y |

aéorator

|
|

~3
S
S
e
S
3
S

tal

vironmen

n

FOR THE USE

THORON PROGENY MEAS

UREMENTS

RADON\

Earl O Knutson

MENT OF ENE

DEPART

Y

N.

v

NEW YORK

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

PERSONAL COMPUTER PROGRAMS FOR USE IN RADON/THORON
PROGENY MEASUREMENTS

EML--517

Earl O. Knutson DE89 011072

Environmental Measurements Laboratory
U.S. Department of Energy
376 Hudson Street, New York, NY 10014-3621

March 1989

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof. The views and
opinion of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Printed in the United States of America
Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
NTS price codes: A0S

Printed copy: $8.00
Microfiche copy: AO1

DIST
RIBUTION oOF THIS DOCUMENT IS UNLIMITED

ABSTRACT

Source listings and program notes are given for five programs for reducing data
from measurements on radon and thoron progeny. Three of these programs provide for
calculating radon and thoron progeny concentrations from gross alpha counting of
deposits on filters, by three different methods. The remaining two programs are for
calculating aerosol particle size {or diffusion coefficient) distributions from diffusion

battery (or graded screen) apparatus.

One program is written in GW BASIC and the remainder are written in Borland’s
Turbo Pascal. The target machine for these programs is the IBM (or compatible)
personal computer (PC). Portable versions of the PC also make it feasible to run these

programs in the field.

CONTENTS

)3 (- £ PP UP PSRN
6085 goTs L5 Toi 8 {0 ¢ NN PSP
Mathematical COMMENLSccoivuiiiiiiiniiiii e
Source Language and Executable Filesccooociiiiiiiiiiiiiiiniicniciinienene
Program NOLEScooviriiiiiiiii e
WIWN L PAS oottt e e e et e et e e et e s e enee e rnnaea s s s s e sanes
RWRENNGW.BAS .. .ottt irasee i s sae e
EXMAaXDP.PAS ...ovvuierrenirinieeiiieiiiiiceiiiiiriintin et eunsst st sesas i s raeaaeas
ExXMaxDB.PAS ...t e
EXMAaXGSO.PAS .iuiiiiiiiiiiiiiit e e et e e e e
Relationships Among Programscc.ccoovviiiiiiiiininiiin e

Appendix A
FaNG o1 T0) 05 o - 1= PP

Appendix B
AlGOTItN. PAS ..ov i e

Appendix C
FOEEN €216 0 Lo L3N o= 1 N PPN

Appendix D
ExXMaxDB.Pas ..ottt e e

Appendix E
EXMaxDP.PaS ..o,

Appendix F
EXMaAXGS.PaAS . iniiiitiiiieiiiiiiiiee ittt s crrcr e aen e e e e b re e e e e

Appendix G
GlODAIS. PAS.. .. ivietiiiiieeieieieieet et iereet i taeteeseananraesnsraansantesrasseenensnasasesns

Appendix H
MUTK. PAS . vttt e

Appendix 1
Appendix J
RWRENNGW . BASootiittiiiiiiiiiiiiie et ers s sr s e e

Appendix K

- -

[&)]

ONNOOOO

PREFACE

This report presents the source listings of five personal computer programs
developed at the Environmental Measurements Laboratory (EML) for the reduction of
data from radon/thoron progeny measurements. The report does not cover apparatus,
sampling strategy or sampling procedure; these topics will be covered in the new edition
of the EML Procedures Manual {in press). Neither does it cover the mathematical
underpinning of the five programs; this information is given as reference citations.

In spite of a determined effort to modularize the programs and to embed
comments, reading the listings themselves is still a chore. Therefore, the listings are
placed in a series of eleven appendices to this report, and the main part of the report
provides a narrative background and a guide to the programs. Also included in the
main part are examples of input and output files.

Some of the terminology in this report is likely to appear cryptic because the
programs were developed in support of specific apparatus. Unavoidably, terminology
(such as screens and disks) related to specific apparatus appears in the programs. All
we can do is to ask the reader to be alert to this, and to watch the context in which the
terms appear.

Systeme Internationale (SI) units have been used. Also, these programs use the
latest published values for the decay constants and decay energies of alpha radiations
from the progeny.

Although the programs published here are quite new, they have already had
considerable use and testing at EML. To the best of our knowledge they produce
correct results, but it is still possible that some errors have gone undetected. Please
inform the author of any errors you may find in these programs.

All five programs are available from EML in the form of MS-DOS files on diskette.

Thanks to Edward F. Maher of Brooks Air Force Base who kindly supplied a
FORTRAN listing, dated December 1983, which was very helpful in developing three of
these programs. I am grateful to my EML colleagues Andreas C. George and Keng W.
Tu for helping to test these programs, and to Ferenc Hajnal for his careful review of this
work.

INTRODUCTION

Concentration and particle size are the two aspects of airborne radon progeny
that are most important to health effects. Measurement of concentration entails
drawing an air sample through a suitable filter, counting the alpha activity from the
front face of this filter for selected time intervals, then making an appropriate
calculation. A number of algorithms, ranging widely in complexity, are available for the
calculation. Until recently, only simple algorithms could be used in field work. The
Kusnetz method and the modified Tsivoglou method, described in the EML Procedures
Manual (in press), are two of the most commonly used.

Measurement of radon progeny particle size entails several (usually five)
simultaneous measurements of concentration using size-selective samplers, followed by
an "unfolding” step in which the size distribution is inferred from these concentrations.
Again, various algorithms are available, all of which require some form of computer.

New, portable computers make it feasible to do complex data reduction
calculations in the field, which previously had to be done in the laboratory on
mainframe or mini-computers. However, feasibility becomes reality only when reliable,
debugged, documented computer programs are available that will run on these
machines. To this end we have invested considerable effort in transcribing old
programs and programming new algorithms for personal computers.

Five different programs have resulted from this effort, one written in GW BASIC
and the others in Borland's Turbo Pascal. The five programs are:

WWN.Pas - for use in calculating radon decay product (218po, 214pp, 214p;)
concentrations from gross alpha counts from any three non-overlapping time
intervals;

RWRENNGW.BAS - for calculating radon decay product and, optionally, thoron
decay product concentration from gross alpha counts taken at equal time
intervals (the algorithm is entirely different from that in the above program);

ExMaxDP.Pas - for the same purpose as RWRENNGW, but based on yet another
algorithm (uses the same input data as RWRENNGW.BAS);

ExMaxDB.Pas - for unfolding diffusion battery data to yield aerosol particle size
spectra;

ExMaxGS.Pas - for unfolding data from the "graded wire screen” apparatus to
yield diffusion coefficient spectra.

MATHEMATICAL COMMENTS

The first program, WWN.Pas, is relatively straightforward in its logic; it is based on
the concise set of equations given by Nazaroff (1984). The second program is an
implementation of the weighted least squares procedure, clearly described in the
already-classic paper of Raabe and Wrenn (1969).

The last three programs are based on an iterative procedure called the expectation
maximization algorithm. Maher and Laird (1985) were the first to apply this algorithm
to aerosol measurements, after which it has steadily gained followers in the aerosol and
radon/thoron progeny measurement community.

It is not within the scope of this report to go into the mathematical background of
the individual programs. For example, in two of the programs there is a preliminary
step in which integrals are replaced by summations. [In these programs we use the
simplest method - the midpoint rule of numerical integration. See Maher and Laird
(1985) for a full explanation.] Suffice it here to say that, after these preliminary steps,
there is a great deal of similarity among the five programs.

All five programs hinge on solving a matrix "equation”
TRANSFORM*DATA "=" KERNEL*SPECTRUM

in which
DATA is a vector of measured values,
TRANSFORM is matrix which reformats the DATA,
KERNEL is the "response" matrix, and
SPECTRUM is the vector to be determined.

The asterisks indicate matrix product. The two vectors do not necessarily have the
same dimensions, and the two matrices are not necessarily square. The equals sign in
the equation is placed in quotation marks as a reminder that, due to random and
systematic errors, the two sides can never be exactly equal.

In each program, KERNEL is calculated at the outset from first principles and from
the known characteristics of the measuring device. In three of the programs,
TRANSFORM is an identity matrix, so it could have been left out of the equation.

The expectation maximization algorithm will be described briefly since it is
relatively new in aerosol science and radon/thoron progeny measurement technology.
This algorithm, EM for short, consists of the iterative use of the equation:

NEWITERATE = EXMAXMATRIX*OLDITERATE

where

OLDITERATE and NEWITERATE (both vectors) are successive iterates in a
sequence that will hopefully converge to the desired vector, SPECTRUM;

EXMAXMATRIX is a diagonal matrix whose j-th diagonal element is given by

2 (D;/Cy)Ky 4
1(1/1) ij

I K;

F
D, is the i-th component of the vector TRANSFORM*DATA;
C; is the i-th component of the vector KERNEL*OLDITERATE;
Kij is the i,j element of KERNEL.

Thus, the j-th component of OLDITERATE is multiplied by a weighted average of the
ratios D;/C, to produce the new estimate of that component. The weighting factors are
the elements in the j-th column of KERNEL. This equation is applied repeatedly until a
certain stopping criterion is met.

EM is an intuitively appealing algorithm which has appeared in various contexts.
In his book on inversion mathematics, Twomey (1977) lists it as equation 7.20 and
attributes it to Cahine, whose application was radiative transfer in the atmosphere.
Doroshenko et al. (1977} showed how it can be derived from Bayes theorem and applied
it to neutron energy spectrometry. The algorithm was also examined in a Ph.D. thesis
on aerosol measurements by Kapadia (1980), who called it the nonlinear iteration
algorithm II.

EM was given a much broader significance in 1977 by Dempster et al. (1977), who
showed that EM converges to the solution of a certain class of statistical problems.
Specifically, if the components of TRANSFORM*DATA are Poisson random variables
(and certain other conditions are met), then EM yields that SPECTRUM which
maximizes the likelihood of the observed TRANSFORM*DATA.

The EM programs given here were inspired by the paper of Maher and Laird (1985).
Maher kindly supplied a FORTRAN listing which was very helpful in developing these
programs.

SOURCE LANGUAGE AND EXECUTABLE FILES

Table 1 shows the name, size and date of the pertinent source files. The five
programs already mentioned are also included, and are described in more detail later in
this report. One file is an ordinary text file, and the five remaining files are "units” (a
Turbo Pascal construct which can be used to modularize programs) which are shared
among the four Pascal programs. The files are:

Aerosol.Pas - contains several procedures for calculating aerosol penetration
through screens or diffusion battery stages.

Algorith.Pas - contains four procedures: ForwardCalc, which performs the matrix
multiplication KERNEL*SPECTRUM; ExpectMax, which performs the EM
algorithm; StandardErr, which does the error propagation step following the EM
calculation; and TwomeyAlg. The latter performs a somewhat enhanced version of
Twomey’s nonlinear iteration algorithm (Twomey, 1977; Twomey, 1975), another
widely used method for inverting the basic matrix equation. It is included
primarily for easy comparison.

DataMess.Pas - contains a prompting message concerning the format of input data
for both ExMaxDB and ExMaxGS.

Globals.Pas - definition of certain variables used globally in programs and other
units;

Mtrx.Pas - a procedure for inverting square matrices up to 10 x 10, This
procedure, which was transcribed from a BASIC program by Flynn (1981), features
positioning for size of both rows and columns.

RWRENN.TXT - The purpose of this file, which contains ordinary text rather than
the source code, is to give a brief explanation of the program RWRENNGW.BAS. It
can be shown from within the latter program provided that the MSDOS PATH
statement is properly set up.

In addition, several of the programs and units make use of the standard Turbo
Pascal units Dos and Crt.

Table 2 shows the names, sizes and dates of the five executable files. Included is
the file RWRENNGW.EXE, which was generated by applying the compiler Turbo Basic to
RWRENNGW.BAS. Once you have these programs on your active disk drive, they can
be started by simply typing the name of the file (".EXE" need not be included).

PROGRAM NOTES

WWN.Pas

This program is a direct (non-iterative) procedure based on the concise set of
equations given by Nazaroff (1984). The vectors DATA and SPECTRUM have three
components and KERNEL is a 3 x 3 square matrix. TRANSFORM is a 3 x 3 identity
matrix. SPECTRUM is obtained directly by inverting the KERNEL and premultiplying
DATA by this inverse. As a final step, uncertainties in the components of SPECTRUM
are calculated by propagating the estimated uncertainties in DATA through the inverted
KERNEL.

The program prompts the user for all the necessary input, which must be entered
via the keyboard. The program is capable of dealing with the case where counting is
started during sampling. Therefore, when requested to enter the start and stop times of
the count intervals, the user must enter these as measured from the beginning of
sampling. For example, if counting is started simultaneously with sampling, the start
time for the first count interval would be entered as O.

Figure 1 shows an input screen for WWN.Pas. The underlines indicate where user
responses are required. "Thomas protocol” refers to the case where counting is done 2-
5, 6-20, and 21-30 min after the end of sampling. The calculation results are shown on
the screen and, optionally, can be printed out.

RWRENNGW.BAS

This program is an implementation of the weighted least squares procedure
described in the paper of Raabe and Wrenn (1969). Although more complicated than
WWN.Pas, it is also a non-iterative procedure. The experimental uncertainties in DATA
are embedded in the matrix TRANSFORM and used as the least squares weighting
factors. The uncertainties in SPECTRUM are developed as an integral part of the
calculation.

The logic, even the nomenclature, of this program closely follows the paper by
Raabe and Wrenn (1969). However, the very last step of the calculation - propagating
the error into the air concentrations - was not spelled out in the paper. The equations
that were used to do this are described in lines 1720-1800 of the listing.

Figure 2 shows how to organize the input data, including the 19 input parameters,
that are needed to run this program. Figure 3 shows the printout of a disk file
containing two blocks of data ready for processing.

When the program has been started, the user is asked if he needs instructions. By
answering "Y", the information in Appendix J will be shown on the screen [provided that
the file RWRENN.TXT is on the disk, and that the proper PATH statements have been
set up in the computer - if there is any trouble, just consult Appendix J or Figure 2].
Next the program asks for the name of the file containing the input data, and for
another file name for the output of the calculation. As the programs runs, the results
are shown on the screen as well as written to the output file.

Figure 4 shows a printout of the file which was produced by running the data
shown in Figure 3.

ExMaxDP.Pas

Since radioactive decay, to a good approximation, follows Poisson statistics, the
EM algorithm should be well suited for the following problem: "given a set of gross alpha
counts obtained in equal time intervals following sampling, find the combination of
radon progeny concentrations that maximizes the likelihood of having observed those
counts.” That is what ExMaxDP.Pas does.

ExMaxDP is designed to accept input data in the same format as
RWRENNGW.BAS, already discussed. However, the six single-digit parameters that
follow the counter efficiencies are ignored by ExMaxDP. Instead, ExMaxDP calculates
for thoron progeny if and only if the count data spans at least 300 min. It always
calculates for radon progeny.

Although the RWRENNGW and ExMaxDP are entirely different, experience shows
that they produce nearly the same results. Typically, the largest differences, often about
10%, are found for 218po. The uncertainty terms in the two calculations show similar
agreement. One difference is that ExMaxDP never produces negative concentrations for
the three (or five) nuclides.

ExMaxDB.Pas

ExMaxDB is for reducing data from the diffusion battery, yielding particle size
spectra for the aerosol sampled. More specifically, the program is written for use with
any of four EML diffusion batteries. The spectra obtained are most reliable in the size
range from 10 to 200 nm.

In our application, the input data for ExMaxDB come from a condensation nucleus
counter, or from applying one of the three preceding programs to data from radioactivity

measurements. Poisson statistics does not govern these input data,” so the underlying
premise of the algorithm is not met. We use the program anyway, confident that it will
generate something close to the maximum likelihood solution for our input data.

Since the Poisson distribution does not govern the input data in our case, we think
it is necessary to radically alter the way in which random errors are estimated and
propagated. The following rules are used:

1. If during keyboard input, the vector SPECTRUM is given more components than
the vector TRANSFORM*DATA, error propagation is suspended; and

2. If the uncertainties in the input data are known and are included in the input file,
they are used in propagating errors.

Beyond these rules, the user is given three choices for propagating errors:
1. The error propagation may be omitted altogether;
2. The input data can be simply accepted as Poisson variables; and

3. The input data may be rescaled into an "equivalent number of counts" (no larger
than 32767), which are then used as though they are actual Poisson-distributed
count data.

Input data for this program are taken in part from the keyboard and in part from a disk
file. Figure 5 shows the structure required for the disk file. This information will
appear on the screen if the first prompt is answered y or Y.

Figure 6 shows the stream of prompts that appear after starting the program.
Figure 7 shows an example input data file, and Figure 8 gives an example of the output.

No provision is made to correct for losses between diffusion battery stages, or to
correct for the efficiency characteristics of the aerosol detector. If needed, such
corrections must be made separately.

*Suppose that a measurement with a nucleus counter gave the result 10,000 particles cm3, If we apply the
"square root of n" rule from Poisson statistics, we would calculate the uncertainty in this measurement
due to random error to be 100 particles cm3 ,or 1%.. Our experience iells us that the estimate is too
small, proving that Poisson is not the correct statistics for the condensation nucleus counter.

In the case of radioactivity measurements, Poisson statistics applies only to the raw count data. For the
refined data that are used as input to ExMaxDB, uncertainty estimates must take into account the volume
of air sampled, and other factors. This is done in each of the three preceding programs, so we prefer to
use those uncertainty estimates in place of the “square root of n” approach.

-8-

ExMaxGS.Pas

The program deals with a technique called the "graded screen” method, which is
aimed at measuring the diffusion coefficient spectrum of radon/thoron progeny
particles in the regime below about 25 nm. [We could also say size spectrum, but the
diffusion coefficient is a more fundamental quantity in this regime than is particle size.]
In brief, the technique involves drawing an air sample through different grades of wire
screen, then alpha-counting these screens as though they were filters. The number of
screens is normally 3 or 4, and during sampling, they may be arranged either in series
or side-by-side. The apparent concentration detected by each screen is used as input
for the unfolding calculation. For further information, consult Holub and Knutson
(1987) and Holub et al. (1987).

Like ExMaxDB, input data for ExMaxGS is taken partly from the keyboard and
partly from a disk file. Figure 9 shows that part of the prompt sequence that is different
from ExMaxDB.

It should be mentioned that no provision is made in ExMaxGS for losses between
screens (if in series) or in the inlet section before the screens.

RELATIONSHIPS AMONG PROGRAMS

As already pointed out, the first three of the programs presented here have the
same purpose: to calculate radon decay product concentrations from sequential gross
alpha counts of particle deposits on air-sampling filters. Explanations are given below
as to why three separate programs are necessary.

