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Abst ract

The Dirac Generator formulation for relativistic Hamiltonian
dynamics is extended by explicitly separating the question of
dynamical evolution in an inertial frame from that of changes
of frame. We obtain & new eleven generator formalism:  ten to
recalize the Poincaré Lie algebra, and onc to provide cquations
of motion. For point particle systems, a new torm ol the world
line conditions is developed, [t is demonstrated that with
these extensions one can consistently describe classical point
particles with interaction in a relativistically invartant way
while maintaining invariant world lines. This paper uses the
approach based on independent particle variables to set up such

theories.




1. Introduction

The requirement of special relativistic invariance for a
classical dynamical system encompasses two distinct notions: one
is the identity of dynamical laws in all inertial frames, and
the other is manirfest covariance. The independence of these two
notions is seen most clearly within the canonical formalism, to
wirich one is led automatically if one has a Lagrangian starting
point. With a Lagrangian one has a definite parameter of evolu-
tion with respect to which onc has differential equations of
motion. From the Lagrangian description one can pass to the
equivalent Hamiltonian one based on a phase space and the idea
ol Poisson brackets; some definite set of phasec space variables,
referring to physical conditions at a common value of the evolu-
tion parameter, is identified as forming a complete sct of
variables, and suijitable bracket relations are postulated among
them, Dynamical cvolution within an inertial frame, as well as
the passage {rom one frame to another, arc both represented by
canonical transformations on the phase space. Such a lamiltonian
description can be set up divectly even in the absence of a
Lagrangian. The identity of physical laws in all frames is then
guaranteed by having a realication of the Poincaré group by
canonical transformations on phate space. The added requirewent
that for sclected dynamical variables the canonical transformation

laws under the elements of the Poincaré group be compatible with




an independently stated geometrical transformation law cxpresses
manifest covariance.

To set up a classical relativistic Hamiltonian theory one
must therefore start with a suitable phase space and then do two
things: a definite parameter of evolution must be specified,
and eleven distinguished functions on phasc space must be given.,
The first of these is the generator of the canonical transforma-
tions describing dynamical evolution in any inertial f[reme; the
remaining ten generate a canonical realizotion of the Poincaré
group and so describe changes of frame. [t is the latter ten
generators thet must provide, via their brackets, a rcalization
of the Lie algebra of the Poincaré group. Conditions of manifest
covariance provide additional restrictions.

Many years ago l)iracl proposed three natural forms of
Hamiltonian relativistic dynamics, namely the instant, point and
front forms. These correspond essentially to three different
ways in which one might pick a parameter of cvolution out of
the four space-time coordinates that are assigued to an cvent
in special relativity. Dirac's list of possibilities is not
exhaustive in the {ollowing crucial sense: it wvas assumed that
the paramecter of evolution is chosen kinematicalily, i.e¢. in thé
same way for all the states of motion. The instant form, for
example, uscs the "laboratory time," one of the four coordinates
sssigned by an inertial observer to each space-time event, as

the evolution parameter. Thus in this form the generator of



dynasmical evolution in one frame coincides with that element in
the Poincaré algebra that genecrates time displacements between
inertial frames. More generally in each of Dirac's forms of
dynamics only ten fundamental guantities need to be specified,
fulfilling the bracket relations of the Poincaré algebra; the
¢leventh generator is always one of the ten, or a suitable linear
combination of them., The fundamental phase space variables, out
of which the ten generators are built, vary of course from one
frame to another,

The attempt to describe a colleition of classical relativistic
point particles within the Dirac programme, with a condition‘of
mantifest covariance included, led to the astonishing and deep
result that the particles must necessarily be free and no inter-
actions are possible. To be specific, this important No Interaction
Thoorem2 was proved within Dirac's instant form of dynamics with
the following detailed assumptions; (1) the sect of
three-dimensional position coordinates of all the particles at
a common laboratory time forms one half ol a system of canonical
varitables in the phase space of the entire system; (ii) under the
Buclidcun subgroup of the Poincaré group (characteristic of the
instant form) the canonical and gcometrical trans(ormation laws
for these coordinates coincide; (iii) if in any state of motion,
as scen in one inertial frame, the world tines of the particles
are imagined drawn in space time, then the canonical rules of

transformation that transfer the description to another inertial



frame preserve the objective recality of these world lines.
Assumptions (ii} and (iii) express the idea of manifest covari-
ance in the present context,

The fact that the objective reality of world lines is a
definite condition not implied by the structure relations of
the Lie algebra of the Poincaré group wss recognized long ago
by Pryce.3 The explicit expression of this condition in the
language of Poisson brackets and generators on phase space was
given by Currie et al.,z and is called the world line condition
(WLC). This condition was given by them within Dirac's instant
form of dynamics, but as we shall see the idea itself is much
more general.4 As we said above, Dirac's programme uscs only
ten independent generators and not eleven., In retrospect one
can see that it is the fact that the ten gencrators have to do
double duty, namely obey the Lie relations of the Poincaré group
on the one hand, and obey tliec WLC on the other, that is the
fundamental origin of the No Intecraction Theoren.

Recently there have been several attempt54’5

to set up
theories of classical relativistic interacting point particles
which are designed to avoid the No Interaction Thcorem, even
though they are described in a gencralized llamiltonian framework.
A1l of them are constructed in the constrained Hamiltonian for-
malism. ‘This fprmalism was invented by Diracﬁ to express a theory
based on a singular Lagrangian, in a generalized phasc space

form; and introduced the ideas of constraints and Dirac brackets
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in that context. ilowever, as Dirac himscel{ pointed out, one

can usc thesc idecas directly even in the absence of a Lagrangian.
Onc starts out with a suitable phasc space, adopts some number
ol algebraically independent constraints, and some Hamiltonian
compatible with the constraints; one can then write a gencralized
lHlamiltonian equation of motion with :-uspect to some (specified
or unspecified) parameter ol evolution. Such a formalism has

two characteristic fcatures7: (i) the initial phase space
invariably has more independent coordinates than are needed for
the physical system one intends to describe ultimately; (ii) the
physical identification of the variables in terms of particles,
and the final system of brackets, must both be delayed until

all nccessary constraints have been set down.

It is important to understand exactly how one has succceded
in avoiding the No interaction Theorem, i.e., precisely which
assumption or assumptions underlying the Theorem have been given
up. One gets the impression from the literaturc that what has
been given up is the cexistence of objective world lines; i.c.,
the WLC. If this is so, it is hard to admit that recent work
constitutes a definite advance over what had been known for a
long time! Indeed, soon after Dirac's paper on the forms of
relativistic dynamics, but well before the No Interaction Theorem
was proved, 'I‘homas8 explicitly suggested that the objective
reality of world lines be given up, and interacting theories

of relativistic point particles be sct up in Dirac's instant




form by constructing ten gencrators for the Poincard group.
, . , . . 9
Such theories were presented by Bakamjian and Thomas,” but were

soon shown by Foldylo

to have a serious physical defect: they
did not possess the cluster decomposition property. This defect
shows in the recently presented models that attempt to escape
the No Interaction Theorem.

