

LA-UR--84-3575

DE85 003732

E: INTERNAL FIELD PROBING OF TRANSLATING FRCs

- : W. T. Armstrong, R. E. Chrien
(Los Alamos National Laboratory)
R. D. Milroy (Mathematical Sciences Northwest)**

- : Japan-US Joint Symposium on Compact Toroid Research
Hiroshima University - Hiroshima, Japan
November 13-15, 1984**

DISCLAIMER

report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the

MASTER

B_θ are typically .16 B_w (B_z measured B_θ , if it were part of an elongated ϵ) percent change in β , where the average $1/2 x^2 - 1/2 (B_{\theta \text{rms}}/B_w)^2$.

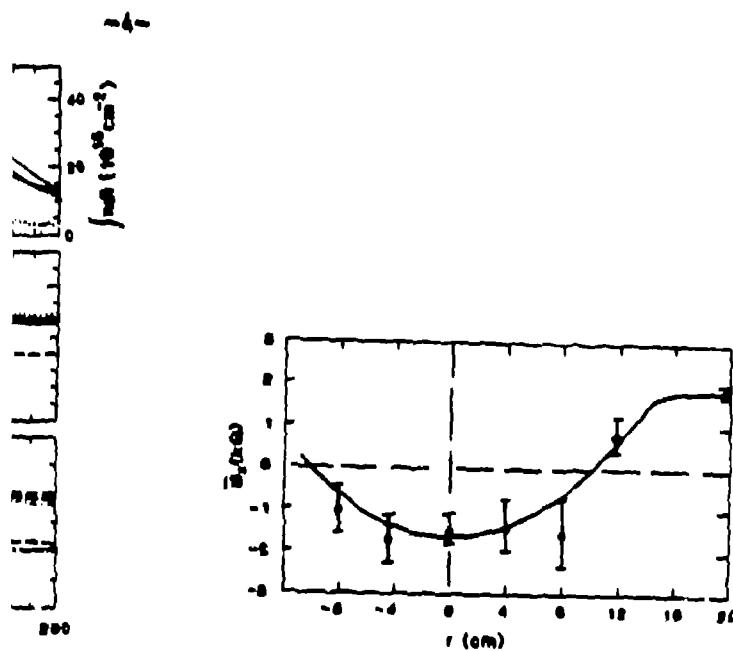
Simulations of B_θ generation have MHD code.⁴ The simulations used approximately matched to the source $t = 10\mu\text{s}$, in which the FRC has translated guide field region on the left. The field values of both signs. However, of the FRC and weakest near the field found to be $\sim 10\%$ of the poloidal flux which the toroidal flux is typically demonstrate that the Hall term in toroidal field generation⁵ in the region gradients during FRC acceleration, the subsequent toroidal field evolution.

* Work supported by the U.S. Department of Energy.

References

1. D. J. Raj, et al., these proceedings
2. D. W. Hewett and R. L. Spencer, 1
3. R. L. Spencer, and M. Tuszeowski, 1
4. R. D. Milroy, Bull. Amer. Phys.
5. D. W. Hewett, Nuclear Fusion 24,

T ₉₃	
Plasma	
Triple-Axis Probe	
Source	Trans.
($t=10\mu\text{s}$)	($t=30\mu\text{s}$)


B_θ (kG)	5.5
N (10^{13} cm^{-3})	1.1
T (eV)	630
Φ_1 (kG cm ²)	175
r_s (cm)	10
	...

Moreover, the toroidal flux is contrast to experimental results in poloidal flux. These simulations equations can indeed account for the asymmetric field and density 2-D MHD modeling does not predict energy.

L. 26, 1299 (1983).
:ed to Phys. Fluids (1984).
9, 1359 (1984).
84).

bers

<u>Radial Array Studies</u>	
Source (t=10 μ s)	Translation (t=30 μ s)
5.3	3.5
1.3	0.6
490	400
230	345
11	13

), and
different
, $r = 4.0$
t dash),
olid),
as in b).

Fig. 2. Average B_z vs r for triple-axis data.
Error bars are rms deviations
Solid curve is theoretical
profile.

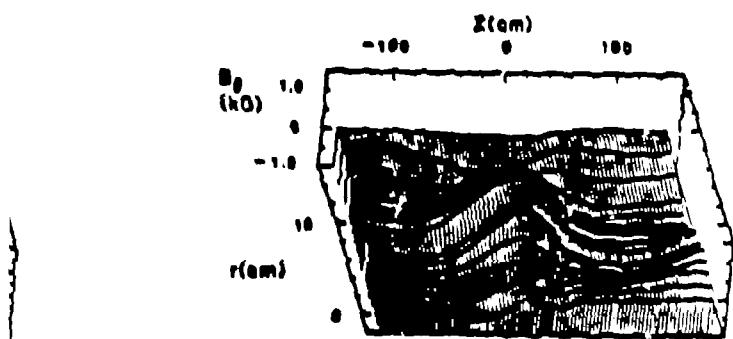


Fig. 3b. Radial array data:
 B_z vs r , z .