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This work encompasses a broad attack on high speed parallel processing.
Hardware, software, applications development, and performance evaluation and visuali-
zation as well as research topics are proposed. Our goal is to develop practical parallel

processing for the 1990's.



Cedar Project — Original Goals and Progress to Date

The Center for Supercomputing Research and Development was founded in late
1984 with major funding beginning in January of 1985. The principal project at that
time was the Cedar Project, which was designed to be the focal point for bringing to
fruition our work on high performance computation. The goal of this project, as stated
in a 1984 report [CSRD484*], was to demonstrate that supercomputers of the future can
exhibit general-purpose behavior and be easy to use. The Cedar Project was based on
five key developments which taken together offered a comprehensive solution to achiev-
ing high performance computation: |

1. The development of VLSI compbnents made large memories and small, fast proces-
sors available at low cost.

2. Based on many years of work at Illinois and elsewhere, we had designed a shared
memory and switch which provide high bandwidth over a wide range of computa-
tions and applications areas.

w

The Parafrase project at Illinois had for more than 10 years been aimed at develop-

ing software for restructuring ordinary programs to effectively exploit supercom-

puter architectures. This technology was ripe for a real test.

4. By using a hierarchy of control, we believed that dataflow principles could be used
at a high level (macro-dataflow), thus avoiding some of the problems with tradi-
tional dataflow methods.

5. Work in numerical algorithms indicated great promise in exploiting multiprocessors
without the penalty of high synchronization overhead, which had proved fatal in
some earlier studies.

We believe that with the developments over the past six years we have made substantial
progress toward our goal. In this section we will outline our progress since the beginning
of the Cedar Project and briefly describe specific Cedar work that remains to be done.

CSRD Developed Boards and Physical Equipment

The Cedar hardware (see Figure 1) has been operative for the past two years, and
16 processors have been installed and are functional. The debugging and integration of
Cedar has continued until Q4 1990, and we are currently installing all 32 of the intended
processors. Continued maintenance will be required for as long as the Cedar system is
useful.

We have developed prototype performance evaluation boards, and we are planning
to manufacture and integrate a comprehensive set of these boards.

A limited amount of new development will be done on Cedar. For example, the
memory system is being improved by building a compatible global memory board using
4 MBit parts. These projects are deseribed in more detail elsewhere in this report,
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Figure 1. Architectures of the Cedar I

Boards and equipment devéloped at CSRD for Cedar can be classificd into five
categories: global hardware boards, support boards, performance boards, diagnostic
hardware, and physical equipment.

Global Hardware Boards

The global hardware boards arc the main boards for Cedar operation. The Global
Interface Board (GIB) provldes the interface from the Alliant FX/8 to the Global Net-
work (GN). This board is 20 by 24 inches and has approximately 1,000 cquivalent
integrated circuits with 11 lavers. The GIB is fabricated mainly in T'TL technology to
gain the most in functionality; however, its Global Network interface is designed in KCL,
The Alliant backplane and computational elements (CEs) were modified for CSRD by
Alliant to accept this board. Since the Alliant backplane was modified for four



additional slots, four GIBs can be loaded into each Alliant (cluster), giving four CEs
access to GN.

In addition to providing the interface to the global memory, the GIB provides
Cedar-specific functions. The GIB implements the special Cedar synchronization primi-
tives. This board also performs prefetching of vectors from Global Memory at an issue
rate of one request every other clock. Cross Processor Interrupt (CPI) between clusters
is also designed into the GIB.

An enhanced GIB, the GIB1A, was also designed for Cedar 1A, and its functionality
is much like that of the GIB. This board has enhancements that allow for eight GIB1As
to exist in each cluster, providing a global hardware interface for each CE in the cluster.
Since early 1989, Cedar 1A has been operating using GIB1As.

On the GN interface side of the board, the GIB can issue requests into the network
at the rate of one every two clocks. This matches the bandwidth of the Alliant issue
rate. On the receiving side, the GIB has a four-deep FIFO for receiving return requests
from GN. These requests can be routed by the GIB to the Alliant, the prefetch data
buffer, the synchronization processing unit, or the CPI logic, whichever is appropriate.

The next set of board types constitute the GN. This expandable shuffle network is
composed of two board types GNBI and GNBK. Both boards are on 20 by 24-inch form
factors, and GNBI has approximately 1,150 ICs and 17 layers, while GNBK has 600 ICs
and 8 layers. ‘

GNBI is the main board of the set. This board is essentially an 8 x 8 crossbar
packet switch, and each port is 80 bits wide. GNBI is designed using ECL technology to
provide high bandwidth. In eack clock cycle, GNBI can accept a word on all input
ports, resolve conflicts, route theni, and present the results to the output ports.

GNBI is made possible with a CSRD-designed ECL gate array that does most of
the switch function and data queuing. The gate array is a four-bit 8 x 8 crossbar connec-
tion matrix with input and output queuing on each port. Nineteen of these gate arrays
exist on each GNBI. The control for this switch uses MSI circuitry and handles conten-
tion resolution as well as providing queuing control of incoming data. Each port has a
two~deep input queue and an output latch. The board has 1280 differential ECL signals
presented to it via cable and provides 640 single—ended ECL signals for backplane driv-
ing to the next board, GNBK.

GNBK receives the switched data from GNBI via backplane connections. This
board provides one level of queuing (latch) and converts the single-ended signals from
the backplane to differential signals for cable driving to the next GN pair, GM, or GIB.

The GMB contains main memory and implements Cedar synchronization. The
board is identical in size to the GIB and network boards and has approximately 1200 I1Cs
with 15 layers, All paths on the board are 64-bits wide. It is designed with a mixture of
ECL and TTL technology to provide the best compromise between speed and functional-
ity, GMDB has 2 Mbytes of RAM, and ECC protection with a 64-bit word size. This
board also contains the synchronization processor that completes (together with the GIB)
the implementation of the special Cedar synchronization primitives. GMB has three



levels of input buffering and three levels of output buffering. It can sustain a 64-bit
data streaming rate of one datum in four clocks. The latency is six clocks, a read-
modify-write cycle takes eight clocks, and the synchronization processor adds three
clocks for performing 32-bit operations. Normally, there is one GMB for every GIB. By
reconfiguring the network, this ratio can be modified. :

The memory system of Cedar is being improved by a compatible global memory
board that uses 4 MBit DRAM chips instead of the 256 KBit chip which will permit the
expansion of a single global memory board from 2 MBytes to up to 32 MBytes. The glo-
bal memory board has significant control- and data-path board-space overhead, so that
it makes economic sense to use 4 MBit DRAMS instead of 1 MBit, even if the cost ratio
(of 4MBit devices) is as much as two to four times higher. This will extend the lifetime
of “he system for interesting applications work by allowing larger problems to be run. In
addition, if board space permits we would like to restore synchronization functionality
that had to be deleted in the first generation global memory board for space reasons,
which will allow experimentation with a richer set of synchronization techniques than is
now possible. We feel that this is a significant research area for the future in which
experimental work could be quite important.

In order to bring these boards together, CSRD-designed backplanes have been pro-
duced. There is a backplane for GN that allows GNBI and GNBK to communicate with
each other, and which supplies the 600+ amps of power required. Similarly, there is a
backplane for GMB that provides the power as well as diagnostic interfaces and cable
attachments.

Another Cedar system board is the global clock board, which provides clocks to all
global hardware boards as well as to each cluster. The clock board also provides clock
synchronization to each cluster to keep all clusters in lock-step.

To allow for eight GIB1A boards to exist in the cluster, CSRD has redesigned the
Alliant batkplane. This "stretched" backplane was designed by using the Alliant back-

plane database, adding connectors, and lengthening the backplane using the Calay CAD
system. ‘

Support Boards

There have been myriad support boards developed at CSRD. To test hardware,
there is a GIB emulator board that emulates the memory and network for GIB debug-
ging and diagnostics. The network board pairs required two special boards that, along
with an IBM PC/AT, form a network testbed that allows testing of the network boards
under very controlled conditions to debug and test conflict resolution and data path
integrity,

CSRD has also designed diagnostic and maintenance boards for the Cedar system.
Diagnestic "hooks" are provided on both the GIBs and GMBs. A number of 8751
attached processors monitor the status of GIBs and GMDBs and report any errors, via
R5232, to a Sun IV workstation. GN has internal diagnostics that provide a simple
go/no-go LED indication on cach board.



