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PREFACE

This two-part, combined report describes the subcontracted research work conducted by
Biswanath Prasad Bandyopadhyay of the Department of Mechanical Engineering, University of
North Dakota, during two subsequent summers in -the laboratory of Dr. H. Ohmori, RIKEN,
Tokyo, Japan. The main focus of the work is Electrolytic In-Process Dressing (ELID), a method
which promises improvements in the efficiency of grinding ceramics and the quality of the parts
produced. Part I of this report addresses the basic aspects of ELID grinding as they affect the rate
of material removal, the normal forces developed during grinding, and the production of conditions
which improve the ratio of the volume of material removed to that of the abrasives consumed (G-
ratio). Part II of the report addresses the effects of ELID grinding on the bending strength of
silicon nitride.

The work described herein contributes to the Cost-Effective Ceramic Machining effort, a
series of research and development projects in industry, universities, and national laboratories,
which began in 1991. The objectives are to develop novel and improved methods for reducing the
relatively high costs associated with machining and finishing structural ceramic components for
energy-efficient engines. The work is supported by the Department of Energy, Office of
Transportation Technologies, Propulsion System Materials Program, Robert B. Schulz, Program
Manager. D. Ray Johnson is the Oak Ridge National Laboratory Project Manager.

Peter J. Blau, Task Leader
Metals and Ceramics Division
Oak Ridge National Laboratory
October 1996
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1.0 SUMMARY

The application of Electrolytic In-Process Dressing (ELID) for highly efficient and stable grinding
of ceramic parts is discussed. This research was performed at the Institute of Physical and
Chemical Research (RIKEN), Tokyo, Japan, June 1995 through August 1995. Experiments were
conducted using a vertical machining center. The silicon nitride work material, of Japanese
manufacture and supplied in the form of a rectangular block, was clamped to a vice which was
firmly fixed on the base of a strain gage dynamometer. The dynamometer was clamped on the
machining center table. Reciprocating grinding was performed with a flat-faced diamond grinding
wheel. The output from the dynamometer was recorded with a data acquisition system and the
normal component of the force was monitored.

Experiments were carried out under various cutting conditions, different ELID conditions, and
various grinding wheel bond types. Rough grinding wheels of grit sizes #170 and #140 were used
in the experiments. Compared to conventional grinding, there was a significant reduction in
grinding force with ELID grinding. Therefore, ELID grinding can be recommended for high
material removal rate grinding, low rigidity machines, and low rigidity workpieces. Compared
to normal grinding, a reduction in grinding ratio was observed when ELID grinding was
performed. A negative aspect of the process, this reduced G-ratio derives from bond erosion and
can be improved somewhat by adjustments in the ELID current. The results of this investigation
are discussed in detail in this report.




2.0 INTRODUCTION

The author participated in the Electrolytic In-Process Dressing (ELID) research program at
RIKEN during the summer of 1994 (June through August). The focus of that research effort was
to investigate the application of ELID grinding for ceramic components requiring a "mirror"
surface finish. The mirror surface finish was obtained with a fine, #4000 mesh size grinding
wheel. A detailed report explaining the ELID principle and the results of the mirror finish
grinding with ELID has been published [1]. Mirror finish grinding with ELID is expected to find
widespread application in the electronic and optical industries. However, for general engineering
applications, both high material removal rates and stable grinding of structural ceramics are
required. During the summer of 1995, the author rejoined the ELID research team at RIKEN,
Tokyo, Japan to further investigate high efficiency and stable grinding of ceramics. The results
of ELID grinding on silicon nitride specimens are discussed in detail in this report.

3.0 EXPERIMENTAL SET UP

The current experiments were conducted on a vertical machining center. A flat-faced, metal
bonded diamond grinding wheel was installed on the machine spindle. The positive terminal of
a power supply was connected to the grinding wheel using a smooth brush sliding contact, and
the fixed electrode is connected to the negative terminal. The negative copper electrode was 1/6
of the wheel periphery in length and had a width of 2 mm more than the wheel rim thickness.
The gap between the wheel and the electrode could be adjusted mechanically. A clearance of
approximately 0.1 mm was kept between the positive and negative poles. Electrolysis occurs in
~ the presence of a supply of suitable grinding fluid and when an electric current is applied. The
silicon nitride work material, in the form of a rectangular block, was clamped to a vice which
was firmly fixed on the base of a strain gage dynamometer. The dynamometer was clamped on
the machining center table and the reciprocating grinding operation was performed. The output
from the dynamometer was recorded by a data acquisition system and the normal component of
the grinding force was monitored. The experimental set up is shown in Fig.1.

