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ABSTRACT

A theoretical method is described for evaluating the effects of
spatially and temporally discrete production in collision
cascades on point defect concentrations and swelling in materials during
irradiation. The concentrations of vacancies and interstitials at a
point which result from their diffusion from all cascades in the material are
calculated. Large fluctuations occur with time in the vacancy concentration.
The interstitial concentration is nearly always zero except for extremely
large spikes of very short duration, corresponding to the occurrence of a
cascade anywhere within the sphere beyond which all generated defects are
absorbed by sinks befofe reaching the reference point. The growth rate of a void
in this cascade diffusion theory is compared to that given by the more
approximate rate theory. The difference is small but increases rapidly
at high temperature. Implications of this work for void nucleation, irradiation
creep, and analysis of pulsed irradiations are mentioned.
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1. INTRODUCTION

The rate theory of swelling has been developed primarily for application
to steady irradiations. Fusion reactors, accelerator-driven neutron sources
and to a different degree fission reactors often are designed or operated on
an interrupted or pulsed schedule. The radiation on-time may range from
nanoseconds to more than thousands of seconds, with the off-time spanning
fewer orders of magnitude. Several studies have investigated the point
defect concentrations, void nucleation, and swelling behavior to be expected
during pulsed irradiations on the basis of rate theory [1—6]. In general
the predicted swelling is found to depend on the pulse duration and pulse
interval, with some regimes of cycle times leading to small or negligible
swelling and others giving results similar to steady irradiations.

One of the implicit assumptions of rate theory is that point defect
generation and loss can be treated as if occurring continuously in time and.
at every point in the medium. Point defect generation by radiation, which
occurs in cascades caused by spatially and temporally random collisions of
the bombarding particles with matrix atoms. It is modeled, however, as if
generated homogeneously‘and continuously by an infinite number of infinitesimal
regions in a continuum. Pulsed irradiations have been modeled by suppressing
and reactivating this continuum source.

However, it is known by considering the physical nature of point defect
production [7,8] that point defect concentrations fluctuate locally even
during steady irradiations. We, therefore, view the question of the effects
of radiation pulsing as reaily a qguestion of what additional effects are
introduced by radiation pulsing when this is superimposed on the already locally
fluctuating point defect concentrations. Yet the implications of locally
fluctuating point defect concentrations are not fully understood. We therefore

undertook the work to be reported in the present paper.
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2. THEORY

A cascade occurs at time tc and position Pe The initial point defect
concentration is modeled as a delta function G(p-pc) G(t-tc). As will be

shown, this is equivalent to introducing an initially localized Gaussian

-distribution of point defects of finite spatial extent at t. + € where ¢

is a small time increment. The diffusion of point defects from such a unit

cascade obeys the continuity equation

ac
2% ¢ - - =& 1
D, V2 —D ScC.+ slp pc) &(t tc) 5t (1)

The subscript o denotes either vacancies or interstitials. D, = D; exp(—Ez/kT)
is the diffusion coefficient where D; is a constant, ES is the migration

energy, k is Boltzmann's constant and T is absolute temperature. Sa is the

sum of the sink strengths for point defects of all sinks and is the same as

that used in rate theory. In the calculations described later, D; = 0.014 cm?/s,
Ef = 0.15 eV, Ey = ).h eV, 5; =1.1 x 1011 cm™2 and 5, =1 x 1011 em™2. C_

is the concentration per unit volume of point defects. The overscore character
denotes the explicit variability of this concentration with position and time
due to cascade diffusion to distinguish the symbol from the € used in rate
theory [8]. 1In addition the overscore character is a reminder that while the

C, in the rate theory in our convention [8] contains both the radiation produced

vacancy concentration as well as the thermal vacancy concentration produced by
radiation. Thus we have used continuum rate theory in accounting for diffusion
and for absorption at distributed sinks. Possible corrections due to the rapid
spatial and temporal variations, as they influence these processes, have not
been considered. Our main interest here lies in the direect influence of the

discrete point defect production, for which we take Eq. (1) to be adequate [10].



