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This work encompasses a broad attack on high speed parallel processing.

Hardware, software, applications development, and performance evaluation and visuali-

zation as well as research topics are proposed. Our goal i:_ to develop practical parallel

processing for the 1990's.



Cedar Project--- Original Goals and Progress to Date

The Center for Supercomputing t_esearch and Development was founded in late

1984 with major funding beginning in January of 1985. The principal project at that

time was the Cedar Project, which was designed to be the focal point for bringing to

fruition our work on high performance computation. The goal of this project, as stated

in a 1984 report [CSRD464'], was to demonstrate that supercomputers of the future can
exhibit general-purpose behavior and be easy to use. The Cedar Project was based on

five key developments which taken together offered a comprehensive solution to achiev-

ing high performance computation:

1. The development of VLSI components made large memories and small, fast proces-
J sors available at low cost.

2. Based on many years of work at Illinois and elsewhere, we had designed a shared

memory and switch which provide high bandwidth over a wide range of computa-

tions and applications areas.

3. The Parafrase project at Illinois had for more than 10 years been aimed at develop-

ing software for restructuring ordinary programs to effectively exploit supercom-

purer architectures. This tcchnology was ripe for a real test.

4. By using a hierarchy of control, we believed that dataflow principles could be used

at a high level (macro-dataflow), thus avoiding some of the problems with tradi-
tional dataflow methods.

5. Work in numerical algorithms indicated great promise in exploiting multiprocessors
without the penalty of high synchronization overhead, which had proved fatal in
some earlier studies.

We believe that with the developments over tile past six ),ears we have made subst, antial

progress toward our goal. In this section we will outline our progress since the beginning
of the Cedar Project and briefly describe specific Cedar work that remains to be done.

CSRD Developed Boards and Phgslcal Equipment

The Cedar hardware (see Figure i) has been operative for the past two )rears, and

16 processors have been installed and are functional. The debugging and integral.ion of

Cedar has continued until Q4 1990, and we are currently installing all 32 of the inl,ended

processors. Conl, in ued maintenance will be required for as long as tlm C(..dar system is
userul.

\Ve have developed prototype p(.'rformance evaluation boar(l._, and we are t:)lanning
to rnanut'acture and integrate a (:ornprehensive set, of these boards.

A limited amount, of new (tuvelot)Im.'nl, will I)e done oil Ce(Inr. l"or (.'.xaI_lt)le, t,he

: memory syst(::rn is being ilnprovcd by buildixlg a compatible global rho;fiery board using

,1 MBit parts. These projects are describ(.,d irl more detail e.lsewtlere iii tlli's rei)ort.



Figure 1. Architectures oi' the Cedar Ii

Boards and equipment, deV'eloped at, CSRD for Cedar can be classified into five

categories: global hardware boards, support boards, performance boards, diagnostic

hardware, and physical equipment,.

Global Itardware Boards

The global hardware boards az,_ the main boar(ts for Cedar oper:_tion. The Global

Interface Board (._fB) provides the interf,'_ce from the A lliant IPX/8 t,o the. Global Net-

work (GN). This board is 20 by 2,1 inches and has approximatx_ly 1,000 equivalent

integrated circuits with 11 layers. Tt_e GII3 is fabricated Inainly ill 'I'TI, t_:ctlnology l,o
gain the most in functionality; however, its Global Network intert'ace is (l(,.si_,zled in 1);CI_.

The Alliant, backplane and computational el(_.ments (CE._;) were _noditi<_d for C._I_.I) by

Alliant I,oacc(_pt; tills board. Since tl_e Alliant t):tckplane, was lno(titi(;(t l'or l'o_r



additional slots, four GIBe can be loaded into each Alliant (cluster), giving four CEs
access to GN.

In addition to providing the interface to the global memory, the GIB provides

Cedar-specific functions. The GIB implements the special Cedar synd_ronization primi-
tives. This board also performs prefetching of vectors from Global M,_mory at an issue

ra,tc of one request every other clock. Cross Processor Interrupt (CP I) between clusters
is also designed into the GIB.

An enhanced GIB, the GIB1A, was also designed for Cedar lA, and its functionality
is much like that of the GIB. This board has enhancements that allow for eight GIB1As

to exist in each cluster, providing a global hardware interface for each CE in the cluster.

Since early 1989, Cedar lA has been operating using GIB1As.

On the GN interface side of the board, the GIB can issue requests into the network

at the rate of one every two clocks. This matches the bandwidth of the Alliant issue

rate. On the receiving side, the GIB has a four-deep FIFO for receiving return requests

from GN. These requests can be routed by the GIB to the Alliant, the prefetch data

buffer, the synchronization processing unit, or the CPI logic, whichever is appropriate.

The next set of board types constitute the GN. This expandable shuffle network is

composed of two board types GNBI and GNBK. Both boards are on 20 by 24-inch form

factors, and GNBI has approximately 11150 ICs and 17 layers, while GNBK has 6r}0 ICs

and 8 layers.

GNBI is the main board of the set. This board is essentially an 8 x 8 crossbar

packet switch, and each port is 80 bits wide. GNBI is designed using ECL technology to

provide high bandwidth. In each clock cycle, GNBI can accept a word on all input
ports, resolve conflicts, route them, and present the results to the output ports.

GNBI is made possible w'th a CSRD-designed ECL gate array that does most of

the switch function and data queuing. The gate array is a four-bit 8 x 8 crossbar connec-

tion matrix with input and output queuing on each port. Nineteen oi* these gate arrays
exist on each GNBI. The control for this switch uses MSI circuitry and handles conten-

tion resolution as well as providing queuing control of incoming data. Each port has a

two-deep input queue and an output latch. The board has 1280 differential ECL signals

presented to i_ via cable and pr6Vides 640 single-ended ECL signals for backplane driv-

ing to the next board, GNBK.

GNBK receives the switched data from GNBI via backplane ('o,lnect, ions. This

board provides one level of queuing (latch) and converts the single-ended signals from

the backplane to differential signals for (:able driving to the next GN pair, CM, or CIB.

The CMB contains rnaill memory and irnplcmen_s Cedar synchronizer, ion. 'rt e
board is identical in size to the GlIB and network boards and has approximately 1200 ICs

with 15 layers. All paths on the board are 64-bits wide. IC is dc'signed wi_h a rnixt, ure of

ECL and TTL technology to provide the best compromise between speed and functional-

ity. GMB has 2 Mbytcs ot' ]'tAM, and ECC protection with a 6,1-big word size. This

board also contains the synchronization processor that completes (together wit, h the CH_)

the implementation of the special Cedar synchronization primitiw,'s. (_MII has three



levels of input buffering and three levels of output buffering. It can sustain a 64-bit

data streaming rate of one datum in four clocks. The latency is six clocks, a read-

modify-write cycle takes eight clocks, and _he synchronization processor adds three

clocks for performing 32-bit operations. Normally, there is one GMB for every GIB. I3y

reconflguring the network, this ratio can be modified.

The memory system of Cedar is being improved bY a compatible global memory

board that uses 4 MBit DRAM chips instead of the 256 KBit chip whichwill l,ermit the

expansion of a single global memory board from 2 MBytes to up to 32 MBytes. The glo-

bal memory board has significant control- and data-p_,h board-space overhead, so that

it makes economic sense to use 4 MBit DRAMS instead of 1 M_Bit, even if the cost ratio

(of 4MBit devices) is as much as two to four times higher. This will extend the lifetime

of ,he system for interesting applications work by allowing larger problems robe run. In

addition, if board space permits we would like to restore synchronization functionality

that had to be deleted in the first generation global memory board for space reasons,

which will allow experimentation with a richer set of synchronization techniques than is
now possible. We feel that this is a significant research area for the future in which

experimental work could be quite important.

In order to bring these boards together, CSRD-designed backplanes have been pro-
duced. There is a backplane for GN that allows GNBI and GNBK to communicate wit, h

each other, and which supplies the 600+ amps oi' power required. Similarly, there is a

backplane for GMB that provides the power as well as diagnostic inter/'aces and cable
attachments.

Another Cedar system board is the global clock board, which provides clocks to ali

global hardware boards as well as to each cluster. The clock board also provides clock
synchronization to each cluster to keep all clusters in lock-step.

To allow for eight GIB1A boards to exist in the cluster, CSRD has redesigned the
Alliant backplane. This "stretched" backplane was designed by using the Alliant back-

plane database, adding connectors, and lengthening the backplane using the Calay CAD
system.

Support Boards

There have been myriad support boards developed at CSRD. To test hardware,

there is a GIB emulator board that emulates the memory and network for CIB debug-

ging and diagnostics. The network board pairs required two special boards that, along
with an IBM PC/AT, form a network test, bed that allows testing of the network boards

under very controlled conditions to debug and test conflict resolution and data path
integrity.