3.1 Grinding Wheels

Straight metal-bonded diamond grinding wheels were used in the experiment. The specification
of the wheels is as follows:

1) Various types of metal bonded wheels
2) Straight wheel (flat-faced)

3) Wheel Diameter = 150 mm

4) Wheel Width = 10 mm

5) Grit Size = #140 and #170

6) Concentration = 100

The grinding wheels used in these experiments are shown in Fig. 2.




3.2 Grinding Fluid

Noritake AFG-M grinding fluid, diluted to 50:1, was used in these experiments.

3.3 'Power Supply

A direct pulse generator was used as a power supply. This is a modified power source from a
conventional electro-discharge machine. The power source is shown in fig. 3. This power supply
is capable of supplying different output voltages, current setting, and pulse on-off time settings.
In the experiments, open voltage of 60 V and 90 V (square wave) with a peak current of 16 A
and 24 A respectively were used. The pulse width in the experiment was 4 us on-time and 4 ps
off-time. '

Currently more sophisticated power supplies are available in the market under the trade name

FUJI ELIDER POWER SUPPLY. The technical specifications of these power units are given in
Table I

Table I: TECHNICAL SPECIFICATIONS OF VARIOUS ELID POWER SUPPLIES

MODEL Peak Peak Current |. Pulse Timing Source Size(mm), Weight (Kg)
Voltage Ip(A) T on‘off (us) (V/Phase/Kw) | (width/height/depth/Wt)
Eo(V)
ED 903 90 3 1 ~ 10 200/1/0.3 460/317/420/abt.30
ED 905 90 5 1 ~10 200/1/0.5 460/317/420/abt.30
ED 910 90 10 1 ~10 200/1/0.9 460/317/420/abt.30
ED 920 90 20 I ~10 200/3/1.8 460/850/570/abt.120
ED 620 60 20 ' 1 ~ 10 200/3/1.2 460/850/570/abt.120
ED 630 60 30 1 ~ 10 200/3/1.8 460/850/570/abt.120
ED 1503C 150 3 5/5 fixed 200/1/0.9 . 420/200/350.abt.25
ED 1510 150 10 200/3/1.8 200/3/1.8 4.60/850/570/abt.120
ED 1520 150 20 200/3/3.6 200/3/3.6 460/1150/720/abt.160 ‘

3.4 Materials

Silicon nitride materials in the form of a rectangular block were used in these experiments. The
dimensions of the workpiece material was 50x50x20. Some representative work materials are
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shown in Fig. 4. This type of silicon nitride was supplied by RIKEN and was of Japanese
manufacture. Its exact composition and processing route are not known.

3.5 Measuring Instruments Used

The surface finish was measured by a Mitutoyo 501 surface roughness measuring instrument
using a 5 micron diamond stylus. The grinding wheel surface was characterized by the olympus
microscope model OVM 100 NM. The multi-component strain gage dynamometer from
Advanced Mechanical Technology, Inc. MC-12 Series was used for measurement of grinding
force.

4.0 RESULTS and DISCUSSION
ELID grinding consists of the following four steps:

I) Truing : Truing is required so that the initial eccentricity of the wheel is reduced. Truing
was performed with a SiC wheel of grit size of #100. The operation was performed at 300

pm.

i1) Mechanical Dressing: This was performed with an aluminum oxide stick of grit size # 400
also at 300 rpm.

ii) Pre-Dressing of the Wheel by Electrolysis: Pre-Dressing, also known as ELID dressing,
was also performed at 300 rpm for 30 minutes for all the wheels. The electrical behavior,
ELID grinding mechanism are discussed in details elsewhere [1-3].

iv) Grinding Process with Electrolytic In-Process Dressing: ELID grinding was carried out
at the recommended cutting speed. The conditions of electrolysis of processes iii and iv
differ due to the changing wheel surface condition which occurs during electrolysis.

4.1 Results with Cast Iron Fiber Bonded (CIFB) Wheels

Conventional and ELID grinding were performed with a CIFB-diamond grinding wheel. All the
grinding wheels were trued and dressed as described above before conventional grinding. This
ensured that the same wheel condition was present for conventional and ELID grinding. This
series of experiments was conducted under the following conditions: cutting speed = 1200 m/min,
table feed rate = 5000 mm/min, depth of cut = 0.01 mm., width of cut = 5 mm, CIFB-D wheel
with grit size # 170 (average grain size = 80 pum). The relationship between the volume of
material removed and the normal grinding force in conventional grinding is shown 1n Fig. 5.
During this process there is a continuous increase in the grinding force due to wheel loading and
wear. The grinding force reached around 38 Kgf when the total volume of material removed was
6000 mm’>. The relationship between the volume of material removed and the normal grinding
force during ELID grinding is shown in the Fig. 6.