[t appecars to us that there is no physically well-lounded
rcason at the classical level to give up the objective rcality
of world lines for point particles, unless one points to the
No Interaction Theorem itself. We intend to show that the way
out of this impasse lies in an altogether diffecrent directionll:
Onc must go beyond the boundaries of Dirac's programme for
relativistic dynamics, and envisage choices of evolution paramecter
that are dynamically, not kinematically, determined. In such a
framework, all the eleven generators for a retativistic Hamil-
tonian theory enter with independent and cqual status. The
impossibly strong conditions that the ten generators of the
Poincaré group obey the bracket relations of the Lic algebra of
that group, contain intcraction, and obey the WLC, get weakened:
the WLC now need to be obeyed by, or are a condition on, the
generators of the Poincaré group and the eleventh gencrator of
dynamical evolution, It is in this way that the existence of
interaction and of objectively real world lines become compatible

with one another: the implicit assumption of a clear cut

separation of kinematics and dynamics underlying all of Dirac's
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forms of relativistic dynamics, must be given up. The formalism
of constrained Hamiltonian dynamics is then to be viewed as a
very convenient means [or the construction of such theories.

The problem of cluster decompositionlo remains, however,
unresolved.

Since the possibility of describing a relativistic illamil-
tonian theory with all cleven gencrators is novel and unfamiliar,
we start in Section 2 with a description of a free single rela-
tivistic particle in such a formalism. The casc ol two inter-
acting particles is taken up in Section 3. It is explicitly
shown here that one recovers the No Interaction Theorem if one
adopts a system of constraints that recduce the framework to
Dirac's instant form; but that with use of a different set of
constraints and the eleven generator formalism, both interactions
and invariant world lines can cocexist. Basic to this demonstra-
tion arc a carefunl analysis of what cxactly constitutes a state
of motion for the two-particle system, and a new form of the WLC,
The extension to a system of N particles occupiecs Section 4. In
botih Scctions 3 and 4, we usce independent particle variables
rather than, say, "centre of mass" and relative ones, and the
evolution paramcter is cssentially the time in the centre of
momentum frame. Other ways of choosing the evolution parameter
arc described in Section 5. The problem of cluster decomposition
is discussed in Section 6, and the paper ends with concluding

remarks in Section 7.




2. Single TFree Particle

Our objective 1s to describe a frce relativistic point
particle with mass m in a formalism flexible enough to allow
for different choices of cvolution parameter. We will also
develop the WLC in this formalism, and show how and when it
reduces to the form in which it wasuscd in the proof of the
No Interaction Theorem.

To this end we begin with an eight dimensional phase space
I with basic independent variables x", pH, and postulate tihc

Poisson bracket relations
{x*,x¥} = 0, {xH,p¥} = g™, (pH,p¥1 = 0 . (1)

Denote a general element of the Poincaré group by (A,a}. Then

the mappings of ' onto itsel{ given by

R(A,a): xH » x'¥H = A“vxv + at pH > pt¥ = p¥ pY (2)

evidently preserve the brackets (1) and so are canonical trans-
formations. This canonical realization (A,a) -» R(A,a) obviously

has the following set of infinitesimal generators:

J = P =p

T prv i vau ! u U . (3)

The brackets among these generators reproduce the relations of

the Lie algebra of the Poincaré group.
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We now imposce the constraint

K=p~ - m" = 0. (4)

The function K serves two purposes: on the one hand it defines

a constraint hypersurface 2 lying within I and having dimension
seven; on the other hand it can be uscd as the generator of
canonical transformations on [' which have the property of mapping
% Into itself. As for the former rcle: it is clear, since K

is dinvariant under the transformations R(A,a), i.e., since
{K,J } = 0 ’ {K,P“} ~ 0 ’ (5)

the region & defined by the vanishing of K is invariant under

the canonical mappings R(A,a):

R(A,a)y = % . (6)

Turning to the second role: suppose we start with some point
(x.p) in » and then apply to it the one-paramecter family of
canonical transformations generated by K; we then build up a
line L, the orbit of (x,p) urder this group of transformations.
A1l of I, will clearly lie in ¥. One can set up a system of
differential equations with respect to an unspecified indepen-

dent variable o, say, by solving which we can find the line L:

u u
R R CHC I I RN

Moy = XM, p¥ (o) = p¥ . (7)
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Here v is an arbitrary multiplier: as a result the line L is
determined once {x,p) is given, but the precisce value of ¢ to
be assigned to cach point on L is left free, since it depends
on tuae choice of v,

fhe scven dimensional ¥ is thus the union of one-dimensjional
lines L, so the latter constitute a six paramcter lamily. The
relations (5) which carlier led to the conscquence (6) can now
be "read'" in another way: in its action on ¥, cach transfor-
mation R(A,a) will carry a line L onto another line L'.

Up to this point the devclopment has been purely mathemat-
ical, and we have yet to make contact with the physical system
we really wish to describe, namely the single frece particle.

This is achieved by adjoining to the constraint (4) another one:

X(X’p)T) = G . (8)

The purpose of this c nstraint is to assign to cach point (x,p)
on a line L. a definite value of an evolution paramcter t; the
choice we make for y will determine whether ¢ is kincmatically
or dynamically determined. To serve this purposec X must obey
two conditions: (i) it must be cxplicitly dependent on t; (ii)

it must vary along L flor fixed 1, i.c.,
{x,K} # 0 ; (9)

this will ensure that, for each 1, there is just one point on

L at which y vanishes.



Phe physical tnterpretation of one system as o free particle
cmerpes only aiter both constraint. n, 5 are vmposed. The true
phystcatl vavsvables and bracke!s among thew are obhtained (for
the cherve of evolution parametor determined by {(8)) when we pass

i .
from the torsson brackets (1) to the Divad bracacts determined
by K oamd

n & < . P
S A I, {"!,!‘\"\,;‘, 1(,},1;*&,}';'!,’:..‘,I\; c o)
Fhies s o nomdesenerate syvstew of bravhkets rer o wax dimensional
phase space, gqest the correct namber of varables tor g sinel
particile, Vol result oot egn Danowe can o see that the Mhrag
brackets between the ten gaantities f Pogeproduce the Lie
5 » . {

relation of the Poincard croup, just as their Poissor brackets
did. We can theretore e these same generatorss 1o set oup i
new reaticatiron of the Poracard group, by (ranstormations

x
R o(A,a) that are canonmical with respect to the Dirac bracket,

it 15 Lhese

that must he physicatly

A)

transformat ions

‘S‘ll
Nyt

tdentified

dnd

noet the original

M Y
[N RS I

e represcating changes of

inertial $frame & - O s gL, ardy The two transtormations R{i,ua),
* 2 ~ . . N .
Rota,a) for the same clement (4,a) in the Yoincard group ave
retated i this way:  they botio map onto Do il R{A,a) maps a
Iine L onto another tine 7, then K (A,a) also maps L onto L',