Z

CS RD has also designed diagnostic and maintenance boards t"_r the Cedar system.
Diagnostic "hooks" are provided on both the CIBs and GMI3s. A number ot' 87,51

attached processors monitor the status of G]i]s and GMBs and report any errors, via

RS232, to _ Sun IV workstation. GN has internal dlagnosl, ics t,h:tl, provide, a simple
go/no-go I,ED indication on e,'tcll board.



For maintenance, a global reset board and an environmental monitor system have

been designed at CSRD. The global reset board provides a precise reset capability for

Cedar. The environmental monitor system, which is composed of four small boards,

monitors Cedar environmental aspects ._uch _ air temperature, cooling fluid tempera-

ture, and power supply load and status.

Performance Mon|torlng Hardware

Throughout the design of the Cedar-specific boards, performance monitoring h_

been a critical objective. The level of design complexity required for the basic func-

tionality of the interface, interconnection network, and shared memory prevented the

incorporation of integral performance monitoring counters and timers on the boards
themselves. Consequently, to supplement the large number of performance signals avail-

able on the cluster (Alliant) backplane, a significant number of representative signals

were identified on each board as observation points, and these signals were buffered and

brought out to the edge of each board. The interface board contains 49 signals (e.g.,
start and stop triggers, access to the data path, prefetch unit state data, synchronization

operation data, processor side and network side interface data), the network switch has
128, and the shared global memory has 55 per board.

To collect and process these data, the industry standard VME bus has been adopted

. by CSRD for the development of all moderate-to-very-sophisticated performance moni-

toring hardware tools. Prototype board quantities have been constructed for two funda-
mental hardware performance tools: a hardware Histogrammer and a hardware Tracer.

The Histogrammer is capable of histogramming 64K different events at a 170-

nanosecond rate. The Tracer is capable of tracing 20 bits of data with a depth of 1 rail-

" lion samples at a 170-nanosecond rate. Both of these boards support interleaving to

increase acquisition speed and depth. This allows the Tracers and Histogrammers to be

used on a one-per-CE basis for software event rates, and on a two-per-CE basis for

hardware event rates. A Sun processor board resides in the VME chassis with the per-

formance analysis hardware to extract data from these boards and to provide analysis
capabilities and an ethernet connection to the other computers at CSI_D.

For smaller problems and individual signal measuring, a substantially smaller

- "black box" card is used, and' thus small, specific, limited runction cards can be

developed quickly and inexpensively. Three such modules have been developed to date:

two types of data acquisition boards (with associated data probes) for collccbing TTL

and ECL signals from Cedar, and a dual-channel 16-bit counter-t_imer with st,orage
capable of storing 32K counts. An interface between the black box and a Multibus

chassis (the principal I/O bus of' Cedar) has been built, and the necessary software sup-
port for black box control has been written.

Diagnostic ltardware

The ability to detect and identify hardware problems in at working system was esta-

blished as a very important design aspect in the early p}lasc of Cedar developmcn& The

large number of boar(ts in this system, collple(t with the I)r()bl(:ll_s ()t' online (tiagnostic



and isolation techniques, makes the process of board-swapping for fault isolation wholly

unacceptable. We chose the approach of attached diagnostic processors for groups oi'
boards and designed error status and handling circuitry into each board type to report

errors (via the diagnostic processors) to a host work station.

We chose to keep the diagnostic processor design as simple _s possible to incre.aqe

reliability and ease the design requirements for both the diagnostic itself as well as the

error reporting circuitry on each of the board types. To this end, we chose to use a sin-

gle chip microcontroller that provides a bit-serial interface to the outside world, and sur-

rounded it with tl: _."glue" logic necessary for interface to each board type. In addition,
the ROM-resident code for the diagnostic processors is contained in the microcontroller

as well as the static RAM for the storage of error status.

At present, we have all required diagnostic processor boards for both the GIB and

GMB boards (the diagnostics processors are embedded in the global network boards).
The diagnostic is fully operational in the Cedar lA system. All the application-specific

code has been generated and debugged for the diagnostic processors. The serial interface

mentioned above is currently being used to dump diagnostic information to a Sun IV
workstation.

We have chosen to use a Sun as the workstation to tie all the diagnostic processors
D

together. Additionally, Alliant-bmsed code has been developed to exercise the Cedar sys-

tem, and work continues on the development of system code to perform on-lint checks
and fault isolation.

Physical Equipment

Physical equipment designed at CSRD includes three different extender board types
as well as the powering, cooling, and housing of Cedar. Four cabinets have been

designed at CSRD. Twc of these hold the four Alliant clusters (Ced_r lA), one holds the

network, and the fourth, smaller cabinet, contains the memory system. Powering is pro-
vided by la,rge switching supplies with a total output current capability in excess oi' 2000

amps. Cooling is provided for by chilled water hcaLexchangers, ot'which there are three

in each cabinet. The capacity or each exchanger is 7.5 Kwatts.
, ,

Operating System

Xylem (Cedar)

We have taken a very conservative approach to implernenting an operating system
for Cedar. Instead of starting from scratch, we cllose to adopt U,lix and t,o start with

" Alliant, Concentrix (which is based on Berkeley 4.2). Our systeln is called X yleln 1. The

main areas where Concentrix needed to be moditied were to provide: (1) support t'or the

[] utilization of multiple clusl, ers by a single program, (2) managexnellt ot' the pllysical Iilain

memory hierarchy (global vs. cluster), (3) support t'or shared ei,'l.,2al ,nemory t_c.twcen

I "A comple× tisuue it, the vascular system of high_.r plantB...functio,,ing chiefly it, conduction but also in supl,ort and atorage..."
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clusters, and (4) inter-cluster synchronization and communication mechanisms. Xylem

has evolved in such a way that each A:lliant cluster still appears to execute an indepen-

dent Concentrix OS while also managing Xylem-specific programs that utilize the

features of the Cedar system. This year has seen progress in a number of areas,
described in the following paragraphs.

User-level inter-cluster and inter-processor synchronization mechanisms have been

further' developed. We have run-time library routines for doing mutual exclusion and
post-wait event style synchronization. Internal interfaces within these routines have

been simplified and ovorall they have been made more robust, including fixing a bug

that could lead to deadlock during interrupt routines.

The saving and restoring of Cedar-specific hardware registers during interrupts and

context switching has been fixed. This was done incorrectly in the first implementation
and so the use of Cedar synchronization hardware was unreliable. There were small tim-

ing windows during which the contents of these registers could be corrupted by the OS,

resulting in the execution of operations that were not intended. This problem has been

cured, and a number of diagnostic tests are now available to verify correct operation of
the hardware while under control of the OS.

The hardware group has corrected the problems we had with the high-resolution

(lO-microsecond) clocks on each cluster. Previously these would appear to drift, _ if
running at slightly different rates. As a result, it was difficult to tell the same time in

tasks on different clusters. :Elaborate software mechanisms were in the kerpel to detect

this drift and then resynchronize the software. This resynchronization process woul_i

necessarily tie up clusters for long periods of time, and it happened often enough during
normal scheduling activities to impact user program performance. A new algorithm has

been designed to sync the clocks only once during system initialization. At the same

time, rather than computing pairwise time deltas between clusters, we will use the

notion of synchronizing against a global time base. As ,u result, it will be much easier for

programs to measure time and coordinate events across clusters, with no system interfer-

ence. For example, a oeriodic system utility can run once a day to verit'y that the clocks
have indeed maintained synchronization.

Another problem tha_ requi.red a considerable amount of attention was the diag-

nosis of bugs in the physical memory allocators and process swapping algoritllms in the

kernel. Some of the indicators of these bugs are that processes might get swapped out

and then never get swapped back in, or processes might get, stuck in memory (i.e., not
swapped out) such that other processes could not be swapped even (:hough they w_

ready and had sutficient priority. These problems were caused by a combination of

incorrectly accounting for how physical memory was 1)eing 11se(t, a_ld incorre('t COml)lit, a-

tion of working set sizes by the system swapper. We are confident of our diagnosis, and

most ()f these problems have been corrected, but there are still accounting errors to })e

isolated. Algorithms in the swapper have been made more fault tolerant of sll('.h iil(:on-
sistencies.



Instrumentation of Xylem

The current implementation of Xylem is partially instrumented. For example, facil-

ities exist to account for every page fault in terms of what kind of memory was faulted

(e,g., cluster vs. global, shared vs. private), and how lt was resolved (image from memory

or disk,) [CSRD857** & CSRD858*]. Accounting for system-wide paging activities has
recently been installed, and we are looking forward to observing the paging behavior and

tuning this aspect of system performance.