Both ELID dressing and ELID grinding were performed at 60 V, Ip = 16 amp, with "on"-time
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and "off"-time both equal to 4 ps. The outer surface of the wheel became yellow after the ELID
dressing due the formation of iron oxides [3]. Compared to the data in Fig. 5, grinding force is
less during ELID grinding. This effect is more visible after 4500 mm® of material has been
removed. The effects of changing the ELID conditions were studied by performing ELID grinding
with increased voltage, such as 90 V, Ip = 24 amp. The results are presented in the Fig. 7. The
grinding force is less compared to both conventional (Fig. 5) and ELID grinding with 60 V (Fig.
6). A significant reduction in the grinding force takes place after 4500 mm® of material removal.
The grinding force stabilized at only 5 Kgf after 6000 mm® of material removal and remained
almost constant.. Therefore, the full potential of the ELID grinding could be utilized only after
6000 mm? of material had been removed. In practice, this could be achieved by using a "dummy"
workpiece in the beginning for a certain period of time followed by the grinding the actual
ceramic component. The other alternative is to use modified ELID dressing, a process which will
be discussed later.

Three surface roughhess parameters, center line average R, ten point height of the roughness
profile R,, and maximum peak to valley height of the profile R,, were measured after certain
intervals. These results are presented in the Figures 5, 6, and 7.

A section of the grinding wheel after truing and mechanical dressing is shown in Fig. 8 (a), and
the wheel surface condition after 6000 mm® of material removal by conventional grinding is
shown in 8 (b). The womn grains are visible in the Fig. 8 (b). The sections of the wheel after
ELID dressing with 60 V and ELID grinding with 60 V and 5675 mm® of material removal are
shown in Figures 9 (a) and (b), respectively. There is no significant difference in grain sharpness
in these two cases. This is because the characteristics of the abrasive protrusions are controlled
before and during the grinding by the ELID process.

4.2 Modified ELID Dressing

Conventional grinding and ELID grinding were performed with CIFB-D grinding wheels of grit
size #170 under different grinding conditions: cutting speed = 1200 m/min, feed rate = 5000
mm/min, depth of cut = 0.05 mm, width of cut =2 mm. ELID dressing was performed with 90
V for 30 minutes and the ELID grinding was done using 60 V. The results are presented in
Figures 10 and 11. Compared to conventional grinding, lower grinding force was obtained in the
case of ELID grinding. As pointed out earlier, stable ELID grinding was established after
approximately 6000 mm® of material had been removed. Comparing Figures 5 and 10, we find
that the grinding force is less under the conditions used to create Fig. 10. However, the material
removal rate in the case of grinding, as shown in Fig. 10, is 500 mm*/min which is double that
of the grinding as shown in Fig. 5. In the conditions for Fig. 10, the material was predominantly
removed by brittle fracture. Therefore, less energy was required for the material removal. Since
the above grinding conditions were found the most favorable, the rest of the experiments were
conducted under these conditions.

The relationship between the volume of material removed and the grinding force with modified
ELID dressing is shown in the Fig. 12. The ELID grinding was performed with 60 V. Modified
ELID dressing was performed in two stages. In the first stage, the ELID dressing was performed
with 90 V for 30 minutes. The oxide layer formed during ELID dressing was mechanically



removed by an aluminum oxide stick of grit size # 400 at 300 rpm. Then the second stage of
ELID dressing was performed with 90 V, also for 30 minutes. The electrical behavior during this
modified form of ELID dressing is shown in Fig. 13. ELID grinding was then performed using
a 60 V supply. The grinding force remained low and almost constant from the beginning (Fig.
12). Therefore, by applying modified ELID dressing, as explained above, stable ELID grinding
with the attendant low grinding force can be achieved almost from the beginning.

43 Results with Wheels with other Metallic Bonds

Results of conventional grinding and ELID grinding with cobalt bonded (CB) wheel and bronze
bonded (BB) wheels are shown in Figures 14 through 17. The grinding conditions were as
follows: cutting speed = 1200 m/min, feed = 5000 mm/min, depth of cut = 0.05 mm, width of
cut = 2 mm, grit size of # 140 (average grain size 96 um). ELID dressing was performed at 60
V for 30 minutes. A lower voltage was selected than that used for ELID dressing of a CIFB-D
wheel. This is because the ionization of CB and BB wheels is easier. The color of the CB and
BB bonded wheels after ELID dressing was dark pink and gray blue, respectively, because of the
differences in their oxide layers [3]. ELID grinding provided significantly lower grinding force
which remained constant for a long period of time. The grinding force was found to be lower
with CB and BB wheels compared to the CIFB wheel. These wheels are therefore, recommended
for grinding of materials such as tungsten carbides.