The first program, WWN.Pas, is for use with the three-count method of radon
progeny measurements. This method is particularly useful in field sampling since it
can be done with relatively simple apparatus and the data can be recorded manually.
WWN can be used for Thomas-modified Tsivoglou data, which is the most common of
the three-count protocols. In addition, WWN can be used when the Thomas counting
intervals have been changed either by accident or by plan.

The second program, RWRENNGW.BAS, has a better basis in statistical theory
than does WWN, and is the one we use most frequently in research applications. The
disadvantage of this program is that it requires more elaborate input data (we
commonly use 40 consecutive 1-min counts), and therefore more elaborate data
recording equipment. Another difference between RWRENNGW and WWN is that the
former can be used to analyze for thoron progeny. This is a user option which we
normally use when we have more than 5 hours worth of count data.

The third program, ExMaxDP.Pas, is even better in terms of the theory of
statistics. It is based on an algorithm that we regard as the ultimate for calculating
radon/thoron decay product concentrations. As a penalty, it is an iterative calculation
that can consume more time than RWRENNGW. For easy comparison, it is designed to
read the same data files as RWRENNGW. The program is quite new and comparisons
done so far show the two yield results differing by as much as 10%.

The last two programs, ExMaxDB.Pas and ExMaxGS.Pas, are closely related.
These two are candidates for a merger, when and if the the graded screen method has
been proven to be useful.

There is also a serial relationship between certain pairs of these programs in that
output from one becomes input data for another. For example, in our measurements
using the diffusion battery, we commonly use RWRENNGW followed by ExMaxDB. The
former is applied to five blocks of data, yielding five blocks of output in a particular
format. This must be reorganized into four blocks, in a different format, for input to
ExMaxDB. To do this reorganization, we rely on a standard text editor and on short
"reformatting” programs.

-10 -

REFERENCES

Dempster, A. P., N. M. Laird, and D. B. Rubin
"Maximum Likelihood from Incomplete Data via the EM Algorithm"
J. of the Royal. Statistical Society, 39, 1-38 (1977)

Doroshenko, J. J., S. N. Kraitor, T. V. Kuznetsova, K. K. Kushnereva, and E. S. Leonov
"New Methods for Measuring Neutron Spectra with Energy from 0.4 eV to 10 MeV"
Nuclear Technology, 13, 296-304 (1977)

EML Procedures Manual
USDOE Report EML-300, 27th Edition, Section 2 (in press)

Flynn, B. J.
"Inverting an Matrix"
Compute!, 3, 66-70 {1981)

George, A. C. and E. O. Knutson

"Measurement of Radon and Thoron Progeny"

in: EML Procedures Manual

USDOE Report EML-300, 27th Edition, Section 2 (in press)

Holub, R. F. and E. O. Knutson

P. K. Hopke, Editor

“Measurement of 218po Diffusion Coefficient Spectra Using Multiple Wire Screens"

Proceedings of the Symposium on Radon and Its Decay Products: Occurrence,
Properties and Health Effects, Symposium Series 331, American Chemical Society,
Washington DC, pp. 340-356 (1987)

Holub, R. F., E. O. Knutson, and S. B. Solomon

"Tests of the Graded Wire Screen Technique for Measuring the Amount and Size of
‘Unattached’ Radon Progeny"

Rad. Prot. Dosim., accepted for publication (1988)

Kapadia, A.

"Data Reduction Methods for Aerosol Size Distribution Measuring Techniques"
Ph.D. Thesis, University of Minnesota (1980)

-11 -

Mabher, E. F. and N. M. Laird

"EM Algorithm Reconstruction of Particle Size Distributions from Diffusion Battery
Data"

J. Aerosol Science, 16, 557-570 (1985)

Nazaroff, W. W,

"Optimizing the Total-Alpha Three-Count Technique for Measuring Concentrations of
Radon Progeny in Residences”

Health Physics, 46, 395-405 (1984)

Raabe, O. G. and M. E. Wrenn
"Analysis of the Activity of Radon Daughter Samples by Weighted Least Squares”
Health Physics, 17, 593-605 (1969)

Twomey, S.

"Comparison of Constrained Linear Inversion and an Iterative Nonlinear Algorithm
Applied to the Indirect Estimation of Particle Size Distributions”

J. Comp. Phys., 18, 188-200 (1975)

Twomey, S.
"Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements''
Elsevier Scientific Publishing, New York (1977)

-12 -

TABLE 1

SOURCE LANGUAGE FILES
Name Size Date
Aerosol.Pas 2212 01-21-89
Algorith.Pas 7999 02-01-89
DataMess.Pas 1084 10-03-88
ExMaxDB.Pas 14772 10-28-88
ExMaxDP.Pas 16069 02-03-89
ExMaxGS.Pas 15320 02-01-89
Globals.Pas 936 06-08-88
Mitrx.Pas 4001 06-01-88
RWRENN.TXT 2779 02-01-89
RWRENNGW.BAS 16873 02-01-89
WWN.Pas 7470 01-27-89
- 18-

TABLE 2

EXECUTABLE FILES
Name Size Date
ExMaxDB.EXE 30576 02-01-89
ExMaxDP.EXE 28192 02-03-89
ExMaxGS.EXE 28480 02-01-89
RWRENNGW.EXE 59363 02-21-89
WWN.EXE 18192 01-27-89

- 14 -

Calculation of RnP from three gross alpha counts
Pascal program: E. O. Knutson 1988

Equations: W. W. Nazaroff, 1984

Constants: Nazaroff & Nero, 1988

Enter flow rate, Lpm,
Enter sample time, min
Use Thomas protocol? Enter Y or N

Enter times in minutes, |
MEASURED FROM THE START OF SAMPLING |
use space, not comma, to separate numbers |
Start & stop for count # 1 |
[
[
}

Start & stop for count # 2
Start & stop for count # 3

OK 80 far? Enter Y or N

Enter counter efficiency, %
Enter background, cpm

Enter the three counts

Count # 1
Count # 2
Count # 3

OK so far? Enter Y of N

(Results of calculation shown here.)

Print the results? Enter Y or N
Printer paper OK? Enter Y or N

**Optional part - skipped over if Thomas protocol
is selected.

Figure 1. Example input screen for WWN.Pas

- 15 -

The input data is assumed to be in an ASCII disk file, and you
will be prompted for its name. The first line must be a title line
<80 characters long (avoid using "*" or a "blank space" as a first
character). The second line specifies the source of the nineteen
input parameters needed to do the calculation:

if the second line consists of a file name, the parameters
will be read from that file (which must contain exactly 19
numbers) ;

if the second line consists of numbers the f£irst of which
is a fraction, the first 19 numbers will be used as the
parameters;

if the first number is an integer, all input is stored as
count data; you will be prompted to enter parameters from
the keyboard.

The actual count data begins (or continues) on the third line, one
or more integers per line. Within each line of numeric data,
numbers are demarked by commas or - if no comma is found - by
spaces. The final line of each block of data must be a nul line, or
an end-of-file mark.

The 19 parameters are:

1-5
Counter efficienc¥ (fractional, not percent) for -
218p,, 214p,, 212p; 212p, Nyclide X.

6-11
Which nuclides to analyze for - (enter 1 to analyze, 0 to skip)
218Po, 214Pb, 214?0, 2123i, 212?0, Nuclide X

12-19

background count time, min,
background counts,

counter dead time, microsec.,
flow rate, L min'l,

sampling time, min,

sample transfer time, sec,
length of each count, sec,
down time between counts, sec,

If the first count datum is negative, it is discarded and the
TTRANS corrected by adding TCOUNT and TDOWN to it. This allows the
user to delete the first count by prefixing a minus sign.

Figure 2. Description of format for RWRENNGW input data.

- 16 -

66 65

29 22

16 20

25 22

38 22

22 22

614881510BASAIR

hptta

1741 1540 1449
1141 1148 1122
907 866 809
669 624 601
456 421 394
298 291 279
172 170 169
108 113 114
82 78 66
47 36 49
34 32 35
22 18 15
17 16 10
4 10 10
12 6 9
7 7 8
14 3 8
5 4 6
4 8 3
6 7 5

54
24
25
28
22
19
CHNL 1
1309 1342
1042 1078
779 766
571 614
402 443
254 247
155 149
115 111
65 72
35 35
21 25
24 20
11 16
11 12
10 11
8 2
4 6
7 4
3 3
5 2

43
24
22
27
22
23

12

0

1274
981
827
546
374
216
149
113

58
46
32
24

8

8
1

o= OO © M

46
23
21
22
27
22

200

1214
1008
690
489
345
204
151
91
63
42
23
15

6

GWWwdoheaon

36
35
17
26
22

1207
961
713
477
353
212
128

84
42
29
22
16
11

10

M)

Ao

1166
939
642
483
301
206
121

96
70
38
16
14

~N oo

34
23
23
27
25

ui4{-13-88-10:28-60-100-200-635 £ilt 04-13-1988 10:41:29
.516 .516 .516 .516 .516 1 1100 0 30 3 53 3.0 10 120 60 0.07

1le4
938
686
515
306
203
118

W Wwwow

60

35
20
24
23
23

chan 1

Figure 3. Printout of a file containing two input data blocks for
RWRENNGW.

- 17 -

ui4-13-88-10:28-60-100-200-635 filt 04-13-1988 10:41:29 60 chan 1
0.516 0.516 0.516 0.516 0.516 1. 1. 1 0 O O
30.000 3.000 53.000 3.000 10.000 120.000 €0.000 0.070
Results in terms of bequerels and PAEC. # cnts = 45

Nuclide Bg/fltr Std. Err. Bq m™ 3 Std. Err. PAEC, nJ m 3 PAEC, mWL

218p, 3.78 0.34 314.44 28.07 185.35 8.91
214p), 1.25 0.10 24.72 3.31 70.37 3.38
214p; 0.13 0.12 -1.90 5.19 -3.98 -0.19
212py, 0.00 0.00 0.00 0.00 0.00 0.00
212p; 0.00 0.00 0.00 0.00 0.00 0.00
Nucl-X 0.00 0.00 0.00 0.00 0.00 0.00
Potential alpha energy conc. = 251.173 12.10
PAEC standard error = 8.63 0.41
Variance of the fit = 0.57

Analyzed on 09-28-1988 via Basic

614881510BASAIR CHNL 1 120 200
0.480 0.480 0.480 0.480 0.480 1 1 1 1 1 O
100.000 10.000 53.000 14.500 10.000 120.000 120.000 1.000
Results in terms of bequerels and PAEC. # cnts = 200

Nuclide Bq/fltr 8Std. Err. Bq m 3 Std. Err. PAEC, nJ m3 PAEC, mWL

218p, 20.26 1.73 348.84 29.84 205. 62 9.89
214py, 25.39 0.51 173.69 4.12 49444 23.77
214p; 19.27 0.49 124.69 4.12 261.16 12.56
2125y, 0.08 0.01 0.53 0.08 37.08 1.78
212p;3 0.09 0.27 0.63 2.01 4.13 0.20
Nucl-X 0.00 0.00 0.00 0.00 0.00 0.00
Potential alpha energy conc. = 1002.43 48.19
PAEC standard error = 7.31 0.35
Variance of the fit = 1.10

Analyzed on 09-28-1988 via Basic

Figure 4. Example printout from RWRENNGW.

- 18-

You will be prompted for the name of an

ASCII file containing the input data,

which may contain four types of lines:
blank lines, comment lines,
title lines, data lines.

Comment lines must start with "*v,
They will be echoed to the output.

Title lines must be 1 to 80 char.
& the first cannot be "*" or" "

Data lines (real numbers) must immed-
eately follow the Title line.

The data line must have the penetrations

or catches in a standard, known sequence,
e.g., monotone decreasing for DB. (Use
spaces, not commas, to separate the numbers.)

Option: the line may include l-sigma errors,
as follows: data-0, error-0, data-l, error-1l...

Figure 5. Structure for the ExMaxDB input data file.

-19-

(Sign on banner showing program credits)
Need a reminder on data format? Enter Y or N

Type of diffusion battery:

0 -~ Series Screen

1 - Parallel Screen
2 -~ Series Disk

3 =~ Parallel Disk

Enter 1l-digit code (2 not available)

Enter flow rate, Lpm
OK so far? Enter Y or N

Enter particle size classes:
smallest diameter, nm
largest diameter, nm

No. of size classes, = 16

(optional message concerning error calculation)

Enter file names -
- of input
- for output
Does input file include error terms? Enter Y or N
OK so far? Enter Y or N

(another optional message)

Enter max number of iterations, => 0
- for Twomey
- for expect. max.
Enter Twomey speed factor
Enter EM conv. crit.

l**

Enter error scaling number, 0-32127

(0 = autoscaling

Include the matrices in output: Enter Y or N
OK so far? Enter Y or N

**Optional, depending on previous responses.

Figure 6. Sequence of prompts and replies for ExMaxDB.
(Underlines indicate user replies.)

-920 -

*Multichannel screen diffusion battery msmts at Lawrence
*Berkeley Laboratory

*May 7-10, 1984

*Dates are in the sequence: filter, DB-1, DB-2, DB-3, DB-4
*Flow rate was 25 lpm

LBL 5/7/2 1501 - A

1156.0 843.0 781.0 546.0 242.0
LBL 5/7/2 1501 - B

1109.0 1018.0 919.0 644.0 292.0

Figure 7. Example input data file for ExMaxDB.

-21 -

*Multichannel screen diffusion battery msmts at Lawrence Berkeley
*Laboratory

*May 7-10, 1984

*Dates are in the sequence: filter, DB-1, DB-2, DB-3, DB-4

*Flow rate was 25 Lpm

LBL 5/7/2 1501 - A
Parallel screen battery @ 25.00 Lpm
Calculated yr,mo,dy: 1988 6 17 Error scale factor, 10000

Diam.,nm DA/DlogD 1l-sigma

1.00 320.37 225.38 *++++x4+++r4444*+
4.73 49.98 289.76 *+++
22.36 79.35 101.47 *++++
105.74 994 .50 81.07 *4+4++rbbbtrtbbbR bbb AR bbb R4
500.00 267.33 45.89 *++++R44b+r 44
TAP RAW 1-sigma FIT
1 1156.00 -1.00 1154.84 Twomey iterations: 0
2 843.00 -1.00 873.85 speedfactor: 5.0E-01
3 781.00 -1.00 745.04 ExMax iterations: 270
4 546.00 -1.00 536.58 conv., crit.: 5.0E-04
5 242.00 -1.00 257.69 test of matrix inver.: 1.0E-09
LBL 5/7/2 1501 - B
Parallel screen battery @ 25.00 Lpm
Calculated yr,mo,dy: 1988 6 17 Error scale factor, 10000

Diam.,nm DA/DlogD 1l-sigma
1.00 10.01 240.46 =*
4.73 7.38 309.27 «*
22 .36 128.87 108.19 *++++*+
105.74 1168.10 86.40 *++++r4+ddtrbdd+E b4 E R bR AR+
500.00 323.51 48.92 *++++R44+404+4+

TAP RAW 1-sigma FIT
1l 1109.00 -1.00 1105.14 Twomey iterations: 0
2 1018.00 -1.00 1045.61 speedfactor: 5.0E-01
3 919.00 -1.00 888.85 ExMax iterations: 287
4 644.00 -1.00 636.19 concriterion: 5.0E-04
5 292.00 -1.00 306.20 test of matrix inver 1.3E-09

Figure 8. Example of the output from ExMaxDB.

.29 .

(Sign-on banner and program credits.)

- EML 20 mesh
- EML 60 mesh
EML 100 mesh
- EML 200 mesh
- EML 635 mesh
- filter

Standard Screens:

MmO QWM
]

Are there any other screens? Enter Y or N
[you will be prompted to supply the wire diameter,
thickness, and solid fraction of each other screen}

Enter the screens used (from the set A to [F]), and show their
configuration. Use contiguous letters (no spaces) to indicate
"arranged in series"; use spaces to indicate "arranged in

parallel.” For series arrangement, assume air flow is left to
right. Example: BCD F means filter in parallel with the series
group BCD.

-+-+-+- Enter configuration -->

[echo of input after last prompt]

Figure 9. Sequence of Prompts from ExMaxGS (where they
differ from ExMaxDB). Underlines show where
user input is required.

-23-

Appendix A

File: Aerosol.pas

UNIT aerosol;

INTERFACE

USES globals;

FUNCTION DiffCoef (partdiam : real) : real;
FUNCTION LogChengKK (facevel, partdiam : real)
FUNCTION GormleyKen (mu : real) : real;
IMPLEMENTATION

FUNCTION DiffCoef (partdiam : real) : real;

65.3E-7; (* centimeters *)

CONST mnfreepath

boltz = 1.38E-16;
abstemp = 298;
viscosity = 1.81E-4;
pi = 3.14159;
VAR slipcor, x : real;

BEGIN
(* Change particle diameter to centimeters *)
partdiam := partdiam*1l.0E-7;

(* Hinds equation 3.20 for slipcor *)

real;

x := 2,514 + 0.800*EXP(-0.55*partdiam/mnfreepath) ;

slipcor := 1.0 + (mnfreepath/partdiam) *x;

diffcoef := boltz*abstemp*slipcor/
(3.0*pi*viscosity*partdiam) ;

END;
FUNCTION LogChengKK (facevel, partdiam : real)

(*

Cheng-Keating-Kanipilly equation for the transport of
aerosol particles through 635-mesh wire screens.
Equation and constants taken from Chapter 73 of
AEROSOLS, edited by Marple and Liu (1983)

The value reported out is the negative common log

of ChengKK.
*)
CONST wirediam = 0.0020; (* centimeters ¥*)

- 924 -

real;

Pascal UNIT:
aerosol

thickness = 0.0050; (* centimeters *)
solidfrac = 0.345;
a0 = 1.96;
al = 3.37;
a2 = 1.94;

VAR peclet, x : real;

BEGIN

peclet := facevel*wirediam/diffcoef (partdiam);

x := EXP (2*LN(peclet)/3):

(* Change particle diameter to centimeters *)

partdiam := partdiam*1l.0E-7;

LogChengKRK := a0/x + al*SQR(partdiam/wirediam) +
a2*EXP (2*LN (partdiam/wirediam) /3) /SQRT (peclet) ;

END;

FUNCTION GormleyKen (mu : real) : real;

(* Note that we are using the classical
Gormley & Kennedy equation circa 19489.
See Fuchs, p. 205 *)

VAR p,x : real;

BEGIN
IF mu < 0.02 THEN
BEGIN
x := EXP(LN(mu)/3.0);
p = 1.0 - 2.56*x*x + 1.2*mu + 0.177*mu*x
END
ELSE BEGIN
p :=0.0;
x := 3.657*mu;
IF x < 20.0 THEN p := p + 0.819*EXP(-x):
x := 22.3*mu;
IF x < 20.0 THEN p := p + 0.097*EXP (-x);
x := 57.0%mu;
IF x < 20.0 THEN p := p + 0.032*EXP (-x)
END;
GormleyKen := p;
END;
END.