The unit solution to Eq. (1) is [9]

g (oo, t=t) = [ D (t-t)17/2

x exp[—(p-pc)zl(hba (t-tc))] exp[—Oa Sa (t-tc)] . (2)

The product of terms describes broadening of the cascade by diffusicn
and collapse of the cascade by absorption of point defects at sinks in the

medium. When (t-tc) = (Da Sa)'{ the concentration in the cascade integrated

overall space decreases by e”!. Thus we refer to Q;I/Z as the absorption

mean free path of the defects a. For a cascade producing v net defects,
Eq. (2) is multiplied by v. By choosingVv it is thus possible to account
for recombination within the cascade reducing the net number of defects
available for diffusion.

Having the Green's function for each cascade, the next part of the
problem is to develop a scheme for introducing the many cascades into the
medium in a physically reaiistic way and then to keep track of the evolution
of all cascades. This will allow the calculation of the concentration at
an arbitrary reference point arising from the superposition of the time
dependent contribution from every cascade.

About the reference point we construct a series of concentric spherical
shells of uniferm thickenss, the i'th shell having inner radius Pig and outer

radius oy The probability of £ cascades in each shell of volume \Ii

=(4/3 w(p?-p?_,) in a unit time is
PR) = exp(=Z ¢ V,) (2 6 V,)¥/a! (3)

where the mean number of cascades per unit time per unit volume is I ¢. Here

L = oN is the macroscopic cross section for collisions producing a cascade,

where o is
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the microscopic cross-section, N the volume concentration of atoms, and

¢ the path length of bombarding particles per unit volume, the '"'flux."
In the calculations illustrated later the mean number of cascades per unit

time in a shell of volume Vi’ T Vi’ determines the interval between cascades

in a given shell,
T, = (z ¢ vi)‘1 . ()

To simplify the calculation, the diffusian from all cascades occurring
in shell i is initiated on an imaginary sphere whose radius is (ri + ri_])/Z.

The error of this approximation » 0 as (ri -ri_]) + 0. The range of shell

thicknesses used is 0.02-0.14 of S—]/2 (i.e., one to two orders of magnitude

smaller than the absorption mean free path).

An efficient numerical technique has been developed to integrate the
contributions from all cascades by inserting each cascade at the correct

instant and position and subsequently tracking the diffusion of the point
defects until the cascade has decayed completely. To spécify its complete

decay we refer to the rate theory concentration, Ca. Simplified quasi-

steady state rate equations are sufficient

G, —RCC, —KC =0 . (5)

Ga is the generation rate per unit volume of defects of type o and,
for vacancies, includes both thermal vacancy generation and radiation-induced

generation as follows

= J.ed
G, vvz¢+§chv . (6)
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Here v, is the net number of vacancies per cascade, KV = DVSV is the loss

rate at sinks of type J (I Kj =K = SVDV) and CsJ is the thermal vacancy

v
concentration at sinks othype J. 1In Eq. (5) Ca is the quasi-steady-state
volume averaged concentration of defects of type o per unit volume. From
Eqs. (5) and (6) it can be seen that C, contains both irradiation-induced and therma
concentrations of vacancies. Thermal vacancy emission is also properly
accounted for in the cascade diffusion theory but by separate means as discussed

below. The cascade diffusion theory concentrations therefore must be compared

to

2 (7)

The superscript ° denotes the radiation-induced concentration. Equation (7)

is obtained from Eq. (5) by neglecting the simple bulk recombination
approximation, the second term of Eq. (5). This is to enable a direct

comparison with the cascade diffusion theory,where it has not been attempted

to account for the extremely complex spatial variation of recombination which
results from the ability to resolve all individual cascades. The use of high sink

strengths, S ~1011, in the subsequent calculations minimizes the effects of

recombination.
To gauge when a cascade has dissipated we apply the condition

c <e_ C°F (8)

a4 c a

where €. is a fraction << I. {In our caliculations, removing a cascade from

the system when Ea < 1076 C; at the point of observation introduces negligible
error. However, before the cascade is removed a second condition must be
fulfilled. It arises from the fact that just after a cascade has occured,

