

DOE/ER/45302--T4

TO: **U.S. DEPARTMENT OF ENERGY**
OFFICE OF BASIC ENERGY SCIENCES
MATERIALS SCIENCE DIVISION

FINAL REPORT for:

OXIDE CERAMIC ALLOYS AND MICROLAMINATES

PERIOD: MAY 1, 1989 - OCTOBER 31, 1997

GRANT NO.: DE-FG02-87ER45302

PRINCIPAL INVESTIGATOR:
I-WEI CHEN

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING
UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN

MASTER
380

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

Major research conducted in this program falls into the following areas.

- a. Microstructure and Micromechanics of Superplastic Ceramic Composites
- b. Solute Segregation and Grain Boundary Kinetics of Ceramic Alloys
- c. Sintering, Grain Growth, and Texture Development of Ceramics and Thin Films
- d. In-situ and Microlaminate Oxide Composites.

The basic approach to the above research is to utilize the state of the art methods to process colloidal and green ceramics, to employ crystal chemistry and phase equilibria for microalloy and microcomposite design, to comprehensively characterize microstructure development and mechanical performance, to develop models, theories, and simulations to understand the energetics, kinetics and mechanics, and to explore novel microstructures and improved performance for practically important ceramics. Major accomplishments are summarized below.

a. Microstructure and Micromechanics of Superplastic Ceramic Composites

A strategy for alloy designs of superplastic ceramics has been developed. In applying this strategy to ceramic composites, transient phase processing is important. This approach is readily applicable to ceramics that have a tendency for anisotropic grain growth, and has been practiced to obtain ceramics that are superplastically formable at intermediate temperature but are creep resistant after post-forming heat treatment at higher temperatures. This has been demonstrated for zirconia/mullite, mullite/SiC_w, and Si₃N₄/Si₃N_{4w}. The deformation mechanics of ceramic composites have also been investigated using these ceramics, and analytical theories have been successfully developed.

Publications: See Nos. 1, 2, 5, 6, 7, 9, 11, 14, and 16 below.

b. Solute Segregation and Grain Boundary Kinetics of Ceramic Alloys

A comprehensive database for grain boundary mobility in solid solutions of oxide ceramics that have a fluorite or a fluorite-related crystal structure has been established. These ceramics all have an appreciable solubility range and are essentially cubic. Including zirconia, ceria, and yttria, they are important for nuclear, fuel cell, sensor, and structural applications. The solute segregation and drag mechanism has been modeled in the context of space charge concept, the dominance of interstitial mechanism for cation diffusion has been affirmed, the effects of ionic charge and size have been delineated, and the most effective dopants for suppressing grain growth have been identified.

Publications: See Nos. 2, 5, 8, 12, 15, 17, 22, and 23 below.

c. Sintering, Grain Growth, and Texture Development of Ceramics and Thin Films

Using very fine, highly sinterable powders of ceria and yttria, sintering behavior has been investigated to understand the concept of sinterability. These powders have a sintering temperature some 500°C below the prior art. For the initial and intermediate stage sintering, the existence of a universal microstructure in terms of normalized pore size distribution and particle size has been demonstrated, and the dominance of a particle coarsening/rearrangement mechanism that supercedes the pore/particle coordination mechanism has been established. For the final stage sintering, a Monte-Carlo simulation method has been developed to illustrate the evolution of realistic microstructures, and the scaling laws pertinent to this stage have been explored using the simulated data. An understanding of the drying, pyrolysis, and texture formation of thin films has also been obtained using practically important electroceramics of barium titanate and PZT.

Publications: See Nos. 3, 4, 13, 18, 19, 20, 22, 23, 24, 25, and 26 below.

d. In-situ and Microlaminate Oxide Composites

A novel, cost effective manufacturing method to obtain microlaminate oxide composites has been developed using high solid loading ceramic aqueous "doughs" that are repeatedly rolled and folded. Unlike conventional layer composites that start with tape casting, these composites can have easily variable layer thickness, and they can be pressurelessly sintered without hot pressing. The microstructure can be further manipulated to obtain a cellular structure by taking advantage of a novel instability of the planar phase interface of the rheologically mismatched two phase flow. High performance alumina/zirconia composites with an outstanding strength, toughness, and hardness combination have been obtained using this method. In addition, an in-situ alumina-aluminate platelet composite that has excellent sinterability has been obtained. This latter approach that explores the use of beta alumina and magnetoplumbite has since been followed by several other research groups.

Publications: See Nos. 10 and 27 below.