Results of conventional and ELID grinding with cast iron powder bonded wheel under the same
cutting conditions are shown in Figures 18 and 19. ELID dressing was performed with 90 V for
30 minutes. ELID produced significantly lower grinding force compared to conventional grinding.
In conventional grinding, self-dressing was observed after 7000 mm® of material removal. Such
self-dressing was not observed when grinding was performed with the CIFB-D wheel (see Fig.
5). This is because that the cast iron fiber bond is stronger than cast iron powder bonded wheels.

4.4 Results with Wheels with Different Abrasive Friability

The next series of experiments was performed with grinding wheels with different abrasive
friability. Diamond grinding wheels with MBG 660, RVG, and MBG 600 diamond were used
in those experiments. RVG diamond is the most friable one and MBG-660 is the least friable.
The bond material for all the wheels was steel. The cutting force and the G-ratio were monitored
in this series of experiments.

There is a reduction in G-ratio when grinding was performed with ELID. These results are
presented in Table II. It should be noted that for high material removal rates with conventional
grinding frequent wheel dressing is required. This is a non-productive part of the time, and for
metal bonded whgels 1t may be quite high. Dressing will also remove some amount of diamond
layer from the wheel. In ELID grinding however, the force remains lower and almost constant
grinding can be performed for a very long time. The relationship between the volume of material
removed and the normal grinding force with the above-mentioned wheels for conventional and
ELID grinding are presented in Figures 20 through 25. Compared to conventional grinding a
significant reduction in grinding force was noticed when ELID grinding was performed.




TABLE II. COMPARISON OF G-RATIOS FOR SILICON NITRIDE

G-RATIO
WHEEL TYPE CONVENTIONAL GRINDING ELID GRINDING
MBG-600 131 87
RVG 175 105
MBG-660 | 134 66
C.I1. POWDERBONDED 174 58

[RVG: MOST FRIABLE, MBG-660: LEAST FRIABLE, STEEL BONDED WHEELS]
CUTTING CONDITIONS:V=1200 m/min; f{ =5000 mm/min; DOC=0.05 mm; WOC= 2 mm; GRIT=# 140

5.0 CONCLUSIONS

a) Compared to conventional grinding, there is a significant reduction of normal grinding force
with ELID grinding. Therefore, ELID grinding is recommended for heavy material removal
grinding, low rigidity machines, and low rigidity workpieces.

b) The full potential of ELID grinding i.e., reduced grinding force can be utilized only after it
has been stabilized. However, the newly proposed modified ELID dressing can provide reduced
and almost constant grinding force immediately at the start of grinding.

¢) Compared to conventional grinding, a reduction in G-ratio was found when ELID grinding
was performed. G-Ratio can be improved by optimizing the ELID current.
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FIGURE 2: GRINDING WHEELS




FIGURE 4: WORKPIECE MATERIAL
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FIGURE 8
GRINDING WHEEL SURFACE AFTER
TRUING AND MECHANICAL DRESSING

FIGURES T

GRINDING WHEEL SURFACE AFTER
CONVENTIONAL GRINDING
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FIGURE 9
GRINDING WHEEL SURFACE AFTER
ELID DRESSING

GRINDING WHEEL SURFACE AFTER
ELID GRINDING
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A. THE EFFECT OF ELID GRINDING ON THE STRENGTH
OF THE SILICON NITRIDE SPECIMENS

1.0 INTRODUCTION

A significant amount of research has been carried out on the effect of grinding parameters on the
strength of ground ceramic specimens. Various investigators have also studied the effect of
grinding direction. The results of these investigations are shown in Figs. 1-3 [1-4]. Figure 3 also
shows the relationship between annealing temperature and bending strength of alumina ceramics
at room temperature. It was determined that, before annealing, specimens ground in the
transverse direction have a bending strength 60% lower than that of specimens ground
longitudinally. The bending strength of the specimens ground in the transverse direction
increased with the annealing temperature. At about 1200°C, the strength was approximately equal
to that of the specimen ground in the longitudinal direction [4]. However, there is no significant
effect of annealing temperature on the bending strength for the specimens ground in the
longitudinal direction. No such data is available for silicon nitride specimens. Therefore,
experiments were conducted to study the effect of finish ELID grinding on the bending strength
of silicon nitride specimens.

2.0 RESULTS

Surface grinding operations were performed on sintered silicon nitride specimens (Kyocera's Si;N,
Type SN235). The form of the workpiece is modulus of rupture (MOR) specimens. Specimens
~ were ground in longitudinal (PG) and in transverse (TG) direction using a size #140 grit bronze

bonded wheel. The grinding operation was performed using a Kuroda Precision Industries
surface grinder model #GS-CHF, with a 2.2 kW spindle. The principle of ELID surface grinding
is shown in Fig. 4. A large number of MOR specimens were fixed on a plate with wax and
mounted on the table of the grinding machine, as shown in Fig. 5. The following conditions
were used: grinding wheel: $150 W 10 mm; wheel velocity: 1200 m/min; table speed: 20 m/min;
traverse pitch 1 mm; depth of cut: 5 pm; sparkout: 3 passes. The total depth of cut was around
70 pm.