- 95 -

Pascal UNIT:
aerosol

y . Pascal UNIT:
P algorithm

Appendix B
File Algorith.pas

UNIT algorithm;
INTERFACE
USES Crt, globals, mtrx;

PROCEDURE forwardcalc (amtperclass : rsltvector;
numdatapts, numclasses : integer;
VAR kernel : kernelmatrix;
VAR fitdata : datavector);

PROCEDURE TwomeyAlg (rawdata : datavector;
numdatapts, numclasses, maxiter : integer;
twmyspeed : real;
VAR kernel : kernelmatrix;
VAR amtperclass : rsltvector;
VAR ok : boolean);

PROCEDURE ExpectMax (rawdata : datavector;
numdatapts, numclasses, maxiter : integer;
epsilon : real;
VAR kernel : kernelmatrix;
VAR amtperclass : rsltvector;
VAR lastiter : integer;
VAR fitdata : datavector;
VAR ok : boolean);

PROCEDURE StandardErr (datavariance : datavector:;
numdatapts, numclasses : integer;
VAR kernel : kernelmatrix;
VAR stderr : rsltvector;
VAR ok : boolean);

IMPLEMENTATION

PROCEDURE forwardcalc;

VAR i, jJ : integer;
BEGIN
FOR i := 1 TO numdatapts DO
BEGIN
fitdataf[i] := 0.0;
FOR j := 1 TO numclasses DO
fitdata([i] := fitdata[i] +

kernel[i, j] *amtperclass[j};

- 926 -

Pascal UNIT:
algorithm

TN

END;
END;

PROCEDURE TwomeyAlg;

VAR a, b, sum, big: real;

i, 3, m : integer;
prior, prod : ARRAY [l1..16] of real;
converged : boolean;
twmykernel : ARRAY [1..12,1..16] OF real;
weight : ARRAY [1..12] OF real;
monotonic : boolean;

BEGIN

IF maxiter < 1 THEN EXIT;

GoToXY (1, 24) ;
WRITE (' TNHOMEY ALGORITEHM') ;

FOR j := 1 TO numclasses DO
IF (amtperclass[j] < 0) OR (amtperclass[j] > 1.0E10) THEN
BEGIN
GoToXY (1, 24):
WRITE (’/ INVALID STARTING SIZEDIST - ABORTING TWOMEYALG')
converged := false;
EXIT;
END;

(* test for monotone decreasing data and kernel; if montoinc,
take first differences, else use w/o differencing. *)

monotonic := true;
FOR i :=2 TO numdatapts DO
monotonic := monotonic AND (rawdata([i-1l] >= rawdata(i]);
j :=1;
WHILE monotonic AND (j <= numclasses) DO
BEGIN
FOR i := 2 TO numdatapts DO
monotonic := monotonic AND (kernel[i-1,j] >= kernelli, j]):;
j :=3 + 1;
END;
FOR j := 1 TO numclasses DO
BEGIN
a :=0.0;
FOR i := numdatapts DOWNTO 1 DO
BEGIN
twmykernel[i, j] := kernelli,j] - a;
IF monotonic THEN a := kernelli, j];
END;
END;

.97 -

Pascal UNIT:
algorithm

a :=0.0;
IF monotonic THEN
FOR i := numdatapts DOWNTO 1 DO
BEGIN
b = rawdatal[i]:
rawdata[i] := b - a;
a = b;
END;
If monotonic THEN WRITE(’ - monotonic’)
ELSE WRITE(’ - nonmonotonic’);
FOR i := 1 TO numdatapts DO
BEGIN
big := 0.0;
FOR j := 1 TO numclasses DO
IF twmykernell[i,j] > big THEN big := twmykernell[i, j];
weight [i] := twmyspeed/big;
END;
m := 1;
REPEAT
FOR j := 1 TO numclasses DO
prior([j] := amtperclass[jl:

i := Random(numdatapts) + 1:

sum := 0.0;

FOR j := 1 TO numclasses DO

BEGIN
prod[j] := twmykernel[i, j]*amtperclass([j];
sum := sum + prod{j]:;

END;

a := weight[i]*(rawdata[i]/sum - 1.0);

FOR j := 1 TO numclasses DO
amtperclass[j] := amtperclass[j] + a*prod[j]:

GoToXY (1, 24) ;
WRITE (' TWOMEY COUNTER ',m:3,' INPUT DATA # r,1:3);

m:=m + 1;
UNTIL m > maxiter*numdatapts; (* *)

ok := true;

END;

PROCEDURE ExpectMax;

-98 -

Pascal UNIT:
algorithm

VAR bp, sum, bsum, likelihood : real;

i, j, 1, k, m : integer;
PP, prior : ARRAY [1..16] of real;
prodmatrix : ARRAY [1..12,1..16] OF real;
converged : boolean;

BEGIN

IF maxiter < 1 THEN EXIT:;

GoToXY (1, 24);
WRITE (' EXPECTATION MAXIMIZATION

FOR j := 1 TO numclasses DO
IF (amtperclass[j] < 0) OR (amtperclass[j] > 1.0E10) THEN
BEGIN
GoToXY (1, 24);
WRITE (/ INVALID STARTING SIZEDIST - ABORTING EXPECTMAX');
converged := false;
EXIT;
END;

FOR 1 := 1 to numclasses DO
BEGIN
bp := 0.0;
FOR i := 1 TO numdatapts DO
BEGIN
prodmatrix[i,l] := rawdata[i)*kernel[i,1l];
ppll] := kernel[i,1l] + bp:
bp := ppll]:
END;
END;

forwardcalc (amtperclass, numdatapts, numclasses, kernel, fitdata);

m := 1;
REPEAT
FOR 1 := 1 TO numclasses DO
BEGIN
prior[l] := amtperclass|[l];
bsum := 0.0;

FOR k := 1 TO numdatapts DO
bsum := prodmatrix([k,1}/fitdata[k] + bsum;

amtperclass[l] := prior[l]*bsum/pp[l];
END;
converged := true;

(* note that the convergence test is based on the ABSOLUTE
difference between iterates, not the relative difference
tha Ed Maher used. ¥*)

- 929 -

Pascal UNIT:
algorithm

FOR j := 1 TO numclasses DO
converged := converged AND
(ABS (prior[j] - amtperclass[j]) < epsilon);

forwardcalc (amtperclass, numdatapts, numclasses, kernel, fitdata);

bp := 0.0;

FOR i := 1 TO numdatapts DO bp := bp +
rawdata[i]*LN(fitdata[i]) -~ £itdatal[i];

likelihood := bp:

GoToXY (1, 24);
WRITE (' EXMAX ITERATION #’',m:3,’ LIKELIHOOD: *,likelihood:16) ;

m:=m+ 1;
UNTIL (m > maxiter) OR converged;

lastiter := m;
ok := converged;
END;

PROCEDURE StandardErr;

(*
This part of Maher’s program is based on the notion that the
input data are drawn from independent Poisson populations.
Therefore, his matrix D is a diagonal matrix using the inverse
of the fitted data points as the diagonal elements. That is,
the fitted data are used as the Poisson estimates of the
variance.
In fact, the Poisson assumption is seldom correct (e.g.,
it is not the case for "counts" obtained with a condensation
nucleus counter). In order to make the calculation meaningful,
we will improvise: in place of the vector fitdata, we input a
vector data variance, comprising the estimated variance of the
data. Thus, it is up to the calling program to supply meaning-
ful estimates of the variances.

*)

VAR diag : ARRAY [1..12] of real;
b : ARRAY [1..16,1..16] OF real;
i, j, k, 1 : integer;
fmax, sumjl, a : real;

BEGIN

GoToXY (1,24);
WRITE (' PROCEDURE stderr)

(*
Again we deviate a little from Maher. His matrix B, which
calculates the additional correlations among size class
populations due to forcing normalization on them, will be

-30 -

Pascal UNIT:
algorithm

omitted. We prefer not to normalize, therefore, we have no
need for matrix B.

Construct the "diagonal" matrix, using the estimated var-
iances as discussed above.
*)

FOR i := 1 TO numdatapts DO diag([i] := 1.0/datavariance[i]:;

(*
Form the matrix product [p-transpose][diag] [p] and store into
matrixl. Note that the innermost sum collapses into a single
term, since diag is a diagonal matrix. Note also, on the line
marked <-aaaa, that we used kernel[j,i] in place of the i,

element of the matrix [p-transpose].
*)

FOR i := 1 TO numclasses DO
FOR 1 := 1 TO numclasses DO
BEGIN
matrixlf[i,1l] := 0.0;
FOR j := 1 TO numdatapts DO
BEGIN
sumjl := diag[j]*kernellj,1]; (* <—=—-—=""sum" ¥*)
matrix1(i,l] := matrixl(i,l]
+ kernel[j,i]*sumjl; (* <-—-- aaaa ¥*)
END;
END;

(*

Call matinvert; inverse of matrixl will appear in matrix2
*)

GoToXY (1,24);
WRITE (' PROCEDURE matinvert
matrixsize := numclasses;
matinvert;

ok := NOT matsingular;

IF ok THEN FOR j := 1 TO numclasses DO
stderr[j] := SQRT(matrix2[j, jl):
END;
END.

- 31 -

Pascal UNIT:
datamessage

Appendix C
File Datamess.pas

UNIT datamessage;
INTERFACE

USES Crt;

PROCEDURE dataformat;
IMPLEMENTATION
PROCEDURE dataformat;
BEGIN

END;
END .

ClrScr;

WRITELN(’ You will be prompted for the name of an ’);
WRITELN ('ASCII file containing the input data, ’);
WRITELN (’which may contain four types of lines: ’);

WRITELN (' blank lines, comment lines,’);
WRITELN (/ title lines, data lines.’);
WRITELN;

WRITELN (' Comment lines must start with "*".’);

WRITELN(’ They will be echoed to the output.’);
WRITELN (' Title lines must be 1 to 80 char.’);

WRITELN(’ & the first cannot be "*" or" "');

WRITELN ('Data lines (real numbers) must immed- ‘);
WRITELN(’ ately follow the Title line.’);

WRITELN;

WRITELN (' The data line must have the penetrations ’):
WRITELN (' or catches in a standard, known sequence,’):;
WRITELN('e.g., monotone decreasing for DB. (Use’) ;
WRITELN (' spaces, not commas, to separate the numbers.)’);
WRITELN;

WRITELN('Option: the line may include 1l-sigma errors,’);
WRITELN (' as follows: data-0, error-0, data-1, error-1l...');
WRITELN;

.32 -

Appendix D
File ExMaxDB.Pas

PROGRAM ExMaxDiffBatt (input, output);

('J'i

This Pascal program implements the Expectation-Maximization
algorithm for calculating particle size spectra from
diffusion battery data. (The Twomey algorithm is also
coded, and may be used alone or as a starter for the

Ex-Max calculation.) The Ex-Max coding draws heavily on
the FORTRAN code kindly provided by Edward Maher. Major
changes are explained along the way.

Original Maher program : December, 1983

This Pascal program : January, 1988
Refinements : March, May 1988
*)
Uses Crt, Dos, mtrx, algorithm, globals, aerosol, datamessage;
TYPE DiffBatType = (SS, PS, SD, PD, PC);
arrytyp9 = ARRAY [1..10,1..10] OF real:

VAR titleoftest : string;

results : text;

pdiam : rsltvector;

penmtx : kernelmatrix;

infilename, outfilename : string[20);

maxmaher, maxtwmy, lastmaher : integer;

errorscale : integer;

i, numsizes, numdatapts : integer;

oksofar, errorterms, matprint : boolean;

sizedist, stderr : rsltvector:;

rawdata, fitdata, rawerror : datavector;

dbdata : text;

DBType : DiffBatType:;

DBI : integer;

flowrate, concriterion, twmyspeed : real;

cap, rawmax : real;

datavariance : datavector:;

3j : integer;

Pascal PROGRAM:
ExMaxDiffBatt

Pascal PROGRAM:
ExMaxDiffBatt

FUNCTION kbquery(msg : string) : boolean;
VAR query : char;
BEGIN
REPEAT
WRITE (msg,’ Enter Y or N ‘)
READLN (query)
UNTIL query IN ['y’,’Y’,'n’,'N'];
kbquery := (query IN ['y’,'¥Y']);
END;

PROCEDURE ScanForTitle (VAR inputfile : text);
VAR validtitle : boolean;
BEGIN
WINDOW(1,1,80,24);
REPEAT
READLN (inputfile, titleoftest);
validtitle := (length(titleoftest) > 0) AND (titleoftest([l] <> ’'*’)
AND (titleoftest{l] <> * ’/);
IF NOT validtitle THEN WRITELN (results,titleoftest);
GoToXY(1,23); WRITELN(' ':72);
GoToXY (1,23); WRITELN (titleoftest);
UNTIL validtitle OR EOF (inputfile);
END;

PROCEDURE SignOn;

VAR gstep, minsize, maxsize : real;
j : integer;

BEGIN
ClrScr;
Window (15,2,80,24);
WRITELN('Calculation of Aerosol Size Distributions’);
WRITELN ('’ from Diffusion Battery Data’);
WRITELN;
WRITELN('Using the Expectation - Maximization’);
WRITELN('Algorithm. (Twomey also available)’);
WRITELN;
WRITELN (’Pascal Program by Earl O. Knutson,’);
WRITELN (' USDOE/EML, January, 19887);
WRITELN;
WRITELN (' Ex-Max code based on FORTRAN Program by’);
WRITELN (' Edward F. Maher, 13Dec83’) ;
WRITELN;
WRITELN;
IF kbquery(’'Need a reminder on data format?’) THEN
BEGIN
dataformat;

IF NOT kbquery(’Are you ready to continue?’) THEN HALT;

END;

REPEAT
ClrScr;
WRITELN (' Type of diffusion battery:’);
WRITELN(’ 0 - Series Screen');

-34 -

(*

WRITELN(’ 1 - Parallel Screen’);
WRITELN(' 2 - Series Disk’);
WRITELN(’ 3 - Parallel Disk’):;
WRITELN(’ 4 - Parallel Carbon’);*)
WRITELN;
REPEAT
WRITE(’ Enter 1-digit code (2 not available)
READLN (DBI) ;
DBType := DiffBatType (DBI);
UNTIL DBType IN (SS, PS, PD];
WRITELN;
WRITE (' Enter flowrate, Lpm ry;
READLN (flowrate) ;

UNTIL kbquery('OK so far?’);

CASE DBType OF
PS,PD,PC : numdatapts := 5;
ss : numdatapts := 11;
SD : numdatapts := 12
END;

REPEAT

ClrScr;

WRITELN (' Enter particle size classes:’);
WRITE(’ smallest diameter, nm y;
READLN (minsize) ;

WRITE(’ largest diameter, nm ")
READLN (maxsize) ;

WRITE(’ no. of size classes, < = 16 ’);
READIN (numsizes) ;

IF numsizes > numdatapts THEN

BEGIN

WRITELN('Since numsizes > numdatapts, Ex-Max’);

WRITELN ('’error calc will not be done.’);
END;
WRITELN;
WRITELN(’enter filenames - ');
WRITE(’ - of input "):
READIN (infilename) ;
WRITE(’ - for output ’);
READLN (outfilename) ;

)

Pascal PROGRAM:
ExMaxDiffBatt

errorterms := kbquery(‘Does input file include error terms?’);
IF errorterms THEN WRITELN('OK. These will be used in the stderr calc’);
UNTIL kbquery('OK so far?’);

REPEAT
ClrScr;
WRITELN (' enter max # of iterations,=>0');
WRITE(’ - for twomey ")
READLN (maxtwmy) ;
WRITE(’ - for expect. max. ');
READLN (maxmaher) ;

-35 -

IF (maxtwmy > 0) THEN

BEGIN
WRITE (' enter twomey speed factor ’):;
READLN (twmyspeed) ;

END

ELSE twmyspeed := -1.0;

IF (maxmaher > 0) THEN

BEGIN
WRITE (' enter exmax conv. crit. ’);
READLN (concriterion) ;

END

ELSE concriterion := -1.0;

IF (numsizes > numdatapts) OR errorterms THEN
BEGIN

errorscale := -1;
matproof := -1.0;
END
ELSE
BEGIN
WRITELN (' enter error scaling number, 0-32768');
WRITE(’ (0 = autoscaling)
READLN (errorscale) ;
END;
WRITELN;
matprint := kbquery(’Include the matrices in output?’);

UNTIL kbquery('OK so far?’);

END;

pdiam([1l] := minsize;

gstep := ln(maxsize/minsize)/(numsizes - 1);

gstep := exp(gstep):

FOR j := 2 TO numsizes DO pdiam[j] := gstep*pdiam[j-1];
Randomize;

Window(1,1,80,24);

PROCEDURE GetPenMatrix;

VAR

flowarea, facevel,partdiam, logscrnpen,x, £f,p : real;
i, j, k : integer;

BEGIN
ClrSer;

CASE DBType OF

11.40; (* diameter = 3.81 cm
per Cheng and Yeh *)
81.07 (* diameter = 10.16 cm ¥*)

88 : flowarea

PS : flowarea

END;

-36 -

Pascal PROGRAM:
ExMaxDiffBatt

Pascal PROGRAM:
ExMaxDiffBatt

FOR j := 1 TO numsizes DO

BEGIN
GoToXY (1, 24);
WRITE (' BUILD PENMATRIX, SIZE CLASS:’,j:3);
penmtx[1,j] := 1.0;

CASE DBType OF

Ss, PS : logscrnpen =
LogChengKK (1000*flowrate/flowarea/60, pdiam[3j]);

SD, PD : £ := 3.14159%2 54%14500.0/ (flowrate*1000.0/60)
(* 14500 = the # of cylindrical holes in each of
Sinclair’s "CHS" disks (careful here - the newer
batteries had a small number of holes);

1000/60 converts from Lpm to cm3 s-1; *)

END;
CASE DBType OF

S§S : FOR i := 2 TO numdatapts DO
BEGIN
x := i*(i - 1)*logscrnpen/2.0;
IF x > 25 THEN penmtx[i,j] := 0.0
ELSE penmtx[i, j] := EXP (-x*LN(10.0))
END;

PS : FOR i := 2 TO numdatapts DO
BEGIN
CASE i OF
2 :©: x:
3 x
4 : x :
5 x
END;
IF x > 25 THEN penmtx[i,3j] := 0.0
ELSE penmtx[i,j] := EXP(-x*LN(10.0))
END;

l*logscrnpen;
S5*logscrnpen;
15*logscrnpen;
40*logscrnpen

PD : BEGIN
x := f*DiffCoef (pdiam[j]);
penmtx(1l,j] := 1.0;
penmtx([2,j] := GormleyKen(0.1l35%*x);
penmtx[3,j] := GormleyKen(0.252*x)*GormleyKen (0.122%x) ;