Eq. (8) will always hold at any reference point which is a finite



distance removed, until a sufficient time passes for the wave of con-
centration to reach the point. The cascade must not be discarded unless

condition (8) holds and the concentration is decreasing. Thus we require

also that

Bca(polpc, t-tc)

(9)
ot —
(t —t)
where Py is the coordinate of the reference point, which is satisfied
when
[9 + b5, (o -0 )21"/?
D, (t-t) > TS, -3 . (10)

Since Di >> DV, vacancy dissipation determines the time beyond which a cascade

can be discarded. |In typical calculations the progress of 103 different

cascades must be followed since these are contributing to the concentration at the
reference point. After a steady state has been achieved, on the average when

one cascade dissipates, another occurs by a collision at some other random
position in the material. The total radiation-induced concentration at a

point of observation Ea is the sum of the contributions from all cascades,

¢ =:c i
o m ca,m ’ (tn)

where Coom is the contribution from a cascade labeled m, where m ranges
’

over all cascades niaking contributions to Ea which satisfy conditions (8)
and (10).

The growth rate of a void whose environment is approximated as given
by Eq. (11) may be calculated according to
dr

v o R Vs g e Veed spey, J Vo =
T T Z,0,[¢, =€y lexp((2v/ry — P )R/KkT) — ixvc V/CviKV] -z0,%1 (12)



The corresponding expression using the rate theory concentrations is

v _Q v e _ _ Y
pr il {Z'D [cV - C, eXp((ZY/rv pg)Q/kT Z, DiCi} . (13)

Here Cs is the bu'k thermal vacancy concentration, ZZ is the capture
efficiency of a void for defect o, v is the surface tension, pg is the gas

pressure and  is atomic volume.

3. RESULTS

Figure 1 shows the average vacancy concentration as a function of the
radius of the spherical volume of material about the reference point within
which cascades are allowed to occur. The volume of material within a distance
of '\475_']/2 gives an average concentration equal to the bulk averaged rate theory
result. The volume within '\435—']/2 contributes 80% of the average rate theory

concentration. This clearly illustrates the fact that cascades occurring at

1/

~,.—1/2 . ; ;
large distances (7S ) do not contribute to the concentration at the point of

observation because of absorptive losses in the medium. The other important
observation based on Fig. 1 is that the cascade diffusion theory developed
here gives the same average result as the rate theory equations for Cv and

c This provides an independent confirmation of the validity of the rate

;
equations for €, and C; for the case where recombination is unimportant.

It must be stressed, however, that this alone does not establish the validity
of the rate theory of void nucleation, void growth and irradiation creep,

for reasons which will become apparent.

Figures 2 and 3 present the vacancy and interstitial concentrations as
functions of time. The remarkable feature is the extreme fluctuation in
point defect levels. The vacancy concentration is composed of a mildly
fluctuating background supplied by the many more distant cascades, punctuated

by abrupt spikes from the relatively few nearby cascades which raise the



instantaneous concentration more than an order of magnitude. The spikes
in the interstitial concentration are more pronounced and there is no
background level. In Fig. 3 the time spans a random interval covering

the occurrence of three cascades. The cascades occur at random distances

from the reference point, which are indicated on the top of Fig. 3.

The concentration rises and decays in fractions of a microsecond while

these cascades are separated by more than milliseconds. |In these calcu-

lations it is found that there is virtually never more than one cascade

contributing to the interstitial concentration. More than this, for the

vast majority of time there is zero interstitial concentration at any

arbitrary point of observation.

