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ABSTRACT

A theoretical method is described for evaluating the effects of

spatially and temporally discrete production in collision

cascades on point defect concentrations and swelling in materials during

irradiation. The concentrations of vacancies and interstitials at a

point which result from their diffusion from all cascades in the material are

calculated. Large fluctuations occur with time in the vacancy concentration.

The interstitial concentration is nearly always zero except for extremely

large spikes of very short duration, corresponding to the occurrence of a

cascade anywhere within the sphere beyond which all generated defects are

absorbed by sinks before reaching the reference point. The growth rate of a void

in this cascade diffusion theory is compared to that given by the more

approximate rate theory. The difference is small but increases rapidly

at high temperature. Implications of this work for void nucleation, irradiation

creep, and analysis of pulsed irradiations are mentioned.
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1. INTRODUCTION

The rate theory of swelling has been developed primarily for application

to steady Irradiations. Fusion reactors, accelerator-driven neutron sources

and to a different degree fission reactors often are designed or operated on

an interrupted or pulsed schedule. The radiation on-time may range from

nanoseconds to more than thousands of seconds, with the off-time spanning

fewer orders of magnitude. Several studies have investigated the point

defect concentrations, void nucleation, and swelling behavior to be expected

during pulsed irradiations on the basis of rate theory [1—6]. In general

the predicted swelling is found to depend on the pulse duration and pulse

interval, with some regimes of cycle times leading to small or negligible

swelling and others giving results similar to steady irradiations.

One of the implicit assumptions of rate theory is that point defect

generation and loss can be treated as if occurring continuously in time and.

at every point in the medium. Point defect generation by radiation, which

occurs in cascades caused by spatially and temporally random collisions of

the bombarding particles with matrix atoms. It is modeled, however, as if

generated homogeneously and continuously by an infinite number of infinitesimal

regions in a continuum. Pulsed irradiations have been modeled by suppressing

and reactivating this continuum source.

However, it is known by considering the physical nature of point defect

production [7,8] that point defect concentrations fluctuate locally even

during steady irradiations. We, therefore, view the question of the effects

of radiation pulsing as really a question of what additional effects are

introduced by radiation pulsing when this is superimposed on the already locally

fluctuating point defect concentrations. Yet the implications of locally

fluctuating point defect concentrations are not fully understood. We therefore

undertook the work to be reported in the present paper.



2. THEORY

A cascade occurs at tfme t and position p . The initial point defect
c c

concentration is modeled as a delta function 6(p-p ) S(t-t ) . As will be

shown, this is equivalent to introducing an initially localized Gaussian

„ distribution of point defects of finite spatial extent at tc + e where e

is a small time increment. The diffusion of point defects from such a unit

cascade obeys the continuity equation
3c

D V2£ - D S c + <5(p-p ) «(t-t ) » - ~ . (1)
a a a a a c c 3t

The subscript a denotes either vacancies or interstitials. D a = D° exp(—E^

is the diffusion coefficient where D° is a constant, E™ is the migration

energy, k is Boltzmann's constant and T is absolute temperature. S is the

sum of the sink strengths for point defects of all sinks and is the same as

that used in rate theory. In the calculations described later, D° = 0.014 cm 2/s,

E1? = 0.15 eV, E™ = 1.4 eV, S. = 1.1 x 10 1 1 cm"2 and Sy = 1 x 1 0 u cm"2. c

is the concentration per unit volume of point defects. The overscore character

denotes the explicit variability of this concentration with position and time

due to cascade diffusion to distinguish the symbol from the C used in rate

theory [8]. In addition the overscore character is a reminder that while the

C v in the rate theory in our convention [8] contains both the radiation produced

vacancy concentration as well as the thermal vacancy concentration produced by

radiation. Thus we have used continuum rate theory in accounting for diffusion

and for absorption at distributed sinks. Possible corrections due to the rapid

spatial and temporal variations, as they influence these processes, have not

been considered. Our main interest here lies in the direat influence of the

discrete point defect production, for which we take Eq. (1) to be adequate [10].