IF x > 5.0 THEN penmtx[4,3j] := 0.0 ELSE

penmtx[4,3j] := GormleyKen(0.517*x)*GormleyKen (0.405*x) *
GormleyKen (0.740*x) *GormleyKen (0.507*x) *
GormleyKen (1.013*x);

IF x > 2.0 THEN penmtx[5,j] := 0.0 ELSE
penmtx[5, j] := GormleyKen(1l.005*x) *GormleyKen (1.030*x)*

-37-

GormleyKen (1.009*x) *GormleyKen (1.015%x) *
GormleyKen (1.006*x) *GormleyKen (1.015*x) *
GormleyKen (1.022*x) *GormleyKen (1.003*x) *
GormleyKen (1.008*x) *GormleyKen(1.027*x) ;

END

END;
END;

PROCEDURE PrintResults (sizedist, stderr : rsltvector:;
rawdata : datavector;
lastiter : integer;
VAR outpath : text;
ok : boolean);

VAR i, j, k : integer;
bigg, logstep, chisqr : real;
year, month, day, dayofweek : word;

BEGIN

GetDate (year,month, day, dayofweek) ;
logstep := Ln(pdiam[2]/pdiam[1])/Ln(10);
forwardcalc (sizedist, numdatapts, numsizes, penmtx, fitdata);

WRITELN (outpath, titleoftest);
CASE DBType of
SS : WRITE (outpath,’Series Screen '):;
PS : WRITE (outpath,’Parallel Screen '):
SD : WRITE(outpath, ’'Series Disk '};
PD : WRITE (outpath,’Parallel Disk ’);
PC : WRITE (outpath,’Parallel Carbon ‘)
END;
WRITELN (outpath, 'battery @ ’,flowrate:6:2,’ Lpm');
WRITELN (outpath, ’Calculated yr,mo,dy: ’',year:5,month:3,day:3,
’ Error scale factor, ’',errorscale:6);

IF NOT ok THEN

Pascal PROGRAM:
ExMaxDiffBatt

WRITELN (outpath,’ Calculation failed - no results to report’);

bigg := 0.0;
(* convert to DA/DlogD & find peak value *)

FOR j := 1 TO numsizes DO

BEGIN
sizedist{j] := sizedist([j]l/logstep:
IF stderr(j] > 0 THEN stderr[j] := stderr[j]/logstep;
IF sizedist[j] > bigg THEN bigg := sizedist[j]:;

END;

WRITELN (outpath) ;

WRITELN (outpath, 'Diam.,nm DA/DlogD 1l1l-sigma’);

-38 -

FOR j := 1 TO numsizes DO
BEGIN

Pascal 'PROGRAM:
ExMaxDiffBatt

WRITE (outpath,pdiam[j]:7:2, sizedist[}]:10:2,

stderr[j]:8:2, ' *7);

k := ROUND(50.0*sizedist[j]/bigqg):

i :=1;
WHILE i <= k DO
BEGIN

IF (i MOD 5) = 0 THEN WRITE (outpath, ’*’)

ELSE WRITE (outpath, "+');

i:=1i+1;
END;
WRITELN (outpath) ;
END;
WRITELN (outpath) ;
WRITELN (outpath, ' TAP RAW l-sigma FIT');
FOR i := 1 TO numdatapts DO
BEGIN
WRITE (outpath,i:3, rawdata[i]:10:2, rawerror[i]:10:2,fitdata[i]:10:2);
CASE i OF
1 : WRITE (outpath,’ Twomey iterations: ', maxtwmy:6);
2 : WRITE (outpath,’ speedfactor: ’,twmyspeed:6);
3 : WRITE (outpath,’ ExMax iterations: ",lastiter:6);
4 : WRITE (outpath,’ concriterion: ’/,concriterion:6);
5 : WRITE (outpath,’ test of matrix inver’,matproof:8)
END;
WRITELN (outpath)

END;

IF errorterms THEN
BEGIN
chisqgr := 0.0;

FOR i := 1 TO numdatapts DO chisqr
SQR((rawdata[i] - fitdata[i])/rawerror[i]):
WRITELN (outpath, ’ ’:13,’ ChiSqr =

:= chisqgr +

f,chisqr:10:2);

END;
FOR j := 1 to 78 DO WRITE(outpath,’-’); WRITELN (outpath);
WRITELN (outpath) ;

END;

PROCEDURE PrintPenMatrix;
VAR 4i,j : integer;
BEGIN

FOR i := 1 TO numdatapts DO
BEGIN
FOR j := 1 TO numsizes DO
WRITE (results, penmtx[i,]

:12);

-39 -

WRITELN (results) ;
END;
WRITELN (results) ;

END;

PROCEDURE PrintErrMatrices;

VAR 1i,j : integer;
BEGIN

FOR i := 1 TO numsizes DO
BEGIN
FOR j := 1 TO numsizes DO

WRITE (results, matrixl([i,j]:12);

WRITELN (results) ;
END;
WRITELN (results);

FOR i := 1 TO numsizes DO
BEGIN
FOR j := 1 TO numsizes DO

WRITE (results, matrix2[i,j]:12);

WRITELN (results) ;
END;
WRITELN (results);
WRITELN (results);

END;
BEGIN (* PROGRAM DiffBatCrunch *)

SignOn;
GetPenMatrix;

Assign(dbdata, infilename);
RESET (dbdata) ;
Assign(results, outfilename);
REWRITE (results);

ClrScr;

ScanForTitle (dbdata) ;

WHILE NOT EOF (dbdata) DO
BEGIN

i:=0;
WHILE NOT EOLN (dbdata) DO
BEGIN
i:=1i4+1;
READ (dbdata, rawdatal[i]);
IF errorterms THEN READ (dbdata,
ELSE rawerror{i) := -1.0;
END;

rawerror{i])

- 40 -

Pascal PROGRAM:
ExMaxDiffBatt

|
i
|

Pascal PROGRAM:
ExMaxDiffBatt

READLN (dbdata):;

oksofar := (i = numdatapts);
rawmax := 0.0;
FOR i := 1 TO numdatapts DO
IF rawmax < rawdata[i] THEN rawmax := rawdata[i]:;

IF oksofar THEN

FOR i := 1 TO numsizes DO

BEGIN
sizedist[i] := rawmax/numsizes;
stderr([i] := -1.0;

END;

IF oksofar THEN
TwomeyAlg (rawdata, numdatapts, numsizes, maxtwmy,
twmyspeed, penmtx, sizedist, oksofar):;

lastmaher := 0;
IF oksofar THEN
ExpectMax (rawdata, numdatapts, numsizes, maxmaher,
concriterion*rawmax, penmtx, sizedist,
lastmaher, fitdata, oksofar);

IF oksofar AND (numsizes <= numdatapts) AND (lastmaher > 0) THEN
BEGIN

cap := 0.0;
FOR i := 1 TO numdatapts DO
IF fitdata[i] > cap THEN cap := fitdatal[i]:

As seen below, we provide three different ways to estimate the
input data variances needed to calculate standard errors:

First, if error terms are available in the input data stream,
we use the square of those terms as the variance vector for
the input data;

Second, if error terms are not available and we have specified
a zero error scale factor in the keyboard input, we use the
fitted data vector as the estimate of variance;

Third, if the error scale factor set positive, the fitdata vector
is rescaled sc that its maximum component is equal to the error
scale factor, and this is used as the variance estimate.

The second method - the one used by Ed Maher - is valid only if

the input data are actual raw counts. This is a necessary condition
for the Poisson distribution to be valid. (Even here, there are
probably other sources of variability that swamp the Poisson
variability.)

Options one and three are provided because, in our opinion, the

- 41 -

Pascal PROGRAM:
ExMaxDiffBatt

Poisson assumption is rarely valid for data from diffusion
batteries. We realize that there is a logical inconsistency

in the idea of maximizing the Poisson-based likelihood function
but using a non-Poisson estimate of variance. So be it - half
a loaf is better than none.

*)

IF errorterms THEN
FOR i := 1 TO numdatapts DO datavariance[i] := SQR(rawerror[i]);

IF NOT errorterms AND (errorscale = 0) THEN
FOR i := 1 TO numdatapts DO datavariance[i] := fitdatal[i];

IF NOT errorterms AND (errorscale > 0) THEN
FOR i := 1 TO numdatapts DO datavariance[il]
:= fitdata[i]*errorscale/cap;

StandardErr (datavariance, numdatapts, numsizes, penmtx,
stderr, oksofar);

IF NOT errorterms AND (errorscale > 0) THEN
FOR j := 1 TO numsizes DO stderr[j] := stderr{j] *cap/errorscale;

END;

WINDOW(1l,1,80,22); ClrScr;
PrintResults (sizedist, stderr, rawdata, lastmaher, output, oksofar):
PrintResults (sizedist, stderr, rawdata, lastmaher, results, oksofar);

IF matprint THEN
BEGIN
PrintPenMatrix;
IF (lastmaher > 0) AND (numsizes <= numdatapts) THEN
PrintErrMatrices;
END;

ScanForTitle (dbdata);

END;

CLOSE (results);
WINDOW(1l,1,80,24);

GoToXY (1,23); WRITELN(' ’:72);
WRITE(’*** F I NTI *kkk/);

END .

- 42 -

Pascal PROGRAM:
ExMaxDecayProd

Appendix E
File ExMaxDP.Pas

PROGRAM ExMaxDecayProd;
(*

This is a program that had to be written because the
problem is tailor-made for the EM algorithm. The
input data are raw radioactivity counts, widely
accepted as conforming to Poisson statistics as
required for EM.

This program is designed to accept the same input files
as RWRENNGW.BAS. Handling the three-fold option for
input of parameters was more difficult in Pascal than
in BASIC, as can be seen from the PROCEDURE initialize.

The concise equations given by Nazaroff (Health Phys.

46, 395) are used in building the kernel matrix for the
algorithm. In fact, the set has been expanded to include
three equations for thoron progeny; these were written
down by analogy with the radon progeny equations.

Although the input data are in terms of counts in equal
time intervals, we have chosen to collect the counts into
5, 6 or 7 time brackets (depending on the number of input
data points) for this calculation. BAnalysis for thoron
progeny is attempted if and only if the total count
interval spans at least 300 minutes.

Earl O. Knutson
USDOE Environmental Measurements Laboratory
May, 1988

A very important correction was made on 2 Feb 1989.
Prior to that time, we had wrongly included a function G44,
pertaining to the "alpha" from Pb-212. The potential alpha
energy table was also wrong prior to that time.

— *)

USES Crt, Dos, Globals, mtrx, algorithm;

VAR decayconst, alphaenerqgy,

dpconc, stderr, eweight : rsltvector;

kernel : kernelmatrix;

rawdata, fitdata : datavector;

i,3j, k, maxiter, lastiter, halfpage : integer;
infilename, outfilename, titleoftest : string;
indata, results, parameters . text;

- 43 -

Pascal PROGRAM:

ExMaxDecayProd
bkgdcount, numdatapts, numcounts : integer;
inthebag, nextblock, numnuclides : integer;
counts : ARRAY {1..2000] OF integer;
cntsperblk : ARRAY [1..12] OF integer;
cnteffic : ARRAY ([1..5] OF real;

bkgdtime, deadtime, flowrate, sum : real;
initguess, sampletime, temp,

transfertime . real;
timepercount, timebtwncnts : real;
ta, tb, t0, concriterion, chisqr : real;
ok, dothoron : boolean;
year, month, day, dayofweek : word;

FUNCTION £(i,j : integer) : real;
BEGIN

f := decayconst[i]/ (decayconst[i] - decayconst[]j]l):;
END;

FUNCTION r(i : integer; t : real) : real;

BEGIN
IF decayconst([i]*t > 80 THEN r := 1.0
ELSE r := 1.0 - exp(-decayconst[i]*t);
END;

FUNCTION s(i : integer; t : real) : real;

BEGIN
IF decayconst{i]*t > 80 THEN s := 0.0
ELSE s := exp(-decayconst[i]*t);

END;

(*
As explained by Nazaroff, Gij is the accumulated number
of alphas emitted from nuclide i on the filter, due to
collecting the j-th nuclide at a rate of 1 Bgq per min.
The factor 60, which is dpm per Bq, replaces Nazaroff’'s
2.22, which is dpm per pCi. The units of Gij are min per Bq.
*)

FUNCTION Gll(t,t0 : real) : real;
VAR G : real;
BEGIN

IF t < t0 THEN

G :=t - r(l,t)/decayconst[1]
ELSE
G :=t0 - r(1,t0)*s(1,(t - t0))/decayconst[l];
Gll := 60*G/decayconst[l];
END;

FUNCTION G31(t, t0 : real) : real;
VAR G : real;

- 44 -

BEGIN
IF t < t0 THEN
G =t
- £(2,1)*£(3,1)*r(1,t) /decayconst [1]
- £(1,2)*£(3,2)*r(2,t)/decayconst [2]
- £(1,3)*f(2,3)*r(3,t) /decayconst 3]
ELSE
G := t0

- £(2,1)*€£(3,1)*r(1,t0)*s(1, (t - t0))/decayconst[1]
- £(1,2)*£(3,2)*r(2,t0)*s(2, (t - t0))/decayconst[2]
- £(1,3)*£(2,3)*x(3,t0)*s (3, (t - t0))/decayconst[3]:

G31 := 60*G/decayconst[1];

END;

FUNCTION G32(t, t0 : real) : real;

VAR G : real;
BEGIN
IF t < t0 THEN
G :=t¢t
- £(3,2)*r(2,t)/decayconst [2]
- £(2,3)*r(3,t)/decayconst [3]
ELSE
G := t0
- £(3,2)*r(2,t0)*s (2, (t - t0))/decayconst[2]
- £(2,3)*r(3,t0)*s(3, (t - t0))/decayconst|[3];
G32 := 60*G/decayconst[2];

END;

FUNCTION G33(t, t0 : real) : real;

VAR G : real;
BEGIN
IF t < t0 THEN
G :=t - r(3,t)/decayconst [3]
ELSE
G := t0 - r(3,t0)*s(3, (t - t0))/decayconst[3];
G33 := 60*G/decayconst[3];
END;
(*

*)

FUNC
VAR
BEGI

To permit including thoron progeny in the analysis, the
functions G54 and G55 - shown below - have been

added to Nazaroff’s list. They were written down by
analogy: G54 from G32; G55 from G33. (This was changed
on 2 Feb 1989. Prior to that time, we had wrongly
included a function G44, pertaining to the "alpha"

from Pb-212. The alpha energy table was also wrong
prior to that time.)

TION G54(t, t0 : real) : real;
G : real;
N

IF t < t0 THEN

- 45 -

Pascal PROGRAM:
ExMaxDecayProd

Pascal PROGRAM:
ExMaxDecayProd

G =t
- £(5,4)*r(4,t) /decayconst[4]
- £(4,5)*r(5,t) /decayconst (5]
ELSE
G := t0
- £(5,4)*r(4,t0)*s (4, (t - t0)) /decayconst [4]
- £(4,5)*r(5,t0)*s (5, (t - t0))/decayconst[5];
60*G/decayconst [4] ;

G54
END;

FUNCTION G55(t, t0 : real) : real;
VAR G : real;
BEGIN
IF t < t0 THEN
G :=t - r(5,t)/decayconst[5]
ELSE
G .
G55
END;

t0 - r(5,t0)*s (5, (t - t0))/decayconst[5];
60*G/decayconst [5];

.

FUNCTION kbquery{msg : string) : boolean;
VAR query : char;
BEGIN
REPEAT
WRITE (msg,’ Enter Y or N ’);
READLN (query)
UNTIL query IN [‘y’,’Y',’'’n’,'N’'];
kbquery := (query IN (['y’,’Y'1):
END;

PROCEDURE ScanForTitle (VAR inputfile : text):
VAR validtitle : boolean;
BEGIN
WINDOW(1,1,80,24);
REPEAT
READLN (inputfile, titleoftest):
validtitle := (length(titleoftest) > 0) AND (titleoftest[l] <> ’*')
AND (titleoftest([l] <> ' '),
IF NOT validtitle THEN WRITELN (results,titleoftest);
GoToXY(1,23); WRITELN(' ‘' :72);
GoToXY(1,23); WRITELN (titleoftest):
UNTIL validtitle OR EOF (inputfile);
END;

PROCEDURE transcribe(msg : string; nmbr : integer):
(* Take a number from a file or kybd, write into a new file ¥)
VAR x : real;
BEGIN
GoToXY (1,24);
WRITE (msg, nmbr,’ :7);
READ (parameters,x);
IF EOQOLN(parameters) THEN READLN (parameters);
WRITE (results,x:8:3);

- 46 -

END;

PROCEDURE FixTheString (VAR scratch : string);
VAR i : integer;
BEGIN

IF Pos(’.’,scratch) =
i := Pos(’ .’,scratch);
WHILE i > 0 DO

BEGIN

1 THEN Insert(’0’,scratch,l);

Insert (' 0’,scratch,i+l);
i := Pos(’ .’,scratch);

END;

i := Pos(’. ’,scratch);

WHILE i > 0 DO
BEGIN

insert (' 0’,scratch, i+l);
i := pPos(’'. ',scratch);

END;

i := length(scratch);
IF copy(scratch,i,1l) = ’.
END;

PROCEDURE initialize;
VAR i : integer;
scratch : string;

BE

thisfile, otherfile,

GIN

* THEN scratch := scratch + '0’;

fromkbd : boolean;

(*decay constants in inverse minutes *)
ILN(2)/3.11;
LN(2)/26.8;
IN(2)/19.9;
LN (2)/638.4;
IN(2)/60.5;

decayconst[1}
decayconst [2]
decayconst [3]
decayconst (4]
decayconst [5]

(*alphaenergies in nano joules *)

(*

*)

alphaenergy(1]
alphaenergy (2]
alphaenergy([3]
alphaenergy{4]
alphaenergy{5]

halfpage := 0;
FOR j :=1to 5

13.
7

7
7.
7

69*1

.69%1
.69*1

79%1

L79*1

.6021E-4:;
.6021E-4;
.6021E-4;
.6021E-4;
.6021E-4;

Pascal PROGRAM:
ExMaxDecayProd

DO eweight[j] := alphaenergy[j]*60.0/decayconst(j];

This code rewrites files prepared for RWRENNGW.BAS into a
standard form 'tempfile.dat’ for use by the present Pascal

program.