For maintenance, a global reset board and an environmental monitor system have
been designed at CSRD. The global reset board provides a precise reset capability for
Cedar. The environmental monitor system, which is composed of four small boards,
monitors Cedar environmental aspects such as air temperature, cooling fluid tempera-
ture, and power supply load and status.

Performance Monitoring Hardware

Throughout the design of the Cedar-specific boards, performance monitoring has
been a critical objective. The level of design complexity required for the basic funec-
tionality of the interface, interconnection network, and shared memory prevented the
incorporation of integral performance monitoring counters and timers on the boards
themselves. Consequently, to supplement the large number of performance signals avail-
able on the cluster (Alliant) backplane, a significant number of representative signals
were identified on each board as observation points, and these signals were buffered and
brought out to the edge of each board. The interface board contains 49 signals (e.g.,
start and stop triggers, access to the data path, prefetch unit state data, synchronization
operation data, processor side and network side interface data), the nctwork switch has
128, and the shared global memory has 55 per board.

To collect and process these data, the industry standard VME bus has been adopted
by CSRD for the development of all moderate-to-very-sophisticated performance moni-
toring hardware tools. Prototype board quantities have been constructed for two funda-
mental hardware performance tools: a hardware Histogrammer and a hardware Tracer.
The Histogrammer is capable of histogramming 64K different events at a 170-
nanosecond rate. The Tracer is capable of tracing 20 bits of data with a depth of 1 mil-
~lion samples at a 170-nanosecond rate. Both of these boards support interleaving to
increase acquisition speed and depth. This allows the Tracers and Histogrammers to be
used on a one-per-CE basis for software event rates, and on a two-per-CIE basis for
hardware event rates. A Sun processor board resides in the VME chassis with the per-
formance analysis hardware to extract data from these boards and to provide analysis
capabilities and an ethernet connection to the other computers at CSRD.

For smaller problems and individual signal measuring, a substantially smaller
"black box" card is used, and thus small, specific, limited function cards can be
developed quickly and inexpensively. Three such modules have been developed to date:
two types of data acquisition boards (with associated data probes) for collecting TTL
and ECL signals from Cedar, and a dual-channel 16-bit counter-timer with storage
capable of storing 32K counts. An interface between the black box and a Multibus
chassis (the principal I/O bus of Cedar) has been built, and the necessary software sup-
port for black box control has been written.

Diagnostic Hardware

The ability to detect and identify hardware problems in a working system was esta-
blished as a very important design aspect in the carly phase of Cedar development. The
large number of boards in this system, coupled with the problems of online diagnostic
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and isolation techniques, makes the process of board-swapping for fault isolation wholly
unacceptable. We chose the approach of attached diagnostic processors for groups of
boards and designed error status and handling circuitry into cach board type to report
errors (via the diagnostic processors) to a host work station.

We chose to keep the diagnostic processor design as simple as possible to increase
reliability and ease the design requirements for both the diagnostic itself as well as the
error reporting circuitry on each of the board types. To this end, we chose to use a sin-
gle chip microcontroller that provides a bit-serial interface to the outside world, and sur-
rounded it with tk> "glue" logic necessary for interface to each board type. In addition,
the ROM-resident code for the diagnostic processors is contained in the microcontroller
as well as the static RAM for the storage of error status.

At present, we have all required diagnostic processor boards for both the GIB and
GMB boards (the diagnostics processors are embedded in the global network boards).
The diagnostic is fully operational in the Cedar 1A system. All the application-specific
code has been generated and debugged for the diagnostic processors. The serial interface
mentioned above is currently being used to dump diagnostic information to a Sun IV
workstation.

We have chosen to use a Sun as the workstation to tie all the diagnostic processors
together. Additionally, Alliant-based code has been developed to exercise the Cedar sys-
tem, and work continues on the development of system code to perform on-line checks
and fault isolation.

Physical Equipment

Physical equipment designed at CSRD includes three different extender board types
as well as the powering, cooling, and housing of Cedar. Four cabinets have been
designed at CSRD. Twc of these hold the four Alliant clusters (Cedar 1A), one holds the
network, and the fourth, smaller cabinet, contains the memory system. Powering is pro-
vided by large switching supplies with a total output current capability in excess of 2000
amps. Cooling is provided for by chilled water heat exchangers, of which there are three
in each cabinet. The capacity of each exchunger is 7.5 Kwatts.

Operating System

Xylem (Cedar)

We have taken a very conservative approach to implementing an operating system
for Cedar. Instead of starting from seratch, we chose to adopt Unix and to start with
Alliant Concentrix (which is based on Berkeley 4.2). Our system is called Xylem!. The
main areas where Concentrix needed to be modified were to provide: (1) support for the
utilization of multiple clusters by a single program, (2) management of the physical main
memory hicrarchy (global vs. cluster), (3) support for shared virtual memory hetween

L"A complex tissue in the vascular system of higher plants...functioning chiefly in conduction but also in support and storage...”



clusters, and (4) inter-cluster synchronization and communication mechanisms. Xylem
has evolved in such a way that éach Alliant cluster still appears to execute an indepen-
dent Concentrix OS while also managing Xylem-specific programs that utilize the
features of the Cedar system. This year has seen progress in a number of areas,
described in the following paragraphs.

User-level inter—cluster and inter-processor synchronization mechanisms have been
further developed. We have run-time library routines for doing mutual exclusion and
post-wait event style synchronization. Internal interfaces within these routines have
been simplified and overall they have been made more robust, including fixing a bug
that could lead to deadlock during interrupt routines.

The saving and restoring of Cedar-specific hardware registers during interrupts and
context switching has been fixed. This was done incorrectly in the first implementation
and so the use of Cedar synchronization hardware was unreliable. ‘There were small tim-
ing windows during which the contents of these registers could be corrupted by the OS,
resulting in the execution of operations that were not intended. This problem has been
cured, and a number of diagnostic tests are now available to verify correct operation of
the hardware while under control of the OS.

The hardware group has corrected the problems we had with the high-resolution
(10-microsecond) clocks on each cluster. Previously these would appear to drift, as if
running at slightly different rates. As a result, it was diflicult to tell the same time in
tasks on different clusters. Elaborate software mechanisms were in the kern=l to detect
this drift and then resynchronize the software. This resynchronization process would
necessarily tie up clusters for long periods of time, and it happened often enough during
normal scheduling activities to impact user program performance. A new algorithm has
been designed to sync the clocks only once during system initialization. At the same
time, rather than computing pairwise time deltas between clusters, we will use the
notion of synchronizing against a global time base. As a result, it will be much easier for
programs to measure time and coordinate events across clusters, with no system interfer-
ence. For example, a periodic system utility can run once a day to verify that the clocks
have indeed maintained synchronization.

Another problem that required a considerable amount of attention was the diag-
nosis of bugs in the physical memory allocators and process swapping algorithms in the
kernel. Some ol the indicators of these bugs are that processes might get swapped out
and then never get swapped back in, or processes might get stuck in memory (i.c., not
swapped out) such that other processes could not be swapped even though they we
ready and had sufficient priority. These problems were caused by a combination of
incorreetly accounting for how physical memory was being used, and incorrect compiuta-
tion of working set sizes by the system swapper. We are confident of our diagnosis, and
most of these problems have been corrected, but there are still accounting errors to be
isolated. Algorithms in the swapper have been made more fault tolerant of such incon-
sistencies.



Instrumentation of Xylem

The current implementation of Xylem is partially instrumented. For example, facil-
ities exist to account for every page fault in terms of what kind of memory was faulted
(e.g., cluster vs. global, shared vs. private), and how it was resolved (image from ‘memory
or disk,) [CSRD837** & CSRD858*]. Accounting for systemm-wide paging activities has
recently been installed, and we are looking forward to observing the paging behawor and
tuning this aspect of system performance.