We have designed a comprehensive instrumentation approach using the hardware
facilities available on the Cedar GIB board. This hardware will let us collect trace

even,ts and send them to a dedicated processor. Without adding much overhead in the

kernel, we tntend Lo collect timestamps on all kinds of system wide activities, such _s

interrupts, context switches, and page faults. Some low level subroutines are already in

place to make trace events and write them to the hardware buffer. With these capabili-

ties fully functional, we will be able to determine what is really happening inside the OS.

Single User Batch

Recently_ a single user batch facility has been implemented and installed on Cedar

to make it possible to submit a job to be run in single user mode automatically. At
i

predetermined or regularly scheduled times, the normal time-sharing system will shut
itself down and initiate single user batch processing. If there are any jobs in the single

user batch queue, they will be run one at a time, and when finished, normal time-

sharing Will resume. This will remove a large burden on Our user community. Many of

these people need the machine in a single user mode, but still operate under Xylem, pri-

: marily to do benchmarki_g runs. Previously, they had to sign up in advance for time

slots in the evening or early morning, and then come to the machine room and work at

the console during their assigned time.

• Debugging Support in Parallel Programming Environments

This study involves some of the problems of debugging parallel programs, particu-

larly those at a low level (i.e., machine code level). Problems unique to parallel pro-

gramming environments include.identifying and probing execution threads and syn-

chronization of the debugger within itself and with the user's program. This work also

intends to identify a small set of specific facilities that the operating system kernel can

provide to support parallel debugging tools. M1 initial implementation of interactive

parallel debugging facilities has been done in the Xylem environment. Different

approaches are being tried, and deficiencies in kernel support, have been identified.

Ideally, this work will build a base upon which high-level debuggers can be built.

Research

Recently, we have. been discussing new ideas for tile design (_t' a Inulti--t-)rocessor

operating systc, m. Wc ot)serw., that Unix-t)ased of)crating syst(:_l_ls I_ave. gotl, t!n larg(_r

and more cotnplc, x ow,.r tt_e past decade, ;ts _uct_ as o_c' to two or(l_ars o1' _nagx_it_(t(_,
(:Oml):.tred to t,he early Bc:ll Labs versions. Yet with tllis trexn(.,1_(lolls in(:r_asc' iii siz(:., ;[ll(t



complexity, there is very little improvement in functionality or performance. As a

result, our thinking leans _,oward a very simple design, which is portable to a number of

shared and hierarchical memory machiD.es.

For example, unlike most research efforts, we are considering a kernel that does not

require or utilize virtual memory management hardware. This is prompted by two con-

siderations: (1) users continually request that we eliminate virtual memory because it

always interferes with performance, and (2) we are targeting Cray machines, which do

not have virtual memory hardware.

Currently, we envision the multiprocessor kernel ms only providing processor and

physical memory management, scheduling, swapping, and trap handling. I/O and net-

work activity may be passed off (via messages) to attached host processors.

.Languages and Compilers, .

Our work on languages and compilers has been guided by three main objectives: (1)
to provide the programmers of the Cedar System with high quality compilers and res-

tructurers; (2) to conduct research on compilers and restructurers leading to the develop-

ment of algorithms _.hat are useful for our work on Cedar, but will also be applicable on

a wide spectrum of machines; and (3) to study compilation and restructuring techniques
for languages other than Fortran.

Fortran Translation

Fortran, the most frequently used language in supercomputing today, is the most

natural language on which to base a major portion of our effort mainly because most

supercomputer applications are dominated by numerical computations, including most

of the algorithm research work at CSRD. In addition, Fortran will most likely be used
on supercomputers for a long time to come.

Cedar Fortran

Our work on Fortran began with the design of extensions to A lllant Fortran for

parallel processing on Cedar. Alliant Fortran includes extensions for vector operations.
These are essentially those in the, current Fortran 8X proposal. We decided to adopt the

extensions and concentrate our efforts on extensions for concurrency. To this end, we

developed constructs for task parallelism and loop parallelism. For task parallelisln we

designed constructs similar to those of Cray Fortran. These constructs are adequate, and

the applications group at CSRD felt comfortable with them. One major difference

between Cray Fortran and our (ctskstart) task spawning routine is that the latter allo-

cates not one processor, but several to the newly ereatc:d task, in orde.r to allow the clus-

Wr tasks to use the A lllant hardware in the executioI1 of concurrerlt loops. We have also

developed :_ micro-task, spawning mechanism centered around ttl(.', mtskstart routiile.

This routine creates a microtask and quc'ues it according t,o a priority Sl)(_citic:d ill one of

its parameters. Itelping (or implicit) tasks relllove microtasks t'ro1ii tlle (]U()(I( _. :tll(.l (:xe-

cute them to coInpletion b(._t'ore going back to the queue for inore work. Microt, askirlg

has a lower spawning overhead than regular tasking. IIowev(:r, zr_ierol/tski_l,_ is in So,he



cases harder to use since it does not allow synchronization operations other than those

used _to wait for the completion of a microtask (m_skwMt and mtskwaltall in Cedar

Fortran).

Extensions for loop parallelism included doall and doacross loops. These resemble

the regular Fortran do loop, but their iterations may proceed in parallel. Concurrent

loops may be confined inside a cluster or execute across clusters. In the first case they

make use of the Alllant hardware for the scheduling of iterations on processors. When

concurrent loops are executed across clusters, there are two alternatives. In the first,

whole (virtual) clusters are used to execute the loop in a self-scheduled manner. In the

second alternative, several individual processors from two or more clusters are used to

execute the loop, also in a self-scheduled manner. The scheduling iii these two last cases

is handled by software under the microtasking scheme. Concurrent loops executed by

whole clustera are supposed to enclose concurrent loops of the cluster-confined type to
allow the use of all the processors in a cluster:

Cedar Fortran includes extensions to specify at which memory hierarchy level indi-
vidual variables and common blocks are to reside, and includes extensions Lo handle the

Cedar memory synchronization hardware primitives. A detailed description of Cedar

Fortran can be found in [PaLa86], [Guzz87], and [GPLHg0].
t

From the point of view of implementation, the Cedar Fortran compiler comi_rises a
source-to-source preprocessor, a slightly modified version of the Alliant Fortran com-

piler, and an object-to-object postprocessor. The preprocessor executes before the Alli-

ant Fortran Compiler and translates Cedar Fortran constructs to Alltant Fortran con-

structs or to subroutine calls. The postprocessor executes af'ter the Alliant Fortran com-

piler and translates Unix object files into Xylem object files. The only modifications to
the Alliant Fortran compiler were those needed to generate the machine code for vector

prefetching from global memory via the Global Interface Board. A major portion of the
compiler work was the development of new run-time library routines needed for the

Cedar Fortran constructs, and the modification of the Alliant run-Lime routines to allow

them to run under Xylem. The Cedar Fortran compiler with its run-time library is now

operational and has been extensively tested. Much effort has been invested lately in

decreasing the overhead associated with the run-time library and providing efficient

mechanisms rot data communication and synchronization. To this end, we are experi-

menting with strategies for dispatching and scheduling DOALL loops across Lhc four

Cedar clusters. For example, we have found that static dispatching brings the overhead

down to 40 uses. Seli'-scheduling using the Cedar synchronizationilardware is also being
test, ed.

Fortran iestrueturer

A second component of the Fortran _ranslation system is a restruct, urer t,}lat

translates from I?ortran 77 Lo Cedar Fortran, The present version ot' the restr_leturer is

tQ_,P, a commercial product developed by KAI. We have modified this so,Jrce-to-.source

restructurer to generate Cedar Ii'ortran a,s its output. In its (:urreld, state, the irnt)lemen-

ration automatically identifies concurrent loops and vector operatioIls. The system

1.0
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pe_ forms strip-mining as necessary to permit the exploitation of the three levels of paral-

lelism available in Cedar. It also allocBtes variables in one of the memory hierarchy lev-

els either automaticrdly or by using user-supplied statements.

So far we have, demonstrated good performance on Cedar for program kernels andi i

some algorithms. Additional work is needed to exploit efficiently the architectural

features of Cedar. To make the restructurer a powerful tool for the Cedar system we

need to accomplish the following:

1. Make it p¢_ssible for the restructurer to accept Cedar Fortran as input. There are

several reasons why this is desirable. One is the obvious appeal of not having to

think in terms of two dialects of Fortran. The second, and probably the most

important, is that programmers n_ay want to indicate parallelism explicitly before

restructuring takes place, and Cedar Fortran is the most natural way to do this.

Accepting Cedar Fortran implies that the input to the parallelizer might be a paral-

lel program. The transformation of parallel programs presents some difficulties that

are under study [MiPag0].