Four-point bending tests were performed at room temperature and at 1400°C. Room temperature
bending test results are presented in the Fig. 6. A significant reduction in the bending strength
was noticed when specimens were transversely ground (TG) compared with those ground
longitudinally (PG). PG and TG ground specimens were annealed at 1200°C for two hours and
the bending strength was determined. The strength of heat treated TG specimens increased
significantly, as shown in Fig. 6. There was no significant change in the strength of the PG
ground specimens after the annealing process. The TG specimens had the lowest strength. These
specimens were ground with the application of ELID grinding using a #6000 grit size (average
grain size = 3.15 pm) SD cast iron bonded wheel. The diameter of the wheel was 150 mm and
the width was 10 mm. The following grinding conditions were used: wheel velocity: 2560 rpm;
table speed: 20 m/min; traverse pitch: 0.6 mm; depth of cut: 0.5 um; total depth of cut: 40 um.
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The power supply used in the experiment was EPD-10A, with a capacity of 90V, 10A. The
following ELID conditions were used: Eo = 60V, Ip = 10A, T on = 1 off = 2 us, square wave.
Noritake AFG-M grinding fluid, with 2% water dilution, was used in the experiment. The
bending strength of the ELID ground specimens was determined (TGE). The ELID ground
specimens were annealed and the bending strength of these specimens was also determined
(TEH). The results are presented in Fig. 6. When applying ELID grinding, a significant
improvement in the bending strength of Si,N, specimens was achieved. The bending strength of
the specimens was determined at 1400°C. The results are presented in Fig. 7. The maximum
bending strength at the elevated temperature was found with the TGE specimens.

3.0 DISCUSSION

The mechanism for material removal in ceramic grinding is a combination of micro-brittle
fracture and micro or quasi-plastic cutting [5, 6]. The quasi-plastic cutting mechanism, typically
referred to as ductile mode grinding, results in grooves on the surface that are relatively smooth
in appearance. On the other hand, the micro-brittle fracture mechanism results in surface fracture
and fragmentation. Ductile regime grinding of ceramics is preferred since no grinding flaws are
introduced in this mode. When observing the surfaces under a scanning electron microscope
(SEM) and an atomic force microscope (AFM) one can easily differentiate these two modes.

3.1 SEM Topography of ELID Ground Ceramics

The surface grinding operation was carried out on the silicon nitride specimens with the
application of ELID technology. Cast iron fiber bonded diamond grinding wheels of various grit
sizes were used in the experiment. Grain size of the diamond grinding wheels is given in Table
1. Ground specimens were observed under a scanning electron microscope to detect the surface
fracture damage from grinding. The specimens were sputter coated with Au-Pd to enable easier
SEM imaging, as shown in the SEM micrographs in Fig. 8.

Table 1: GRAIN SIZE OF DIAMOND GRINDING WHEELS USED

Mesh Size No. Grain Size (um) Average Grain Size (um)
325 40-90 63.0
600 20-30 25.5
1200 8-16 11.6
2000 5-10 6.88
4000 2-6 4.06
6000 1.5-4 3.15
8000 " 0.5-3 1.76




The "white frosted" areas represent the surface fragmentation caused by brittle fracture of the
workpiece. Specimens ground with a #325 grit wheel have a significant white frosted area
confirming that brittle fracture predominantly removes the material. SEM micrographs show that
with increasing grit size (finer grit size) the amount of surface fragmentation decreases. When
ELID grinding was performed using a #4000 grit size wheel or finer, SEM micrographs did not
show any surface fragmentation, suggesting that the material was removed in the ductile mode.

3.2 AFM‘Topography of ELID Ground Ceramics

Ground surfaces were observed by means of AFM. AFM topographies are shown in Fig. 9. The
observed surface area was 18x18 pm’. The vertical scale for the first four specimens is 1000 nm,
whereas for the last three specimens, it is 100 nm. The change in surface topography can be
observed through AFM. The AFM surface topography also shows that the material was
predominantly removed in the ductile mode when ELID grinding was performed using a #4000
mesh wheel or finer. The surface finish obtained from the AFM study is presented in Table 2.