The unit solution to Eq. (1) is [9]

£a(p!pc, t-tc) = [h* D a (t-t c)]"
3 / 2

x exp[-(p-p )2/(4D (t-t ))] exp[-0 Sn (t-t )] . (2)

The product of terms describes broadening of the cascade by diffusion

and collapse of the cascade by absorption of point defects at sinks in the

medium. When (t-tc) = (D S )~\ the concentration in the cascade integrated

overall space decreases by e"1. Thus we refer to S as the absorption

mean free path of the defects a. For a cascade producing v net defects,

Eq. (2) is multiplied by v. By choosing v it is thus possible to account

for recombination within the cascade reducing the net number of defects

available for diffusion.

Having the Green's function for each cascade, the next part of the

problem is to develop a scheme for introducing the many cascades into the

medium in a physically realistic way and then to keep track of the evolution

of all cascades. This will allow the calculation of the concentration at

an arbitrary reference point arising from the "superposition of the time

dependent contribution from every cascade.

About the reference point we construct a series of concentric spherical

shells of uniform thickenss, the i'th shell having inner radius p. , and outer

radius p.. The probability of £ cascades in each shell of volume V.

~(V3) ir(p?-p? ,) in a unit time is

Pfe) = exp(-E <j> V.) (I <f> V . ) V A ! (3)

where the mean number of cascades per unit time per unit volume is E <J>. Here

E = CTN is the macroscopic cross section for collisions producing a cascade,

where o is



the microscopic cross-section, N the volume concentration of atoms, and

$ the path length of bombarding particles per unit volume, the "flux."

In the calculations illustrated later the mean number of cascades per unit

time in a shell of volume V., Z $> V., determines the interval between cascades

in a given shel1,

T, - (E • V.)-l . (It)

To simplify the calculation, the diffusisn from all cascades occurring

in shell i is initiated on an imaginary sphere whose radius is (r. + r._^)/2.

The error of this approximation -> 0 as (r. — r. ,) -»• 0. The range of shell

—1/2thicknesses used is 0-02—0.1^ of S (i.e., one to two orders of magnitude

smaller than the absorption mean free path).

An efficient numerical technique has been developed to integrate the

contributions from all cascades by inserting each cascade at the correct

instant and position and subsequently tracking the diffusion of the point

defects until the cascade has decayed completely. To specify its complete

decay we refer to the rate theory concentration, C . Simplified quasi-

steady state rate equations are sufficient

G is the generation rate per unit volume of defects of type a and,

for vacancies, includes both thermal vacancy generation and radiation-induced

generation as follows



Here v is the net number of vacancies per cascade, K = D yS v is the loss

rate at sinks of type J (E K = K = S D ) and Ce is the thermal vacancy
J

concentration at sinks of type J. In Eq. (5) C a is the quasi-steady-state

volume averaged concentration of defects of type a per unit volume. From

Eqs. (5) and (6) it can be seen that Cv contains both irradiation-induced and therma

concentrations of vacancies. Thermal vacancy emission is also properly

accounted for in the cascade diffusion theory but by separate means as discussed

below. The cascade diffusion theory concentrations therefore must be compared

to

r° = _2 I (7)
C<x D S • U>

a a

The superscript c denotes the radiation-induced concentration. Equation (7)

is obtained from Eq. (5) by neglecting the simple bulk recombination

approximation, the second term of Eq. (5). This is to enable a direct

comparison with the cascade diffusion theory, where it has not been attempted

to account for the extremely complex spatial variation of recombination which

results from the ability to resolve all individual cascades. The use of high sink