ClrScr;

WRITE (' Name of RWRENNGW-compatable data file ’):
READLN (infilename) ;

_47 -

T

(*

Pascal PROGRAM:
ExMaxDecayProd

ASSIGN (indata, infilename); RESET(indata);
ASSIGN (results, ‘tempfile.dat’); REWRITE (results);

ScanForTitle (indata) ;

WHILE NOT EOF (indata) DO
BEGIN

WRITELN (results,titleoftest)

Find source of parameters -~ thisfile, otherfile, fromkbd *)
READIN (indata, scratch);

thisfile := (Pos(’.’,scratch) > 0) AND (scratch[l] < ‘A") ;
otherfile := (scratchil] >= ’'A’});

fromkbd := NOT (thisfile OR otherfile);

IF otherfile THEN

BEGIN
ASSIGN (parameters, scratch);
RESET (parameters) ;
READLN (parameters, scratch);
CLOSE (parameters) ;

END;

IF thisfile OR otherfile THEN

BEGIN
(* fix the ’'naked decimal points’ that TURBO doesn’t like *)
FixTheString(scratch);
WRITELN (results, scratch);

END;

IF fromkbd THEN

BEGIN
(* construct and insert the parameters line. ¥*)
ASSIGN (parameters, 'CON’') ;

RESET (parameters) ;
FOR i := 1 TO 5 DO transcribe(’count effic’,i);
WRITE (results, 1,1,1,0,0,0);
transcribe (‘bkgd count time r,0);
transcribe ('bkgd count r,0);
transcribe (' dead time each pulse, us’,0);
transcribe (' flowrate, Lpm r,0);
transcribe (’sampling time, min r,0);
transcribe ('’ transfer time, s r,0);
transcribe (' time per count r,0);
transcribe (’time between counts r,0);
WRITELN (results)
CLOSE (parameters) :

END;

REPEAT

READLN (indata, scratch) ;
WRITELN (results, scratch);

- 48 -

Pascal PROGRAM:
ExMaxDecayProd

UNTIL scratch[0] = CHR(0):;
ScanForTitle (indata) ;

END;
CLOSE (indata); CLOSE (results);

ClrScr;

WRITE (' Enter limit on number of EM iterations ‘);
READLN (maxiter) ;

WRITE ('Enter EM convergence criterion (<< 1) ');
READLN (concriterion) ;

WRITELN;

WRITELN('Data was taken from file " ,infilename) ;
WRITE (' Enter name of file for output ’);

READLIN (outfilename) ;

ASSIGN(indata,’'tempfile.dat’); RESET(indata);
ASSIGN (results, outfilename); REWRITE (results);

END;

PROCEDURE GetNextData;

(*

Reads the next block of data from 'tempfile.dat’. *)
VAR i : integer;
x : real;
GIN

BE

(*

*)

ScanForTitle (indata) ;

IF NOT EOF (indata) THEN
BEGIN
GoToXY (1,23);
i = 0;
WHILE i < 19 DO
BEGIN
i::=1i+4+1;
IF EOLN(indata) THEN READLN (indata);
READ (indata, x);

CASE i OF
1,2,3,4,5 : cntefficli] = x;
discard the next 6 numbers
12 : bkgdtime = x;
13 : bkgdcount = TRUNC (x) ;
14 : deadtime = x*1.0E-6/60.0;
15 : flowrate = x;
16 : sampletime = x;
17 : transfertime := x/60.0;
18 : timepercount := x/60.0;
19 : timebtwncnts := x/60.0
END;
END;

- 49 -

Pascal PROGRAM:
ExMaxDecayProd

i = 0;
REPEAT
WHILE NOT EOLN (indata) DO
BEGIN
i::=1i+1;
IF i «¢= 2000 THEN READ (indata, counts[i]):;
END;
READLN (indata) ;
UNTIL EQOLN(indata);
IF i < = 2000 THEN numcounts := i ELSE i

2000;

IF (counts[1l] < 0) THEN

BEGIN
FOR i := 2 TO numcounts DO counts[i-1]
numcounts := numcounts - 1;
transfertime := transfertime + timepercount + timebtwncnts;

END;

counts[i];

END;
END;

PROCEDURE buildthekernel;
BEGIN
i:=1;
t0 := sampletime;
ta := t0 + transfertime;
inthebag := 0;
dothoron := (timepercount*numcounts > 300.0);
IF dothoron THEN numnuclides := 5
ELSE numnuclides := 3;

REPEAT
nextblock := numcounts - inthebag;
IF nextblock > inthebag THEN nextblock := inthebag;
IF nextblock = 0 THEN nextblock := 1;

cntsperblk{i] := 0;
FOR j := 1 TO nextblock DO
cntsperblk[i] := cntsperblk[i] + counts[inthebag + j];

rawdata[i] := (cntsperblk[i] - nextblock*timepercount*bkgdcount/bkgdtime)*
(1.0 + (nextblock -1)*timebtwncnts/ (nextblock*timepercount));

tb

ta + nextblock*timepercount
(nextblock -1) *timebtwncnts;

+

kernel[i, 1] Gl1l(tb,t0) - Gll(ta,tO0)
G31(tb,t0) - G3l(ta,t0);
kernel[i, 2] G32(tb,t0) - G32(ta,t0);
kernel (i, 3] G33(tb,t0) - G33(ta,t0);
IF dothoron THEN

BEGIN

kernel([i, 4] := G54(tb,t0) - G54(ta,t0):

W+

- 50 -

Pascal PROGRAM:
ExMaxDecayProd

kernel[i,5] := G55(tb,t0) - G55(ta,tl);
END;

FOR j := 1 to numnuclides DO
kernel([i,j] := kernel[i, jl*cnteffic[jl*flowrate/1000.0;

GoToXY (1,24):;
WRITE (' rawdata[’,i1:2,’] = ',rawdata[i]:12:3);
numdatapts := i;

i:=13i+1;
ta := tb + timebtwnents;
inthebag := inthebag + nextblock;
UNTIL (inthebag = numcounts) OR (i = 12);
END;

PROCEDURE printresults (VAR outpath : text):
BEGIN
WRITELN (outpath, /' *EX-MAX CALCULATION of DECAY PRODUCT CONCENTRATION ... for
data set:’);
WRITELN (outpath,titleoftest);
WRITELN (outpath,

WRITELN (outpath,’ ’:33,
’ Nuclide Concent. 1l-sigma’);
WRITELN (outpath, ’'Flowrate, Lpm ", flowrate:14:2,' r,
’ Po-218 ’,dpconc[l]:9:3,stderr[1]:9:3,’ Bg/m3');
WRITELN (outpath, ' Sample time, min’, sampletime:14:2,’ ’,
’ Pb-214 ’,dpconc[2]:9:3,stderr[2]:9:3,’ Bq/m3');
WRITELN (outpath, ' Transfer time, s’,ROUND(60*transfertime) :14,’
’ Bi-214 ’,dpconc{3]:9:3,stderr[3]:9:3,’ Bg/m3');

IF dothoron THEN
BEGIN
WRITELN (outpath,’ ’:33,
’ Pb-212 ’,dpconc([4]:9:3,stderr[4]:9:3, Bg/m3');
WRITELN (outpath,’ ’:33,
r Bi-212 ’,dpconc[5]:9:3,stderr[5]:9:3,’ Bq/m3’);
END;

WRITELN (outpath,’ ’:33,

’ Wtdave ’,dpconc[6]:9:3,stderr[6]:9:3,’ Bg/m3’);
WRITELN (outpath) ;
WRITELN (outpath,’ ' :33,

’ PAEC ' , dpconc[7]:9:3,stderr[7]:9:3,’ nJ/m3');
WRITELN (outpath,’ ’:33,

4 PAEC ' ,dpconc[8]:9:3,stderr[8]1:9:3,’ mWL’);
WRITELN (outpath) ;

.51 -

Pascal PROGRAM:

ExMaxDecayProd
WRITELN (outpath,’ ’:33,’ Block Counts RawData FitData’):;
FOR i := 1 TO numdatapts DO
BEGIN
CASE i OF
1 : WRITE (outpath, 'Number of count intervals’, numcounts:5,’ I
2 : WRITE (outpath, 'Calculation done (Yr,Mo,Dy))
3 : WRITE (outpath,’ ’:17,year:5,month:4,day:4,"’ Y
4 : WRITE (outpath,’Convergence criterion’, concriterion:9:5,’ "y
5 : WRITE (outpath,’Iterations (max’ maxiter:6,’)’,lastiter:8,’)
ELSE
WRITE (outpath,’ ’:33);
END;

WRITELN (outpath,i:5, cntsperblk({i]:8, rawdata[i]:10:2, fitdata[i]:10:2);
END;

chisqr := 0.0;
FOR i := 1 TO numdatapts DO

chisqr := chisqgr + SQR(rawdatal[i] - fitdata[i])/fitdatal[i];
WRITELN (outpath,’ ‘:43,° Chisqr =',chisqr:10:2);

WRITELN (outpath,
END;
BEGIN (* MAIN PROGRAM *)
ClrScr;
Window(14,10,80,25);
GetDate (year, month, day, dayofweek);

WRITELN ('EM Calculation of Rn-Th Decay Product Concentration’);
WRITELN;

WRITELN (' Pascal Program by E.O. Knutson, 1988');
WRITELN;

WRITELN(’ Patterned after Maher and Laird’’s 1985 paper on');
WRITELN (’/ unfolding data from diffusion batteries.’):
WRITELN;

IF NOT kbquery(’'Ready to start?’) THEN EXIT;

Window(1l,1,80,25);

initialize;
GetNextData:
REPEAT
buildthekernel;
initguess := counts[1]1*(1000.0/flowrate/sampletime)
/ (cnteffic[l] *timepercount*60.0) ;
FOR j := 1 TO 8 DO
BEGIN
dpconc([j] := initguess;
IF j > numnuclides THEN dpconc[j] := 0.0;

-52 -

Pascal PROGRAM:
ExMaxDecayProd

stderr[j] := -1.0;
END;

IF dothoron THEN (* do 20 iterations to get better start on Bi-212 *)
BEGIN
ExpectMax (rawdata, numdatapts, numnuclides, 20,
0.00001, kernel, dpconc, lastiter, fitdata, ok):;
dpconc[5] := dpconc[4];
END;

ExpectMax (rawdata, numdatapts, numnuclides, maxiter,
concriterion*initguess, kernel, dpconc, lastiter, fitdata, ok);
(*
In this case, for sure, the data itself is a good estimate

of the variance; hence ’'fitdata’ in the PROC call below.
*)

StandardErr (fitdata, numdatapts,numnuclides, kernel, stderr, ok);

sum := 0.0;
dpconc[7] := 0.0;
FOR j := 1 TO numnuclides DO
BEGIN
dpconc[7] := dpconc[7] + dpconc[j]*eweight[j];
sum := sum + eweight[j]:
END;
dpconc[6] := dpconc([7]/sum;
dpconc[8] := dpconc[7]1/20.8;
temp := 0.0;
FOR j := 1 TO numnuclides DO
FOR k := 1 TO numnuclides DO

temp := temp + eweight[j]*eweight [k]*matrix2(]j, k];

stderr{7] := SQRT (temp);
stderr[6] := stderr[7]/sum;
stderr([8] := stderr[7]1/20.8;
ClrScr;

printresults (output);

halfpage := halfpage + 1;

IF (halfpage MOD 2) = 1 THEN WRITELN (results, ‘*n*’);
printresults (results)’

getnextdata;

UNTIL EOF (indata) ;
CLOSE (results) ;

END.

- B3 -

Pascal PROGRAM
ExMaxGradedScrn

Appendix F
File ExMaxGS.Pas

PROGRAM ExMaxGradedScreen; (* £file name ExMaxGS.PAS *)

(*

This program is for use in unfolding Graded Wire Screen data.
There is a choice of using the Twomey algorithm or the
Expectation-Maximization algorithm (which code is based on
Edward Maher’s Fortran program for diffusion battery data).
The whole package is very similar to my 1/88 Pascal program
ExMaxDB.

Original Maher program : December, 1983

This Pascal program : April, 1988
Refinements : June, 1988
*)
Uses Crt, Dos, mtrx, algorithm, globals, datamessage;
TYPE arrytyp4 = ARRAY ['A’..’J’] OF real;
VAR titleoftest : string;

scrnsdata, results : text;

rawdata, fitdata, rawerror,
datavariance : datavector;

spectrumpt, spectrum,
stderr : rsltvector;

kernel : kernelmatrix;

wirediam, thickness,
solidfrac : arrytypé4:

scrnconfig, infilename,

outfilename : string;
maxmaher, maxtwnmy,
lastmaher, errorscale : integer;

i, j, numspecpts, numdatapts: integer;

oksofar, errorterms,
savematrix : boolean;

flowrate, flowarea,

-54 -

Pascal PROGRAM

ExMaxGradedScrn
concriterion, twmyspeed,
cap, rawmax : real;
gsident : char;
FUNCTION kbquery(msg : string) : boolean;
VAR query : char;
BEGIN
REPEAT
WRITE (msg,’ enter Y or N ')
READLN (query)
UNTIL query IN ['y’,’Y’,'n’,'N'];
kbquery := (query IN ['y','¥']);
END;
PROCEDURE ScanForTitle (VAR inputfile : text);
VAR validtitle : boolean;
BEGIN
WINDOW(1,1,80,24);
REPEAT
READLN (inputfile, titleoftest);
validtitle := (length(titleoftest) > 0) AND (titleoftest[1l] <> 7 *')

AND (titleoftest[l] <> 7 ');
IF NOT validtitle THEN WRITELN (results,titleoftest);
GoToXY (1,23); WRITELN(’' ':72);
GoToXY (1l,23); WRITELN (titleoftest);
UNTIL validtitle OR EOF (inputfile) ;
END;

PROCEDURE StartGradScrn;

(* set largest and smallest diffusion coefficient, cm2 s-1 *)
CONST maxspecpt = 0.08;
minspecpt = 8E-5;

VAR gstep : real;
j : integer;

PROCEDURE countandcnvt (VAR strng : string; Var count : integer);

VAR i : integer;

BEGIN
count
FOR i

BEGIN
IF strng[i] in ["a’..’z’] THEN
strng[i] := CHR(ORD(strng({i]) - 32);
IF strng[i] in ['A’..’Z’'] THEN
count := SUCC(count);

0:
1 TO ORD(strng[0]) DO

END;
END;

PROCEDURE emlscreens; (* wirediam, thickness incm *)

- 55 -

Pascal PROGRAM

ExMaxGradedScrn
BEGIN
wirediam[’A’] := 0.039; thickness[’A’] := 0.0838; solidfrac({’A’] := 0.215;
wirediam[’B’] := 0.016; thickness[’'B’] := 0.0356; solidfrac[’B’] := 0.36;
wirediam[’C’] := 0.010; thickness['C’] := 0.0249; solidfrac[’C’] := 0.308;
wirediam[’D‘] := 0.0040; thickness['D’] := 0.0135; solidfrac['D’] := 0.275;
wirediam[‘E’] := 0.0020; thickness['E’] := 0.0050; solidfrac[’E’] := 0.345;
END;
BEGIN
ClrScr;

Window(16,1,80,25);

WRITELN (' Analysis of Data from Graded Wire Screens’):
WRITELN (' Based on Cheng-Yeh equation for screen efficiency’);
WRITELN (' and on Holub-Knutson-ACS front to back ratios’);
WRITELN (' Choice of Twomey or Expectation-Maximization’);
WRITELN (' iteration algorthms - or both!’);

WRITELN;

WRITELN (' Pascal program by Earl O. Knutson’):

WRITELN(’ EML/USDOE, April, 1988’);

WRITELN;
IF kbquery(’Need a reminder on data format?’) THEN
BEGIN
dataformat;
IF NOT kbquery(’'Are you ready to continue?’) THEN HALT;
END;
Window(1,1.80,25);
ClrScr;
emlscreens;
WRITELN ('’ Standard Screens: A - EML 20 mesh’);
WRITELN (’ B - EML 60 mesh’):;
WRITELN ('’ C - EML 100 mesh’);
WRITELN (' D - EML 200 mesh’);
WRITELN (’ E - EML 635 mesh’);
WRITELN (/ F - filter'):;
WRITELN;
gsident := 'F’;
WHILE kbquery(’Are there any other screens’) DO
BEGIN

gsident := SUCC(gsident);
WRITE (' screen ' ,gsident,’ diameter of wires in cm ’);
READLN (wirediam([gsident]) ;

WRITE (' thickness of screen in cm ') ;
READLN (thickness[gsident]);
WRITE (' solid fraction "y
READLN (solidfrac[gsident]) ;

END;

- 56 -

Pascal PROGRAM
ExMaxGradedScrn

REPEAT
WRITELN;
WRITELN (' Enter the screens used (from the set A to ’,gsident,’), and show’):

WRITELN (' their configuration. Use contiguous letters (no spaces) to’);

WRITELN (' indicate "arranged in series"; use spaces to indicate "arranged’);

WRITELN('in parallel." For series arrangement, assume airflow is left to
right.’);

WRITELN (' Example: BCD F means filter in parallel with the series group
BCD.'):;

WRITELN;

WRITE (' -+-+-+- Enter configuration --> ’);

READLN (scrnconfig) ;

countandcnvt (scrnconfig, numdatapts);

WRITELN (scrnconfiqg, ’ Number of collectors = ’,numdatapts:3);

WRITELN;

UNTIL NOT kbquery(’'Would you like to reconsider?’);

ClrSer;
WRITELN('enter filenames - ') ;
WRITE (’ - of input)
READLN (infilename) ;
WRITE(’ - for output ’);
READLN (outfilename) ;
errorterms := kbquery(’error terms in input file?’);
savematrix := kbquery(’save matrices with output’);
WRITELN;
WRITE (' Enter flowrate, Lpm)
READLN (flowrate) ;
WRITE ('Enter flow area of screens in cm2 (e.g., 2.78) ');
READLN (flowarea) ;
WRITELN;
WRITE('no. of spectrum points for the integration ‘);
READLN (numspecpts) ;
IF numspecpts > numdatapts THEN
BEGIN
WRITELN(’....Since numspecpts > numdatapts, ExMax'):
WRITELN ('’error calculation will not be done.’);
WRITELN;
END;

WRITELN (' enter max # of iterations,=>0’):;

WRITE (’ - for twomey ")
READLN (maxtwmy) ;
WRITE(’ - for expect. max. '});
READLN (maxmaher) ;

twmyspeed := 0.0;
IF maxtwmy > 0 THEN
BEGIN
WRITE (' enter twomey speed factor ');
READLN (twmyspeed) ;

- 57 -

Pascal PROGRAM

ExMaxGradedScrn
END;
concriterion := 0.0;
IF maxmaher > 0 THEN
BEGIN
WRITE (' enter exmax conv. crit. ’);
READLN (concriterion) ;
END;
IF (maxmaher > 0) AND (numspecpts < = numdatapts) AND
(NOT errorterms) THEN
BEGIN
WRITELN;
WRITELN (' enter error scaling number, < 327687);
WRITE(’ (0 = autoscaling; negative = skip error calc "):
READLN (errorscale) ;
END
ELSE errorscale := -1;
randomize;
spectrumpt [1] := minspecpt:;
gstep := ln(maxspecpt/minspecpt)/(numspecpts - 1);
gstep := exp(gstep):
FOR j := 2 TO numspecpts DO spectrumpt([j] := gstep*spectrumpt[j-1]:;
WRITELN;
END;
PROCEDURE GetGSMatrix;
VAR nextscrn : char;
i, 3, k : integer;
penproduct : ARRAY [1..16] OF real;
velocity, forwardalphas, pen : real;
FUNCTION ChengYeh (diffcoef, facevel, wirediam,
thickness, solidfrac : real) : real;
CONST pi = 3.14159;
VAR B, Pe : real;
BEGIN
. B := 4*solidfrac*thickness / pi / (1 - solidfrac) / wirediam;
Pe := facevel*wirediam / diffcoef;
ChengYeh := EXP(-2.7*B / EXP (2*LN(Pe)/3));
END;
BEGIN
velocity := 1000*flowrate/60/flowarea;
INSERT (' ’, scrnconfig, 1); (* make sure we lead with a space *)

i:=0; Xk :=0;
WHILE i < ORD(scrnconfig[0]) DO
BEGIN

- 58 -

|

Pascal PROGRAM
ExMaxGradedScrn

i:=1i4+1;

nextscrn := scrnconfig(i];

If nextscrn in ['A’..'J’'] THEN k := k + 1;
CASE nextscrn OF

"/ : FOR j := 1 TO numspecpts DO penproduct[j] := 1;
(* means first collector in a series *)
'F’ : FOR j := 1 TO numspecpts DO
BEGIN
kernellk, j] := penproduct[j]:;
penproduct [§] := 0.0
END
ELSE
BEGIN
FOR j := 1 TO numspecpts DO
BEGIN
pen := ChengYeh (spectrumpt[j], wvelocity, wirediam[nextscrn],
thickness [nextscrn], solidfrac[nextscrn]);
forwardalphas := 0.85*(1 - pen);
IF forwardalphas < 0.67 THEN forwardalphas := 0.67;

('k
Note: ’'forwardalphas’ refers to that fraction of the screen alpha
activity which impacts on the detector. More precisely, it is the
ratio of the count rate from the deposit on the screen to the count
rate for the same activity deposited on the face of a filter.