. * ~ . »
beyond this, R (A,a) presceves the value of ¢ when it carries
cach point op i, to its imag: on L', while this is not generally

so for R{A,a).
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Now that eg, {87 has supplied o~ with oo detinrte evolution
parcreter along an by othe arbitrarviness an the o waltaplier voin
the Jaftferential cquations (") s lifted: v v faixed by the

condition

d;'; : ';?‘ by Y"X} oy ’,,x:\ T N { ] I)

Ji

We now have deitnite ecquations of evolution tor any phase space

function f{x,p,t}) restricted te

S Ry L
AR A {"()}\'} R L)
The following resuits now bobd: 1t is always  osible to ind
s1X tndependent functicns of X, 5, ¢ such that the DR's (1] amonyg
them tve a nondegencrate system, and turthermore when these DR'S
are expressed in terms of these saix functions there 15 no residual
v dependence; when both constraints {1i, (%) are valid, then any
FUx,p,t) appears as some function of these aix sndependent vari-
ables and 1, thereby giving a new meaning to the term "explicit

t

; denoting by i the partial derivative with

gependence on g
o . L2

respect to suach explicit ¢ dependence in the new sense, i

Hamiltonian' H will exist such that 3t acts a- the generator

of dynemical evolution via the Dirac bracket:

df 3”1‘

ac 737

B
A

a'r Croac &
*"j'i“ + \‘y"} . (I’SJ

- b
7
SO
»-I;;'n'

oy o
H
’)-(;—-3

The eleven generators for the single free particle are then the



3
ten quetit e . E ) e rr o Te the reasioatyon )07 a D Ul
Peanvard creup, and the daracbtenran ¥ gl eleven qaantrtre - arv
udbtimately tundtions of the saa andependent devrees of freedoen

TS e dfter Lhe Ywe oo traante ok, o have been ;:::pﬂrt'x} andd

one hie s tohed Trown the sy cinal Pereson Goo the dhirae bradkot s,

I ]

fhe redistion to o <pace time desorintiel g straighttoreard.
A ) i1

Let 0 oand o e twe ruetrtial trares connected by oan sutanitesimal

clement (U,a; of the Peancard proup, -o that the space Lime co

ordinate s 7y 7T that e e aned tooone amd the same event P
i O and o O oare rebated seometrically by
E_” 4.”)&’\ S e . v , . [k . 1 . (li)

Woe o soet up thie generatol

FC the particle s in a0 state of motion vorreshonding to the
bine Lotn the conatraint surface o, the pornts on iosupply us
with a onc-piaramcter set of space-time position veciors xP ()
with which, in & frame ¢, we can set oup a world-line in a space-
time diagram --we plot spatial positions x{:] at laboratory time
x () tn 0, The line L is carried, by the infinitesimal Dirac
canonical transtormation pencrated by G, into‘u tine L' in a

manner that preserves the (-values. The points on L' now supply

us with a4 one-parameter scet of space-time position vectors Mo




whisoh b debtantion are whal most be used toopooanatract g
[ . A
R S N S R | RS B
A
T N - (1o
Pl coace Lime von traction s careed vat o an O oand oo & odeseribe
e JdInd thie sonme Uh‘;('\ll\'l.'i,’v‘ roedl o worid bine oty tor o cadc o,
L - H - B ; . 3 .
Vi o obtarned by canonical omeanes an 1o s readted in the
seomet ricatl manner of e, (hdr to NTee e gy or some antinitese
e
XU O A U R (17
. Y R i
feere 21 s permitted to be a Jancar eapressron o an 277 and at

with coctiicrents thaut coutd depend on dynamrcal variablen,
Combining og-~. (153, (1ot and (17 and retarmninmy those binear
in Y and ot atone, the WL 1w the condition that there exist
an expression for 1t such thut

. * . Pt ooy

Gy X s ._._'".\\!_ oatoe AR l o {18)
In this form, the WLU 1» written eactusively ap terms of the
tinal physical brackets and it shows explicitiy that in pgeneral
1t 1s oa condition to be obeyed jointly by G and 10

We discuss two choices for x, once corresponding to a

Kinematic choice for ¢ and the other to a dynamicat choice,

Suppose we take
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= xt (19)

Then ore finds that the Dirac bracket (10) is a nondegencrate
onc in the six variables xJ, pj, i = 1,2,3 and the brackets

between them are 1-independent:

J' k % - J R . hj * - 5
{x7,x7} 0, {x ’pk} Of {pj’pk} 0 . (20}
Now the coefficient v in the cequation of motion (11) has the

value
S
v =(1/2}p0 , pn x //;“ +me (21}

The Hamiltonian 3 is to be such that via the DB it reproduces

the right cquations of motion for x? and pj (its existence

being guaranteced):

. : 4 : ; %
X) = {X'l ’,‘](‘} = Po s PJ e {p-’ ,'}C} = { , (22)

Evidently we have

P _
= V/l)“ + m" = }’U . (23)

We have automatically reviewed the description of the single
free particle in Pirac's instant form: the basic variables are
xt, pj; the lormer are physically interpreted as position at

some laboratory time 1, the basic brackets ave given by (20}

and the cleven generators are
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e e e

L o N AN Y AV
ij R TUNREE WU JUj Dy xj/ peorm” lj p Poo=v/p” +m®

i

0
W= p (24)
The WLC (18), which is certainly cxpected to be satisfied, behaves
as lollows: therc is no need for 81 to contain terms involving
wjk and aj, which describe a Evclidean transformation, The re-

maining terms in (18) arc

wDJ{Jnj,x“}* - a“{PO,x“}* . mOj(GHXJ - el n“ég
e [2X 0 T e (25)
9
The choice y =0 scerves to determine §v:
st = - aY - wojxj : (26)

The use of this in the remaining components of (25) then shows
that the only nontrivial part of the WLC reflers to pure Lorentz

transformations and is

kKod ko K g ® .
(yjox) = 5yt TAREE A (

to
~3
St

This 1s the form of the WLC originally used in proving the
No Interaction Thecorem; and for the [rece particic case (24) it
is clearly obeyed.