2. Spreading (the transformation that generates task parallelism) has not yet been
implemented. An effective implementation of spreading requires a good interpro-

cedural analysis subsystem, which has not yet been implemented either. Interpro-

cedural analysis has been discussed in [LiYe88a,bgzc]. Spreading was studied in

detail in [Veid85].

3. Finally, we have to apply the rcstructurer to a broad range of algorithms and appli-

cation programs. This enables us to study and refine its operation in practice. In a

series of experiments we have identified a number of improvements to compilation
techniques and strategies that cause significant performance gains in large codes.

" The following section illustrates some experiments. Incorporating these experimen-
tal results into the restructurer's capabilities is an ongoing effort.

Experlments with the Restmlcturer

We have timed various applications from the Perfect Benchmarks TMon Cedar and

measured the performance of individual loop nests (by summing the wall-clock time of
ali the activations of each lexically outermost loop). The measurements of OCEAN and

FLO52 are summarized by the' graphs in Figure 2, where each tic on the z-axis

represents a different loop nest within the program. Of course, each loop nest has a

different impact on the overall performance of a program, so we present them sorted in

increasing order by their serial execution time. Loop ne._ts plotted at the far right cover
. more of the application's execution time than those to the left.

The y-axis contains two regions: at the bottom we report a speedup ratio for each

nest, and on top we accumulate the execution time of all nests from left to right. On the

top region, wt represent the maximum time accumulated by any of the nests in any ver-

sion of the program. The solid curve in this region represents accumulated serial execu-

t,on time. The dotted curve in this region is the execution time of the parallelized ver-

- sion. To the right oie each speedup plot an arrow reports the ow._rall speed-up ot" the
- whole prngrnm.
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Figure 2: Speedup of Perfect Benchmarks _ OCEAN and FLO52
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The serial version in Figure 2 uses the traditional serial optimizations (like common
subexpression elimination) applied by the Alliant code generator. The (SDOALr.) version
of the program is the result of applying the Cedar Restrucmrer to the serial version,

i

commanding it to piace ali interface variables in GLOBAL memory, thus enabling a max-
imum number of SDOALLs.

The obvious conclusion to be reached from the graphs of Figure 2 is that the overall
performance of an application nearly equals the performance of its most important
loop(s)..We will refer to the loops which accumulated the top 90°70 of execution time ,as
the significant loops of the program. In OCEAN, the Cedar Rcstrucmrer's SDOALL
version did well on many of the low-run-Lime loops, but not as well with the significant
ones. Consequently, overall speedup was poor (0.7,1). In FLO 52, the SDOALL version
performed well on the most significant fifth, and the mixed performance elsewhere did
not detract from a respectable Slb_edup of 6.7 for the whole program.

The OCEAN program makes complex use of induction variables in many of its
significant loops, the Cedar Restructurer had trouble following some of this. It also calls
a handful of low-level subroutines in many loops, forcing the loops serial. Occasionally,
inner loops of a loop nest contained calculations with no subroutine calls and these ',;,ere
successfully stripmined and run as SI-)OALLSs, while the outer loop remained seria!
because of subroutine. Interprocedural analysis was not applied in this experiment
because of the problems with our version of tGkP in its in-line expansion pass. We have
recently fixed some of these problems, and are planning to use in-line expansion in the
new experiment. We also plan to study the development of a more sophisticated induc-
tion variable analysis.
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The significant loops of the FLO52 program contain many easily vectorizable calcu-

lations. All of the significant loop nests had at least an inner loop which was paralleliz-

able, and some nests could be totally parallelized. In the FLO52 program, three
significant loop nests had an outer loop that was forced to remain serial because there

were too many inner loops. Increasing the data structure sizes allowed two of these to

be parallelized. Presumably the other could be parallelized with even larger data struc-

tures. The recurrence solvers that we use have not been optimized for Cedar, which was

the source of poor performance on two significant loops.

In the FLO52 code, the Cedar Restructurer produced parallel versions of many of

the significant loops, but their speedup is less than optimal. Why is that? The most

important reason may be that the average running time for most of the loops, even in

the serial version, is very short and barely overcomes the SDOALL loop overhead costs.

Multi-version loops might cut our losses here.

In one benchmark exercise we solved a banded linear system of 255 equations using

the Conjugate Gradient algorithm. Our test data required approximately 65,000 itera-

tions in the key loops, enough to exploit all the parallelism in Cedar. The kernels were

transformed into SDOALL/CDOALL/vector loop nests. Figure 3 shows the speedups for
the main kernels of this code. The basic statistic is the minimum execution time over

several hundred repetitions. This statistic eliminates a few executions inadvertently

delayed by other system software.

These runs were made on a half-sized Cedar with 16 CEs, each having 4 stages in

its vector pipeline, so 64 calculations can occur in parallel. But the effective parallelism

in the shared memory network never exactly matches tile processor parallelism.

Speedup ratios vary from kernel to kernel because each has a different ratio between the
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Figure 3: Speedup ot' Conjugate Gradient Algorithm

la



number of memory references and the number of arithmetic operations. The beneficial

effects of cache and prefetching, and the detrimental effects of network contention affect

_ach loop differently.

The seconddiagram in Figure 3 reports the speedup (parallel times vector) due to
manual application of the data distribution techniques. The bandwidth of the global

network and memory, which limits the shared methods, does not restrict this scheme.

The overall speedup is now 40, and individual kernels are becoming processor-bound.

Other Translators

Two other projects have been undertaken in the compiler area. We plan to con-

tinue both of them. However, in this section we only describe them briefly. Later in the

proposal, some specific parts of these projects will be discussed in detail.

The first project is Parafrase 2. The main objective of this project is to develop a

successor to the Parafrase Fortran restructurer. The Parafrase-2 project involves the

construction of a multilingual parallelizing compiler for C and Fortran, which will incor-

porate the latest technology on parallelization, as well as recent research results Of our

group. Parafrase-2 is being developed not only as a source-to-source parallelizer but

also as a fully develo ,_ compiler which generates code for an abstract parallel architec-
ture.

Although this is an ongoing project involving a faculty member and four graduate

students, the compiler has passed its first phase of development and is currently in use
at CSRD as well as several other universities and research centers in the U.S. :kt

present, Parafrase-2 is capablo of performing loop parallelization inter- and intra-_

procedurally. Powerful data dependence analysis with new techniques for symbolic

dependence analysis have been implemented along with inter-procedural analysis.

Several transformations and optimizations have also been completed, including loop

paralleliza'tion, scalar expansion, loop blocking, induction variable recognition, loop
interchange, loop distribution and vectorization.

In addition, an interactive graphics interface has been added to Parafrase-2, which

provides a convenient means for visualizing and manipulating internal program

representations such as the control flow graph, the procedure call graph, and the data

dependence graph. Parafrase-2's graphics interface, which runs under X windows, has

provided a powerful tool in interacting with the compiler and guiding parallelization

wherever needed. Parafrase-2, which has been developed in C and runs under Unix,

comprises at present 80K lines of C code. The use of data abstraction in the develoi)-
rnent of the system has proven instrumental in its use as the basis for building simula-

tors or other compilers on top ot' it,, at several centers wh(.'re it, i.'_being used.

The second project, MIPRAC, is an attempt to t'use the techniques oi' automatic

parallelization of numerical codes (as enlployed in Parafrasc' arid its dc,sc(.,.ndants) wit, h

those of symbolic codes (as employed in PAI{CFL, a LISP l):).r:Llleliz('.r [ltaPaSS}). 'IPhe

goal is to use intersections and unions ot' these tc'chni(tu('.s to arrive at :_.conlpil(_r that

can parallelize, for example, a C program that manipulal.(.'s pointer variables,



dynamically allocated objects, as well as arrays of numerical data. Tile compiler itself

will operate upon an intermediate form into which programs in a variety of languages

may be rewritten. We have implemented translators from Scheme and Fortran 77 into

MIPRAC's intermediate form and are implementing one for P_cal. We intend that

programs that are written in several source languages may be sensibly analyzed, com-

piled, and linked using this multilingual translator.

To ensure that MIPR2tC's intermediate form is as compact as possible, several

phases of syntactic and control-flow normalization are used to coerce input programs
into a highly normalized form. Following this normalization, an interprocedural analysis

is performed which extends the side effect and lifetime analysis used in PARCEL to vec-

tor and array data. MIPR.AC's parallelizing transformations will include array- and

DO-loop-oriented transformations (loop distribution, loop interchange, scalar expansion)
as well as recursion- and WHILE-loop-oriented transformations (recursion splitting,

exit-loop parallelization).

To date, the phases of syntactic and control-flow normalization and the first phase

of interprocedural analysis have been implemented.