Table 2: SURFACE ROUGHNESS OF Si; N,BY AFM

Wheel Mesh R,nm R, NM R, nm R,,nm
#325 112.7 1164.7 147.8 832.7
#600 126.5 15333 ' 173.3 786.3
#1200 79.54 950.8 108.6 | 666.0
#2000 41.34 756.5 61.48 456.7
#4000 7474 334.7 14.34 1383
#6000 3.734 180.0 58 108.3
#8000 3.177 187.9 5.119 102.9

SEM and AFM studies reveal that the workpieces were predominantly ground in the ductile mode
when ELID grinding was performed using a #4000 grit sized wheel or finer. When the TG
workpieces were finish ELID ground using a #6000 grit sized wheel, the grinding mode was
ductile. The TGE specimens therefore do not contain any significant micro cracks. This may
be the reason for the improvement in the bending strength of the TGE specimens.

4.0 CONCLUSIONS

a) The bending strength of the transversely ground Si;N, specimens can be improved by
annealing at 1200°C.

b) A significant improvement in the bending strength of Si,N, was achieved when finish ELID
grinding was performed.
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B. PRECISION SURFACE GRINDING CHARACTERISTICS OF CERAMIC MATRIX
COMPOSITE AND STRUCTURAL CERAMICS WITH ELID

1.0 INTRODUCTION

Interest in applications for advanced ceramic materials has increased significantly in recent years.
This increase is due to the unique physical and mechanical properties of these materials.
Although ceramic materials generally lack toughness, they possess high hardness and strength
at elevated temperatures, chemical stability, and superior high temperature wear resistance.
Ceramic matrix composite (CMC) represents an emerging category of materials in the class of
advanced ceramics. CMC retains the desirable properties of advanced ceramics with higher
fracture toughness. The inherent brittleness is the major limitation preventing ceramic material
from becoming widely accepted in modern designs [7-10]. CMC offers greater toughness thus
increasing reliability by reducing fracture sensitivity. CMCs consist of a ceramic primary phase
embedded with a secondary phase. Present applications for CMCs are in jet and automotive
engines, dies for extrusion etc.

However, the cost of machining these materials is very high. Some studies suggest that the cost
of grinding may account for up to 75% of the component costs for ceramics compared with 5%
to 15% for metallic components [11]. The primary cost drivers in grinding structural ceramics
are low efficiency due to low material removal rates, high superabrasive wheel wear rates, and
wheel dressing times. Grinding costs can be reduced by maximizing the material removal rates
(MRR). Metal bonded, diamond grinding wheels are suitable for high material removal. Cast
Iron Fiber Bonded Diamond (CIFB-D) grinding wheels provide high grinding ratio and high
MRR. However, these wheels are not suitable for long term continuous grinding for the reasons
explained elsewhere [12-13].

A novel grinding technology that incorporates in-process dressing of metal bonded superabrasive
wheels, known as Electrolytic In-Process Dressing (ELID) has been developed. The ELID
provides dressing of the tough metal bonded wheels during the grinding process. In-process
dressing controls the abrasive protrusions before and during the grinding process.

Surface grinding operations were performed on CMC and SiC material. The ELID grinding was
performed with metal bonded CBN and diamond wheels using various grit sizes. Conventional
surface grinding was performed with resinoid bonded diamond grinding wheels and various grit
sizes. The results of this investigation are contained in this report.

2.0 EXPERIMENTAL METHODS AND MACHINING CONDITIONS

The experiments were conducted on a precision surface grinding machine (made by Karl Jung:
JF 520). Traverse grinding operations were performed and surface roughness, grinding resistance,
and surface topography were monitored.




2.1 Materials

Silicon carbide and composite ceramics from Cernax were used in the experiment. The
composition of the composite ceramic is SiC:70%, Al,0,:20% Al:10% [14]. Table 3 shows their
important properties.

Table 3: CHARACTERISTICS OF COMPOSITE CERAMICS
AND SILICON CARBIDE

SiC CMC
Density (g/cm®) 3.9-4.0 3.28
Hardness (GPa) 176-186 (HrA 80)
Fracture toughness (MN/m>?) 3.5-4.5 6.0
Heat conductivity (W/mk) 87 | 147
Reinforced material particle diameter (um) - 500

Both the silicon carbide and composite ceramic samples were cut into 15 x 15 x 5 mm, and four
of each were glued to a fixture using wax.

2.2 Grinding Wheels
Table 4 shows the different types of grinding wheels used in the experiments.

Table 4: GRINDING WHEELS USED

ELID-Grinding Conventional Grinding
diamond wheels diamond wheels cBN wheels
Rough Grinding SD325N100M" SD325N100B™ B325N100M
Semi-finish Grinding SD1000N100M SD1000N100B B1000N100M
Finish Grinding SD4000N100M SD4000N100B B4000N100M

M: Cast iron bond ~— B: Resinoid bond

2.3 Machining Conditions

Table S shows the machining conditions used during the experiments.
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Table 5: MACHINING CONDITIONS

Rough Grinding | Semi-finish Grinding | Finish Grinding
Wheel speed (m/min) 1200 1200 1200
Cross feed pitch (mm/pass) 2.0 1.0 0.5
Table speed (m/min) 20 20 20
Depth of cut (um) 5.0 3.0 1.0
Total depth of cut (um) 50 30 15
Number of sparkouts 3 3 3
Grinding fluid Noritake Coolant: CEM (2% dilution of water).