We have designed a comprehensive instrumentation approach using the hardware
facilities available on the Cedar GIB board. This hardware will let us collect trace
evente and send them to a dedicated processor. Without adding much overhead in the
kernel, we intend to collect timestamps on all kinds of system wide activities, such is
.nterrupts, context switches, and page faults. Some low level subroutines are already in
place to make trace events and write them to the hardware buffer. With these capabili-
ties fully functional, we will be able to determine what is really happening inside the OS.

Single User Batch

Recently, a single user batch facility has been implemented and installed on Cedar
to make it possible to submit a job to be run in single user mode automatically. At
predetermined or regularly scheduled times, the normal time-sharing system will shut
itself down and initiate single user batch processing. If there are any jobs in the single
user batch queue, they will be run one at a time, and when finished, normal time-
sharing will resume. This will remove a large burden on our user community. Many of
these people need the machine in a single user mode, but still operate under Xylem, pri-
marily to do benchmarkiag runs. Previously, they had to sign up in advance for time
slots in the evening or early morning, and then come to the machine room and work at
the console during their assigned time. ‘

Debugging Support in Parallel Programming Environments

This study involves some of the problems of debugging parallel programs, particu-
larly those at a low level (i.e., machine code level). Problems unique to parallel pro-
gramming environments include identifying and probing execution threads and syn-
chronization of the debugger within itself and with the user’s program. This work also
intends to identify a small set of specific facilities that the operating system kernel can
provide to support parallel debugging tools. An initial implementation of interactive
parallel debugging facilities has been done in the Xylem environment. Different
approaches are being tried, and deficiencies in kernel support have been identified.
Ideally, this work will build a base upon which high~level debuggers can be built.

Research

Recently, we have been discussing new ideas for the design of a mulli-processor
operating system. We observe that Unix-based operaling systems have gotten larger
and more complex over the past decade, as much as one to two orders of magnitude
compared to the early Bell Labs versions. Yet with this tremendous increase in size and



coxnplexllty, there is very little improvement in functionality or performance. As a
result, our thinking leans toward a very simple design, which is portable to a number of
shared and hierarchical memory machines.

For example, unlike most research efforts, we are considering a kernel that does not
require or utilize virtual memory management hardware. This is prompted by two con-
siderations: (1) users continually request that we eliminate virtual memory because it
always interferes with performance, and (2) we are targeting Cray machines, whicll do
not have virtual memory hardware.

Currently, we envision the multiprocessor kernel as only providing processor and
physical memory management, scheduling, swapping, and trap handling. I/O and net-
work activity may be passed off (via messages) to atteched host processors.

Languages and Compilers

Our work on languages and compilers has been guided by three main objectives: (1)
to provide the programmers of the Cedar System with high quality compilers and res-
tructurers; (2) to conduct research on compilers and restructurers leading to the develop-
ment of algorithms that are useful for our work on Cedar, but will also be applicable on
a wide spectrum of machines; and (3) to study compilation and restructuring techniques
for languages other than Fortran.

Fortran Translation

Fortran, the most frequently used language in supercomputing today, is the most
natural language on which to base a major portion of our effort mainly because most
supercomputer applications are dominated by numerical computations, including most
of the algorithm research work at CSRD. In addition, Fortran will most likely be used
on supercomputers for a long time to come.

Cedar Fortran

Our work on Fortran began with the design of extensions to Alliant Fortran for
parallel processing on Cedar. Alliant Fortran includes extensions for vector operations.
These are essentially those in the.current Fortran 8X proposal. We decided to adopt the
extensions and concentrate our efforts on extensions for concurrency. To this end, we
developed constructs for task parallelism and loop parallelism. For task parallelisim we
designed constructs similar to those of Cray Fortran. These constructs are adequate, and
the applications group at CSRD felt comfortable with them. One major difference
between Cray Fortran and our (ctskstart) task spawning routine is that the latter allo-
cates not one processor, but several to the newly created task, in order to allow the clus-
ter tasks to use the Alliant hardware in the execution of concurrent foops. We have also
developed a micro-task spawning mechanism centered around the mtskstart routine.
This routine creates a microtask and queues it according to a priority specified in one of
its parameters. Helping (or implicit) tasks remove microtasks from the queue and exe-
cute them to completion before going back to the queue for more work. Microtasking
has a lower spawning overhiead than regular tasking, [However, microtasking is in some



cases harder to use since it does not allow synchronization operations other than those
used to wait for the completion of a microtask (mtskwait and mtskwaitall in Cedar
Fortran).

Extensions for loop parallelism included doall and doacross loops. These resemble
the regular Fortran deo loop, but their iterations may proceed in parallel. Concurrent
loops may be confined inside a cluster or execute across clusters. In the first case they
make use of the Alliant hardware for the scheduling of iterations on processors. When
concurrent loops are executed across clusters, there are two alternatives. In the first,
whole (virtual) clusters are used to execute the loop in a self-scheduled manner. In the
second alternative, several individual processors from two or more clusters are used to
execute the loop, also in a self-scheduled manner. The scheduling in these two last cases
is handled by software under the microtasking scheme. Concurrent loops executed by
whole clusters are supposed to enclose concurrent loops of the cluster-confined type to
allow the use of all the processors in a cluster.

Cedar Fortran includes extensions to specify at which memory hierarchy level indi-
vidual variables and common blocks are to reside, and includes extensions to handle the
Cedar memory synchronization hardware primitives. A detailed description of Cedar
Fortran can be found in ([PaLa86|, (Guzz87], and [GPLH90].

From the point of view of implementation, the Cedar Fortran compiler comprises a
source~to-source preprocessor, a slightly modified version of the Alliant Fortran com-
piler, and an object—to—object postprocessor. The preprocessor executes before the Alli-
ant Fortran Compiler and translates Cedar Fortran constructs to Alliant Fortran con-
structs or to subroutine calls, The postprocessor executes after the Alliant Fortran com-
piler and translates Unix object files into Xylem object files. The only modifications to
the Alliant Fortran compiler were those needed to generate the machine code for vector
prefetching from global memory via the Global Interface Board. A major portion of the
compiler work wag the development of new run-time library routines neceded for the
Cedar Fortran constructs, and the modification of the Alliant run-time routines to allow
them to run under Xylem. The Cedar Fortran compiler with its run—time library is now
operational and has been extensively tested. Much effort has been invested lately in
decreasing the overhead associated with the run-time library and providing efficient
mechanisms for data communication and synchronization. To this end, we are experi-
menting with strategies for dispatching and scheduling DOALL loops across the four
Cedar clusters. I'or example, we have found that static dispatching brings the overhead

down to 40 uses. Self-scheduling using the Cedar synchronization hardware is also being
tested.

Fortran Restructurer

A sccond component of the Fortran translation system is a restructurer that
translates from Fortran 77 to Cedar Fortran, The present version of the restructurer is
KAP, a commereial product developed by KKAL We have modified this source-to-source
restructurer to generate Cedar lortran as its output. In its current state, the implemen-
tation automatically identifies concurrent loops and vector operations. The system
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petforms strip~mining as necessary to permit the exploitation of the three levels of paral-
lelism available in Cedar. It also allocates variables in one of the memory hierarchy lev-
els either automaticully or by using user-supplied statements.

So far we have demonstrated good performance on Cedar for program kernels and
some algorithms. Additional work is needed to exploit efficiently the architectural
features of Cedar. To make the restructurer a powerful tool for the Cedar system we
need to accomplish the following:

1. Make it pussible for the restructurer to accept Cedar Fortran as input There are
several reasons why this is desirable. One is tiie obvious appeal of not having to
“think in terms of two dialects of Fortran. The second, and probably the most
important, is that programmers niay want to indicate paralleliszn explicitly before
restructuring tales place, and Cedar Fortran is the most natural way to do this.
Accepting Cedar Fortran implies that the input to the parallelizer might be a paral-
lel program. The transformation of parallel programs presents some dlﬁicultles that

are under study [MiPa90|. \

2. Spreading (the transformation that generates task parallelism) has not yet been
implemented. An effective implementation of spreading requires a good interpro-
cedural analysis subsystem, which has not yet been implemented either. Interpro-
cedural analysis has been discussed in [LiYe88a,b&c]. Spreading was studied in
detail in [Veid85]. |

3. Finally, we have to apply the restructurer to a broad range of algorithms and appli-
cation programs. This enables us to study and refine its operation in practice. In a
series of experiments we have identified a number of improvements to compilation
techniques and strategies that cause significant performance gains in large codes.
The following section illustrates some experiments. Incorporating these experimen-
tal results into the restructurer’s capabilities is an ongoing effort.