MIPRAC will produce a machine-independent, parallel intermediate code that can

be executed using PARCEL's run-time system, which is being extended to accommodate

the requirements of MIPRAC's intermediate form.

The Ansi C, Scheme, and Common LISP front ends for M1PRAC are implemented,

and we have begun debuggingthem. The front ends rewrite C and Common LISP pro-

grams into the intermediate language used by MIPRAC (called MIL). The control struc-

tures in these languages (tail recursion in Scheme, fioreach and mapcar in Common

LISP, for', do / while, break in C) are too many and too diverse to be
represented directly in the intermediate form. Our solution is to give all of these struc-

tures a simple translation in terms of gotos and labels, in MIL. Afterward, a phase of

control flow normalization eliminates all gotos and labels, leaving only properly nested

begins, i fs, whiles, and procedure calls. A final phase of' normalization rewrites the

while loops as tail-recursive procedures, so that in the end we have only begin, if

and procedure call as control structures in a MIL program. The normalization phases

are complete and have been debugged.

The ]nterprocedural analysis of MIPRAC has been implernented and is being tested

and debugged. The analysis is in C; its interface to MIPRAC is a simple, ASCII one: an

encoding of the program arrives on standard input as an ascii text, and the output is

returned in ascii format. The analysis is therefore available to odlers, as a module

separable from MIPRAC. Three kinds of informal, ion are gathered by the analysis: the

interprocedurally visible side effects oF procedures; the lit'crimes of dynamically allocated

objects; and structure sharing within the data st_ructures creatc,,d by tl:e program. The

analysis uses a new algorithm for finding the fixpoints of t'unctionals ett ici(_ntly. This
t'algorithm employs techniques frorn data flow analysis to direct the solution o fixpoint

equations. We intend to parallelize the analysis and to run ii, remotely on the Alliants or

Cedar, to speed the analysis of large programs.
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We are also developing a new theory of automatic parallelization based entirely

upon recurrence relations. The idea is that in every iterative or recursive structure there

are simple recurrence relations (e.g., induction variables) from which more complex

recurrence relations are computed, and finally from which tile sequence of memory

addresses that are accessed are computed. Automatic parallelization requires two things:

a view of the relationship between objects in memory, and a view of the recurrence rela-

tions computed by iterative and recursive structures. These two components allow us to

reason about whether the addresses issued in one iteration overlap with those issued in

another iteration. In general, we find that if the recurrences that carry us from locations

to new locations are "linear" in that they do not return to previously accessed locations,

then the iterations ota recursive or iterative structure are independent. These observa-

tions may be made the basis of an algorithm for automatic parallelization that treats
both subscripted and pointer accesses in a single framework. We are trying to do
exactly this in MIPRA.C. ':['he two components of the framework are the above-

mentioned interprocedural analysis (which gives us a view of the objects in memory and

their interrelationship) and an interprocedural recurrence recognizer, which gives us a

view of the recurrences described by iterative and recursive structures. (In fact, by the
time these analyses occur in MIPRAC, all iterative structures from Fortran, C, and

Common LISP are rewritten as recursive or tail-recursive procedures in the intermediate
language of MIPILAC.)

Finally, we are designing a code generator and run-time support for MIL (the inter-
mediate language of MIPRA,C) for the Cedar machine. The intermediate language has
been designed to make this particularly simple: there are only a handful of control

forms, and low-level operations that correspond mostly to sequences of a few instruc-

tions. Input/output operations are equally simple: block reads and writes, creation and

deletion of flies, and positioning of the cursor (po!nt of reading/writing) within a file.
The run-time support for a source language like Common LISP, which has many built-
in procedu'res, is written entirely in MIt itself, and compiled using M[PRAC, so that this

portion oi' the run-time system will not require porting. We are concentrating upon the
tefficient translation of the intermediate form into tile Allian/Cedar instruction set. One

especially interesting aspect of' the run-time system and code generator is its automatic

storage reclamation. The run-time system will not use a conventional garbage collector,

but rather will automatically deallocate objects according to their lifetimes, as deter-

mined by the interprocedural analysis. This means, for one thing, that we will support

automatic storage reclamation for C progr'ams. For another it means that the system

will have the desirable aspects of concurrent garbage collection (no lengthy t)a'.._ses in

processing to reclaim storage). The reclamation _lgori_hm is part;icularly simple to

implement, but its success will ultimately depend entirely _ipon the accuracy ol_ the
interprocedural analysis.

Multiprocessor Performance on Algorithms and Ap_pllcations

In the past year, ttle Applications Croup in the Center l_as bc,o.n involved in t,wo
main activities:



1. The design and implementation of various hierarchical numerical algorithms that
take advantage of the three levels of parallelism of the four-cluster Cedar in which

each cluster contains four vector processors (e.g., the 4x4 Cedar).

2. The parallelization of several large-scale application codes in ocean modeling, cr_h

worthiness, and thermal hydraulics, and their implementation oa Cedar.

Algorithm development on Cedar

Several parallel algorithms have been developed for implementation on the 4x4

Cedar in which each cluster memory consists of 2MW and a global memory of 2MW

with a modified intermediate global network. These algorithms deal with crucial parts

in important applications:

SPIKE. A Hierarchical Parallel Block-rx'r.ldlagonal System Solver

The solution of large banded diagonally dominant or symmetric positive definite

linear systems constitutes one of the most common computational tasks associated with

implementations of the finite element method la applications such as fluid dynamics and

structural analysis. The design of multiprocessor algorithms for solving large block-

tridiagonal systems becomes of paramount importance for ettlcient implementation of

these applicatio::_s on vector and parallel machines. In [Berrg0], we discuss the design

and im'_lcmentabi,m of a hierarch]cM-based method, SPLICE, for solving these systems

on the 4-cluster (l¢;-processor) Cedar machine. We compare the performance of SPII(_E

wit.h that of al, ,:?,qcient block Gaussian elimination scheme, BGE, on an 8-processor

Allia'at FX/80. :ILl-su!ts for the SPIKE algorithm on CEDAR block-tridiagonal system of

order 16384 with block size 16 indicate speedups of greater than t3.5 vs. the best segmen-
tal sch_!ne _md a s_',: ._d improvement of 11.5 vs. SPIKE on one processor.

,/k Symmetric and Ant[symmetrlc Domain Decomposition in Structural
Mechanics

Domain decomposition has recently become a topic under intensive research (see
[GGMPSS] and [CGPW89] for references). The symmetric and antisymmetric domain

decomposition introduced in [Chen88] and [ChSaSga&b] is ideally suited for problems in

structural mechanics. It is ideally suited for multiprocessors such as Cray Y-MP, Cray-
2, Alliant FX/80, and Cedar. Unlike other reel, hods Ulat decompose the symmetric and

antisymmetric response of a structure (e.g., see [NoPe87a&b], [BrDMS8], [DoSmSS]), our
scheme exploits special properties of reflexive matrices to decompose st;ifrness matrices

into several independent subproblems. Speedups realized for 2-]) and 3-I) ela.stoicity

problems on an Alliant trX/80 vs. the best sequentia, l solvers range from 5.5 to 7.0 (out,
of'a maximum of 8) depending on t,he problem. For the three levels of para, llelis,u of

Cedar, speedup of 9 (out of a maximum of 1.6)is realizable (sue lC,he.ii9(}]), (_V(:II on

unsymm_tric si_ruetLJrc.s I;llat can t)c pr('.(:(_ndit.ioned 11sing Cl_(,,._;ynlmc.,Cric ;tIld a.nCisyln-

_ metric doInain dcco_nposit, ion ou the syxxlmct, ric s6rucgure wtlict_ is considerc, d ;ts a siJ_a,ll
perturbation of tlle original problem.
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The Block Cimmlno Method

The block Cimmino algorithm is a row projection scheme for nonsymmetric

indefinite linear systems with arbitrary spectral distributions [Bram89], [BrSag0a]. The
method can be more robust than other Commonly used iterative solvers such as conju-

gate gradients (CG) on the normal equations or Krylov subspace based methods such as

GMRES(k). The most time-consuming part of the algorithm involves forming matrix-

vector products, with a matrix that is the sum of orthogonal projectors. For structured

problems su,"h as those arising from discretizations of partial differential equations, each

projection can be computed as a set of parallel tasks, each such task having some vector-

ization possible. Block Cimmino is thus especially suitable for the Cedar architecture,

because the algorithm allows the necessary three levels of parallelism. A particular

implementation is described and tested on Cedar [Bram90}, showing speedups of 11 (out
of a maximum of 16) that are realizable even on modest size problems.