Figure 4 compares the growth of a void, arbitrarily chosen to be of
10 nm radius, which results from the ratcheting in response to the concen-
trations shown in Figs. 2 and 3, using Eq. (12), with the growth resulting
from averaging the instantaneous concentrations first and then computing the
growth rate of the void. This Tatter is the rate theory approximation and uses
increases

Eq. (13). The difference with rate theory is small. However, it

rapidly with increasing temperature. This is due in part to the fact that the

thermal emissior rate of vacancies from the void is treated more accurately in

the tascade diffusion theory.* |Ia the cascade-resolved case the void undergoes

successive growth and shrinkage by small amounts in response to the delivery

of point defects from cascades. However, the void emits thermal vacancies

*{t is also due in part to the fact that A(Ar), the differences in the
increase in void radius by growth as calculated by rate theory and cascade
diffusion theory, remains finite as Ar approaches zero at th= temperature

where thermal vacancy emission equals the net vacancy influx.
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at different rates depending on its size, since the thermal equilibrium
vacancy concentration at a void of radius ry is given by
c(r,) = c§ expl(2v/r, = p )o/kT] (14)

Since by Figs. 2 and 3 the void is usually growing in response to a (albeit
rapidly varying) vacancy flux with only occasional high fluxes of inter-
stitials it will be larger than the average of its initial and final sizes
for most of the growth period. Therefore the integrated thermal emission
rate of vacancies over time will be smaller than that corresponding to its
average size, so that the cascade diffusion theory leads to slightly
faster growth rates than the rate theory.
L. SUMMARY AND DISCUSSION

A theoretical method has been developed to account for the physically
discrete generation of point defects in cascades. Large local fluctuations
in vacancy and interstitial concentrations occur during a steady irradiation.
The results confirm the validity of the usual bulk-averaged rate theory
equations for the average vacancy and interstitial concentrations where recombina-
tion is unimportant. There are however differences in the predicted void growth
using the more accurate cascade resolved diffusion theory as compared with the
rate theory.

Further applications of the cascade diffusion theory can be suggested,
covering virtually all areas now studied using rate theory. These include
void and loop nucleation, irradiation creep, and solute segregation. The effects on
all these processes of pulsed irradiations could be studied using the
present cascade diffusion theory. Present nucleatior theory operates
with a picture of uniform concentrations of point defects leading to a
statisitcal distribution of cluster sizes which are generally accumulated
by randem absorption or emission of single point defects. Here, however,
it is found that a void embryo is subject to an extremely variable but
uninterrupted vacancy flux and only infrequently to an interstitial flux. The

interstitial flux comes in short bursts of high intensity. Clearly there



will be some effect on the current picture of void nucleation. The impli-
cations are also significant for interstitial loop nucleation. Figure 3
suggests that interstitial loop nucleation may be possible mainly as a
result of seif-agglomeration of interstitials from a single cascade. Overlap
of interstitials from more than one cascade is unlikely. |Impurity trapping,
however, offers a solution to this dilemma, since this can decrease the
effective diffusion coefficient of interstitials [8]. These results may
also have implications for irradiation creep by climb-enabled glide. The
critical function of climb is to overcome obstacles to the glide of dis-
location segments, which results in creep. The results above lead to the
expectation that it is not necessary to have an overall net absorption

of one or the other type point defect to obtain climb-enabled glide if a
cascade occurs in the vicinity of the obstacle. Figures 2 and 3 imply that
local climb can take place where an unbalanced net vacancy or interstitial

flux impinges on a dislocation segment over short time increments.
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Fig. 4.

Figure Captions
Mean free path analysis of the region of material contributing
to the concentration at a reference point.
Vacancy concentration as a function of time at an arbitrary reference
point for a steady dose rate of 107° dpa/s at 500°C and a dislocation
density of 101! em™2.
Interstitial concentration as a function of time for the same
conditions as in Figure 2. Shown is a random time interval spanning
three pulses corresponding to three consecutive collision cascades
occurring in a steady at various times and distances (numbers at
top of figure) from the reference point.
Fractional difference between the increase in void radius obtained
from the cascade-resolved diffusion theory and the rate theory as

a function of temperature for the same conditions as in Figure 2.
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