strengths, S M O 1 1 , in the subsequent calculations minimizes the effects of

recombination.
To gauge when a cascade has dissipated we apply the condition

c < e C° (8)
a c a

where e is a fraction « 1. In our calculations, removing a cascade from

the system when c < 10"6 C° at the point of observation introduces negligible

error. However, before the cascade is removed a second condition must be

fulfilled. It arises from the fact that just after a cascade has occured,

Eq. (8) will always hold at any reference point which is a finite



distance removed, untM a sufficient time passes for the wave of con-

centration to reach the point. The cascade must not be discarded unless

condition (8) holds and the concentration is decreasing. Thus we require

also that

- tc>

where p is the coordinate of the reference point, which is satisfied

when

[9 + 4S (p -p ) 2 ] 1 / 2

D o (t-1 ) > ^ - ^ 3 . (10)
a

Since D. >> D , vacancy dissipation determines the time beyond which a cascade

can be discarded. In typical calculations the progress of M O 3 different

cascades must be followed since these are contributing to the concentration at the

reference point. After a steady state has been achieved, on the average when

one cascade dissipates, another occurs by a collision at some other random

position in the material. The total radiation-induced concentration at a

point of observation C is the sum of the contributions from all cascades,

C = Z c , (II)
a m a,m

where c is the contribution from a cascade labeled m, where m ranges

over a l l cascades making contributions to C which satisfy conditions (8)

and (10).

The growth rate of a void whose environment is approximated as given

by Eq. (11) may be calculated according to

liT • T~ (ZvVev - Cv [exP((2Y/rv - Pg)fl/kT) - SKJC^/CJSKJ] - z fo^J (12)



The corresponding expression using the rate theory concentrations is

^ ^ ; ; - Z ^ . C . ) . (13)

e V
Here C is the bu?k thermal vacancy concentration, Z is the capture

efficiency of a void for defect a, y is the surface tension, p is the gas

pressure and Q is atomic volume.

3- RESULTS

Figure 1 shows the average vacancy concentration as a function of the

radius of the spherical volume of material about the reference point within

which cascades are allowed to occur. The volume of material within a distance

—1 /2of ^7S gives an average concentration equal to the bulk averaged rate theory

—1/2
result. The volume within ^3S contributes /v80% of the average rate theory

concentration. This clearly illustrates the fact that cascades occurring at

—1/2
large distances C&7S ) do not contribute to the concentration at the point of

observation because of absorptive losses in the medium. The other important

observation based on Fig. 1 is that the cascade diffusion theory developed

here gives the same average result as the rate theory equations for C and

C . This provides an independent confirmation of the validity of the rate

equations for C y and Cj for the case where recombination is unimportant.

It must be stressed, however, that this alone does not establish the validity

of the rate theory of void nucleatEon, void growth and irradiation creep,

for reasons which will become apparent.

Figures 2 and 3 present the vacancy and interstitial concentrations as

functions of time. The remarkable feature is the extreme fluctuation in

point defect levels. The vacancy concentration is composed of a mildly

fluctuating background supplied by the many more distant cascades, punctuated

by abrupt spikes from the relatively few nearby cascades which raise the



instantaneous concentration more than an order of magnitude. The spikes

in the interstitial concentration are more pronounced and there is no

background level. In Fig. 3 the time spans a random interval covering

the occurrence of three cascades. The cascades occur at random distances

from the reference point, which are indicated on the top of Fig. 3.

The concentration rises and decays in fractions of a microsecond while

these cascades are separated by more than milliseconds. In these calcu-

lations it is found that there is virtually never more than one cascade

contributing to the interstitial concentration. More than this, for the

vast majority of time there is zero interstitial concentration at any

arbitrary point of observation.