Experiménts with the Restructurer

We have timed various applications from the Perfect Benchmarks ™ on Cedar and
measured the performance of individual loop nests (by summing the wall-clock time of
all the activations of each lexically outermost loop). The measurements of OCEAN and
FLO52 are summarized by thé graphs in Figure 2, where each tic on the z-axis
represents a different loop nest within the program. Of course, each loop nest has a
different impact on the overall performance of a program, so we present them sorted in
increasing order by their serial execution time. Loop nests plotted at the far right cover
more of the application’s execution time than those to the left.

The y-axis contains two regions: at the bottom we report a speedup ratio for each
nest, and on top we accumulate the execution time of all nests from left to right. On the
top region, we represent the maximum time accumulated by any of the nests in any ver-
sion of the program. The solid curve in this region rrpresents accumulated serial execu-
tion time. The dotted curve in this region is the exccution time of the parallelized ver-

sion. To the right of each speedup plot an arrow reports the overall speed-up of the
whonle program.

11

W e - ' [ ' " N ' ' . n o ' A S A L L



Lo

/

[Execution tiu
I

Shared vs Serial ]

1.0
Seconds
0.0

— 25.28

[Execution time

Distributed vs Serial
Figure 2: Speédup of Perfect Benchmarks ™ OCEAN and FLO52

1.0
Seconds
0.0

— 40.65

The serial version in Figure 2 uses the traditional serial optimizations (like common
subexpression elimination) applied by the Alliant code generator.
of the program is the result of applying the Cedar Restructurer to the serial version,
commandmg it to place all interface variables in GLOBAL memory, thus enabling 2 max-
imum number of SDOALLSs.

The obvious conclusion to be reached from the graphs of Figure 2 is that the overall
performance of an application nearly equals the performance of its most important
loop(s). We will refer to the loops which accumulated the top 909 of execution time as
In OCEAN, the Cedar Restructurer’s SDOALL
version did well on many of the low-run-time loops, but not as well with the significant

the signtficant loops of the program.

ones. Consequently, overall speedup was poor (0.74). In FLO 52, the

not detract from a respectable speedup of 6.7 for the whole program.

The OCEAN program makes complex use of induction variables in many of its
significant loops, the Cedar Restructurer had trouble following sorne of this.
a handful of low-level subroutines in many loops, forcing the loops serial.
inner loops of a loop nest contained calculations with no subroutine calls and these were
successfully stripmined and run as SDOALLSs, while the outer loop remained seria!
because of subroutine. Interprocedural analysis was not applied in this experiment

The (SDOALL) version

SDOALL version
performed well on the most significant fifth, and the mixed performance elsewhere did

because of the problems with our version of KAP in its in-line expansion pass.

recently fixed some of these problems, and are planning to use in-line expansion in the
next experiment. We also plan to study the development of a more sophisticated induc-

tion variable analysis.

It also calls
Occasionally,



The significant loops of the FLO52 program contain many easily vectorizable calcu-
lations. All of the significant loop nests had at least an inner loop which was paralleliz-
able, and some nests could be totally parallelized. In the FLOG52 program, three
significant loop nests had an outer loop that was forced to remain serial because there
were too many inner loops. Increasing the data structure sizes allowed two of these to
be parallelized. Presumably the other could be parallelized with even larger data struc-
tures. The recurrence solvers that we use have not been optimized for Cedar, which was
the source of poor performance on two significant loops.

In the FLO52 code, the Cedar Restructurer produced parallel versions of many of
the significant locps, but their speedup is less than optimal. Why is that? The most
important reason miay be that the average running time for most of the loops, even in
the serial version, is very short and barely overcomes the SDOALL loop overhead costs.
Multi-version loops might cut our losses here.

In one benchmark exercise we solved a banded linear system of 255 equations using
the Conjugate Gradient algorithm. Our test data required approximately 65,000 itera-
tions in the key loops, enough to exploit all the parallelism in Cedar. The kernels were
transformed into SDOALL/CDOALL /vector loop nests. Figure 3 shows the speedups for
the main kernels of this code. The basic statistic is the minimum execution time over
several hundred repetitions. This statistic eliminates a few executions inadvertently
delayed by other system software. '

These runs were made on a half-sized Cedar with 16 CEs, each having 4 stages in
its vector pipeline, so 64 calculations can occur in parallel. But the effective parallelism
in the shared memory network never exactly matches the processor parallelism.
Speedup ratios vary from kernel to kernel because each has a different ratio between the
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[Figure 3: Speedup of Conjugate Gradient Algorithm
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number of memory references and the number of arithmetic operations. The beneficial
effects of cache and prefetching, and the detrimental effects of network contention affect
2ach loop differently.

The second diagram in Figure 3 reports the speedup (parallel times vector) due to
manual application of the data distribution techniques. The bandwidth of the global
network and memory, which limits the shared methods, does not restrict this scheme.
The overall speedup is now 40, and individual kernels are becoming processor-bound.

Other Translators

Two other projects have been undertaken in the compiler area. We plan to con-
tinue both of them. However, in this section we only describe them briefly. Later in the
proposal, some specific parts cf these projects will be discussed in detail.

The first project is Parafrase 2. The main objective of this project is to develop a
successor to the Parafrase Fortran restructurer. The Parafrase-2 project involves the
construction of a multilingual parallelizing compiler for C and Fortran, which will incor-
porate the latest technology on parallelization, as well as recent research results of our
group. Parafrase-2 is being developed not only as a source-to-source parallelizer but
also as a fully develo: .1 compiler which generates code for an abstract parallel architec-
ture.

Although this is an ongoing project involving a faculty member and four graduate
students, the compiler has passed its first phase of development and is currently in use
at CSRD as well as several other universities and research centers in the U.S. At
present, Parafrase-2 is capable of performing loop parallelization inter— and intra-
procedurally. Powerful data dependence analysis with new techniques for symbolic
dependence analysis have been implemented along with inter—procedural analysis.
Several transformations and optimizations have also been completed, including loop
parallelization, scalar expansion, loop blocking, induction vandole recognition, loop
interchange, loop distribution and vectorization.

In addition, an interactive graphics interface has been added to Parafrase-2, which
provides a convenient means for visualizing and manipulating internal program
representations such as the control flow graph, the procedure call graph, and the data
dependence graph. Parafrase-2's graphics interface, which runs under X windows, has
provided a powerful tool in interacting with the compiler and guiding parallelization
wherever needed. Parafrase-2, which has been developed in C and runs under Unix,
comprises at present 80K lines of C code. The use of data abstraction in the develop-
ment of the system has proven instrumental in its use as the basis for building simula-
tors or other compilers on top of it, at several centers where it is being used.

The second project, MIPRAC, is an attempt to fuse the techniques of automatic
parallelization of numerical codes (as employed in Parafrase and its descendants) witl
those of symbolic codes (as employed in PARCEL, a LISP parallelizer [I1alPa88)). The
goal is to use intersections and unions of these techniques to arrive at a compiler th.L,
can parallelize, for example, a C program that manipulates pointer variables,
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dynamically allocated objects, as well as arrays of numerical data. The compiler itself
will operate upon an intermediate form into which programs in a variety of languages
may be rewritten. We have implemented translators from Scheme and Fortran 77 into
MIPRAC’s intermediate form and are implementing one for Pascal. We intend that
programs that are written in several source languages may be sensibly analyzed, com-
piled, and linked using this multilingual translator.

To ensure that MIPRAC's intermediate form is as compact as possible, several
phases of syntactic and control-flow normalization are used to coerce input programs
into a highly normalized form. Following this normalization, an interprocedural analysis
is performed which extends the side effect and lifetime analysis used in PARCEL to vec-
tor and array data. MIPRAC's parallelizing transformations will include array- and
DO-loop-oriented transformations (loop distribution, loop interchange, scalar expansion)
as well as recursion- and WHILE-loop-oriented transformations (recursion splitting,
exit-loop parallelization).