As another choi.e for x wc next consider

X = pex - omr . (28)
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Fhe Dirac Brackets can be computed and again one finds that 7,

Py sre a complete set of

variables

with t-independent brackets:

: X o , ,
{xJ,xk} = (xka - xka)/m“ ,
j 29
] L% ] PJPk * (29)
{x7,ppt = 5S¢ 0 {p ’Pk} 0 .
m
The multiplier v is now
v ={1/2)m (30)
so I must be »n chosen that through the brackets (29) it
generates the quations of motion
xJ o= ixd T = %W : pt o= (pd 0T = 0 (31)
The solution is
. Py AP "
iC= - min— pg =/ pT T (32)

We have now ua new description

of the free particle, not belonging

to any of Dirac's forms: the

brackets (29); the xj are not
laboratory time but at
units of proper

orthogonal;

six basic variables xj, Pj have

spatial position variables at some

that point on the world tine which in 7
time away from the point where p and x are

the cleven gencrators are
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P

= : - : = m L35S a} - 0 ) = =
J.;k LR L ']Oj (mt + pex) i Xy o lj by Po = Do
= - ml Mo .
: moIn e (33)

Fhe bravkets amony Joyo P“ computed on the basis of (29) will

have the proper vatues, and H is not in the Poincaré algebra,

This time, the WLC (18) has a different behavior than previously,

there is no need lor ot to depend on Wy at all, 1t must be

chosen only to satisf{y

o 'u X B ) | (’()‘}\ ,il - lk\ ’
{asp,xMy o= dl e e (x'', 30 j st (34)
The o= 0 case Jdetermines dt to be - asp/m, and the remaining
conditions are
. . [) . &
] * j k () 4
op A > 3 Nt , 3
{x", k} 05 - {x’,10) (35)

These nontrivial parts of the WLC refer to the behavior of X5
under spatial translations, and are ol coursce obeyed.,

Because of the simplicity of the present system (essentially
the lact that cach L is one dimenstional) one can casily show that
the WLC (18) can be satisficd tor any choice of x. {This mecans
that we can view different choices as various ways of describing
the same physical system, namcly the frece particle,) Ye can
rewrite (18)Y in terms ol the original Poisson brackets and then

it rcads
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(G, K, x"} = ;3[& (XM K8 (36)
The choice
§t = {G,x} OX (37)
» X 9T

will always work. 1In any cvent we have demonstrated, with the
simplest imaginable ¢ystem, how onc can arrive at new Hamiltonian
relativistic descriptions not encompassed by Dirac's programme.
We have also secen that the methods of constrained Hamiltonian
mechanics serve only as convenient tools to ultimately arrive at
various descriptions of onc particle, always characterized by

six independent wariables, suitable brackets, and generators;

it is just that the sytem delined by (29) and (33} would have

been awkward to define dircctly.

3. Two Interacting Particles

We begin with a sixteen dimensional phase space I' with

variables Xua’ pua’ a = 1,2, the only nonzero Poisson brackets
being
{Xua’pvs} = S8,y - (38)
The transformations
R{A,a): x > x! = A Vx +a P > ptoo= A vp (39)
’ oMo Tuo o Tva u Mo M U )
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arc canonical, provide a realization of the Poincaré group, and

have as generators

= ; - ’ b] =
v g (qupva kvapua) ¢ l z Pua ’ (40)

We must now choosce two independent constraints Kl’ K, such
that each is invariant under R(A,a) and they arc a (irst class

P

pair. We make the ansatzlJ
. L2 2 ;oL w2 2 \
K] = p] my * vV, K, = 10 my + Vo, (41)

incorporating a common '"interaction term'"” in addition to the
free particle forms. The first class condition is
2 2 ~ d .0 _ ,
{Ky{,Ky} = {pl - Py vVl o= 2 Py 5§; ) 5;; V=20 . (42)
The most general V is casily discovered. Invariance of V under
R{7T,a) tells us that V is some function of X| 7 Xy, The condition
(42) then says that V is unchanged if Xq and X, are changed to
Xp Y epyy Xy - €D, respectively, with ¢ small. Thus V must be
some function ol the part of Xy m X that is transverse to
P = Py * Py Writing
1 1 1 1 1 Per
vt =3 (xll - xZ“} , ot ety e (43)
and finally invoking the invariance of V under R(A,0), we sce

that we can take for V any function of Lorentz scalars formed
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out of rJ“, Py and p,. TFor simplicity we shall consider V to

§ >
be some {unction of rL“ alone, so we finally have the two first
class constraints

. 2 2 . , 2 2 .

Kl = py oot v({g)y , hz =Py ocomy v{g) o,

2
Yoyt
£ o= v N N Ui {44)

Once could now choose to work with the two combinations K1 2 KZ’
in onc of which V is abscent; but we will 'use the above sct as
given,

The region in T wherein both K1 and K3 vanish will be a
fourtcen dimensional constraint hypcersurface L. Clearly ¥ is
mapped onto itself by R(A,a}. Kl and K, themselves generate
commuting canonical transformations that alsce map ¥ onto itself:
these follow from the [first class property. Given any point
(x,p) in 2 we can develop its "orbit'" under the Abelian group of
canonical transtormations generated by Kl and K,: this will be
a two-dimensional ''sheet" S lying wholly in ». Onc can imagine

petting S in this way: we solve the differential cquations

dx?(o] dp“(o)

A= I x ey LK R = H(o),X (45)

“do o RV de Po L9758g Vg o 7
X, (0) = x M, P (0) = p M,

for all possible choices of the Vg and then collect together all
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e

the points of ¥ that can be reached from (x,p) in this way. The
fourteen dimensional ¥ thus brcaks up into a unicn of two-
dimensional sheets S, which must then form a twelve parameter
family. And this break-up of 2 with disjoint sheets is prescerved
by R{A,a): cach S wiil be mapped by R(A,a) onto another entire
sheet &',

So far again the development has been matheamatical; more
needs to be done beflore we urrive at u physical system ol two
interacting particles. 1t 13 necessary to tdentify preciscly
what constitutes a "state of motion" {or tihe two particles; and

this must be such that, in cach state of motion and in cach framc

¢ a pair of world lines in space time is unumbipguously determined,

Reflection shows that it would be physically inappropriate to
identify a sheet S as a "state of motion" of the two particle

0 { .
system, It should be clear that X and x5, the "time components"

H

of Xy »ovary independently over a sheet S, so on a given sheet we
. > - i - e L0 0
can view X, and x, (and P, as well) as functions ol Nps X
L% N La
. . . . N M r
Except in the noninteracting ciase, we expect Qﬂﬁh 0 Ny, X, to

depend on both ol x?, xg. LI therelore all of 5 were to be used
to reconstruct spacce-time world fines for the two particles, we
would end up with a sheet and not a line {or cach particle! In
order that cach "state of motion" lead uniquely to a world ltine
for cach particle it is necessary to choosce some one dimensional

cuarve C in § and call that alone a "state ol motion': the rest

of S is to be then discarded as being of no physical significance.
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A curve € on cach § is specifiable by choosing one constraint

x](x,p) with no explicit dependence on any parameters:
xq(x,p) = 0. (46)

It is only necessary to censurce that the function x 1s not con-
stant over an S, To then assign a value of an cvolution parameter
T to cach point of C we must sct up an explicitly t-dependent

sccond constraint

XZ(X,p,T) ~ 0, (47)

The pair of constraints Xq added to the earlier pair Ka then
defines the physical interacting two particle system: the sys-

tem is not recally defined until the Xq are chosen; and one cannot

view dilferent choices of the X, 48 giving differcnce descriptions
SIS K} T N 3 - 1714

of "the same physical system.,

For this scheme to work it is clearly adequate that the set

of Cour constraints Ku’ X o be sccond class, i.e.

det [ {x, K3 # 0 . (48)

Let us now write

uuB{XB’KY} = aaY (49)

Then the true physical variables arc obtained by imposing all

four constraints

Ky = 00 Xy = 0 (50)
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and the phvsical brackets are the Dirac brackets relative to

Ky X!