The equation just above for forwardalphas is derived from the front to
back ratios in the Holub-Knutson ACS paper. The 1.07 loss correction

is incorporated.

*)
kernel(k, j] := penproduct[j]l*forwardalphas*(l - pen):
penproduct [j] := penproduct[j]*pen
END;
END;
END;
END;
END;

PROCEDURE PrintResults (spectrum, stderr : rsltvector;
rawdata : datavector;
lastiter : integer;
VAR outpath : text;
ok : boolean):;

VAR i, 3, k : integer;
bigg, logstep, chisqgr : real;
year, month, day, dayofweek : word;

BEGIN
GetDate (year,month,day, dayofweek) ;
logstep := Ln(spectrumpt[2]/spectrumpt[1])/Ln(10);

forwardcalc (spectrum, numdatapts, numspecpts, kernel, fitdata);

- 59 -

(*

WRITELN (outpath, titleoftest);
WRITELN (outpath, ' Screens Used: ’,scrnconfig,
Flowrate: ', flowrate:6:2,’' Lpm');

WRITELN (outpath, 'Calculated yr,mo,dy:
’ Error scale factor:

1 .

Pascal PROGRAM
ExMaxGradedScrn

*,year:5,month:3,day:3,
! ,errorscale:6);

IF NOT ok THEN

WRITELN (outpath,’ Calculation did not converge as it should’);

bigg := 0.0;

convert to DA/DlogDC & find peak value *)

FOR j := 1 TO numspecpts DO

BEGIN
spectrum[j] := spectrum[j]/logstep;
IF stderr[j] > 0 THEN stderr[j] := stderr[j]/logstep;
IF spectrum{j] > bigg THEN bigg := spectrum[j];

END;

WRITELN (outpath) ;

WRITELN (outpath, 'DC,cm2/s DA/DlogDC 1l-sigma’)

FOR
BEGI

WRITE (outpath, spectrumpt [j] :7,

k
i
WH
BE

j := 1 TO numspecpts DO

N

stderr[j]:8:2,

r

*’);

:= ROUND (50.0*spectrum[j]/bigg) ;

= 1;
ILE i <= k DO
GIN

IF (i MOD 5) = 0 THEN WRITE (outpath,’*’)

’

spectrum{j]}:10:2,

FIT');

;maxtwmy:6) ;

, twmyspeed:6) ;
,lastiter:6);
,concriterion:é6);
,matproof:8)

ELSE WRITE (outpath, '+');
i:=1i+1;
END;
WRITELN (outpath) ;
END ;
WRITELN (outpath) ;
WRITELN (outpath, ' TAP RAW l-sigma
FOR i := 1 TO numdatapts DO
BEGIN
WRITE (outpath,i:3, rawdata[i]:10:2, rawerror[i]:10:2,fitdata[i]1:10:2);
CASE i OF
1 : WRITE(outpath,’ Twomey iterations: '/
2 : WRITE (outpath,’ speedfactor: ’
3 : WRITE (outpath,’ ExMax iterations: ’
4 : WRITE (outpath,’ concriterion: '
5 : WRITE (outpath,’ test of matrix inver’
END;
WRITELN (outpath)

END;

END;

Pascal PROGRAM
ExMaxGradedScrn

IF errorterms THEN

BEGIN
chisqr := 0.0;
FOR i := 1 TO numdatapts DO chisqr := chisqr +

SQR((rawdata[i] - fitdata[i])/rawerror[i]):
WRITELN (outpath, ’ /:13,’ Chisqr = ’,chisqr:10:2);

END;
FOR j := 1 to 78 DO WRITE(outpath,’-’); WRITELN (outpath);
WRITELN (outpath) ;

PROCEDURE PrintPenMatrix;

VAR

i,j : integer;

BEGIN

END;

FOR i := 1 TO numdatapts DO

BEGIN
FOR j := 1 TO numspecpts DO
WRITE (results, kernel[i, j]:12);
WRITELN (results) ;
END;

WRITELN (results) ;

PROCEDURE PrintErrMatrices;

VAR

i,3j : integer;

BEGIN

END;

FOR i := 1 TO numspecpts DO
BEGIN
FOR j := 1 TO numspecpts DO
WRITE (results, matrixl(i, j]:12);
WRITELN (results) ;
END;
WRITELN (results) ;

FOR i := 1 TO numspecpts DO
BEGIN
FOR j := 1 TO numspecpts DO
WRITE (results, matrix2[i,b j]:12);
WRITELN (results)
END;
WRITELN (results);
WRITELN (results);

BEGIN (* PROGRAM ExMaxGradedScreen %)

StartGradScrn;

-6l -

Pascal PROGRAM
ExMaxGradedScrn

WRITELN (' Start finished’);
GetGSMatrix;

Assign(scrnsdata, infilename);
RESET (scrnsdata) ;
Assign(results, outfilename);
REWRITE (results) ;

ClrScr;

ScanForTitle (scrnsdata);

WHILE NOT EOF (scrnsdata) DO

BEGIN
i:=0;
WHILE NOT EOLN (scrnsdata) DO
BEGIN
i:=41i+1;

READ (scrnsdata, rawdatal[i]):
IF errorterms THEN READ (scrnsdata, rawerror([i])
ELSE rawerror{i] := -1.0;

END;

READLN (scrnsdata);

oksofar := (i = numdatapts):
rawmax := 0.0;
FOR i := 1 TO numdatapts DO
IF rawmax < rawdata[i] THEN rawmax := rawdatafli]:

IF oksofar THEN
FOR i := 1 TO numspecpts DO

BEGIN
spectrum[i] := rawmax/numspecpts;
stderr[i] := -1.0;

END;

IF oksofar THEN
TwomeyAlg (rawdata, numdatapts, numspecpts, maxtwmy,
twmyspeed, kernel, spectrum, oksofar);

lastmaher := 0;
IF oksofar THEN
ExpectMax (rawdata, numdatapts, numspecpts, maxmaher,
concriterion*rawmax, kernel, spectrum,
lastmaher, fitdata, oksofar);

matproof := 0.0;
IF oksofar AND (numspecpts < = numdatapts) AND (lastmaher > 0) THEN
BEGIN
cap := 0.0;
FOR i := 1 TO numdatapts DO
IF fitdata{i] > cap THEN cap := fitdatal[i];

-62 -

(*

Pascal PROGRAM
ExMaxGradedScrn

As seen below, we provide three different ways to estimate the
input data variances needed to calculate standard errors:

First, if error terms are available in the input data stream
we use the square of those terms as the variance vector for
the input data;

Second, if error terms are not available and we have specified
a zero error scale factor in the keyboard input, we use the
fitted data vector as the estimate of variance;

Third, if the error scale factor set positive, the fitdata vector
is rescaled so that its maximum component is equal to the error
scale factor, and this is used as the variance estimate.

The second method - the one used by Ed Maher - is valid only if

the input data are actual raw counts. This is a necessary condition
for the Poisson distribution to be valid. (Even here, there are
probably other sources of variability that swamp the Poisson
variability.)

Options one and three are provided because, in our opinion, the
Poisson assumption is rarely valid for data from diffusion
batteries. We realize that there is a logical inconsistency

in the idea of maximizing the Poisson-based likelihood function
but using a non-Poisson estimate of variance. So be it - half
a loaf is better than none.

———————. *)

IF errorterms THEN
FOR i := 1 TO numdatapts DO datavariance[i] := SQR(rawerror[i]);

IF NOT errorterms AND (errorscale = 0) THEN
FOR i := 1 TO numdatapts DO datavariance[i]

fitdatal[i]:
IF NOT errorterms AND (errorscale > () THEN
FOR i := 1 TO numdatapts DO datavariance[i]

:= fitdata[i] *errorscale/cap;

StandardErr (datavariance, numdatapts, numspecpts, kernel,
stderr, oksofar);

IF NOT errorterms AND (errorscale > 0) THEN
FOR j := 1 TO numspecpts DO stderr[j] := stderr[j]*cap/errorscale;

END;
WINDOW(1l,1,80,22); ClrScr;

PrintResults (spectrum, stderr, rawdata, lastmaher, output,oksofar):
PrintResults (spectrum, stderr, rawdata, lastmaher, results,oksofar);

-63 -

Pascal PROGRAM
ExMaxGradedScrn

IF savematrix THEN
BEGIN
PrintPenMatrix;
IF (lastmaher > 0) AND (numspecpts < = numdatapts) THEN
PrintErrMatrices;
END;

ScanForTitle (scrnsdata);

END;

CLOSE (results);
WINDOW(1,1,80,24);
GoToXY(1l,23); WRITELN(' ':72);
WRITE('*** F I N I xKKI)

END.

UNIT globals;
INTERFACE
TYPE rsltvector

Appendix G
File Globals.Pas

ARRAY [1..16] OF real;

datavector = ARRAY [1..12] OF real;

kernelmatrix =
IMPLEMENTATION
BEGIN
END.

ARRAY [1..12,1..16] OF real;

- 65 -

Pascal UNIT:
Globals

Pascal UNIT:

mtrx

Appendix H
File Mtrx.Pas

UNIT mtrx;
INTERFACE

VAR matrixl, matrix2 : ARRAY [1..10,1..10] OF real;
matrixsize : integer;
matproof : real;
matsingular: boolean;

PROCEDURE MatInvert;

IMPLEMENTATION

PROCEDURE MatlInvert;

(*
MATRIX INVERSION WITH FULL PIVOTING FOR SIZE.

From a BASIC program by Brian J. Flynn in the
October, 1981 issue of COMPUTE!.

Transcribed into Pascal by Earl 0. Knutson,
January, 1988.

*)

CONST epsilonl = 1.0E-20;

TYPE arrytypl = ARRAY ([1..10,1..10] OF real;

VAR i, j, pivotpoint, col, row, 1, last : integer;
switchmap : ARRAY [1..10] of integer;
matrix3 : arrytypl;
pivot, t : real;

BEGIN

FOR i := 1 TO matrixsize DO
BEGIN
FOR j := 1 TO matrixsize DO
BEGIN
matrix2([i,j] := matrixl[i,]jl:
matrix3[i,j] := 0;
END;
matrix3(i,1i] := 1;
switchmap([i] := i;

- 66 -

Pascal UNIT:
mtrx

END;
pivotpoint := 1;
REPEAT
pivot := matrix2[pivotpoint,pivotpoint];

IF pivotpoint < matrixsize THEN
BEGIN
(*
Find pivot element, then reposition row or column.

*)

col
row

pivotpoint;
pivotpoint;

FOR i := pivotpoint + 1 TO matrixsize DO
BEGIN
IF ABS (matrix2[i,pivotpoint]) > ABS(pivot) THEN
BEGIN
pivot := matrix2[i,pivotpoint];
row := i; col := pivotpoint;
END;
IF ABS (matrix2[pivotpoint,i]) > ABS(pivot) THEN
BEGIN
pivot := matrix2[pivotpoint,i];
row := pivotpoint; col := i;
END;
END;

IF row > pivotpoint THEN

BEGIN
FOR i := 1 TO matrixsize DO
BEGIN
t := matrix2[pivotpoint,i];
matrix2 [pivotpoint,i] := matrix2[row,i]:
matrix2{[row,i] := t;
t := matrix3[pivotpoint,i];
matrix3[pivotpoint,i] := matrix3[row,i};
matrix3[row,i] := t;
END;
END;

IF col > pivotpoint THEN
BEGIN
FOR i := 1 TO matrixsize DO
BEGIN
t := matrix2[i,pivotpoint];
matrix2[i,pivotpoint] := matrix2[i,col];
matrix2[i,col] := t;
END;
1l := switchmap[pivotpoint]:
switchmap[pivotpoint] := switchmap[col];
switchmap[col] := 1;

- 67 -

Pascal
mtrx

END;
END; (* END OF IF pivotpoint < matrixsize *)

(*
Pivot point found and row/column repostioned.
Now do the Gauss-Jordan row arithmetic.
*)
matsingular := (ABS(pivot) < epsilonl);
IF matsingular THEN
BEGIN
WRITELN (' MATINVERT ABORTED - INPUT WAS SING.');
EXIT;
END
ELSE
BEGIN
FOR j := pivotpoint TO matrixsize DO
matrix2 [pivotpoint, j] := matrix2{pivotpoint, j]/pivot;
FOR j := 1 to matrixsize DO
matrix3[pivotpoint,j] := matrix3[pivotpoint,jl/pivot;

IF pivotpoint < matrixsize THEN last := matrixsize
ELSE last := matrixsize - 1;

FOR 1 := 1 TO last DO
BEGIN
IF 1 <> pivotpoint THEN
BEGIN
t := matrix2[1,pivotpoint];
FOR j := pivotpoint TO matrixsize DO
matrix2[1l,3j] := matrix2[1l,j] - t*matrix2[pivotpoint, j];
FOR j := 1 TO matrixsize DO
matrix3{1l,3j] := matrix3[1,j] - t*matrix3([pivotpoint, j];
END;
END;
END;

pivotpoint := pivotpoint + 1;
UNTIL (pivotpoint > matrixsize);

(*
unscramble rows of the inverted

matrix and store the result in matrix2.
*)

FOR i := 1 TO matrixsize DO
FOR j := 1 TO matrixsize DO
matrix2 [switchmap[i],j] := matrix3([i, j];

(*
Test the inverse matrix by forming the product with the
original matrix, and checking for clean "0"s and "1"s.

*)

matproof := 0.0;

- 68 -

UNIT:

Pascal UNIT:
mtrx

FOR i := 1 TO matrixsize DO
BEGIN
FOR j := 1 TO matrixsize DO
BEGIN
IF i = jJ THEN t := -1 ELSE t := 0;
FOR 1 := 1 TO matrixsize DO
t :=t + matrix1[i,l]*matrix2[1, j];
IF ABS(t) > matproof THEN matproof := ABS(t):
END;
END;
END;

- 69 -

TEXT FILE:
RWRENN

Appendix I
File RWRENN.TXT

This is a new rendering of the classical Raabe & Wrenn least
squares program for calculating radon and thoron daughter
concentrations from sequential gross alpha counts after sampling on
filters. The reference is Health Physics, 17, 593-605, 1969.

This program closely follows the R-W paper, including the naming
of variables. However, the automatic inclusion/dropping of nuclides
has not been implemented since we think this requires judgement.
Also, R-W are not very specific about how to propagate the error
terms for N-bar’s back through the equations to get the errors in the
air concentrations, C. This program follows a suggestion by
C. V. Gogolak of EML that the N-bar covariances, as well as their
variances, need to be propagated.

The input data is assumed to be in an ASCII disk file, and you
will be prompted for its name. The first line must be a title line
<80 characters long (avoid using "*" or a "blank space" as the first
character). The second line specifies the source of the nineteen input
parameters needed to do the calculation:

if the second line consists of a file name, the parameters will
be read from that file (which must contain exactly 19 numbers);

if the second line consists of numbers the first of which is a
fraction, the first 19 numbers will be used as the parameters;

if the first number is an integer, all input is stored as count
data; you will be prompted to enter parameters from the keyboard.

The actual count data begins (or continues) on the third line, one

or more integers per line. Within each line of numeric data, numbers
are demarked by commas or - if no comma is found - by spaces. The
final line of each block of data must be a nul line, or an
end-of-file mark.

The nineteen parameters are:
1-5

Counter efficiencX (fractional, not percent) for -
218p, 214p, 212p; 212p, pyclide X.

6-11
Which nuclides to analyze for - (enter 1 to analyze, 0 to skip)

218p,, 214py 214p, 212p;, 212p, pNyclide X

- 70 -

12-19

background count time, min,
counter dead time, microsec.,
flow rate, liters/min,
sampling time, min,

sample transfer time, sec,
length of each count, sec,

down time between counts, sec,

TEXT FILE:
RWRENN

TBG

TAU TAU = .000001*TAU/60
FLOWR

TSAMP

TTRANS TTRANS = TTRANS/60
TCOUNT : TCOUNT = TCOUNT/60
TDOWN TDOWN = TDOWN/60

In the last eight lines, the BASIC variables are shown; note that

all times are stored as minutes.

If the first count datum is negative,
TTRANS corrected by adding TCOUNT and TDOWN to it.

it is discarded and the
This allows

the user to delete the first count by prefixing a minus sign.