To date, the phases of syntactic and control-flow normalization and the first phase
of interprocedural analysis have been implemented.

MIPRAC will produce a machine-independent, parallel intermediate code that can
be executed using PARCEL’s run-time system, which is being extended to accommodate
the requirements of MIPRAC's intermediate form.

The Ansi C, Scheme, and Common LISP front ends for MIPRAC are implemented,
and we have begun debugging them. The front ends rewrite C and Common LISP pro-
grams into the intermediate language used by MIPRAC (called MIL). The control struc-
tures in these languages (tail recursion in Scheme, foreach and mapcar in Common
LISP, for, do / while, break in C) are too many and too diverse to be
represented directly in the intermediate form. Our solution is to give all of these struc-
tures a simple translation in terms of gotos and labels, in MIL. Afterward, a phase of
control flow normalization eliminates all gotos and labels, leaving only properly nested
begins, ifs, whiles, and procedure calls. A final phase of normalization rewrites the
while loops as tail-recursive procedures, so that in the end we have only begin, if
and procedure call as control structures in a MIL program. The normalization phases
are complete and have been debugged.

The interprocedural analysis of MIPRAC has been implemented and is being tested
and debugged. The analysis is in C; its interface to MIPRAC is a simple, ASCII one: an
encoding of the program arrives on standard input as an ascii text, and the output is
returned in ascii format. The analysis is thercfore available to others, as a module
separable from MIPRAC. Three kinds of information are gathered by the analysis: the
interprocedurally visible side effects of procedures; the lifetimes of dynamically allocated
objects; and structure sharing within the data structures created by the program. The
analysis uses a new algorithm for finding the fixpoints of functionals efficiently. This
algorithm employs techniques from data flow analysis to direct the solution of fixpoint
equations. We intend to parallelize the analysis and to run it remotely on the Alliants or
Cedar, to speed the analysis of large programs.
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We are also developing a new theory of automatic parallelization based entirely
upon recurrence relations. The idea is that in every iterative or recursive structure there
are simple recurrence relations (e.g., induction variables) from which more complex
recurrence relations are computed, and finally from which the sequence of memory
addresses that are accessed are computed. Automatic parallelization requires two things:
a view of the relationship between objects in memory, and a view of the recurrence rela-
tions computed by iterative and recursive structures. These two components allow us to
reason about whether the addresses issued in one iteration overlap with those issued in
another iteration. In general, we find that if the recurrences that carry us from locations
to new locations are "linear" in that they do not return to previously accessed locations,
then the iterations of a recursive or iterative structure are independent. These observa-
tions may be made the basis of an algorithm for automatic parallelization that treats
'both subscripted and pointer accesses in a single framework. We are trying to de
exactly this in MIPRAC. The two components of the framework are the above-
mentioned interprocedural analysis (which gives us a view of the objects in memory and
their interrelationship) and an interprocedural recurrence recognizer, which gives us a
view of the recurrences described by iterative and recursive structures. (In fact, by the
time these analyses occur in MIPRAC, all iterative structures from Fortran, C, and
Common LISP are rewritten as recursive or tail-recursive procedures in the intermediate

language of MIPRAC.)

Finally, we are designing a code generator and run-time support for MIL (the inter-
mediate language of MIPRAC) for the Cedar machine. The intermediate language has
been designed to make this particularly simple: there are only a handful of control
forms, and low-level operations that correspond mostly to sequences of a few instruc-
tions. Input/output operations are equally simple: block reads and writes, creation and
deletion of files, and positioning of the cursor (point of reading/writing) within a file.
The run-time support for a source language like Common LISP, which has many built-
in procedures, is written entirely in MIL itself, and compiled using MIPRAC, so that this
portion of the run-time system will not require porting. We are concentrating upon the
efficient translation of the intermediate form into the Alliant/Cedar instruction set. One
especially interesting aspect of the run—time system and code generator is its automatic
storage reclamation. The run-time system will not use a conventional garbage collector,
but rather will automatically deallecate objects according to their lifetimes, as deter-
mined by the interprocedural analysis. This means, for one thing, that we will support
automatic storage reclamation for C programs. For another, it means that the system
will have the desirable aspects of cencurrent garbage collection (no lengthy pauses in
processing to reclaim storage). The reclamation algorithm is particularly simple to
implement, but its success will ultimately depend entirely upon the accuracy of the
interprocedural analysis. '

Multiprocessor Performance on Algorithms and Applications

In the past year, the Applications Group in the Center has been involved in two
main activities:
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1. The design and implementation of various hierarchical numerical algorithms that
take advantage of the three levels of parallelism of the four—cluster Cedar in which
each cluster contains four vector processors (e.g., the 4x4 Cedar).

2. The parallelization of several large-scale application codes in ocean modeling, crash
worthiness, and thermal hydraulics, and their implementation on Cedar.

Algorithm development on Cedar

Several parallel algorithms have been developed for implementation on the 4x4
Cedar in which each cluster memory consists of 2MW and a global memory of 2MW
with a modified intermediate global network. These algorithms deal with crucial parts
in important applications: '

SPIKE: A Hierarchical Parallel Block~'tridiagonal System Solver

The golution of large banded diagonally dominant or symmetric positive definite
linear systems constitutes one of the most common computational tasks associated with
implementations of the finite element method in applications such as fluid dynamics and
structural analysis. The design of multiprocessor algorithms for solving large block-
tridiagonal systems becomies of paramount importance for efficient implementation of
these applications on vector and parallel machines. In [Berr90], we discuss the design
and imvulementaiion of a hierarchical-based method, SPIKE, for solving these systems
on the 4-cluster (16i-processor) Cedar machine. We compare the performance of SPIKE
with that of ar er.cient block Gaussian elimination scheme, BGEE, on an 8-processor
Alliant FX/80. Iesults for the SPIKE algorithm on CEDAR block-tridiagonal system of
order 16384 with Block size 16 indicate speedups of greater than 6.5 vs. the best segmen-
tal scheme wnd a s 2 improvement of 11.5 vs. SPIKE on one processor.

A Symmetric and Antisymmetric Domain Decomposition in Structural
Mechanics

Domain decomposition has recently become a topic under intensive rescarch (see
|[GGMP88] and [CGPW8Y| for references). The symmetric and antisymmetric domain
decomposition introduced in [{Chen88] and [ChSa89a&b| is ideally suited for problems in
structural mechanics. It is ideally suited for multiprocessors such as Cray Y-MP, Cray-
2, Alliant FX/80, and Cedar. Unlike other methods that decompose the symmetric and
antisymmetric response of a structure (c.g., see [NoPe87a&b], [BrDM88|, [DoSm88|), our
scheme exploits special properties of reflexive matrices to decompose stiffness matrices
into several independent subproblems. Speedups realized for 2-D and 3-D elasticity
problems on an Alliant FX/80 vs. the best sequential solvers range from 5.5 to 7.0 (out
of a maximum of 8) depending on the problem. For the three levels of parallelism of
Cedar, speedup of 9 (out of a maximum of 16) is realizable (sce [(J]mnﬂ(){), even on
unsymmetric structures that can be preconditioned using the symmetric and antisym-
metric domain decomposition on the symmetric structure which is considered as a small
perturbation of the original problem.
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The Block Cimmino Method

The block Cimmino algorithm is a row projection scheme for nonsymmetric
indefinite linear systems with arbitrary spectral distributions [Bram89|, [BrSa90a). The
method can be more robust than other commonly used iterative solvers such as conju-
gate gradients (CG) on the normal equations or Krylov subspace based methods such as
GMRES(k). The most time-consuming part of the algorithm involves forming matrix—
vector products, with a matrix that is the sum of orthogonal projectors. For structured
problems suth as those arising from discretizations of partial differential equations, each
projection can be computed as a set of parallel tasks, each such task having some vector-

“ization possible. Block Cimmino is thus especially suitable for the Cedar architecture,
because the algorithm allows the necessary three levels of parallelism. A particular
implementation is described and tested on Cedar [Bram90), showing speedups of 11 (out
of a maximum of 16) that are realizable even on modest size problems.