(£,0)" = (F,8) - agg({6,K Hxg,e) - (£,x0{K 8D

- LB K dagaxgaxgetagig I v sed (51)

This system of brackets supports a twelve dimensional phase
spacc. States of motion are the curves C on shecets S, with
parameter of cvolution t. Since the K, were constructed to have
vanishing Poisson brackets with Juv and Pu, the latter quantitics
continur to provide, via their Dirac brackets, a realization of
the Lie algebra of the Poincaré group. They thus integratce to

a rcalization of the Poincaré group by transformations R*(A,a)
canonical with respect to the Dirac brvacket. Hach R*(A,a), like
R(A,a), maps L onto itselfl; morcover if R(A,a) carrics S to §',
so does R*(A,a); beyond this, R*(A,a) takes the curve € in S
determined by {46) to the curve C' determined similarly in 8',
and preserves the valuc of v in the process. From now on the
change of inertial frame 0 -~ 0' = (A,a)0 is represented by the
transformation R*(A,a) acting on the physical system.

The hitherto arbitrary quantities Ve, in (45) arec now fixed

il

since the constraints X 0 must be maintained:

dxy . B IxXg Xy ,
"a‘:lf ~ 0 Va - - daB “"‘;{"‘ - " aaz *'5*1"‘ . (5..)
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Fhe resultine generat cquatron of dynamical evelution along
any
. i’;’i
J v ] o A S
Ix,p, . S T NI BN - [IRIN
o i yi P : )
CalloDe sowrrtten o diamy btonran rort o witn the hirac bracket
provided the meaning of expilarcit deperndence on 0 15 suitiably
altered:
Jt [ L N
L O | O R Eosd}
\IE s {

(We must pick twetve independent variables suarviving atter all
constraints (o6) are anposed, sach that their Dirac brackets
arce oindependent when exnressed in terms of themsolves; if f
in {54y s vxpressed o terms of such o oset of independent
variables, anv residuat ¢-dependonce is what contributes in (54).)
Subject to discussion of the WLE, the relativistic system of two
interacting particies is defined by the ten jencerators (0} and
the Hamiltonian ¥, all viewed as tfunctions of twelve ndependent
degrees of ireedom Tett when on the original phase space 7 oall
foar constraints (500 are operative,

The WLC are casy to set up.  The point x\‘er), p;l(r) on
C in some S teads, in a frame @, to the pairv of space-time points
xl"("c), xu,i'(r). These are the points on the two world lines to
which, in the considered ste of motion, and in the (rame 0,
a common value 1 of the parameter is assigned.  In the frame

' = (A,a)0 with (A,2) infinitesimal, onc assigns the common
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This corrvesponds *o adopting Porac’s instant form.  The matrix

in (18] ¢

( P“ ‘U 1
| | : §
(s A 1) i i
1 Ve | N . y f
o ',{': {Pey ™ ) i . k)“} l]\,!x}‘“ , ~
LT R 'i,Ti""'\"(""}],
Y A S ,
Vi) Ji (. (O0)
The 1maverse anttrix - thon
U L S AN T
P pt T
(“-n ) ilf ! {
oo ey 0o
i Y AR Vg Yo
L pel ) "
Y ) 2 (Pegpy”
o« lngﬂ ety LL”}L‘ Vil . (61)
¥ I')'

Duce to Buclidean invariance of the y's, the Poisson brackets

{G,A‘é siaplify to

0

{G,kl} o) (6,50 a4 v 5w '{xil + X, . (62)

. . , . U 0
Bf the & 1 exist, they must be Tmncar expressions in a , w 7 and

must obey



s - iy H 1
N “a ’KS‘aSZ ST »
or, equivalently,
, 0j . Y 0,1 0
t‘lﬂ’hﬁ}aﬁlm ry = -{x, ,kf}aﬁz(a}r ta *sa (le + sz)] .
no sum on a . (63)

if 8,1 do exist, it must happea that the expressions

<
o § =

0J

. 0 - - . :
are proportional to . 3ri for both a values. Thus the 8,7 will

exist, and the WLC will bhe obeved, if out of the four vectors

s\a"‘ = D{xa“,xﬁiaﬁ} . Ba“ = D{xa“,Kﬁ}aﬁz R (64)

A Y is parallel to B,” and A" to 57“. These vectors are:
1 p 1 2 2

Pe 3 . -
Ay = 20p) + 20° l—?——\f'(i))pl * Ziptf - pY) L}P—V;(&E)rL .
2 20 52

1
0 0 Per
B, = 2P, p, -2 7‘; Vi@,

0

2
“20y + 200 L v ©py + 20 - 0 PR vicor

P
(]
[}

B, = 2p] b, - 2" ?;; vier (65)




in the abscace of any lateraction, V' = 4, A, and B} are parallel,
1

and su oare V, and By, thus tor tree particles the WL (57) or

{58) cun he obeyed. But it V' is nonzere, then the WLC demand

=

that 1, ne paratlel tu p, ax well as toe p,, und these conditions

L dyo# ! 2

cannol he mel, =inde 10 15 But a4 Jonsequence of the given con-

~t

straints that py 1S naratleld

Fheoren reappears 1n the present {ramework.

¢ p,. In this wuy the No-lInteraction

n the other hand a Jdynamical cholce of evolution parameter
can casily be made tor which the WLU are obeyed. In fact eg.
158) shows the wav. lLet us chousc G explicitly invariant under

R{A,a):

= [rer s Pefx, + ¥y) - 1 {606}

hen tov both values ot «, if

the WLu are obeved, whatever be the interactien potential V.
\s expected, 1t is only the behavior under space-time translations
that icads to o nontrivial WLU with the  of (on).  The system

of constraints K, x of egqs. (34), (06}, the Dirac brackets (51},

~ w

the ten gencrators (40) and che W o ey. {54) taken together
describe an 1neracting two particle system with objectively real

world iines, 1in the iramework otf a dynamically determined evolution

. since the choive of twelve independent physical variables, |
¥




their brackets, and the generator G all can rnvolve the inter
dobiaon Voothe constraint formatism is 0 convenitent technieal
medans to set oup the system in an implicit Tashion,
Ptois trivial ta remark that any choice ot ¢ and A such
that o s anvariant under REA, a0 and o, alone carries a
dependence explicitiy given a svstem with occeptable world