PUBLICATIONS

1. C.K. Yoon and I-W. Chen, "Superplastic Flow of Two-Phase Ceramics Containing Rigid Inclusions — Zirconia/Mullite Composites," *J. Amer. Ceram. Soc.*, **73** [6] 1555-65 (1990).
2. I-W. Chen and L.A. Xue, "Development of Superplastic Structural Ceramics," *J. Amer. Ceram. Soc.*, **73** [9] 2585-2609 (1990).
3. G.N. Hassold, I-W. Chen and D.J. Srolovitz, "Computer Simulation of Final Stage Sintering I. Model, Kinetics and Microstructure," *J. Amer. Ceram. Soc.*, **73** [10] 2857-64 (1990).
4. I-W. Chen, G.N. Hassold and D.J. Srolovitz, "Computer Simulation of Final Stage Sintering II. Influence of Initial Pore Size," *J. Amer. Ceram. Soc.*, **73** [10] 2865-72 (1990).
5. I-W. Chen, "Superplastic Ceramics," in Ceramic Powder III, Eds. E. Messing and S-I. Hirano, American Ceramic Society, Ceramic Transactions, **12**, p. 607-17 (1990).
6. C.K. Yoon and I-W. Chen, "Superplastic Flow of Mullite-TZP Composites," Mullite and Mullite Matrix Composites, Eds. S. Somiya, R. Davis and J. Pask, American Ceramic Society, Ceramic Transactions, **6**, 567-77 (1990).
7. I-W. Chen, "Superplastic Ceramic Composites," in Advanced Composite Materials, Ed. M. Sacks, *Ceramic Transactions*, **19**, 695-706 (1991).
8. L.A. Xue, K. Meyer and I-W. Chen, "Control of Grain Boundary Pinning in $\text{Al}_2\text{O}_3/\text{ZrO}_2$ Composites with $\text{Ce}^{3+}/\text{Ce}^{4+}$ Doping," *J. Amer. Ceram. Soc.*, **75** [4] 822-29 (1992).
9. X. Wu and I-W. Chen, "Hot Extrusion of Ceramics," *J. Amer. Ceram. Soc.*, **75** [7] 1846-53 (1992).
10. P.L. Chen and I-W. Chen, "In-situ Alumina/Aluminate Platelet Composites," *J. Amer. Ceram. Soc.*, **75** [9] 2610-12 (1992).
11. X. Wu and I-W. Chen, "Exaggerated Texture and Grain Growth of a Superplastic SiAlON ," *J. Amer. Ceram. Soc.*, **75** [10] 2733-41 (1992).
12. I-W. Chen, "Solute Drag on Grain Boundary in Ionic Solids — The Space Charge Effect," in Design and Control of Grain Boundary in Ceramics, Eds. R. Ishizaki and K. Nihara, Elsevier Publications, 254-67 (1992).
13. P.L. Chen and I-W. Chen, "Reactive CeO_2 Powders by Homogeneous Precipitation Method," *J. Amer. Ceram. Soc.*, **76** [6] 1577-83 (1993).
14. L.A. Xue and I-W. Chen, "A New SiC Whisker Reinforced Lithium Aluminosilicate Composite," *J. Amer. Ceram. Soc.*, **76** [11] 2785-89 (1993).
15. I-W. Chen, "Mobility Control of Ceramic Grain Boundaries and Interfaces," *Mater. Sci. and Eng.*, **A166**, 51-58 (1993).
16. I-W. Chen and S-L. Hwang, "Superplastic SiAlON — A Bird's Eye View of Silicon Nitride Ceramics," in Silicon Nitride Ceramics, Scientific and Technological Advances, Eds. I-W. Chen, P.F. Becher, M. Mitomo, G. Petzow, and T-S. Yen, Materials Research Society Symposium Proceeding Series, **287**, 209-22, 1993.

17. P.L. Chen and I-W. Chen, "Role of Defect Interaction in Boundary Mobility and Cation Diffusivity of CeO_2 ," *J. Amer. Ceram. Soc.* **77** [9] 2289-97 (1994).
18. S.Y. Chen and I-W. Chen, "Temperature-Time-Texture Transition of $\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$ Thin Films I. The Role of Pb-rich Intermediate Phases," *J. Amer. Ceram. Soc.* **77** [9] 2232-36 (1994).
19. S.Y. Chen and I-W. Chen, "Temperature-Time-Texture Transition of $\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$ Thin Films II. Heat Treatment and Compositional Effects," *J. Amer. Ceram. Soc.* **77** [9] 2337-44 (1994).
20. S.Y. Chen and I-W. Chen, "Phase Transformations of Oriented $\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$ Thin Films from Metallorganic Precursors," *Ferroelectrics*, **152**, 25-30 (1994).
21. S.Y. Chen and I-W. Chen, "Cracking During Pyrolysis of Oxide Thin Films, Phenomenology, Mechanisms and Mechanics," *J. Amer. Ceram. Soc.*, **78** [11] 2929-39 (1995).
22. P.L. Chen and I-W. Chen, "Grain Growth in CeO_2 - Defect Mechanisms, Dopant Effects and Solute Drag," *J. Amer. Ceram. Soc.*, **79** [7] 1793-1800 (1996).
23. P.L. Chen and I-W. Chen, "Grain Growth in Y_2O_3 - Defect Mechanisms and Dopant Effects," *J. Amer. Ceram. Soc.*, **79** [7] 1801-09 (1996).
24. P.L. Chen and I-W. Chen, "Sintering of Fine Oxide Powders. I: Microstructural Evolution," *J. Amer. Ceram. Soc.*, **79** [12] 3129-41 (1996).
25. P.L. Chen and I-W. Chen, "Sintering of Fine Oxide Powders. II: Sintering Mechanisms," *J. Amer. Ceram. Soc.*, **80** [3] 637-45 (1997).
26. S.Y. Chen and I-W. Chen, "Comparative Role of Metal-Organic Decomposition-Derived [100] and [111] in Electrical Properties of $\text{Pb}(\text{Zr}, \text{Ti})\text{O}_3$ Thin Films," *Jpn. J. Appl. Phys.*, **36** [7A] 4451-58 (1997).
27. M. Menon, Ceramic Composites: Fabrication by Rolling of Highly Loaded Suspensions and their Mechanical Characterization, Ph.D. Dissertation, Department of Materials Science and Engineering, University of Michigan, 1997.