Parallel Elliptic and Parabolic Problem Solvers

A rapid elliptic solver based on a parallel block cyclic reduction scheme [GaSa89]
has been implemented on 2x4 Cedar with favorable results [Fran9d|. Further, algo-
rithing based on the conjugate gradient schemes, with and without preconditioning, have
been implemented on Cedar [MeEif90| for self-adjoint elliptic problems on regular
domains, and on T-shaped domains with the Schwarz alternating procedure |[GaFM90.

Parallel algorithms for solving linear parabolic problems via implicit methods, based
on Pade and Chebyshev rational approximation to matrix exponential, are implemented
on the 4x4 Cedar. The algorithms are ideally suited for the hierarchical memory organi-
zation of Cedar and realize high speedup vs. the classical sequential Crank-Nicolson
scheme. Moreover, these algorithms are those of choice if the goal is to compute the
solution at a given time point as quickly as possible.

Direct Sparse System Solvers

In this activity we have developed two solvers:

1. McSparse [GaMW90] - This algorithm is ideally suited for large grain parallelism
that takes advantage of the multicluster organization of Cedar. This algorithm
consists of two stages. The first uses a hybrid ordering [Wijs89b) which produces
(on most general sparse matrices) a block sparse upper triangular matrix. A sparse
block Gaussian elimination procedure (with pivoting) produces an LU-factorization
using the four clusters of Cedar with reasonable load balancing.

2. DSPACK [Yang90] — This algorithm was designed to test Cedar as a "lat" mul-
tiprocessor which utilizes mainly the global memory and capitalizes on the fine—
grain parallelism of the 16-CIl Cedar, In spite of lack of explicit utilization of the
individual cluster memories, speedups of around 6 (out of a maximum of 16) vs. the
best sequential scheme are realizable.
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Multiprocessing of Large Scale Codes

The purpose of this project is to apply techniques of paral'el computing to mature
computational fluid dynamics (CFD) and structural dynamics (SD) computer codes.
Specifically, although the power and utility of parallel computers and the corresponding
software deveiopment techniques have been demonstrated on small scale prototype prob-
lems, full-scale production use has lagged behind because parallelizing large engineering
codes requires coordination and interaction among engineers (who understand the physi-
cal problem being modeled), numerical algorithm designers (who specialize in designing
efficient algorithms to solve basic computational problems), and performance evaluation
experts (who build software tools and machine models that enable the design of efficient
programs for a specific computer). For this effort, we are collaborating with another
DOE site, Argonne National Laboratory, combining our expertise to bear on industrially
important probléms. We are also continuing our work on a problem of concern to
environmental activities, namely the multiprocessing of a state—of-the-art ocean circula-
tion model (OCM).

Upon completion, we expect two major results. First, the very process described
above will expose the strengths and weaknesses of existing techniques for parallelizing
programs and will identify those problems that need to be solved in order to enable
widespread production use of parallel computers. Second, the increased efficiency of the
CFD and SD codes will allow the simulation of larger, more accurate engineering
models. In particular, we hope that the work could serve as an exemplary model for
similar future activities.

Our main parallel machines are the 4 CPU Cray X-MP and Y-MP, Alliant I'’X/80
and FX/2800 and Cedar.

Parallel Ocean Circulation

Global ocean circulation modeling is an important component of climate prediction
studies. In an effort to conduct faithful simulations, one nceds considerable computa-
tional power and storage capabilities. Interest in such efforts is evidenced in DOI's
recent CHAMMP initiative. Much pioneering work in the parallelization of ocean global
circulation modeling has been conducted by Semtner and Chervin for the Cray. Our
interest is to build models that profit from computational and memory hierarchies for
good performance. We hope that such models will maintain good performance as
machine and problem size scale,

In cooperation with A, Navarra from IMGA-CNR, Modena, Italy we are developing
a parallel version of a state-of-the-art model of circulation in the Mediterranean basin.
The model is based on the ocean circulation codes from GFDL, Princeton University,
and simulates the basic aspects of large-scale baroclinic ocean circulation. A preliminary
multicluster Cedar implementation of the code has been completed. In this phase of the
work we have concentrated on the aspects of the code not dealing with the two-
dimensional relaxation procedure, used to compute transport streamfunction The two
models of interest consist of 167 x 57 x & and 334 x 118 x 16 gridpoints respectively.
The smaller model is used primarily to allew some performance cvaluation of a single
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cluster code, since the large model is slowed down considerably on one cluster due to
paging. For example, Figure 4 shows the effect of using four clustera of Cedar relative to
the performance of the eight advanced computational elements of the Alliant FX/80.
The times for one and two Cedar clusters are very large due to the small memory avail-
able compared to that of the FX/80 and the paging behavior. Figure 5 corresponds to
the smaller model. It shows that the two clusters of Cedar (8 CEs) perform almost as
well as the eight faster Advanced CEs of the FX/80.

Tables 1 and 2 show the times, speedups, and efficiencies for each of the phases of
the calculation. The three-dimensional computations have been distributed across the

clusters. The relaxation was left on one cluster as we are currently implementing a mul-
ticluster version.

.All the multicluster Cedar speedups we have shown are constrained by our not
parallelizing the two-dimensional relaxation. This, together with the evaluation of
different data-partitioning techniques constitutes our next task in the project.

COMMIX and WHAMS
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Figure 4. Preliminary performance of OCM on Alliant I'X/80 and Cedar for
3 time steps of 334 x 118 x 16 ¢grid.
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Figure 5. Preliminary performance of OCM on Alliant FX/80 and Cedar for
10 time steps of 167 x 57 x 8 grid.

proc. nurmber of clusters

] 2 3 4
startup 0.03 0.038 0.08 0.04

D phase | 36.62 | I8.887| 13,96 | 10.98

relaxhtion | 3.60 3.79 3.508 3.02

lotal | 402072270 | T6.87 [ 15.08

Table 1. Small ocean model running 10 time steps (preliminary).




Clusters (CE) | Speedup | Efficiency ] Speedup for 3D ph, | Eff, 3D ph.
(9 1.00 .00 1.00 [.00
2 (8) 177 0.89_ L.04 0.07
3 (12) 2.38 0.79 2.76 0.92
4 (16) 2.67 0.67 3.33 0.83

Table 2. Small ocean model running 10 time steps (preliminary).

COMMIX and WHAMS-3D are two production codes that have been developed at
ANL and are widely used by industry and government laboratories. The first is a com-
putational fluild dynamics code that is used for both nuclear reactor design and safety
and as a design tool for the casting industry., COMMIX 1-ARP consists of approxi-
mately 30,000 lines of code across 150 subroutines [BIGG89]. WHAMS-3D is a three-
dimensional structural dynamiecs code used in nuclear reactor safety as well as
crashworthiness studies [BeTs82]. Both codes are available for both sequential and vec-
tor cornputers only. Our main goal is to optimize these two codes on shared memory
multiprocessors. The first phase of this project has been completed and fully docu-
mented in [ABCG90). It consisted of an intense profile study of both codes using data
sets typically used by ANL for testing the validity of the codes,

Argonne's development and refinement of COMMIX, which has continued for more
than ten years, was originally supported by the U.S. Nuclear Regulatory Commission for
application to a wide variety of reactor safety problems. COMMIX has been developed
using a unique porous media approach to the solution of the Navier-Stokes equations in
an arbitrary three-dimensional region. In its various versions, COMMIX can model
separate single-phase fluids, multiphase flows, and free surface flows. The code uses
differenced momentum/riass conservation equations which are combined to form a pres-
sure equation. Once the pressures are known, the fluid velocities are updated to provide
input to the energy simulation and the next iteration or time step. The hydraulic driv-
ing force may be flow or pressure boundary conditions at inlets and outlets, one of
several pump models, or a fluid temperature/density distribution, The energy equations
are differenced using the updated velocities, and the source terms are accumulated from
the treatments of convection boundaries, conduction boundarics, thermal structures, or
heat generation in the fluid itself. One-dimensional shell structures superimposed on the
fluid geometry model various luid system thermal components such as vessels, pipes,
ballles, tube-shell heat exchangers, and reactor fuel. Once the fuid temperature distri-
bution is updated, the submerged thermal structures’ internal temperature distributions

are recomputed, assuming one-dimensional conduction through cach thermal structure
segment,
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The momentum and fluid energy equation time differencing is implicit, which
requires that the difference equation coefficients be constructed from end-of-timestep
temperatures and velocities. The pressure equations of the mass-momentum loop are
solved using conjugate gradient (CG) with incomplete Cholesky factorization precondi-
tioning.