Parallel Elliptic and Parabolic Problem Solvers

A rapid elliptic solver based on a parallel block cyclic reduction scheme [GaSa89]

has been implemented on 2x4 Cedar with favorable results [Frang0]. Further, algo-

rithms based on the conjugate gradient schemes, with and without preconditioning, have

been implemented on Cedar [MeEig0] for self-adjoint elliptic problems on regular

domains, and on T-shaped domains with the Schwarz alternating procedure [GaFM90].

Parallel algorithms for solving linear parabolic problems via implicit inethods, based

on Pade and Chebyshev rational approximatim_ to matrix exponential, are implemented

' on the 4x4 Cedar. The algorithms are ideally suited for the hierarchical memory organi-
zation of Cedar and realize high speedup vs. the classical sequential Crank-Nicolson

scheme. Moreover, these algorithms are those of choice if the goal is to compute the
solution at a given time point as quickly as possible.

..

Direct Sparse System Solvers

In this activity we have developed two solvers:

1. McSparse [GaMWg0] - This. ,algorithm is ideally suited for large grain parallelism

that takes advantage of the multicluster organization of Cedar. This algorithm

consists of two stages. The first uses a hybrid ordering [Wijs89b] which produces

(on most general sparse matrices) a block sparse upper triangular matrix. Asparse

: block Gaussian elimination procedure (with pivoting) produces an LU-t'actorization
_" using the four cluster,_ of Cedar with reasonable load balancing,

2. .I)SI:_ACI( [Yangg0] - This algorithm was designed to testCedar as a "llat" _Ilul-

tiprocessor which utilizc, s mainly the global memory and ('a,pit;alizes on tlle fine-

grain parallc, lisin of the 16--CI, Cedar. [n spite of lack o explicit llcilization o the

: individual cluster memories, speedups of arollnd (_ (out of a xnaxirilu_n of l {i)vs. ttle
best sequential sol',l(_,m(.,are realizable.
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_rocesslng of Large Scale Codes

The purpose of this project is to apply techniques of paral'el computing to mature

computational fluid dynamics (CFD) and structural dynamics (SD) computer codes.
Specifically, although the power and utility of parallel computers and the corresponding
software development techniques have been demonstrated on small scale prototype prob-

lems, full-scale production use has lagged behind because parallelizing large engineering

codes requires coordination and interaction among engineers (who understand the physi-

cal problem being modeled), numerical algorithm designers (who specialize in designing

efficient algorithms to solve basic computational problems), and performance evaluation

experts (who build software tools and machine models that enable the design of efficient
programs for a specific computer). For this effort, we are collaborating with another

DOE site, Argonne National Laboratory, combining our expertise to bear on industrially
important problems. We are also continuing our work on a problem of concern to

environmental activities, namely the multiprocessing of a state-of-the-art ocean circula-

! tion model (OCM).

Upon completion, we expect two major results. First, the very process described

above will expose the strengths and weaknesses of existing techniques for parallelizing

programs and will identify those problems that need to be solved in order to enable

widespread production use of parallel computers. Second, the increased efficiency of the
CFD and SD codes will allow the simulation of larger, more accurate engineering

models. In particular, we hope that the work could serve as an exemplary model for
similar future activities.

Our main parallel machines are the 4 CPU Cray X-MP and Y-MP, A lliant FX/80

and FX/2800 and Cedar.

Parallel Ocean Circulation

Global ocean circulation modeling is an important component of climate prediction

studies. In an effort to conduct faithful simulations, one needs considerable computa-

tional power and storage capabilities. Interest in such efforts is evidenced in DOE's

recent CHAMMP initiative. Much pioneering work in the parallelization of ocean global

circulation modeling has been conducted by Semtner and Chervin for the Cray. Our

interest is to build models that profit from computational and memory hierarchies for

good performance. We hope that such models will maintain good pert'ormance as
machine and problem size scale.

In cooperation with A. Navarra from IMCA-CNR, Modena, Italy we are developing

a parallel version of a state--of-the-art model of circulation in the Mediter_'anean basin.
The model is based on the ocean circulation codes from GFDL, Princeton University,

and simulates the basic aspects of large-scale baroclinic ocean circulation. A preliminary

multicluster Cedar implernentation of the code has been completed. In this pllase ot' the

work we have content, rated on the aspects of the code not dealing with tl_e two-

dimensional relaxation procedure, used to compute transport, streamt'uncbioII "l't_e two
models of interesb consist or 1{]7 x 57 x 8 and 334 x 118 x 16 gridpoints respectiv_ly.

The smaller InOdel is used primarily to allc, w some pcrforillanc.e (..valuation of a single
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. cluster code, since the large model is slowed down considerably on one cluster due to

paging. For example, Figure 4 shows the effect of using four clusters of Cedar relative to

the performance of the eight advanced computational elements of the Alliant FX/80.

The times for one and two Cedar clusters are very large due to the small memory avail-

able compared to that of the FX/80 and the paging behavior. Figure 5 corresponds to

the smaller model. It shows that the two clusters of Cedar (8 CEs) perform almost as

well as the eight faster Advanced CEs of the FX/80.

Tables 1 and 2 show the times, speedups, and efficiencies for each of the phases of
the calculation. The three-dimensional computations have been distributed across the

clusters. The relaxation was left on one cluster as we are currently implementing a mul-
ticluster version.

.All the multicluster Cedar speedups we have shown are constrained by our not

parallelizing tb.e twc_--dimensional relaxation. This, together with the evaluation of

different data-partitioning techniques constitutes our next task in the project.

CO_MMIX: and WHAMS
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Clusters(CE) __l_ee"dupEiiicicncySpeedupfor3D ph, Efr,liDpii,
I (,I) 1,0O .......I_0....... 1,00 ],00

, ,,, , ....... , .....

2 (8) 1,77 0.89 1,9,t 0,97
....a (!2.) 2, 8....... 0,7 ........ 2,76 ' 0,9...... , ............ | .......

4 (16) ........... 2,67 ..0,67 ..... 3.33 0.83

Table 2. Small ocean model running 10 time steps (preliminary).

COMMLX and WHAMS-3D are two production codes that have been developed at

ANL and are widely used by industry and government laboratories. The first is a com.

putational fluid dynamics code that is used for both nuclear reactor design and safety

and as a design tool for the casting industry. CONLMLX: 1-ARP consists of approxi-

mately 30,000 lines of code across 150 subroutines [B1GG89]. WHA/vlS-3D is a three-

dimensional structural dynamics code used in nuclear reactor safety as well _ '

crashworthiness studies [BeTs82]. Both codes are available for both sequential and vec-
tor computers only. Our main goal is to optimize these two codes on shared memory

multiprocessors. The first phase of this project has been completed and fully docu-

mented in [AJ3CGg0]. lt consisted of an intense profile study of both codes 11slng data
sets typically used by ANL for testing the validity of the codes,

Argonne's development and refinement of COMMLK, which has continued for more

than ten years, was originally supported by the U,S. Nuclear [legulatory Co nrnmslon t'or

. applicatipn to a wide variety of reactor safety problems. CON_h\4LK llas been developed
using a unique porous media approach to the solution of the Navier--Stokes equations in

(-_an arbitrary three-dimensional region. In its variolm versions, ,OMMIX can model

separate single--phase fluids, multiphase flows, and free surface flows. The code uses

differenced momentum/nmss conservation equations which are combined to form a pres-

sure equation. Once the pressures are known, the fluid velocities are updated to provide
input to the energy simulation and the ne×t iteration or time step. The llydraulic driv-

ing force may be flow or pressure boundary conditions at inlets and outlets, one of

several pump models, or a fluid temperature/density distribution. '['tle energy (_(tuations
are ditrerenced using the updated velocities, and the sollrce t,erlns are accumulated from

tl_e treatments of (:onvect, ion boundaries, conductiort bollndaries, Ltlerillal sLrll(:tllr(:s, ()r

heat gencr:_tion in the fluid itsclt'. OrLe-(tiInensional ,_llell str_l(:tilres sut)(_riml)()._(_(l ()li tile.

fluid geometry mod(-I variolls llllid .'_yst(_iil thermal com[)oncilts su('.ll :is v(:ss(_ls, I)ipes,

l)at'lles, ttibe-.stl(_ll Ileal e,x('tla.llg(_'rs, ::_,_(tre:_.ctor fuel. ()ace l.,t_ctl_li(l t(::n_p(:r:tt,_r(_ (list, rf

bution is _p(lat(_(t, t,t_e s,t)rneri_ed t,hermal strl_ctures' i_t,(_rnal t(:t_i)orature (li._;Cril)_ll,i()ns

are recomI)uted, :tsstJ_ir_g o_e-di_nensi()_:tl conduction throt_glt (,a(',l_ therr_:tl _t,r(_('t_re
sot iil(._[l L,



The momentum and fluid energy equation time differencing is implicit, which

requires that the difference equatlon coemcients be constructed from end-of-timestep

temperatures and velocities. The pressure equations oF the mass-momentum loop are

solved using conjugate gradient (CG)with incomplete Cholesky factorization precondi-
tioning,

A large amount of the computing ttme ts spent constructing matrix cquatlons, a

process that would require massive receding to vectorize because oi' its large, logic-

loaded loops. Such loops, however, are expected to lend themselves very well to the
parallelization efforts which we plan to pursue in the context of this work.