-71 -

BASIC PROGRAM:

RWRENNGW
Appendix J

File RWRENNGW.BAS
10 - E.O.Knutson, USDOE/EML, 9/86
20 'CLEAR 2000 : * (minor changes made 11/87, 3/88)
30 GOSUB 3360 : - Sign-on banner and formalities
40 GOSUB 3180 : * Define variables and set dimensions
50 GOSUB 2490 : ' Input next set of count data
60 GOSUB 2940 : ' Input counter effic’s & do prelim. cals’s
70 GOSUB 2770 : ' Input count timing and count bkgd
80 GOSUB 390 : Correct for deadtime & bkgd; get weight factors
90 GOSUB 240 : ' Compute S-matrix
100 GosuB 530 : - Compute A-matrix and B vector
110 GOSUB 670 : ' Format A-matrix for Gauss-Jordan
120 GOSUB 770 : Gauss-Jordan inversion routine
130 IF AMAX > .0001 THEN 210 :’inversion failed, abort calc
140 GOSUB 1230 : ’ Compute NBAR and its std error
150 GOSUB 1480 : 7’ Show NBAR, SE, AND variance-covariance matrix
160 GOSUB 1560 : * Build matrix for NBAR-to-C step
170 GosuB 770 : ' Call Gauss-Jordan again
180 GOSUB 1730 : ' Compute air conc’s & their std errors
190 GOSUB 2080 : ' Send results to screen and disk
200 GOTO 50
210 GOSUB 2430 : ' Print bad news message to screen & disk
220 GOTO 50
230

240 DEF FNX(J) = EXP (-LAMBDA (J)*BETA(I)) - EXP (-LAMBDA (J) *ALPHA (I))
250 FOR I = 1 TO N%
260 LOCATE 3,12 : PRINT "Compute S-matrix, step":;I

270 SA = ~ (F1 + F2*R2/LAMBDA(1)) *FNX (1)
280 IF KY(1) = 0 THEN 320
290 SB = - F2*R1/LAMBDA(2) *FNX(2)

300 SC = F2*(R1+R2)/LAMBDA(3) *FNX(3)

310 S(1,I) = SA + SB + sC

320 IF KY(2) = 1 THEN S(2,I) = - F2*R3/LAMBDA (2) *FNX(2) + F2*R3/LAMBDA (3) *FNX (3)
330 IF KY(3) = 1 THEN §(3,I) = - F2*FNX(3)

340 IF KY(4) THEN S(4,I) = F3*R4/LAMBDA(4) *FNX(4) - F3*R4/LAMBDA(5) *FNX(5)
350 IF KY(5) THEN S(5,I) - F3*FNX(5)

360 IF KY(6) = THEN S(6,I) - FA*FNX(6)

370 NEXT I : RETURN

380 -
390 IF CO(1) >= 0 THEN 430

400 FOR I = 1 TO N%-1 : CO(I) = CO(I+1l) : NEXT I

410 N% = N% -1

420 TTRANS = TTRANS + TCOUNT + TDOWN

430 FOR I = 1 TO N%

440 LOCATE 2,12 : PRINT "Compute weights & correct for bgd, step”" I

1]
H PR

72 -

BASIC PROGRAM:
RWRENNGW

450 CT = CO(I)/(1 - CO(I)*TAU/(BETA(I) - ALPHA(I)))
460 BG = CBG/TBG* (BETA(I) - ALPHA(I))

470 D(I) = CT - BG

480 SBG2 = ((BETA(I) - ALPHA(I))/TBG)~2*CBG

490 IF CO(I) <> 0 THEN SD2 = CT*CT/CO(I) + SBG2
500 W(I) = 1/SD2

510 NEXT I : RETURN

520

530 FOR J =1 TO 6 : FOR JP = J TO 6

540 A(J,JP) = 0 : IF KY(J)*KY(JP) = 0 THEN 570

550 FOR I = 1 TO N%

560 A(J,JP) = A(J,JP) + W(I)*S(J,I)*S(JP,I) : NEXT I
570 A(JP,J) = A(J,JP)

580 LOCATE 4,12 : PRINT "Compute A-matrix, element";J;JP;
590 PRINT USING" #.##+~~~";A(J,JP) : NEXT JP : NEXT J
600
610 FOR J = 1 TO 6

620 B(J) = 0 : IF KY(J) = 0 THEN 650

630 FOR I = 1 TO N%

640 B(J) = B(J) + W(I)*D(I)*S(J,I) : NEXT I
650 NEXT J : RETURN

660
670 K=0 : FORJ =1 TO 6

680 IF KY(J) = 1 THEN K = K+1 : JM(K) = J
690 NEXT J : J9 = K

700 FOR J =1 TO 6 : FORJP =1 TO 6

710 AX(J,JP) = 0 : NEXT JP,J

720 FOR J =1 TO K : FORJP =1 TO K

730 AX(J,JP) = A(JIM(J),IM(JP))

740 NEXT JP, J

750 RETURN

760 ' ===

770 FOR J =1 TOK : FOR JP = 1 TO K

780 X(J,JP) = AX(J,JP) : X(J,K+JP) = - (J=JP)

790 NEXT JP : M%(J) = J : NEXT J

800 ’INVERT MATRIX, PER ARTICLE IN COMPUTE! MAGAZINE, 10/81

810 FOR Q% = 1 TO K : LOCATE 5,12 : PRINT "Inverting matrix, step";Q%
820 IF Q% = K THEN 910

830 HE = ABS(X(Q%,Q0%)) : HR=0 : HC = 0

840 FOR I =1 TO K - Q%

850 DV = ABS(X(Q% + I,Q%)) : IF DV>HR THEN HR = DV : R% = Q% + I

860 DV = ABS(X(Q%,Q% + I)) : IF DV>HC THEN HC = DV : C% = Q% + I

870 NEXT I

880 IF HE >= HR AND HE >= HC THEN 910

890 IF HR >= HC THEN FOR J = 1 TO 2*K : HO = X(R%,J) : X(R%,J) = X(Q%,J)

X(Q%,J) = HO : NEXT J

900 IF HR<HC THEN FOR J = 1 TO K : HO = X(J,C%) : X(J,C%) = X(J,Q%) : X(J, Q%) =
HO : NEXT J : H1% M% (Q%) : M%(Q%) = M$(C%) : M%(C%) = Hl%

910 B = X(Q%,Q0%) : IF B = 0 THEN PRINT"SINGULAR MATRIX" : STOP

920 FOR J = Q% TO 2*K

930 X(Q%,J) = X(Q%,J)/B

940 NEXT J

950 FOR L% = 1 TO K

-73 -

BASIC PROGRAM:
RWRENNGW

960 IF L% = K AND K = Q% THEN 1020

970 IF L% = Q% THEN L% = L% + 1

980 D = X(L%,Q%)

990 FOR J = 1 TO 2*K

1000 X(L%,J) = X(L%,J)-D*X(Q%,J)

1010 NEXT J

1020 NEXT L%,Q%

1030 FOR I = 1 TO K

1040 C% = 0

1050 FOR J = 1 TO K

1060 IF M¥(J) = I THEN C% = J

1070 NEXT J

1080 IF C<>I THEN FOR L%
L%) : X(C%,K + L%)
= H1%

1090 NEXT I

1100 'CHECK QUALITY OF INVERSE

1110 AMAX = 0

1120 FOR I = 1 TO K

1130 FOR J =1 TO K : A = (I=J)

1140 FOR L% = 1 TO K

1150 A = A + X(I,K + L%)*AX(L%, J) : NEXT L%

1160 IF ABS(A) > AMAX THEN AMAX = ABS (3a)

1170 LOCATE 6,12

1180 PRINT USING “"Check quality of inverse # # #.H##¥##H# ", I, J, AMAX;

1190 NEXT J,I

1200 RETURN

1210 *

1220 ' make a copy of the variance-covariance matrix

1230 FOR J =1 TO 6 : FOR JP = 1 TO 6

1240 AI(J,JP) = 0 : NEXT JP,J

1250 FOR J =1 TO J9 : FOR JP = 1 TO J9

1260 AI(JM(J),JM(JP)) = X(J, J9+JP) :NEXT JP,J

1270 ‘====now calculate the nbar'’'s

1280 FOR J = 1 TO 6

1290 NBAR(J) = 0 : IF KY(J) = 0 THEN 1320

1300 FOR JP = 1 TO 6

1310 NBAR(J) = NBAR(J) + AI(J,JP)*B(JP) : NEXT JP

1320 NEXT J

1330 ’====and the overall variance

1340 s2 = 0 : FOR I = 1 TO N%

1 TO K : HO = X(I,K + L%) : X(I,K + L%) = X(C%,K +
HO : NEXT L$: H1% = M%(I) : M%(I) = M$(C%) : M%(C%)

1350 S1 =0 : FORJI =1 TO 6

1360 S1 = S1 + NBAR(J)*S(J,I) : NEXT J
1370 S2 = S2 + W(I)*(S1 - D(I))*2 : NEXT I
1380 S2 = S2/(N% - J9)

1390 ‘====and the std errors of the nbar’'s
1400 'This exactly follows the Raabe-Wrenn paper. Note that the
1410 ’'std errors are calculated from a combination of: 1) the fit of
1420 ‘the data points to the regression curve, 2) the magnitude of
1430 ’'the input counts (as reflected in the elements of the var-cov
1440 'matrix AI).

1450 FOR J=1 TO 6 : SE(J) = SQR(AI(J,J)*S2) : NEXT

1460 RETURN

- 74 -

1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570

1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980

'==== show nbar, se, & variance-covariance matri
CLS : LOCATE 2,1 PRINT TIS

LOCATE 7,12 PRINT TAB(27)"Variance = ";S82
PRINT"Nuclide Nbar Std.Err. = Covariance Matrix ="
FOR J = 1 TO 6 : PRINT NUCLS$ (J);

PRINT USING " ########". NBAR(J); SE(J);

FOR J1L = 1 TO 6 : PRINT USING" ########",; AI (T, J1);
NEXT J1 : PRINT "" : NEXT J : RETURN
DEF FNY(J) = (1 - EXP (-LAMBDA (J) *TSAMP)) /LAMBDA (J)

DEF FNZ (J1) = (EXP(-LAMBDA (J1)*TSAMP) - EXP (-LAMBDA (J2) *TSAMP)) / (LAMBDA (J2)

- LAMBDA (J1))
LOCATE 3,12 : PRINT"Calculate back to concentrations in air
’ Build lower diagonal matrix which relates nbar to ¢
K=6 : FORJ=1TOK : FORJP =1 TO K
AX(J,JP) = 0 : NEXT JP,J
AX(1l,1) = FNY(l) : AX(2,2) = FNY(2)
J2 =1 : AX(2,1) = AX(2,2) - FN2z(2)
AX(3,3) = FNY(3) : J2 = 3 : AX(3,2) = AX(3,3) -~ FNzZ(2)
IM = LAMBDA (2)/ (LAMBDA (1) - LAMBDA(2))
AX(3,1) = AX(3,2) - LM*FNZ(2)
J2 =1 : AX(3,1) AX(3,1) + LM*FNZ(3)
AX(4,4) = FNY(4) : AX(5,5) = FNY(5)

J2 = 4 : AX(5,4) = AX(5,5) - FNzZ(5) : AX(6,6) = FNY(6)
RETURN : 'MATRIX READY FOR INVERTING

’

’‘Compute the air concentrations

FOR J =1TOK : C(J) =0

FOR JP = 1 TO K

C(J) = C(J) + X(J,JP+K) *NBAR (JP)

NEXT JP,J

FOR J =1 TO K : C(J) = C(J)/FLOWR : NEXT

'Now the std errors for the air concentrations.

’'The Raabe-Wrenn paper is unclear about this step, so we
’improvise. We follow CVG/EML who notes that C(3), for
'example, is calculated from nbar(l)...nbar(3), and so
‘has error contributions from all three. Furthermore,
'the errors in the three are correlated. We have to
’propagate not only the variance of the three, but also
'their covariance. Hence, the use of the full variance-
fcovariance matrix, AI(J1,J2)*S2.

FOR J=1TOK : CE(J) =0

FOR J1 =1 TOK : FOR J2 =1 TO K

CE(J) = CE(J) + X(J,J14K)*X(J,J2+K) *AI (J1,J2) *S2

NEXT J2,J1 : CE(J) = SQR{(CE(J)) : NEXT J

FOR J =1 TO K : CE(J) = CE(J)/FLOWR : NEXT

‘====now the PAEC
‘Note: the PAEC error calc was completely revised 11/87
‘Prior to that, we used "adding at right angles" which
‘gives answers too large. See below for further change, 3/
PAEC = 0 : PERR = 0

FORJ=1TOK : PP(J) =0

PAEC = PAEC + ENERGY (J) *C(J)

- 75 -

BASIC PROGRAM:
RWRENNGW

(1]

88

1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160

2170
2180
2190
2200
2210
2220

2230
2240
2250
2260
2270
2280
2290

2300

2310
2320
2330

2340
2350
2360
2370
2380
2390

2400
2410
2420
2430
2440

BASIC PROGRAM:

RWRENNGW
FOR J1 =1 TO K
PP{J) = PP(J) + ENERGY(J1)*X(J1,J+ K) : NEXT J1,J
FOR J1 = 1 TO K : FOR J2 = 1 TO K
PERR = PERR + PP (Jl) *PP (J2) *AI (J1,J2) *S2
’ /[FLOWR was added two lines down in late 3/88.
‘This corrects an oversight in the 11/88 revisions.
NEXT J2,J1 : PERR = SQR(PERR) /FLOWR
RETURN
’
CLS : PRINT TI$: PRINT"Results in terms of atoms" : PRINT
PRINT"Nuclide atoms/liter std. error"
FOR J =1 TO 6
PRINT USING™\ \ t13 20 3 #4## . ## NUCLS (J),C(J) ,CE(J)
NEXT
PRINT : PRINT"Results in terms of bequerels" : PRINT
PRINT"Nuclide Bq/m3 std. error"
FOR J =1 TO 6
PRINT USING"\ \ R4 44

$###. ##";NUCLS (J),C(J) *LAMBDA (J) *1000/60, CE (J) *LAMBDA (J) *1000/60
NEXT : TSHOW = TIMER

IF FO$ = "" THEN 2410

PRINT#2,"" : PRINTH#2,"" : PRINT#2, TI$

FOR I = 1 TO 5 : PRINTH#2, USING" ###.###";PHI(I); : NEXT

FOR I =1 TO 6 : PRINT#2, USING" #";KY(I); : NEXT : PRINT#2,6""

PRINT#2, USING" ###.###";TBG; CBG; TAU*1000000'!'*60; FLOWR; TSAMP;
TTRANS*60; TCOUNT*60; TDOWN*60

IF Q2% = "Y" OR Q2% = "y" THEN 2240 ELSE GOTO 2290

PRINT#2,"" : PRINTH#2, "Nuclide Nbar Std.Err. == Covariance Matrix =="
FOR J = 1 TO 6 : PRINT#2, NUCL$(J);

PRINT#2, USING " #######"; NBAR(J); SE(J):

FOR JP = 1 TO 6 : PRINT#2, USING" ##H#######" ;AT (T, TP);

NEXT JP : PRINTH2,"" : NEXT J

PRINT#2,"": PRINT#2, "Results in terms of bequerels and PAEC. # cnts =";N%
: PRINT#2, ""

PRINTH#2, "Nuclide Bq/fltr Std.Err. Bg/m3 Std.Err. PAEC, nJ m-
3 PAEC, mWL"

FOR J = 1 TO 6 : PRINT#2, NUCLS$(J):;
PRINT#2, USING"#######. ##"; NBAR(J)*LAMBDA(J)/60; SE(J)*LAMBDA(J)/60;
PRINTH#2, USING" #HHE##H###. H##";

C(J) *LAMBDA (J) *1000/60, CE (J) *LAMBDA (J) *1000/60, C(J)*ENERGY (J)*.16,
C(J) *ENERGY (J) /130
NEXT : PRINT#2,""
PRINT#2, "Potential alpha energy conc. = ";
PRINT#2, USING" #######.44" ,PAEC*.16, PAEC/130
PRINT#2, "PAEC standard error = v,
PRINT#2, USING" #######. ##",;PERR*.16, PERR/130
PRINT#2, USING"Variance of the fit =

HE##H#H#. H# . S2
PRINT#2, "Analyzed on ";DATES$;" via Basic"
WHILE TIMER < TSHOW 4+ 3 : WEND : RETURN

i dadt print bad news
CLS : PRINT TI$: PRINT"Sorry, no results. Matrix inversion failed."
TSHOW = TIMER : IF FO$ = "" THEN 2470

- 76 -

BASIC PROGRAM:

RWRENNGW
2450 PRINT#2,"" : PRINT#2,"" : PRINT#2, TI$
2460 PRINT#2, "Sorry, no results. Matrix inversion failed."
2470 WHILE TIMER < TSHOW + 5 : WEND : RETURN
2480
2490 IF EOF (1) THEN CLOSE #2 : CLOSE #1 : PRINT : PRINT" F I N I : file ";FI$
END
2500 LINE INPUT #1, TI$: IF TI$ = "" THEN 2490
2510 SOURCE$ = "" : N% = 0 : CLS : PRINT TI$

2520 LINE INPUT #1, CO$: IF LEFT$(CO$,1) < "A"™ THEN GOSUB 2610 : GOTO 2580

2530 OPEN CO$ FOR INPUT AS #3

2540 WHILE NOT EOF (3)

2550 LINE INPUT #3, CO$: GOSUB 2610

2560 WEND : CLOSE #3

2570 IF N% <> 19 THEN PRINT"wrong number of parameters " : STOP

2580 LINE INPUT #1, CO$: IF CO$ = "" THEN 2690

2590 GOSUB 2610 : IF NOT EOF(l) THEN 2580 ELSE 2690

2600 ' ------—---memm decompose one data line

2610 :I1 = 0 : IF INSTR(1,CO$,",") THEN FS$ = "," ELSE FS§ = " "

2620 :I1 = Il1+l1 : IF I1 > LEN(CO$) THEN RETURN

2630 :IF MID$(C0O$,I1,1) = FS$ THEN 2620 ELSE I0 = Il

2640 :I1 = I1+1 : IF I1 > LEN(CO$) THEN 2660

2650 :IF MIDS (CO$,Il,1) <> FS$ THEN 2640

2660 :N$ = N%+1 : CO(NS) = VAL(MIDS(COS,IO,I1-IO0))