2.4 Power Supply:

A direct pulse generator was used as a power supply. Table 4 shows the ELID conditions used
in the experiments. All the grinding wheels were trued with a WA #400 grit wheel. For ELID
grinding, the initial electrolytic dressing was carried out for 30 minutes with the conditions shown
in Table 6.

Table 6: ELID CONDITIONS

Open circuit voltage (V) 80
Peak current (A) 14
Pulse width T on, off (us) 2/2(on/off)
Electrode gap (mm) 0.2

2.5 Measuring Instruments Used

After finish grinding, the surface roughness was measured at the center of the specimen using a
non-contact surface profile measuring instrument (made by Wyko: TOPO-3D). The grinding
resistance (force) was monitored for rough grinding with the grinding dynamometer (made by
Sato machinery: ST-ZGS1). The surface topography was observed using a scanning electron
microscopy (SEM), (made by Nippon Denshi: JEL840). The dulled depth and width of the edge
of the surface after finish grinding were measured in the ground direction using a contact type
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surface roughness meter (made by Kosaka Laboratory: Type SE- 3) with a tip radius of 5 pm.

3.0 RESULTS AND DISCUSSION
3.1 Surface Roughness by each Wheel

SiC and composite ceramics were ground by using ELID technology. Cast iron bonded #4000
grit sized diamond and CBN wheels were used. These specimens were also ground by
conventional means (non ELID) using a #4000 grit sized resin bonded wheel. Fig. 10 shows the
surface roughness results (P-V value) of the finished surfaces using a non-contact surface
profiling measuring instrument. Fig. 11 shows the 3-dimensional diagrams using the same
measuring instrument.

The surface roughness of the composite ceramics is greater by a factor of 2 for each wheel (Fig.
10). This is because, as shown in Fig. 11, the silicon carbide showed very detailed grinding
marks, while the matrix parts (Al,O;, Al) of the composite ceramics were ground with priority,
resulting in level differences with the silicon carbide contained as reinforcement material. This
has resulted in higher P-V value.

Comparing the surface roughness results obtained by the cast iron bond diamond wheel and cast
iron bond CBN wheel, it is found that the CBN wheel produced rougher surfaces nearly 1.6 times
that of the diamond wheel. The CBN abrasive has a hardness of 4700 (Knoop Hardness) and is
soft compared to the diamond abrasive. Its compression strength is also low at 7.0 GPa
compared to 9.8 GPa of the diamond abrasive. The diamond abrasive also has a higher heat
conduction rate than the CBN abrasive, making it easier for the heat to be distributed during the
grinding process. These are the reasons for the higher surface roughness with the CBN wheel
because the crushing of abrasive, and the thermal and chemical wear were controlled for the
diamond abrasive [15].

Comparing ELID grinding with the cast iron bond diamond wheel and resin bond diamond wheel
(conventional grinding), the resin bond showed about 1.3 times greater P-V value. The P-V value
by ELID grinding is smaller because of good grinding marks as compared to very deep grinding
marks in the case of resin bond wheel, Fig. 11 (a) and 11 (b).

3.2 Grinding Resistance

Rough grinding was performed using three types of grinding wheels of grit size #325. Silicon
carbide and composite ceramics were ground by 20 pum (5 um x 4 times). The normal
component of the grinding force was monitored. Fig, 12 shows the influence of wheel velocity
on the normal component of the grinding force for various wheels. Fig. 13 shows the change in
the grinding force with the volume of material removed for the composite ceramics. Fig. 14
shows the relationship between the grinding force and the volume of material removed for silicon
carbides.
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For all the three wheels, the grinding force showed no significant change and remained almost
- constant when the wheel speed was changed from 900 to 1800 m/min (Fig. 12). CBN wheels
showed almost 5 times greater grinding resistance in all the wheel speeds.

Fig. 13 shows the change in the grinding force when composite ceramics were ground for a long
period of time using three types of rough grinding wheels. In ELID grinding, using the cast iron
bond CBN wheel, abnormal grinding noises were observed from the start of the grinding and the
grinding resistance was also found to be high and equal to 50 N. Upon removal of 750 mm’,
grinding force of 90 N was recorded. In a resin bond diamond wheel, the grinding resistance was
22 N at the start of the grinding, and increased linearly as the grinding continued, and became
40 N upon removal of 2500 mm®. For ELID grinding using the cast iron bond diamond wheel,
the grinding resistance was 12 N at the start of grinding and increased to 30 N after removal of
1600 mm’, after which it remained almost constant.

