupka, D. Jung and M.-H. Whangbo, Plenary lecture, International Conference on Organic Superconductors, May 20-24, 1990, South Lake Tahoe, CA.
10. M. A. Beno, M. A. Firestone, P. C. W. Leung, L. M. Sowa, H. H. Wang, J. M. Williams and M.-H. Whangbo, *Solid State Commun.* 57:735 (1986).
11. U. Geiser, H. H. Wang, L. E. Gerdon, M. A. Firestone, L. M. Sowa, J. M. Williams and M.-H. Whangbo, *J. Amer. Chem. Soc.* 107:8305 (1985).
12. H. H. Wang, U. Geiser and J. M. Williams, unpublished results, unit cell parameters for $K(18\text{-crown-6})AgI_2$: monoclinic, $P2_{1/n}$ $a = 8.790(4)$ Å, $b = 8.447(5)$ Å, $c = 13.864(7)$ Å, $\beta = 103.14(4)^\circ$, $V = 1002.3(9)$ Å³, $Z = 4$.
13. U. Geiser, H. H. Wang, K. M. Donega, B. A. Anderson, J. M. Williams and J. F. Kwak, *Inorg. Chem.* 25:401 (1986). Unit cell parameters for

$K(18\text{-crown-6})Ag_2I_3 \cdot 2H_2O$, cubic F_{d3m} $a = 22.124(4) \text{ \AA}$, $V = 10,829(b) \text{ \AA}^3$, $Z = 16$.

14. L. I. Buravov, A. V. Zvarykina, M. V. Kartsovnik, N. D. Kushch, V. N. Laukhin, R. M. Lobkovskaya, V. A. Merzhanov, L. N. Fedutin, R. P. Shibaeva and E. B. Yagubskii, Sov. Phys. JETP 65(2):336 (1987).
15. J. M. Williams, H. H. Wang, T. J. Emge, U. Geiser, M. A. Beno, P. C. W. Leung, K. D. Carlson, R. J. Thorn, A. J. Schultz and M.-H. Whangbo, Prog. in Inorg. Chem. 35:51 (1987).
16. R. N. Lyubovskaya, R. B. Lyubovskii, R. P. Shibaeva, M. A. Aldoshina, L. M. Gol'denberg, L. P. Rozenberg, M. L. Khidekel' and Yu. F. Shul'pyakov, JETP Lett. 42:468 (1985).
17. (a) R. N. Lyubovskaya, E. A. Zhilyaeva, A. V. Zvarykina, V. N. Laukhin, R. B. Lyubovskii and S. I. Pesotskii, JETP Lett. 45:530 (1987).
 (b) R. N. Lyubovskaya, E. I. Zhilyaeva, S. I. Pesotskii, R. B. Lyubovskii, L. O. Atovmyan, O. A. D'yachenko and T. G. Takhirov, JETP Lett. 46:188 (1987).
18. J. E. Schirber, D. L. Overmyer, E. L. Venturini, H. H. Wang, K. D. Carlson, W. K. Kwok, S. Kleinjan and J. M. Williams, Physica C 161:412 (1989).
19. H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M. Kinoshita, S. Sato, K. Oshima, A. Kawamoto and J. Tanaka, Chem. Lett. 55 (1988).
20. U. Geiser, H. H. Wang, S. M. Budz, M. J. Lowry, J. M. Williams, J. Ren and M.-H. Whangbo, Inorg. Chem. 29:1611 (1990).
21. U. Geiser, M. A. Beno, A. M. Kini, H. H. Wang, A. J. Schultz, B. D. Gates, C. S. Cariss, K. D. Carlson and J. M. Williams, Synth. Met. 27:A235 (1988).
22. U. Geiser, H. H. Wang, P. R. Rust, L. M. Tonge and J. M. Williams, Mol. Cryst. Liq. Cryst. 181:117 (1990).
23. H. H. Wang, M. A. Beno, K. D. Carlson, N. Thorup, A. Murray, L. C. Porter, J. M. Williams, K. Maly, P. Coppens, and M.-H. Whangbo, to be published.
24. P. Coppens, K. Maly and V. Petricek, Mol. Cryst. Liq. Cryst. 181:81 (1990).
25. M. Oshima, H. Mori, G. Saito and K. Oshima, Chem. Lett. 1159 (1989).
26. M. Oshima, H. Mori, G. Saito and K. Oshima, The Physics and Chemistry of Organic Superconductors, eds. G. Saito and S. Kagoshima, Springer-Verlag.
27. H. H. Wang, K. D. Carlson, U. Geiser, W. K. Kwok, M. D. Vashon, J. E. Thompson, N. F. Larsen, G. D. McCabe, R. S. Hulscher and J. M. Williams Physica C 166:57 (1990).