2670 :PRINT N%;CO(N$) : GOTO 2620

2680 RETURN : '-—~--=-mermmem—————m——m——mmw o

2690 IF CO(1) => 1 OR CO(1) < 0 THEN SOURCE$ = "keyboard" : GOTO 2750

2700 FOR I = 1 TO 5 : PHI(I) = CO(I) : NEXT

2710 FOR I = 1 TO 6 : KY(I) = CO(I+5) : NEXT

2720 TBG = CO(12) : CBG = CO(13) : TAU = CO(14)*.000001/60 : FLOWR = CO(15)

2730 TSAMP = CO(16) : TTRANS = CO(17)/60 : TCOUNT = CO(18)/60 : TDOWN =
COo(19)/60

2740 FOR I = 20 TO N% : CO(I-19) = CO(I) : NEXT : N% = N% - 19

2750 LOCATE 1,1 : PRINT TI$: RETURN

2760

2770 IF SOURCE$ <> "keyboard" THEN 2860

2780 CLS : INPUT"background count time, min";TBG

2790 INPUT"background counts";CBG

2800 INPUT"counter dead time, microsec.";TAU : TAU = .000001*TAU/60

2810 INPUT"flow rate, liters/min";FLOWR

2820 INPUT"sampling time, min";TSAMP

2830 INPUT"sample transfer time, sec";TTRANS : TTRANS TTRANS/60

2840 INPUT"length of each count, sec";TCOUNT : TCOUNT TCOUNT/ 60

2850 INPUT"down time between counts, sec";TDOWN : TDOWN = TDOWN/60 : CLS

2860 ALPHA (1) =TTRANS

2870 FOR I = 1 TO NN% - 1

2880 BETA(I) = ALPHA(I) + TCOUNT

2890 ALPHA(I+1) = BETA(I) + TDOWN

2900 'NEXT I : BETA(I) = ALPHA(I) = TCOUNT : ’incorrect, caught 10/88

2910 NEXT I : BETA(I) = ALPHA(I) + TCOUNT : 'new line, 10/88

2920 RETURN

2930 ’

2940 IF SOURCE$ <> "keyboard" THEN 3090

2950 CLS : PRINT TI$: PRINT"Input counter efficiency for -"

-77 -

BASIC PROGRAM:
RWRENNGW

2960 INPUT"Po-218";PHI (1)

2970 INPUT"Po-214";PHI (2)

2980 INPUT"Bi-212";PHI (3)

2990 INPUT"Po-212";PHI (4)

3000 INPUT"Nuclide X" ;PHI(5)

3010 CLS : PRINT"Input which nuclides to analyze for -"
3020 PRINT"enter 1 to analyze, 0 to skip"
3030 INPUT"Po-218";KY (1)

3040 INPUT"PbL-214";KY(2)

3050 INPUT"Po-214";KY(3)

3060 INPUT"Bi-212";KY(4)

3070 INPUT"Po-212";KY(5)

3080 INPUT"Nuclide X";KY(6)

3090 F1 = PHI(1) : F2 = PHI(2) : F4 = PHI(5)

3100 F3 = .337*PHI(3) + .663*PHI (4)

3110 RO = LAMBDA (1) *LAMBDA (2) *LAMBDA (3)

3120 R1 = RO/ (LAMBDA (1) - LAMBDA(2))/(LAMBDA{3) - LAMBDA(2))
3130 R2 = RO/ (LAMBDA(1) - LAMBDA(2))/(LAMBDA(l) - LAMBDA(3))
3140 R3 = LAMBDA (2) *LAMBDA (3) / {LAMBDA (3) - LAMBDA(2))

3150 R4 = LAMBDA (4) *LAMBDA(5) / (LAMBDA (4) - LAMBDA(5))

3160 RETURN

3170

3180 NN% = 520 : DEFINT I,J,K : ’ DEFDBL A,B,D,X
3190 DIM ALPHA (NN%), BETA(NN%) : ‘beginning and end of each count

3200 - measured from the end of sampling

3210 DIM CO(NN$%) : '/ counts straight from the scaler

3220 DIM D(NN%) : ' counts corrected for dead time and bkgd

3230 DIM W(NNS%) : '/ weight factor for each count, from statistics
3240 DIM S(6,NN%) : ' Raabe & Wrenn’'s S-matrix

3250 DIM A(6,6), AI(6,6) : A-matrix and its inverse

3260 DIM X(6,12), AX(6,6) : ' scratch matrix used for inverting

3270 -

3280 DATA 0.2228, 0.0259, 0.0352,0.001086, 0.01146, 0.0001
3290 FOR I = 1 TO 6 : READ LAMBDA(I) : NEXT

3300 DATA Po-218, Pb-214, Bi-214, Pb-212, Bi-212, Nucl-X
3310 FOR J = 1 TO 6 : READ NUCLS$(J) : NEXT

3320 DATA 13.68, 7.68, 7.68, 7.86, 7.86, 0

3330 FOR J = 1 TO 6 : READ ENERGY(J) : NEXT

3340 RETURN

3350
3360 CLS : PRINT : PRINT : PRINT : N% = 15

3370 PRINT TAB(N%) "Raabe -~ Wrenn lLeast Squares Calculation"

3380 PRINT TAB(N%)"for Radon and Thoron Progeny from Count Data"
3390 PRINT : PRINT TAB(N%) "programmed in Microsoft GW-Basic by"
3400 PRINT

3410 PRINT TAB(N%+4)"BEarl 0. Knutson, Ph.D."

3420 PRINT TAB (N%$+4) "Environmental Measurements Laboratory"

3430 PRINT TAB(N%+4)"U.S. Department of Energy"

3440 PRINT

3450 PRINT TAB (N%+4) "August 86; November 87; March 88" : PRINT
3460 PRINT TAB(N%)"The count data are assumed to be in a disk file,
3470 PRINT TAB(N%)"each block starting with a one-line title and"
3480 PRINT TAB(N%)"ending with a null line or end-of-file mark."

- 78 -

BASIC PROGRAM:
RWRENNGW

3490 PRINT

3500 PRINT TAB(N%)"Nineteen parameters are needed in the calculation;"
3510 PRINT TAB(N%) "their source is coded into the first data line."
3520 PRINT

3530 PRINT TAR(N%)"Need further instructions, Y/N";

3540 INPUT Q0% : IF Q0% = "Y" OR Q0$ = "y" THEN GOSUB 3630

3550 CLS : LOCATE 3,N% : PRINT TAB(N%)"Enter name of input file

3560 INPUT FI$: OPEN "I", #1, FI$

3570 PRINT

3580 PRINT TAB(N%)"File name for output - no name, no save"

3590 PRINT TAB(N%)" (if file exists, output will append) "; : INPUT FOS$
3600 IF FO$ = "" THEN 3620 ELSE OPEN "a", #2, FO$

3610 PRINT TAB(N%)"Include covariance matrix in disk file, Y/N"; : INPUT Q2$

3620 CLS : RETURN

3630 CLS : SHELL "type rwrenn.txt | more"

3640 LOCATE 24,1 : PRINT "Want to see it again, Y/N";
3650 B$ = INKEYS : IF B$ = "" THEN 3650

3660 IF B$ = "Y" OR B$§ = "y" THEN RUN ELSE CLS : RETURN

- 79 -

Pascal PROGRAM:
nazaroff

Appendix K
File WWN.Pas

PROGRAM nazaroff (input, output):

(***

This Pascal program does the calculations needed to
determine RnP concentrations from three gross alpha
counts. The equations used are those given by W.W.
Nazaroff in The article in Health Physics 46,395-405
(1984) .

The half-lives used are: 3.11, 26.8 and 19.9 min.
These are taken from page 6 of the new book by
Nazaroff and Nero (1988).

The equations have been changed to SI units.
Mainly, this involved substituting 60 for 2.22
everywhere, and expressing decay energies in nono
joules.

The program has been checked (2/13/88) by reverting
to Nazaroff’s original values for the constants

and running the Thomas protocol. The largest
difference in the coefficient matrix for the three
nuclide equations was 5 parts in 2000 and in the
PAEC coefficients, 3 parts in 900.

Earl O. Knutson
USDOE/Environmental Measurements Laboratory
New York, NY 10014

2/88

¥ % N X % O Ok F A X X O X X X X ¥ X F K % % * % %X % X % # *

**)

USES Crt, Printer, Dos, mtrx;

TYPE abindex = (a,b):

VAR decayconst : ARRAY [1..3] OF real;
alphaenergy : ARRAY [1..3] OF real:;
i, 3 : integer;
time0, flowrate : real;
efficiency : real;
background : real;

- 80 -

time : ARRAY [l..3,abindex] OF real;
counts : ARRAY [1..3] OF integer;
rnpconc, stderror : ARRAY [l..4] OF real;

ab abindex;

firsttime : boolean;

yr, mo, dy, dow : word;

FUNCTION f(i,j : integer) : real;

BEGIN

f := decayconst[i]/ (decayconst[i] - decayconst[j]):

END;

FUNCTION r(i : integer; t : real) : real;

BEGIN
r =
END;

1 - exp(-decayconst[i]*t);

FUNCTION s(i : integer; t : real) : real;

BEGIN
s =
END;

(*

As explained by Nazaroff, Gij is

exp (-decayconst [i]*t) ;

of alphas emitted from nuclide i on the filter,

collecting the j-th nuclide at a rate of 1 Bg per min.
factor 60, which is dpm per Bq, replaces Nazaroff’'s
2.22, which is dpm per pCi. The units of Gij are min per Bq.

The

*)

FUNCTION G11(t,t0 : real) : real:;

VAR G :

BEGIN

IF t

G

ELSE

G

G1l1
END;

real;

t0 THEN
t - r(l,t)/decayconst[1]

A

t0 - r(1,t0)*s(1, (t - t0))/decayconst[l]:;
60*G/decayconst [11;

FUNCTION G31(t, t0 : real) : real;

VAR G :

BEGIN
IF t
G

ELSE

real;

< t0 THEN

=t

£(2,1)*f£(3,1)*r(1,t)/decayconst[1]
£(1,2)*£(3,2)*r(2,t) /decayconst [2]
£(1,3)*£(2,3)*r(3,t)/decayconst [3]

= t0
- £(2,1)*£(3,1)*r(1,t0)*s (1, (t - t0))/decayconst (1]
- £(1,2)*£(3,2)*r(2,t0)*s(2, (t - t0))/decayconst[2]

-81 -

the accumilated number

Pascal PROGRAM:
nazaroff

- £(1,3)*£(2,3)*r(3,t0)*s(3, (t - t0))/decayconst[3]:

G31 := 60*G/decayconst[1}];
END;

FUNCTION G32(t, t0 : real) : real;
VAR G : real;

BEGIN
IF t < t0 THEN
G :=t
- £(3,2)*r(2,t)/decayconst[2]
- £(2,3)*r(3,t) /decayconst [3]
ELSE
G := t0
- £(3,2)*r(2,t0)*s (2, (t - t0))/decayconst[2]
- £(2,3)*r(3,t0)*s(3, (t - t0})/decayconst[3];
G32 := 60*G/decayconst([2];
END;

FUNCTION G33(t, t0 : real) : real:;
VAR G : real;
BEGIN
IF t < t0 THEN
G := t - r(3,t)/decayconst[3]
ELSE

G :=t0 - r(3,t0)*s(3, (t -~ t0))/decayconst[3];

G33 := 60*G/decayconst[3];
END;

FUNCTION kbquery(msg : string) : boolean;

VAR query : char;
BEGIN
REPEAT
WRITE (msg,’ ENTER Y OR N ');
READLN (query)
UNTIL query IN ['y',’Y','n’,'N'];
kbquery := (query IN ['y¥',’'Y']);
END;

PROCEDURE initialize;
BEGIN

(*decayconstants in inverse minutes *)

decayconst [1] := LN(2)/3.11;
decayconst [2] := IN(2)/26.8;
decayconst [3] := LN(2)/19.9;

(*alphaenergies in nano joules *)

alphaenergy([1l] := 13.69*1.6021E-4;
alphaenergy[2] := 7.69*1.6021E-4;
alphaenergy[3] := 7.69*1.6021E-4;
REPEAT

-82 -

Pascal PROGRAM:
nazaroff

WRITE ('Enter flowrate, Lpm,)

READLN (flowrate) ;
WRITE ('Enter sample time, min) ;
READLN (time0) ;
IF kbquery(’'Use Thomas protocol?’) THEN
| BEGIN
} (*
Thomas Protocol, times in minutes.
*)
time[l,a] := 2.0 ; time[l,b] := 5.0;
time[2,a] := 6.0 ; time[2,b] := 20.0;
time[3,a] := 21.0; time[3,b] := 30.0:
FOR i := 1 TO 3 DO
FOR ab := a TO b DO
time[i,ab] := time[i,ab] + time0;
END
ELSE
BEGIN

WRITELN ('Enter times in minutes,’);
WRITELN ('’ ***MEASURED FROM THE START OF SAMPLING**%*’) ;
WRITELN (' use space, not comma, to separate numbers’);
FOR i := 1 TO 3 DO
BEGIN
WRITE (' Start & stop for count #’',i:3);
READLN (time [i,a], time[i,b]);
END;
END
UNTIL kbquery('OK so far?’);

GoToXY (1,24);
WRITE (' Building H-matrix’);

FOR i := 1 TO 3 DO
BEGIN

matrixl[i, 1] Gll (time[i,b],time0)

G3l(time[i,b], time0)

Gll(time[i,a)], time0)
G3l(timefi,a],timel);

+

matrixl[i, 2] G32 (time[i,b], timel) G32(time[i,a)],timel) ;

matrixl{i, 3] G33(time[i,b], timel) G33(time[i, al,timel) ;

END;

GOTOXY (1,24);
WRITE (' Inverting H-matrix’);
matrixsize := 3;

matinvert;

ClrScr;
WRITELN ('Nazaroff’’s K-matrix, Bg/min’);
FOR i := 1 TO 3 DO

- 83 -

Pascal PROGRAM:
nazaroff

Pascal PROGRAM:
nazaroff

BEGIN
FOR j := 1 TO 3 DO WRITE (matrix2[i,§]:10:6);
WRITELN;

END;

WRITELN (’Nazaroff’’s L-matrix, nJ/min’);
FOR j := 1 TO 3 DO
BEGIN
matrix2[4,3] := 0.0;
FOR i := 1 TO 3 DO
matrix2([4, 3] := matrix2[4, j]
+ 60*alphaenergy[i] *matrix2[i, j]
/decayconst [i];
WRITE (matrix2([4,3j]1:10:6);
END;
WRITELN;
END;

PROCEDURE GetCounts;

BEGIN
REPEAT
WRITE ('Enter counter efficiency,% ’');
READLN (efficiency) ;
efficiency := efficiency/100.0;
WRITE (' Enter background, cpm ")

READLN (background) ;

WRITELN ('Enter the three counts ');
FOR i :=1 T0 3 DO
BEGIN
WRITE (/Count #',i:3,’ ’):
READLN (counts[il);
END

UNTIL kbquery('OK so far?’);
END;

BEGIN (* MAIN PROGRAM *)

ClrScr;
WINDOW(16,4,64,20);
firsttime := TRUE;
REPEAT

ClrScr; highvideo;

WRITELN (‘' Calculation of RnP from three gross alpha counts’);
lowvideo;

WRITELN (‘ Pascal program: E.O. Knutson 1988'):
WRITELN (' Equations: W.W. Nazaroff, 1984');
WRITELN (' Constants: Nazaroff & Nero, 1988');

-84 -

Pascal PROGRAM:
nazarxoff

IF firsttime THEN initialize
ELSE
IF kbquery(’'Enter new flow and times?’) THEN initialize;

firsttime := FALSE;

GetDate (yr, mo, dy, dow) ;
GetCounts;

FOR i := 1 TO 3 DO
counts[i] := counts[i] -
ROUND (background* (time[i,b] - time{i,b]l));

FOR j := 1 TO 4 DO
BEGIN
rnpconc([j] := 0.0;
stderror[j] := 0.0;
FOR i := 1 TO 3 DO
BEGIN
rnpconc[j] := rnpconc[j] + matrix2[j,i]*counts[i];
stderror[j] := stderror[j] + matrix2([j,i]
*matrix2{[j,i]*counts[i];
END;
rnpconc [j] := 1000*rnpconc[j]l/efficiency/flowrate;
stderror{j] :=

1000*SQRT (stderror[j]) /efficiency/flowrate;
1000 = liters per cubic meter *)
END;

WRITELN (' Results - '),
WRITELN (' Nuclide Concent. 1l-sigma’);

WRITELN('Po-218 ’,rnpconc[l1l]:9:3,stderror([1]:9:3,’ Bg/m3’);
WRITELN(’Pb-214 ’,rnpconc[2]:9:3,stderror(2]:9:3,’ Bg/m3’);
WRITELN('Bi-214 ’,rnpconc[3]:9:3,stderror([3]:9:3,’ Bg/m3’);
WRITELN (' PAEC !, rnpconc[4]:9:3,stderror([4]:9:3,’ nJ/m3');
WRITELN;
IF kbquery(’'Print the results?’) THEN
IF kbquery(’'Printer paper OK? ‘) THEN
BEGIN
WRITELN (Lst) ;
WRITE (Lst,’ Three-count Radon Progeny calc’);
WRITELN (Lst, 'ulation (Nazaroff’’s equations)’);
WRITE (Lst,’ Input data............)
WRITELN (Lst, 'Results (calculated’,yr:5mo:3,dy:3,’)’);
WRITE (Lst,’ Cnt# Start Stop Count y;
WRITELN (Lst, 'Nuclide Concent. 1l-sigma’);
WRITE (Lst,’ 1l '’,time[l,a}:6:1,time[1,b]:6:1,counts[1]:6," ' :8);
WRITELN (Lst, 'Po-218 ’,rnpconc([l]:9:3,stderror([1]:9:3,’ Bg/m3’);
WRITE (Lst,’ 2 ’,time[2,a]):6:1,time[2,b]:6:1,counts[2]:6,’ ' :8);
WRITELN (Lst, 'Pb-214 ', rnpconc[2]:9:3,stderror[2]:9:3,’ Bq/m3');
WRITE (Lst,’ 3 /,time[3,a]:6:1,time[3,b]:6:1,counts[3]:6,’' ':8);
WRITELN (Lst,’'Bi-214 ', rnpconc[3]:9:3,stderror(3]1:9:3,’ Bg/m3’);

-85 -

Pascal PROGRAM:

nazaroff

WRITE (Lst,’ Samp.time,min =’,time0:7:2,’ ’:8);
WRITELN (Lst) ;
WRITE (Lst,’ Flowrate, Lpm =', flowrate:7:2,’ ‘:8);
WRITELN (Lst, ' PAEC / ,rnpconc[4]:9:3, stderror([4]:9:3,’ nJ/m3’);
WRITE (Lst,’ Efficiency, % =’,100*efficiency:7:1,’ ")
WRITELN (Lst) ;
WRITE (Lst, ’ Backgrnd, cpm =’ ,background:7:2,’ r):
WRITELN (Lst) ;

END

UNTIL NOT kbquery (/Do another? ’);
END.

-86 -