We next list the function of the most important routtnes in the set:

energi Construct coefficients in the energy equation.

lowfcv Solve the L_pper and lower triangular system as part of the

conjugate gradient solution of the pressure equation.

peqn Construc' the coefficientij in the pressure equation.

qstrds Calculates finite differences of solid/fluid heat transfer rate
over the thermal structures.

qstruc Set solid-to-fluid source term for tile fluid energy equation.

solvev Solver oi' linear system for the energy equation using Gauss-Seidel

relaxation on red-black ordering.

xmomi, ymomi, zmomi Sweep over all fluid cells to set-up the

×, y_ and z direc_,!on momentum equations.

Table 3 summarizes tim runttmes for each of the machines and compilation options

for two typical data sets, Plt0 (st.early-state calculation) and Plt2 (transient calcula-

tion). The compilation options S,V,C stand for scalar, vector, and concurrent optimiza-
tion. The notation SV(Zr) stands for enhanced vectorization.
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ll,outine PlrO Plr2 !
3,0 920,94Cray SV 9' ¢6

Cray SV(Zv_)___ 81,48 872,90
Cray SVC 225,25 2025.48

1 CPU 22,35 297,28
2 CPU 31,70 405,18
3 CPU 47,19 461,88
4 CPU 123,95 861,20

Alliant FX_O-

SV (I CE) 1,322,4 12,331,2
SC (8 CE) 1,128,7 10,015,0
SVC(8CE) 1,136,7 10,048.6

Table 3. Execution times for SV, SV(Zr) und SVC COMMIX-1AR/P on the Cray
X-MP/48 and Alliant FX/80.

I
l)ata set, l'lr0 l'lr2 /r

sv l sv(zr)
qs'['1tDs 6,20 6,68 6,19 I 6,69
ZMOMI 0.4. 7,19 (3,42 I 7,15
li;N,,;Iml 6.013 6,61 6,06 6,6,1
sol,vl_,;v 10,29 36,28 10,371 ,1",1,o¢'1
YMoMI 6.97 7,78 6,97 7,81
qs'rluJc 6.67 7,28 (i.(i(i [ 7,29

pV_,QN 3.05 3.49 3,06 3,50
XMOM1 (J,(,):] 7,82 6,93 7,84
1.oWF(:V 30,98 34.L2 30,99 ] 34,57
()ve.rMl 9,12 11,76 7,(;8 I 8,76

.... ,

Table 4. MFLOPS profile of the most tirne consuming subroutines in baseline
scalar-vector, and enhanced vccl,orizabion-Zr c.ornpil_Ltion modes for t;hc

COMMIX-1AR/P code running oil Cray X--MP _lsing data decks P lr0 and Plt2 (fronl
I-'E lTH,'T RA CE ),
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Table 4 shows that the best MFLOPS rate is achieved for the solver and lowfcv

subroutines, for a performance far superior to all other listed subroutines. These have

been written to take advantage of vectorization and thus perform at more than 30

• MFLOPS on one CPU of the Cray X-MP. This is in contrast to a meager average of 6.5

MFLOPS for those sections of the code working on the task of matrix construction.

This of course causes the overall performance to drop to almost 11 MFLOPS, even for

the full vector optimization. It is thus clear that a first step in improving the perfor-

mance of the code is going to be the restructuring of the matrix construction phase.

- Table 4 indicates a great deal about the nature of the work to be done during the
= next phase of this project:

.

1. The difference in performance for solvev under the :lifferent compilation options

tells one about the ability of restructuring compilers to take advantage of the

machine capabilities, if the code is written properly. It also shows that the use of

-_ more sophisticated restructurers can be very beneficial. We should keep in mind
however that solvev was coded for vector processing.

. 2. The high performance of lowfcv for both SV and SV(Zv) shows that even a less

sophisticated restructurer can do well if it has sonm help from the user (in the forin
of inline directives).

3. The low performance for both SV and SV(Zv) options for all other routines shows

that there is work to be done until these commercial compilers can handle satisfac-

torily duaty-decks. ('_usty-decks" as the matrix assembly routines were not coded

to take advantage of the architecture.) We will thus investigate the use of novel res-
tructurers as part of Phase 2 of our work.

4. The overall low performance for both compilation options, and the small difference

- among the two, shows that it is dangerous to concentrate only on those stages of
= the code that are related to well-defined algebraic computations in need of new

algorithms (e.g., linear system solvers), at least until tile automatic transformation
tools become more powerful.

An important goal of this work is to demonstrate the effectiveness oi' multiprocess-
ing for these codes applied to industrial-strength data sets. We have secured such sets

= from the Thermal Hydraulics S(_ction of Commonwealth Edison, including a 12-hour
_ simulation when performed on one vector processor of an IBM 3090.

- The WIiAMS-3D computer program employs explicit time integration to do non-

linear, transient analysis of frames, shells, plates, and continua in three dimensions.

Both material nonlinearities due to elasto-plastic behavior and geometric nonlinearities

-: due *o large displacements can be treated. This program has been developed jointly at

No:thwestern University and Argonne National Laboratory and is intern_.tionally recog,

nized as a state-of-the-art program for performing nonlinear transient analysis. The
program employs ,u finite element format, so that it possesses considerable versatility in

modeling complex shapes and boundary conditions. The elen_ent library c.onsis_:. ,,_ _t_e

ii following: quadrilateral and triang_llar r)late-shell (.1.ments, ae bea.in eleinent, a t_ri_g
element, and a hexahedral continuum element,. In addition, a rigid linkage is included
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which permits the efficient modeling of very stiff portions of a structure, such as the bot-

tom ring of a core barrel. In a rigid linkage, the motion of a master node defines the

motion of all slave nodes linked to the master node. This option is also useful for

eccentrically connected elements where the midlines of the connected elements do not

coincide, as, for example, in stiffeners. Ali of the elements in the program are three

dimensional. Table time steps can be automatically computed or input by the user or a

driving program. Mixed time integration, a procedure that allows for different time

steps in different parts of the mesh, may be employed.

The performance results of the original code _VHAMS3D on the Cray X-MP/48 for

several input data decks are presented in Tables 5 to 7. Table 5 shows the execution

I

Version Execution 'rime

'Lbuckle cylpanel, frame spcap
S 59.19 391.19 4048.6688.02-
SV 9.73 64.11 650.07 14.72
SVC 9.66 61.53 633.92 15.30

Table 5. Execution times for WHAMS-3D on the Cray X-MP/,18 (from HPM).

No. of Connect time ('Ii) !
"_ )

Concurrent in each CI U '

CPUs (i) -]__ -_,y[p anel rra,nra st)cap-"
t a.1,-_-) 19.66 162.35 - 5.99
2 " 0.59 9.92 131.5,t 1.88
3 2.,15 12.30 147.8!) ,1,3,1
,t 3.47 19.74 211.3,t 3.08

'Fotal ex,,.e, tii_w, - !),(56 61.63 653.12 - i5.30

'I'ot,al C,PIJ tin,: 25.5.,I , 155,?,7 171,i.,16 35.10

I

Table 6, Execution times for SVC version or \VI LMMS-3D on the Cray X.-.X lI:' /,18

(rr o m III -_M).
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Version ' MFLOPS
buc_ cylpanel 'frame spcap

i S ' ' 1.36 Ii,50 ....i[.37 II,25
' SV 71,00 71,65 72.65 69,05

SVC 71,38 74.49 76.97 66,56

Table 7. MFLOPS for WHAMS-3D on the Cray X-MP/48 (from I[PM).

time for all four data sets. As can be seen from this table, the vector speedup of the SV
version over the S version ranges from 5.98 for the data set. spcap to 6.23 for frame. It is
also observed that the SVC version does not yield good performance although four CPUs
are available.

We have started using tools developed at CSRD to capture the detailed histories of
routine invocation together with machine performance statistics. The goal is to study
performance behavior at a more refined level using trace data of routine entry and exit
actions. We used tracing tools developed for the Cray X-MP and Cray 2 which are
described in [MaLR90]. In summary, these tools can capture detailed histories of routine
invocation together with machine performance statistics. The produced trace graphs
visually depict where time is being spent in routines during the execution and the rou-
tine calling dynamics as the application proceeds.