Figure k compares the growth of a void, arbitrarily chosen to be of

10 nm radius, which results from the ratcheting in response to the concen-

trations shown in Figs. 2 and 3, using Eq. (12), with the growth resulting

from averaging the instantaneous concentrations first and then computing the

growth rate of the void. This latter :s the rate theory approximation and uses

Eq. ('(3). The difference with rate theory is small. However, it increases

rapidly with increasing temperature. This is due in part to the fact that the

thermal emission rate of vacancies from the void is treated more accuratel/ in

the cascade diffusion theory.* In the cascade-resolved case the void undergoes

successive growth and shrinkage by small amounts in response to the delivery

of point defects from cascades. However, the void emits thermal vacancies

*ft is also due in part to the fact that A(Ar), the differences in the

increase in void radius by growth as calculated by rate theory and cascade

diffusion theory, remains finite as Ar approaches zero at th5i temperature

where thermal vacancy emission equals the net vacancy influx.
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at different, rates depending on its size, since the thermal equilibrium

vacancy concentration at a void of radius r is given by

Cv(rv)
 = Cv exp[(2y/rv - Pg)Q/kT] .

Since by Figs. 2 and 3 the void is usually growing in response to a (albeit

rapidly varying) vacancy flux with only occasional high fluxes of inter-

stitials it will be larger than the average of its initial and final sizes

for most of the growth period. Therefore the integrated thermal emission

rate of vacancies over time will be smaller than that corresponding to its

average size, so that the cascade diffusion theory leads to slightly

faster growth rates than the rate theory.

k. SUMMARY AND DISCUSSION

A theoretical method has been developed to account for the physically

discrete generation of point defects in cascades. Large local fluctuations

in vacancy and interstitial concentrations occur during a steady irradiation.

The results confirm the validity of the usual bulk-averaged rate theory

equations for the average vacancy and interstitial concentrations where recombina-

tion is unimportant. There are however differences in the predicted void growth

using the more accurate cascade resolved diffusion theory as compared with the

rate theory,

Further applications of the cascade diffusion theory can be suggested,

covering virtually all areas now studied using rate theory. These include

void and loop nucleation, irradiation creep, and solute segregation. The effects on

all these processes of pulsed irradiations could be studied using the

present cascade diffusion theory. Present nucleation theory operates

with a picture of uniform concentrations of point defects leading to a

statisitcal distribution of cluster sizes which are generally accumulated

by random absorption or emission of single point defects. Here, however,

!t is found that a void embryo is subject to an extremely variable but

uninterrupted vacancy flux and only infrequently to an interstitial flux. The

interstitial flux comes in short bursts of high intensity. Clearly there
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will be some effect on the current picture of void nucleation. The impli-

cations are also significant for interstitial loop nucleation. Figure 3

suggests that interstitial loop nucleation may be possible mainly as a

result of self-agglomeration of interstitials from a single cascade. Overlap

of interstitials from more than one cascade is unlikely. Impurity trapping,

however, offers a solution to this dilemma, since this can decrease the

effective diffusion coefficient of interstitials [8]. These results may

al^o have implications for irradiation creep by climb-enabled glide. The

critical function of climb is to overcome obstacles to the glide of dis-

location segments, which results in creep. The results above lead to the

expectation that it is not necessary to have an overall net absorption

of one or the other type point defect to obtain climb-enabled glide if a

cascade occurs in the vicinity of the obstacle. Figures 2 and 3 imply that

local climb can take place where an unbalanced net vacancy or interstitial

flux impinges on a dislocation segment over short time increments.
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Figure Captions

Fig. I. Mean free path analysis of the region of material contributing

to the concentration at a reference point.

Fig. 2. Vacancy concentration as a function of time at an arbitrary reference

point for a steady dose rate of 10~6 dpa/s at 500°C and a dislocation

density of 1 0 U cm"2-

Fig. 3. Interstitial concentration as a function of time for the same

conditions as in Figure 2. Shown is a random time interval spanning

three pulses corresponding to three consecutive collision cascades

occurring in a steady at various times and distances (numbers at

top of figure) from the reference point.

Fig. A. Fractional difference between the increase in void radius obtained

from the cascade-resolved diffusion theory and the rate theory as

a function of temperature for the same conditions as in Figure 2.
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