A large amount of the computing time ls spent constructing matrix equations, a
process that would require massive recoding to vectorize because of its large, logic-
loaded loops. Such loops, however, are expected to lend themselves very well to the
parallelization efforts which we plan to pursue in the context of this work.

We next list the function of the most important routines in the set:
energi Construct coefficients in the energy equation.
lowfev Solve the vrper and lower triangular system as part of the
conjugate gradient solution of the pressure equation.

peqn Construc” the coefficients in the pressure equation.
- gstrds Calculates finite differerces of solid/fluid heat transfer rate
over the thermal structures.
gstruc Set solid~to-fluid source term for the fluid energy equation.
solvev Solver of linear system for the energy equation using Gauss—Seidel
relaxation on red-black ordering.
xmomi, ymomi, zmomi Sweep over all fluid cells to set-up the

x, ¥, and # direclion momentum equations.

Table 3 summarizes the runtimes for each of the machines and compilation options
for two typical data sets, P1r0 (steady-state calculation) and P1r2 (transient calcula-
tlon). The complilation options 8,v,C stand for scalar, vector, and concurrent optimiza-
tion. The notation SV(Zv) stands for enhanced vectorization.



Routine P10 Plr2
Cray SV 93.96 | 920.94
Cray SV(Zv) 81,48 | 872.90
Jray SVC 225,26 | 20256.48

1 CPU 22,36 | 297.28

2 CPU 31.76 405.18

3 Cru 47.19 | 461.88

4 CPu 123.95 861.20
Alliant FX/80
SV (1 CE) 1,322.4 | 12,331.2
SC (8 CIL) 1,128.7 | 10,015.0
SVC (8 CE) 1,136.7 | 10,048.6

Table 3. Execution times for SV, $V(4v) and SVC COMMIX-1AR/P on the Cray
X-MP /48 and Alliant FX/80.

Dataset | PLr0 Pl

Routine | SV T SV(Zv) || SV [ SV(%v)
QsTRDS | 6.20 | 6.68 6.197 [ 6.09
ZMOMI 6.42 7.19 6.42 7.15
ENBRGT 6.06 6.61 (.06 (.64
SOLVILY 10.29 36.28 10.37 33.01
YMOMI 6.97 7.78 (.07 7.81
QSTRUC (5.67 7.28 (.66 7.29
PEQN 3.05H 3.49 3.06 $4.60
XMOMI 6.93 7.82 6.93 7.84
Lowrey | 30.98 | 34.12 30.99 34.57

Overall |79.02 | 1176 || 7.68 | 876

Table 4. MFLOPS profile of the most time consuming subroutines in bascline
gcalar-vector, and enhanced vectorization ~%4v compilation modes for the
COMMIX-1AR/P code running on Cray X-MP using data decks P1r0 and P1r2 (from
PIERIFTRACE).
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Table 4 shows that the best MFLOPS rate is achieved for the solvev and lowfev
subroutines, for a performance far superior to all other listed subroutines. These have

- been written to take advantage of vectorization and thus perform at more than 30

MFLOPS on one CPU of the Cray X-MJP. This is in contrast to a meager average of 6.5
MFLOPS for those sections of the code working on the task of matrix construction.
This of course causes the overall performance to drop to almost 11 MFLOPS, even for
the full vector optimization. It is thus clear that a first step in improving the perfor-
mance of the code is going to be the restructuring of the matrix construction phase.

Table 4 indicates a great deal about the nature of the work to be done during the
next phase of this project:

1. The difference in performance for solvev under the different compilation options
tells one about the ability of restructuring compilers to take advantage of the
machine capabilities, if the code is written properly. It also shows that the use of
more sophisticated restructurers can be very beneficial. We should keep in mind
however that solvev was coded for vector processing.

2. The high performance of lowfev for both SV and SV(Zv) shows that even a less
sophisticated restructurer can do well if it has sonie help from the user (in the form
of inline directives).

3. The low performance for both SV and SV(Zv) options for all other routines shows
that there is work to be done until these commercial compilers can handle satisfac-
torily dusty-decks. ("Dusty-decks' as the matrix assembly routines were not coded
to take advantage of the architecture.) We will thus investigate the use of novel res-
tructurers as part of Phase 2 of our work. '

4. The overall low performance for both compilation options, and the small difference
among the two, shows that it is dangerous to concentrate only on those stages of
the code that are related to well-defined algebraic computations in need of new
algorithms (e.g., linear system solvers), at least until the automatic transformation
tools become more powerful.

An important goal of this work is to demonstrate the effectiveness of multiprocess-
ing for these codes applied to industrial-strength data sets. We have secured such sets
from the Thermal Hydraulics Section of Commonwealth Edison, including a 12-nour
simulation when performed on one vector processor of an IBM 3090.

The WHAMS-3D computer program employs explicit time integration to do non-
linear, transient analysis of frames, shells, plates, and continua in three dimensions.
Both material nonlinearities due to elasto—plastic behavior and geometric nonlinearities
due to large displacements can be treated. This program has been developed jointly at
No:thwestern University and Argonne National Laboratory and is internationally recog-
nized as a state-of-the-art program for performing nonlinear transient analysis. The
program employs a finite element format, so that it possesses considerable versatility in
modeling complex shapes and boundary conditions. The element library consists of :he
following: quadrilateral and triangular plate-shell elements, a beam clement, a pring
element, and a hexahedral continuum eclement. In addition, a rigid linkage is inciuded



which permits the efficient modeling of very stiff portions of a structure, such as the bot-
tom ring of a core barrel. In a rigid linkage, the motion of a master node defines the
motion of all slave nodes linked to the master node. This option is also useful for
eccentrically connected elements where the midlines of the connected elements do not
coincide, as, for example, in stiffeners. All of the elements in the program are three
dimensional. Table time steps can be automatically computed or input by the user or a
driving program. Mixed time integration, a procedure that allows for different time
steps in different parts of the mesh, may be employed.

The performance results of the original code WHAMS3D on the Cray X-MP /48 for
several input data decks are presented in Tables 5 to 7. Table 5 shows the execution

Version Execution Time

buckle | cylpanel frame | spcap
S 59.19 391.19 | 4048.66 | 88.02
SV 9.73 64.11 | 650.07 | 14.72
SVC 9.66 61.53 | 633.92 | 15.30

Table 5. Execution times for WHAMS-3D on the Cray X-MP /48 (from HPM).

r No. of Connect time (13)
Concurrent in cach CPU
CPUs (1) buckle | cylpanel frame | spcap
l 3.15 19.66 162.35 5.99
) B 0.59 9.92 | 131.54 | 1.88
3 2,45 12.30 147.89 4.34
4 3.47 19.74 | 211.34 3.08
"Total exec. time 9.66 61.63 | 653.12 ] 15.30
;I‘ot,:d CPU time 25.54 155.37 | 1714.46 } 35.10

Table 6. Execution times for SVC version of WILAMS-3D on the Cray N-MP /48
(from HPM).




Version MFLOPS

, buc' e | cylpanel | frame [ spcap
'S T 1. 36 11.50 | 11.37 | 11.25
il sv 71.00 | 71.65 | 72.65 | 69.05

SVC 71.38 74.49 | 76.97 | 66.56

Table 7. MFLOPS for WHAMS-3D on the Cray X-MP /48 (from HPM).

time for all four data sets. As can be seen from this table, the vector speedup of the SV
version over the S version ranges from 5.98 for the data set spcap to 6.23 for frame. It is
also observed that the SVC version does not yield good performance although four CPUs
are available.