Frnes, One need only choose

SETN
‘-]': 28, ¢ Hi,)\,i/ -“'1“ (08)

to obeoy the WLC {(58).  However we stress that the choices of

vV, ) an doay all together detine the particular two particle

system inoainteraction,

1. The N-Particle Problem

The model of the previous Scction can be peneratized from

2 to N particles Tor any N,  We start with vartables x ) p

EE] e’
o=y dy e N ogiving us an 8N-dimensional phase space Iy the only
non-zero Poisson brackets being

{x X = R } 60
‘qu’lxwa} guv i @, B 1.2, N (69)

We must next choose N oindependent (irst class constraints Ka’

cach invariant under the canonical transformations R(A,a) (which

act in the obvious way and have obvious cxpressions Juv’ P“ for
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generators). We assume there is a common ''potential’ V and
take

K o= p. % - ?+ vix,p) @ = 1,2,%00,N (70)

a Iu 15 ,p 3 ’ ) ’ ¢
The first class conditions uare

(K K} = 0= |p oot o poe eV o= 0 (71)
a’he Py 0 R URG '

Morcover V must he invariant under R(A,a). The (N-1) independent

conditions (71) on V can be cexpressed in this way: for each of

the values o = 1,2,++¢,N-1, V must be unchanged by the infini-

tesimal changes

X > X

o+l a+l ~ FPqsqp o (72)

the remaining x's being held fixed., Translation iavariance
restricts V to be a function only of the (N -1) differences

Y = Xy 7 X9, Yo T Xy ot Xg, tttoyYaog T Xyl T Xy and of all the
Py We must extract from the set of (N -1) four vectors (yl,
yZ""’yN»l) just those combinations (dependent on the Py too)
that are unchanged under cach of the (N -1) transformations (72).
Let us writce, in view of (72), the sct Yy *tt¥y.y 35 @ column
vector with 4(N - 1) components, and also set up (N -1) similar
column vectors made up {rom the P, in this way:

-3ty
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Y1) [Py *Dpy ] “py |
Y Py Py *Pg
. ) 0 L Py
Yy = : » 2 7 82 T ’
. . (
yN—l | | 0 | )
(73%)
( 0 ) 0
" Py
Pz *Dy :
53 = LI ) %N—l S
..I)4
0 0
. TPN-1
0 k Py- i +])N

Then we need to form expressions lincar in y that are unchanged
if we were to add y to any lincar combination of ZystttaRNyt

V can then be any Lorentz invariant function of such expressions
and the P Let us cquip these 4(N -1) component quantities with

a metric in which we sum up the Lorentz scalar products of cor-

responding component four-vectors: thus we have

Yoz = vy 0y *0y) -y, opy
(74)
21 %2 = =Py *py) vy - Py n(py tpy), v



[
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LE the symmetric (N - 1) < (N - 1) matvix o «2 has an inverse
“uﬁ (these are all functions ol the p's), then the 4(N - 1)
component object
y - = B Loy (75)

-

has the desired property it pives us the (N - 1) Lorentz four

vectors each being lincatr in the Y. and unchanged under cvery
transtormation (72, V can then be any Lorent. invariant func:
tion of these (N -1} four vectors and the N vectors D, (lt
must be noted that in place of (74Y one could have usced cther
definitions of a metric for the quuntities (73); but one finds
that onc is not led to anything essentiatly new.)

The constraint hypersurface N in ' defined by

K =0 (76)

WL

is 7N dimensional; in it the Kl generate an N-parameter Abellan
i

group of canonical transformations, giving risc to orbits in

the form of N-dimensional "sheets" S, So the sheets form a

oN-paramcter {amily. Again i£w5§_iﬂﬁﬂ£ﬁ9priqtc tgmidcntiix

a sheet with a state of motion of an N-particle system. One

must give a rule for sclecting a one-dimensional curve C on

cach §, parametrize it with a variable 1, and vicew cach such

curve above as a state ol motion. Then as t varies along a given

C, in a given frame 0 the quantitics xg(r) give a set of N

world lines. The specification of C and then of t is achieved




by adding a set of N constraints

Xu(xyl)) = 0 ’ a = 1’2"")N -1 ; XNLX’])’T) x 0 s (77)

Only xy carries explicit t-dependence, and the Ku,

to (76).
[n eqs. (19), (51)

X, must together form a sccond class system,
{

1f we now let oa,B,s0
(54). There will exist a dynamical gencrator

run from I to N, we can write the replace-

ments for (52),

3 such that along any € one has a general cquation of motion

) . D .
T ¥ S R L SR
IT Y R (t,ka}aaN wTF AT + {1,310 . (78)

p H used within the Dirac bracket

The cleven generators J R
PV
system, and all constraints K, X operative, define the rela-

tivistic N-particle system in interaction. Of coursc changes

o . . . . %
of inertial frame are implementced by transformations R (A,a).

The WLC is, as before, given by the rcquirement: for any

infinitesimal transformation (A,a) there must cxist cxpressions

= 1,+¢¢,N, such that

5t x! *
Moo e+ X M0 8T, e = 1,eee N (79)

For computational ease we rewrite this as

ax

3 N :
u,KBIaBY{G,XY} % {XQU’KB}aBN “'5’,'1‘_" 6(1T ’ o = 1,2,“',1\' (80)

{xa



A simple choice of X yielding a physical system obeying thesc

WLC is
Xy = P (xl, *XZ) v X2 T P (Xz -XS)’ v XN-1 T P (XN-l —XN:‘
= P cxl - T s (8'1)

for then the value ﬁaT = -g ¢«F for all a fits the bill. Note

that v in (81) has the dimensions of action.

5. special Cascs of N-Particle Systems

[t should be c¢lear from the development so {ar presented
that the rcal rcason we have succeeded in not being bound by the
No-Interaction Theorem is this: we have cenlarged the {ramework
of relativistic Hamiltonian dynamics in an essential way by
allowing for a dynamically determined cvolution parametcr. But
this new framework so greatly increcases the possibilities of
constructing models with intcraction that we devote this scction
to looking at somec novel possibilities.

(a) Both in the two particle and N particle models so
far discussed the cevolution paramcter 1t had the following meaning:
in any state of motion observed in a frame ¢, Tt was the time as
measured in the center of momentum frame. (In (81) this involved
measuring v in units of /;7.) Since P}j is a constant of motion,

keeping 0 fixed we sce that for cach state of motion the center



of momentum frame is also an inertial frame, but onec that

depends on Pu and so on the particular state ol motion. This
is the case then with Xo chosen as in eqgs. (66), (81). But we

can consider another kind of system with the choices

. 2 .
Ra =P - omy + V{x,p) , a = 1,2,e¢¢ N
X = Py -(xa -xa+1) , o = 1,2,s¢¢ N -1 Xy = Py tX; - T (82)

The Ku'can be taken to be the same sect of first class functions
4s in the previous section; so the transition from I' to £ and
the subsequent breakup of ¥ iato sheets § is exactly as bhefore.