Fig. 14 shows the grinding resistance when silicon carbide was ground in the same way using
three types of rough grinding wheels. Cast iron bond CBN wheels also produced the same
abnormal sound at the start of grinding as the composite ceramics, and grinding resistance was
also observed to be high at 48 N at the start. As the grinding continued the grinding force
increased significantly within a short time and thus the grinding was stopped.

Essentially, the same progress was observed for ELID grinding with cast iron bond diamond
wheel and conventional grinding with the resin bond diamond grinding wheel from the start of
grinding to removal of 1250 mm®. Afterwards, while ELID grinding showed no changes in the
grinding resistance which was essentially stable at 28 N, the grinding force with the resin bond
increased linearly to become 38 N upon removal of 2300 mm®. The resin bond is extremely soft
and has a small vertical elastic coefficient (Young's modulus). Therefore when a resin bond was
used for grinding of composite ceramics and silicon carbides, the area of contact between the
work and wheel becomes greater due to wheel deformation, resulting in increased grinding
resistance [16].

3.3 SEM observation Results

Fig. 15 shows the SEM micrographs of the ground surfaces of composite ceramics after finish
grinding. When ground with the cast iron bond diamond wheel as shown in Fig. 15 (a), silicon
carbides contained as reinforcement material shows very fine grinding marks as evident from the
results of measuring the surface in Fig. 11 indicating that ductile mode grinding was carried out.

Compared with this, the surface ground using the resin bond diamond wheel shown in Fig. 15
(b) showed the presence of both grinding marks resulting from brittle fracture and ductile mode
performed at both reinforcement material. (silicon carbides) area and matrix area. The border
between the silicon carbide contained as reinforcement material and matrix area is not clear.

When ground with the cast iron bond CBN wheel shown in 15 (c), grinding marks resulting from

brittle fracture were seen over the whole surface. In particular, severely damaged fractures were
seen at the border between the reinforced material and matrix.
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3.4 Dulled Area at Ground Edges

Fig. 16 shows the results of dulled area measurement at the edges after ELID grinding using cast
iron bond diamond grinding wheel and conventional grinding using resin bond diamond grinding
wheel. A #4000 grit size wheel was used in the experiment.

ELID grinding of silicon carbide showed a dulled edge depth of about 0.5 um while grinding by
resin bond showed 20 times greater dulled area depth of 10 pm. On the other hand, ELID
grinding of composite ceramics showed a dulled area depth of about 0.7 um while grinding by
resin bond showed a 6-times greater dulled area depth of 4.5 um. Furthermore, the dulled area
width was high and 6 times greater with the resin bond.

Because the resin bond has higher flexibility than the cast iron bond, therefore when the wheel
contacts the work edge, elastic deformation occurs and insufficient removal of material occurs
with respect to the set depth of cut, and as a result, the edges are ground with priority [17].

When silicon carbide and composite ceramics were ground using a resin bond diamond wheel,
the dulled area depth of the silicon carbide was about two times greater. Scratch tests on the
composite ceramics performed showed that the rate of wear is about half that of silicon carbide
and this wear-tolerance is thought to be contributed to the difference in dulled area in grinding.

4.0 CONCLUSIONS

1) When silicon carbide and composite ceramics were finish ground by ELID using cast iron
bond diamond wheels, the surface roughness (P-V value) was found to be 100 nm smaller
than the resin bond diamond wheel.

2) SEM observation of the ground surfaces after finish grinding showed very fine grinding marks
for ELID grinding using the cast iron bond diamond wheel and deep grinding marks at certain
parts for grinding using the resin bond diamond wheel.

3) The grinding resistance for rough grinding was found to increase linearly with time with the
resin bond diamond wheel. When ELID grinding was performed under the same conditions
with the cast iron bond diamond wheel, the grinding force stabilized at about 30 N from
around 1600 mm® of material removal.

4) The dulled area at the edge in the ground direction for grinding of silicon carbide and
composite ceramics was below 0.7 um in the case of ELID grinding with the cast iron bond
diamond wheel, which is about 1/6 of that of the resin bond diamond wheel.

The above conclusions confirm that ELID grinding can be successfully applied for high precision
and high material removal grinding of structural ceramics and composite ceramics.
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FIGURE 8: SEM MICROGRAPHS




FIGURE 8: SEM MICROGRAPHS
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Note: The original atomic force microscope images of surfaces ground with different grit
sizes, as reproduced on pages 56-58, were prepared in color. Some of the details and
topographic information have been lost in reproducing these images in black and white.
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