Part. ,_f our work has concentrated on the effectiveness of using software tools to
detect opportunities for parallelism. It is clear that the greatest potential for improve-
ments, and consequently the biggest challenge, lies in the substitution of the key algo-
rithms in the application code with redesigned algorithms which exploit the new archi-
tectures and use better numerical techniques. This will constitute a major activity oi'
this project. We have already'started work in evaluating the effect of numerical alg(>-
rithms more amenable to parallelization and their effect on the codes. For example, we
are studying the behavior of and alternatives to the use of CG with incomplete Cholesky
preconditioner in COMIVlLK.

Overall the first, phase has shown that significant i_nprov(_inents irt the codes' per-
formance result from vectorization. This is partly because oi' t,lte etti_.ct,iveness oi' w_ctof
izing compilers, and partly because the principles oi' vectorizat,ion tlave been available to
programmers for more than 15 years. The results of the tlr'qt l)h_tse also show tllat
applying existing automatic restructurers for _nultiproc(.,ssing giv(_s lit,tic iml)rov¢.'_no.nt or
even degradation in performance, but provido.s clues on tlow t,o actxieve bettcer rost_lts.

=
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Perfect Benchmarks TM

Success in the field of parallel computing must be calibrated by measuring the per-

formance gains made on real applications programs. A number of examples in this pro-
gress report use applications codes drawn from the Perfect Benchmarks TM, which are a

collection of 13 applications levei Fortran programs totaling over 60,000 lines of code.

The effort has been collective with early participation from academia (University of Illi-

nois, Princeton, Caltech, Florida State), industry (Cray, IBM) and various research

centers (Houston Area Research Consortium, Institute for Supercomputer Research -

Tokyo, NASA-Ames).

. The programs were chosen to satisfy various constraints, including portability ,
breadth of application areas, reasonable running times and perhaps most importantly

maturity and popularity of the codes themselves (see [Berr89, Ct(PKg0] for more discus-
sions about the effort and references on each of the codes). It is important to note that
each Perfect code represents more than a Fortran program in that it solves a well

defined scientific or engineering problem. Initially, the codes were ported to and timed

on 8 machines [Berr89] and subsequently the process has been repeated on more than 20

additional machines. Insight into system software and architecture is sought, not just

benchmarking numbers. The Perfect Benchmark Tu program is a collaborative effort,
and contributions such as new codes or new analysis techniques are welcome and
encouraged at all times.

The Perfect benchmarking effort strives to collect baseline and optimized execution

statistics. A baseline measurement involves running the code as is, with only those pro-

gram changes necessary for porting allowed. Note that all the Perfect codes were origi-

nally written for and used on some high-performance system; thus certain performance

biases were built-in to the data, as would be the case with any such real-world collection

of codes. After a baseline measurement is made, the user is encouraged to undertake

any kind .of program rewriting to improve performance. Diaries describing prograln

transformations, which include loop reordering, subroutine in-lining, library routine sub-

stitutions or algorithm replacement for example, are to be kept. Loosely speaking, in a

baseline measurement the original Fortran program is an invariant while in an optimized
execution the scientific problem is invariant.

Table 8 contains some basic information about the Perfect codes.

Perfect Performance Data

Each of the 13 Perfect Ben('hrnark T_ codes is a stand alone program th'_t ,lses no

external library calls and upon successful execution creates an output file containing exe-
cution times, a MFLOPS rate and the results of a validation check. ]2:_th wall clock and

CPU time are recorded. The derived MI_'LOPS rate on ali rnac]xines is 1):,._ed on a refer-

ence floating point operation count obtained by the Cra, y k_.IP hpm. Tile validation

check is performed by comparing known correct output, values against the values com-

puted by the current execution. The comp'_r]son is not Mways exact but llses a me:m-

ingful threshold that was d(:terlnined by the code's author or inaintalller :tr the time the
(.',ode was included iri the ben(:hmark suite. '['he validation check has t,tlrned out t,o be
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quite useful since there are numerous reported incidents involving precision problems

and incorrect code generation by buggy compilers, even though a code may compile, exe-
cute and terminate.

The Center for Supercomputing Research and Development at the University of Illi-

nois publishes periodic reports containing tabulations of results. The last report con-
tained over 40 tables of raw data on about 30 machines' performance [Poing0]. Efforts

have been made to port codes to massively parallel machines but such endeavors are

labor intensive and only two codes have been run successfully on hypercube-type

machines at Caltech. The Perfect Benchmark TM database contains no results on S1MD

machines for the same reason.

Observations

The Perfect Benchmark TM data demonstrates the complexity of computer systems

performance. Put another way, no single number captures performance in any meaning-

ful way and, conversely, efforts to quantify performance by a single number are intrinsi-

cally oversimplified. However, some general observations based on the totality of data

are possible.

1. Delivered performance is significantly lower than peak performance and is growing
at a slower rate. Figure 6 is a scatterplot of Perfect code performances on various

supercomputers of the 1980's. It clearly illustrates that the correlation between
peak performance and delivered performance is weak. It should be noted that the
Perfect Benchmarks TM are by and large complete applications, in some cases with

sealed down problem sizes that may lead to poorer performance. Machine perfor-
mance on more homogeneous, simpler algorithms could be significantly higher.

This gap between peak and delivered performance reaches two orders of magnitude

in Figure 6 and will become even more dramatic as machines with more processors

and/or functional units become available.

2. Increased performance leads to increased performance variations. Variations in per-

formance, quantified as t.t_e ratio between maximum and minimum delivered

megaflops, are correlated with peak performance as can be seen from Figure 6. Cal-

ling this ratio instability, higher performance machines appear to be more unstable

because of advanced hardware features that are difticult to take advant'_ge of uni-

forJnly. Note that instabilities also approach two orders of rnagnibude in Figure 6.

Further development of the notion of instability is currently underway at CSR.1).

3. Porting applications level codes to hypercubes and SIM1) machiTI, es is dii_cult ,so that

comprehens{ve applicat{ons-based benchmarking of lhese classes has not been possz'-

ble to date. A t'ter three years, only two l)e.rfect c.odes have been successfully ported

to hypercube machines and none to SIMD m:_chiilc.s. This is :t i)articl|larly trot>

bling fact since rnu(.'h ot' the (:urr(ent entl_usiasm over (,.xisting r,a'tssively p:,r:;}!::l

rraachlncs is t_ased on the performance ot' simple :tlgorltl:_ns.
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Conclusion

As stated throughout this report, much progress has been made not only on the

' Cedar hardware, operating system, applications and algorithms, but also in advancing

the state of the art. Further emphasis must be placed on much that is left to do. We

are on the verge of more breakthroughs in parallel processing which has been ack-

nowledged to be the means to achieving truly high performance computing.



Code Lines Algorithms Used

Name of Code Application Contributor 1 2 3 ,i 5 0 7 _ 9

ADM 6105 Air pollution, Fluid IBM , , x , , ,
dynamics

ARC2D 39134 Supersonic reentryt 2-D NASA x , , x . _;,_
fluid dynamics Ames

BDNA 3977 Nucleic acid simulation, IBM .... x .

Molecular dynamics

DYFESM 7608 Structural dynamics, CSRD x x . , x ,

En_;ineertng design

FLO52 1985 Transonic flow, 2-D Princeton , , x x

Fluid dynamics

MDG 1238 Liquid war.sr simulation, IBM . , x .
Molecular dynamics

MG3D 2812 Seismic migration, Sig- Cray , x x

nal processing

OCEAN 4343 Ocean simulation, 2-D Princeton , x ,

fluid dynamics

QCD 2327 Lattice gauge, Quantum Caltech ×

chromodynamics

SPECT7 3885 Weather simulation, CSRD × x

Fluid dynamics i[

SPICE '18521 Circuit simulation, En- (;SRI) x ×
glneering design

TI-LACK 3784 Missile tracking, Signal Caltech x

Processing

' 'rill:l) 485 2.-electron transform in- II3M x
tegrals, Molecular
dynamics

Algorlthmsz

1, Sparse Linear Syntoms Solvers
2. Nonlinear Algebraic System Solvers
3, Fast Fourier Transforms

,I, Rapid Elliptic l_roblem Solw, rs

5. Multigrid SChelt|es

t;. ()rdinary l)itl'erential l';quation ,";olw, r._
7.._donte ('.arh, .qchesm,_J

_. Integral 'l'r:tnsf_Jtms
(1. ( '(_llv,_iu tie)li

: T:_ble 8. 'I?tie t'(,rl'e(:l l_(mchrrl:_rl(':;'r,_t,
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