But thercafter the model chapges. The curve C we pick out on each

3

S to identify with a state of motion is no longer the same as

belore; so even with the safe "potential' V we have now a com-

pletely different physical system of N interacting particles:

the Dirac brackets and ¥ will all be different from the casec
with eq. (81). In particutar, since in the present model the
first particle is not free, i.c. p, is not a constant of motion,

1 _no longer has the meaning of being the time in some (dynamically

determined) inertial frame. Nevertheless all the requirements

of special relativity and also the WLC remain fulfilled. In

particular the WLC (80) is now satisfied with the common choice

éaT = -a-*p; , a = 1,2,00¢,N . (83)
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(b) The case we just considered was this: one of the
particles in the N-particle system, subject to interaction like
the rest, "carries a clock with it" and that gives us a parameter
T. We can casily make a model in which this "time Kkeeper' is
freec but is not the "center of momentum' of the total system!

To have a system ol N-particles in interaction, we adopt the
formalism of the previous scction appropriate tv a system of

(N +1)-particles, and make the choice

Ka = pu_ - muh + V(Xl;“':xi\"p})"':,I)N) ’ a= 1,2’.._,‘\} >

. 2 2

KNo1 = PNap 7 g

Xe = Pnap "X "X pp) w0 ao= 12,00 N

XN+l = PNep " Xnep 0 Mg U (84)

The function V is of the kind we investigated in che previous
section. We have then an initial I of dimension 8(N +1); the

surface % defined by the vanishing of k},kz,“-,kNH is of

dimension 7(N +1); thesc first class K's generate in ¥ sheets
5 of dimension (N +1}; und the final Dirac bracket system refers
to a system with O(N +1) phase space variables. The following

bracket relations are checked:

TR 5
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(K Kyyyd = 0, 6 = 1,2,000,N ;

(Kyyprxg) = 0 s o= 1,2, 000 N -1 ;

(o} = 2oy, s

{Kq’XN+1} = 0 , o = 1,2,++¢,N

{KN+1’XN+1} x *2m§+1 . (85)

The equation of dynamical evolution
{f’KCY,}v(X * {f’KN+1}VN+1 : - (86)

has coefficients v which are fixed by the requirement that each

x be preserved in time. In this way we find:

dXN?rl 5 1

. i) 0 = Vv = Ig— R (87)
dt N+1 2'mN+1

For the equations of motion for XN+1? Pysp WO have:

dXny1  Pysa dPn+y

at " omy,q 7 F Y : (88)

Thus the (N +1)th particle indeed moves freely, but it supplies
its own "rest frame time" as the evolution parameter for the
entire system. In particular, let us note that the physical

changes of inertial frame 0 » 0' = (A,a)0 are represented by



A O ke S s e -

. . - N * ¥ N .
Dirac canonical transiormation R (A,a) in the final phase space

ol all (N +1) partivles with the generators being

N+l N+l
J = ¥ ix p - X P P o= Y p
T3V ‘12;] \ wul Vi vid v 4 o i T (89)

cven though” it is true that the contribations to JHV and P“ from
particles 1,2, N and from particlie (N #1) are separately
constants ol motion,

This particular model suppests that we may have succeeded
in avoiding the No-lInteraction Theorem merety by including the
dynamical varviables of o noninteracting but obscrving particle,
in short a passive obscerver, in the overall Iramework., However
it is more appropriate to say that such a possibuiity is one of

many that arise an owr extended torm of relativist dynamics,

" O]

o. Cluster Decomposition apd Separability into Subsystems

Given a system of interacting particles, {for many purposes
onc 1s interested in those interactions which allow lor the
system to separate into two decoupled subsystems when the spatial
separation between clusters of particles increase “sufficientiy.”
OF coursc this is true only for nonconfining forces: for example,
a harmontc oscillator interaction between the constituents will

not allow the interaction to die down with distance, it only




s
guan

increases. Foldy had pointed out this essential requirement
and pointed out that it was quite difficuit to carry out in the
instant form of relativistic interacting theories. We shall see
that the present formalism is more flexible and allows separable
intoructions.}s
Let us start with the simplest case of two particles dis-
cussed in Section 3. If the potential V falls off "sufficiently
fast' then the system approaches a collection of two f{ree particles,
However the WLC depend on the choice ol the x's.  For the choice
(59) we have two [rce particle world lines cach of which would
correspond to the choice (19) for single particle dynamics.  This
is hardly a surprisc, However if we made the choice (06) for the
x's we get a new physical system in which the parameter ¢ is
measured in the "time keeper' system which coincides with the
CM frame of the two free particles as in the choice (82) and
(83). The CM momentum P” is a constant ol motion,
Let us now discuss the case of g collection of m +n particles
in which the first m particles interact amongst themsclves and
the next n particles interact amongst themscelves only.,  [f we
trcat all the m+n particles on the same footing according to

(70) we will now get the stronger relation

}') L] .,::)-.v

o "y T F) (no sum over «) (90)
o

in place of (71) with a Lorentz invariant function F(p). For



pntoeradciton which sdo not rhciva e with anterpaticle separation
the tunction Fipe miay he choson o be ceror accondingly we

aprtain

¥ M - o 4 IRV S y . (‘)1)

Fhe two subsyatoms Loerns “pat oo cther™ t0 tors the sround systen
constrains the rateractions te the oxtent tiat cdvg, (91 are

special o cases ab b bhr o the trave o therny cobabitation

e

i the deasvripleon accordin, o e, and ! rictron obtains

>

il‘l‘k‘:?}‘t‘x‘l pve of the vherce o the

we onole Lhat the o comditson 10 stable an the sense that

—

-
-

-

turther qevcompositicin. ol o sabusystes anioe LS TERPOSeS
no additionasd regquirosents, Since cvery gvsEten aany be thought
Of s oa subavsten of o craeander svstem, s bons oas oweoare teeating
all partscies on the came basioe we may uanitformly choose {(91) in
place of {711,

Now to the chotce of the 70 1 the e oo chosen iR
the Lorent s invariant fashion, <pecitsed Tor cavaunpie by (21

1

the overall momentum 0 would e another fraoo o0 tne proaary

i

svatem, But this vhotce 1o ne more unasaad (oan the corresponding
cholce of two tree particles discnssed above,  We may equally

well have chosen any time Keeper Crame,

Now we o are in oo posttion to discusy the question of

separability. 16 we have a collection of wm+n particles and of



the tirst cluster of m particles separate from the next n
particlies by sufticiently tar, . (spatial) distances we cxpect

the interaction Vix,,**+,x ) to split into the sum of two
'm4n

tnterdactions:

Y(xl;"'nxmnx A ) vi(xl'°"'xm) *V||(A )