We have started using tools developed at CSRD to capture the detailed histories of
routine invocation together with machine performance statistics. The goal is to study
performance behavior at a more refined level using trace data of routine entry and exit
actions. We used tracing tools developed for the Cray X-MP and Cray 2 which are
described in [MaLR90|. In summary, these tools can capture detailed histories of routine
invocation together with machine performance statistics. The produced trace graphs
visually depict where time is being spent in routines during the execution and the rou-
tine calling dynamics as the application proceeds.

Part, nf our work has concentrated on the effectiveness of using software tools to
detect opportunities for parallelism. It is clear that the greatest potential for improve-
ments, and consequently the biggest challenge, lics in the substitution of the key algo-
rithms in the application code with redesigned algorithms which exploit the new archi-
tectures and use better numerical techniques. This will constitute a major activity of
this project. We have already started work in evaluating the effect of numerical algo-
rithms more amenable to parallelization and their effect on the codes. IFor example, we

are studying the behavior of and alternatives to the use of CG with incomplete Cholesky
preconditioner in COMMIX.

Overall the first phase has shown that significant improvements in the codes’ per-
formance result from vectorization. This is partly because of the effectiveness of vector-
izing compilers, and partly because the principles of vectorization have been available to
programmers for more than 15 years. The resulls of the first phase also show that
applying existing automatic restructurers for multiprocessing gives little improvement or
even degradation in performance, but provides clues on how to achicve better results.



Perfect Benchmarks™

Success in the field of parallel computing must be calibrated by measuring the per-
formance gains made on real applications programs. A number of examples in this pro-
gress report use applications codes drawn from the Perfect Benchmarks ™, which are a
collection of 13 applications level Fortran programs totaling over 60,000 lines of code.
The effort has been collective with early participation from academia (University of Illi-
nois, Princeton, Caltech, Florida State), industry (Cray, IBM) and various research
centers (Houston Area Research Consortium, Institute for Supercomputer Research -
Tokyo, NASA-Ames). :

The programs were chosen to satisfy various constraints, including portability,
breadth of application areas, reasonable running times and perhaps most importantly
maturity and popularity of the codes themselves (see [Berr89, CKPK90]| for more discus-
sions about the effort and references on each of the codes). It is important to note that
each Perfect code represents more than a Fortran program in that it solves a well
defined scientific or engineering problem. Initially, the codes were ported to and timed
on 8 machines [Berr89) and subsequently the process has been repeated on more than 20
additional machines. Insight into system software and architecture is sought, not just
benchmarking numbers. The Perfect Benchmark ™ program is a collaborative effort,
and contributions such as new codes or new analysis techniques are welcome and
encouraged at all times,

The Perfect benchmarking effort strives to collect baseline and optimized execution
statistics. A baseline measurement involves running the code as is, with only those pro-
gram changes necessary for porting allowed. Note that all the Perfect codes were origi-
nally written for and used on some high-performance system; thus certain performance
biases were built-in to the data, as would be the case with any such real-world collection
of codes. After a baseline measurement is made, the user is encouraged to undertake
any kind .of program rewriting to improve performance. Diaries describing program
transformations, which include loop reordering, subroutine in-lining, library routine sub-
stitutions or algorithm replacement for example, are to be kept. Loosely speaking, in a
baseline measurement the original Fortran program is an invariant while in an optimized
execution the scientific problem is invariant.

Table 8 contains some basic information about the Perfect codes.

Perfect Performance Data

Each of the 13 Perfect Benchmark™ codes is a stand alone program that uses no
external library calls and upon successful execution ereates an output file containing exe-
cution times, a MFLOPS rate and the results of a validation check. Noth wall clock and
CPU time are recorded. The derived MIFLLOPS rate on all machines is bzsed on a refer-
ence floating point operation count obtained by the Cray XMP hpm. The validation
check is performed by comparing known correct output values against the values com-
puted by the current execution. The comparison is not always exact but uses a mean-
inglul threshold that was determined by the code’s author or maintainer at the time the
code was included in the benehmark suite. The validation check has turned out to he



quite useful since there are numerous reported incidents involving precision problems
and incorrect code generation by buggy compilers, even though a code may compile, exe-
cute and terminate.

The Center for Supercomputing Research and Development at the University of 11li-
nois publishes periodic reports containing tabulations of results. The last report con-
tained over 40 tables of raw data on about 30 machines’ performance [Poin90]. Efforts
have been made to port codes to massively parallel machines but such endeavors are
labor intensive and only two codes have been run successfully on hypercube-type
machines at Caltech. The Perfect Benchmark™ database contains no results on SIMD

machines for the same reason.

Observations

The Perfect Benchmark™ data demonstrates the complexity of computer systems
performance. Put another way, no single number captures performance in any meaning-
ful way and, conversely, efforts to quantify performance by a single number are intrinsi-
cally oversimplified. However, some general observations based on the totality of data
are possible.

1. Delivered performance is significantly lower than peak performance and is growing
at a slower rate. Figure 6 is a scatterplot of Perfect code performances on various
supercomputers of the 1980's. It clearly illustrates that the correlation between
peak performance and delivered performance is weak. It should be noted that the
Perfect Benchmarks™ are by and large complete applications, in some cases with
scaled down problem sizes that may lead to poorer performance. Machine perfor-
mance on more homogeneous, simpler algorithms could be significantly higher.
This gap between peak and delivered performance reaches two orders of magnitude
in Figure 6 and will become even more dramatic as machines with more processors
and/or functional units become available.

2. Increased performance leads to increased performance variations. Variations in per-
formance, quantified as the ratio between maximum and minimum delivered
megaflops, are correlated with peak performance as can be seen from Iigure 6. Cal-
ling this ratio instability, higher performance machines appear to be more unstable
because of advanced hardware features that are difficult to take advantage of uni-
formmly. Note that instabilities also approach two orders of magnitude in Figure 6.
Further development of the notion of instability is currently underway at CSRD.

3. Porting applications level codes to hypercubes and SIMD machines vs difficult so that
comprehensive applicalions-based benchmarking of these classes has not been possi-
ble to date. After three years, only two Perfect codes have been successfully ported
to hypercube machines and none to SIMD machines. This is a particularly trou-
bling fact since much of the current enthusiasm over existing massively parallel
machines is based on the performance of simple algorithms.
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Conclusion

As stated throughout this report, much progress has been made not only on the
Cedar hardware, operating system, applications and algorithms, but also in advancing
the state of the art. Further emphasis must be placed on much that is left to do. We
are on the verge of more breakthroughs in parallel processing which has been ack-
nowledged to be the means to achieving truly high performance computing.
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Code Lines Algorithimns Used
Name of Code Application Contributor 2 3 4 &5 08 9

ADM 6105 Alr pollution, Fluld IBM P . .
dynamics

ARC2D 3984 Supersonlc reentry, 2-D NASA . X s .
fluid dynamics Ames

BDNA 3977 Nuclei¢ acld simulation, IBM ) . X
Molecular dynamics

DYFESM 7608 Structural dynamics, CSRD x P .
Engineering design

FLOS2 1988 Transonic flow, 2-D Princeton . x X .
Fluid dynamics

MDG 1238 Liquid water simulation, M . . x
Molecular dynamics

MG3D 2812 Seismic migration, Sig- Cray X X .
nal processing

OCEAN 4343 Ocean simulation, 2-D Princeton , b3 .
fluld dynamics

QCD 2327 Lattice gauge, Quantum Callech
chromodynamics

SPEC77 3885 Weather simulation, CSRD XX
Fluid dynamics

SPICE ‘18521 Circuit simulation, ln- CSRD X .
gincering design

TRACK 3784 Missile tracking, Signal Caltech X
Processing

485 2-electron transform in- 1B3M

TRFD

tegrals, Molecular
dynamica

Table 8.

Algorithmst

1. Sparse Linear Systems Solvers
. Nonlinear Algebraic System Solvers

2
3
A

. [Past Fourier Transformas
 Rapid Elliptic Problem Solvers
» Multigrid Schemes

. Ordinary Differential Equation Solvers
. Monte Carlo Schemes
dutegral Treansforins

. Convolution

The Perfecy Benchmarks ™,
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