28. M. A. Beno, H. H. Wang, A. M. Kini, K. D. Carlson, U. Geiser, W. K. Kwok, J. E. Thompson, J. M. Williams, J. Ren and M.-H. Whangbo *Inorg. Chem.* 29:1599 (1990).
29. A. M. Kini, U. Geiser, H. H. Wang, K. D. Carlson, J. M. Williams, W. K. Kwok, K. G. Vandervoort, J. E. Thompson, D. L. Stupka, D. Jung and M.-H. Whangbo, *Inorg. Chem.*, accepted for publication (1990).
30. T. Sugano, G. Saito and M. Kinoshita, *Phys. Rev. B* 34:117 (1986).
31. E. L. Venturini, L. J. Azevedo, J. E. Schirber, J. M. Williams and H. H. Wang, *Phys. Rev. B* 32:2819 (1985).
32. L. Forró, G. Sekretarczyk, M. Krupski, D. Schweitzer and H. Keller, *Phys. Rev. B*, 35:2501 (1987).
33. H. H. Wang, B. A. Vogt, U. Geiser, M. A. Beno, K. D. Carlson, S. Kleinjan, N. Thorup and J. M. Williams, *Mol. Crystl. Liq. Crystl.* 181:135 (1990).
34. R. J. Elliott, *Phys. Rev.* 96:266 (1954).
35. T. Enoki, K. Imaeda, M. Kobayashi, H. Inokuchi and G. Saito, *Phys. Rev. B* 33:1553 (1986).
36. H. Hurdequin, F. Creuzet, D. Jeróme, *Synth. Metals* 27:A183 (1988).
37. E. L. Venturini, J. E. Schirber, H. H. Wang and J. M. Williams, *Synth. Metals* 27:981 (1988).
38. H. Kobayashi, R. Kato, A. Kobayashi, S. Moriyama, Y. Nishio, K. Kajita and W. Sasaki, *Synth. Metals* 27:A283 (1988).
39. K. Bender, I. Hennig, D. Schweitzer, K. Dietz, H. Endres and H. J. Keller, *Mol. Crystl. Liq. Crystl.* 108:359 (1984).
40. Z. Daoben, W. Ping, W. Meixiang, Y. Zhaolou and Z. Naijue, *Solid State Commun.* 57:843 (1986).
41. M. Tokumoto, H. Anzai, K. Takahashi, N. Kinoshita, K. Murata, T. Ishiguro, Y. Tanaka, Y. Hayakawa, H. Nagamori and K. Nagasaka, *Synth. Metals* 27:A171 (1988).
42. R. P. Shibaeva, R. M. Lobkovskaya, M. A. Simonov, E. B. Yagubskii and A. A. Ignat'ev, *Kristallografiya* 31:1105 (1986) (Sov. Phys. Crystallogr. 31:654 (1986)).
43. H. Kobayashi, R. Kato, A. Kobayashi, G. Saito, M. Tokumoto, H. Anzai and T. Ishiguro, *Chem. Lett.* 93 (1986).
44. T. Suzuki, H. Yamochi, G. Srđanov, K. Hinkelmann and F. Wudl, *J. Am. Chem. Soc.* 111:3108 (1989).

45. M. A. Beno, H. H. Wang, K. D. Carlson, A. M. Kini, G. M. Frankenbach, J. R. Ferraro, N. Larson, G. D. McCabe, J. E. Thompson, C. Purnama, M. Vashon, J. M. Williams, D. Jung, and M.-H. Whangbo, *Mol. Cryst. Liq. Cryst.* 181:145 (1990).
46. F. Wudl, H. Yamochi, T. Suzuki, H. Isotalo, C. Fite, H. Kasmai, K. Liou, G. Srđanov, P. Coppens, K. Maly and A. Frost-Jensen, *J. Am. Chem. Soc.* 112:2461 (1990).
47. H. Urayama, H. Yamochi, G. Saito, S. Sato, T. Sugano, M. Kinoshita, A. Kawamoto, J. Tanaka, T. Inabe, T. Mori, Y. Maruyama, H. Inokuchi and K. Oshima, *Synth. Metals* 27:A393 (1988).
48. H. H. Wang, L. K. Montgomery, A. M. Kini, K. D. Carlson, M. A. Beno, U. Geiser, C. S. Cariss, J. M. Williams and E. L. Venturini, *Physica C* 156:173 (1988).

END

DATE FILMED

102 / 27 / 91