.o * .
m+l? " »

L
m+ | n

We would therefore expect {91) to be obeyed in the limit: but

then 1t must be obeyed even without taking the Timit, This

necessary condition is also =ufficient, since if (Y1) is satis

s e v e e

(2}

ficed every decomposition for which the interaction separates in

the sense of (92) there arce no additional requirements,
For two noninteracting subsystems we could have of course
had a nonuniform treatment of the particles by starting with

the constraints

. 2 2 ,
}\u S UPREE U V | (x,p) , a = 1,2, e,
5 )
Ki"‘ - })3" i IH{-‘ ) vlj(‘\ip) 3 B0 "H‘i,lll*.),,"o’mi-n (()-5)
Xy = b[ -\_‘ Y o= 1,2, e m
KB - P[[ 'XB - (Il o= m*l,.--,m+“ . (94)

—

The requirement that K's be first class imposce
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GV[. avj

ORISR, [TRURVRR A ! = 3 L)
P :)X'x P Z)Xu, A R » 1

I)VI l L)V] l

PR e i3 o v + + s e + g
p5 axr ;”. ax%| By f m+l,m+2, ,m+n (95)

4 i

Between Ku and Kﬁ there are no constraints.,  7The parameters Ty
and Ty May be chosen independently and we really have the

direct product of two systems with respectively m oand n particles.
In this case we need not speak of a decomposition since the
particles were never together,

A more satisfying separable system may be treated by
adapting the formalism of Section 5(b). We start with (m+n +1)
particles obeying constraints {(84) where N = m+n, In this case
the (N +])th particle is the time-keeper. I the system obeyed,
in addition the constraint (91) {or (90)!) then, provided V(x,p)
had the property (92) of separation the limiting Corm rveproduces
the direct product of two systems of the same type with N =
and N = n. The same time-Keeper works [or both companies.

The interactions were momentum-dependent from the start in
view of the conditions (71). But for a two-particle system in
the CM frame this could have been thought of as dependence only
on the spatial distance. But the stronger requirement (91) im-
plies that V be a function only of the relative coordinate which
is normal to both the total four-momentum P“ and the relative

e

momentum b, = (0 -p?)“. Such an intceraction is not really a



45

potential since, at least for cqual masses p“ is purely spatial
in the €M frame and hence V depends on the coordinates only

through r x p; in other words only on the orbital angular

1
momentum the CM [rame.

On the other hand we may stay with the weaker condition
(90) for separability. In this case it only implies that the

potential V depend vnly on v as already scen in Section 3.

L
In this casc there could be an additional lincar dependence on
the distance, Such dependences are unusual from the point of
view of scattering systems but have been proposcd in many
phenomenological theories in high energy physics. For a truly
independent description carrying no external time-kceper the two
particle potential becomes lincar in p -(x1 »xz) which becomes
the radial coordinate in the CM frame for a two particles of

¢qual mass.

7. Concluding Remarks

The work described in this paper is devoted to an analysis
of relativistic theories of N interacting particles making use
of the constraint formalism of Dirac. The starting point is a
collection of quadruplets of canonical pairs one for ecach
particle. The four momentum variables of cach particle is

constrained by one constraint cach; and these N constraints
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are required to be {irst c¢lass.  Lven with these constraints
the system is not vet a collection of particles since the
allowed region b ol phuase space is 7N-dimensional and mapped
into itscil by the Poincaré group R{* ,3) acting on the primitive
BN-dimensional space,  In view ol the (irst class nature of the
N constraints Ku Lhese constraints generate commu.ing canonical
transformations, Any point in the 78-dimensional constrained
surface » is taken into an N-dimensional sheet S by these trans-
formations,  On the other huand a collection of N particles would
have an initial state tabelled by oN variables; and dynamical
evolution should be described by a one-dimensional curve indexed
by an evolution parameter . We shall have to introdice then N
constraints X which torm 4 sccond ¢lass system together with
the K“, and the parameter of cvolution t© should enter at least
one of the constraints,  When cquipped with these constraints
the system may be viewed as aosystem of N pariicles.

We recognize that much of the spirvit ol our study follows
the various discoveries and ideas of Dirac, we rind that our
formalisw for relativistic dynamics goes heyond the four forms

of relarivistic dynamics that were outlined by Dirac. We need

to allow dynamically {rather than Kinematically) defined Lorentz
frames. In the process wo have been led to consider eleven dis-
tinguished generators corresponding to the Poincaré transformations
and the dynamical evolution of the system. The dynamical evolution

may be identificd with the time translation operator as a special
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but not usclul choice when describing interacting particles.
It is our belief that we have definitely made an advance in
relation to the formulation of reclativistic dynamics.

[t would be incorrect and unsatisfactory to consider the
choice of the x constraints as "'gauge" conditions.ld The physics
ol" the evolution of the system dces critically depend upon the
choice as well as the relativistic invariance,

The world linc condition is an added restriction to the
dynamics going beyond that of relativistic invariance. The
No-Interaction Theorem having been proved cannot be set asidoe
or invalidated without abandoning the theory. The N-dimensional
sheets are relativistically invariant, but they do not yet describe
particles and their existence and characterization ncither affirms
nor denies the No-Interaction Theorem.

What we need therefore is to try to imposc a requirement
different (rom the ones that led to the No-[nteraction Theorem,
The world line condition4 discussed in the text is such a choice.
With this choice and in the framework of the post-Dirac formula-
tion of relativistic dynamics we are able to obtain dynamical
results.,

The requirement of clucster decomposition brings in a host
of new problems. Our discussion of these should serve to focus
attention on the fact that these go beyond all the other require-

ments imposed on the system.
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The particularly interesting results on the time-keeper §
particle may cvoke dilferent responses from dilferent rcaders,
On the once hand every c¢lock is a more-or-less isolated subunit;
and as such treating it as a "particle'" (free or otherwise) or
o subcollcetion of particles is no essential limitation., There-
fore, one may argue, wc have cssentially overcome the limitations
imposed by the No-Interaction Theorem, On the other hand, onc
could arguc that as long as the (rame of the clock is a dynamicul
system we have gane outside the dynamical framework for consider-
ing objective world lines which are purely geometrical. We leave
it to the rcader to decide how much of an advance we have made.

The authors themselves are not in complete agreement about
the physical significance of the y-constraints, In this paper
the atvitude is taken that the dynamical system is not defined
until the y-constraints have been specified. llowever, in the
following paper, the point of view is taken that the dynamics of
;e iniecracting particles is given by the K-constraints while the

consiraints define a class of observers by fixing the relation-

o among the particle coordinates at a definite value of the
¢ olution parameter ¢, The "Kinematic'" or "dynamic" choice of «
tien appears as a relatively unimportant choice of clock and clock-
rate,  To some extent this difference in point of view is only
scmantic., It does, however, give additional insight into the

meaning and significance of the WLC

i
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