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EXPONENTIAL CONVERGENCE WITH ADAPTIVE MONTE CARLO

T. E. Booth

Los Alamos National Laboratory

I. INTRODUCTION

For over a decade, it has been known that exponential convergence on discrete
transport problems was possible using adaptive Monte Carlo techniques. Now, ex-
ponential convergence has been empirically demonstrated on a spatially continuous

problem.

II. THE SPATIALLY CONTINUOUS BIDIRECTIONAL TRANS-
PORT PROBLEM

The test problem transports particles on a line of length T; that is, 0 < z < T.
The particles can move either forward (u = 1) or backward (g = —1) on the line.
The particles are sourced in moving forward at x=0. The particles score 1 + § if
they escape at * = T and ¢ otherwise. That is, § plus the penetration probability

is being estimated.

III. ZERO VARIANCE BIASING

Zero variance biasing can be done on any linear Monte Carlo calculation,!

whether the calculation is analog or uses any arbitrary variance reduction tech-

niques, such as splitting or forced collisions. Zero variance biasing occurs when
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every event is sampled proportional to its natural probability times the expected

score thereafter produced if the event were to be sampled. That is, the sampling is
importance weighted.
The expected score, or importance, is a function of position and direction. The

six definitions below are necessary to derive the importance equations.

Definition 1. N(z) = the expected score from a particle moving forward at z.

Definition 2. L(z) = the expected score from a particle moving backward at z.

Definition 3. f = probability of scattering forward (i.e., no change in direction).

Definition 4. r = probability of scattering backward (i.e., a direction reversal on
scattering).

Definition 5. o = the total cross section.

Definition 6. o, = the scattering cross section.

IV. IMPORTANCE FUNCTION EXPANSION AT A POINT

The differential equations for the importance can be obtained from standard
textbooks? by putting in Dirac-6 functions for all variables except space. The

result is
N'(z) = (6 — 0sf)N(z) — o5rL(z) — [0 — 04)6 (1)

L'(z) = —(0 — 0sf)L(z) + o5t N(z) + [0 — 0,6 (2)

Suppose one takes n more derivatives

NOH)(z) = (6 — 0, ))IN™(z) = 0,r L) (z) (3)

L (2) = —(0 — 0, /)LM(z) + 0,r N (2) (4)
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Note that if at some particular point y both N(y) and L(y) are known, then all
derivatives are known at y through equations 1-4. This suggests writing the impor-

tance function as the Taylor series
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(Note that Egs. 3 and 4 assume a constant medium, but as long as o, o, r, and
f are analytic, then one can obtain all derivatives of Egs. 1 and 2 and do a Taylor
expansion.)

A code was written to estimate N(y) and L(y) (with y = T/2) and then obtain
the Taylor expansions of Eqs. 5 and 6. All samplings were then zero variance biased
using the estimated importance function. Figure 1 shows exponential convergence
on a one mean free path problem using a Taylor series of order 50 and 1000 particles

per iteration. This is the first example of exponential convergence on a continuous

transport problem.

V. FALSE CONVERGENCE

It is worth noting that sometimes the importance weighted sampling converged
exponentially fast to the wrong answer. This occurred when the derivative of the

importance function became too large. The derivatives can be bounded using Eqgs. 1
and 2:
N'(z) < (0 — o, f)N(z) = [0 — 0,6 (7)

~L'(z) < (0 —osf)L(z) — [0 — 05]6 (8)
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Fig. 1. Exponential Convergence by Taylor Expansion.
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If these bounds were violated, then the zero-th term of the corresponding Taylor

| series was increased enough to satisfy these bounds (for all z), while keeping all

other terms constant. This seems to prevent false convergence.

VI. CONCLUSION AND FUTURE WORK

Exponential convergence was obtained on a spatially continuous transport prob-
lem by embedding the importance equation into the Monte Carlo estimation of the
importance function. Although not discussed here, several direct attempts at esti-
mating the importance function without embedding the importance equation failed
to produce exponential convergence. This hints that exponential convergence for
more complicated transport problems probably also will require embedding the
importance equation into the importance estimation procedure. Exponential con-

vergence for the one-speed slab problem is currently being studied.
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