

PROGRESS REPORT
for
INFRARED ABSORPTION SPECTROSCOPY AND CHEMICAL KINETICS OF
FREE RADICALS
DE-FG05-85ER13439

MARCH 1989

Received by *Argonne*

APR 20 1989

Robert F. Curl and Graham P. Glass
Principal Investigators

DOE/ER/13439--4

DE89 010089

REACTION MECHANISM OF C₂H WITH O₂

In a previous study of the reaction between C₂H and O₂, we measured an overall reaction rate constant that was much faster than those obtained by other workers. We rationalized this result, in part, by suggesting that a long-lived intermediate is formed in the reaction, and that C₂H removal is much faster than final product formation. With the additional sensitivity provided by the modifications to the apparatus, we have been able to test this hypothesis by monitoring infrared transition frequencies of C₂H, HCO, OH, HO₂, CO, and CO₂ as a function of reaction time.

C₂H was generated in the presence of a large excess of O₂ by flash photolysis of acetylene and trifluoropropyne at 193nm. Only two products were actually observed, CO and CO₂, with the amount of CO produced being approximately 5 times larger than the amount of CO₂ produced. All of the CO₂ was produced at long reaction times, clearly showing it to be a secondary product. HCO, OH, and HO₂ were not detected, although our sensitivity for detecting the first two of these species should have been good. Evidence for significant production of atomic hydrogen was obtained by adding NO₂ to the system, and detecting the OH produced by the rapid reaction, H + NO₂ → OH + NO.

MASTER

dk

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Vibrationally excited states of both CO and CO₂ are produced by the reaction. For CO vibrational quantum numbers could be assigned; excited state transitions of CO up to $v = 7 \leftarrow 6$ were observed. When using acetylene as a precursor, vibrational relaxation of CO is extremely slow, and it was possible to uncouple chemical formation of the excited states from collisional de-excitation. Under these conditions, there appear to be two distinct processes leading to CO formation, a fast process forming vibrationally excited CO at a rate that approximately matched the rate of C₂H decay, and a much slower process producing predominantly low vibrational states of CO. The fast, direct, process was the only one observed for $v = 5 \leftarrow 4$ and higher, and the slow process was the only one discernible for the $v = 1 \leftarrow 0$ transition. Figure 1, which was recorded under conditions such that vibrational relaxation was negligible, clearly shows the different rates of formation of various states of CO.

The fast, direct, process forming vibrationally excited CO was identified as C₂H + O₂ → H + 2CO. Other thermodynamically possible, direct, channels producing HCO + CO, OH + C₂O, and CH + CO₂ could be excluded because of the absence of HCO, OH, CD (using C₂D₂) and "prompt" CO₂ respectively.

The rate of the slow process producing lower vibrational states of CO exhibited saturation behavior with increasing O₂ pressure. In order to reproduce the observed kinetics, a model involving at least two intermediates between C₂H and CO was postulated. The probable identity of the first intermediate is the peroxy radical HC₂O₂, formed by addition, although no direct proof of this was obtained.

Finally, it should be mentioned that the large discrepancy between the rate constant measured in this laboratory and that measured by Laufer and Lechleider has been completely resolved. When CO ($v=1 \leftarrow 0$) was monitored under conditions similar to those used by Laufer and Lechleider, a signal risetime almost identical to that reported by them was obtained. It is now clear that this risetime results from a combination of vibrational relaxation by

trifluoropropyne of excited CO produced by the direct mechanism and ground state CO produced by the indirect mechanism.

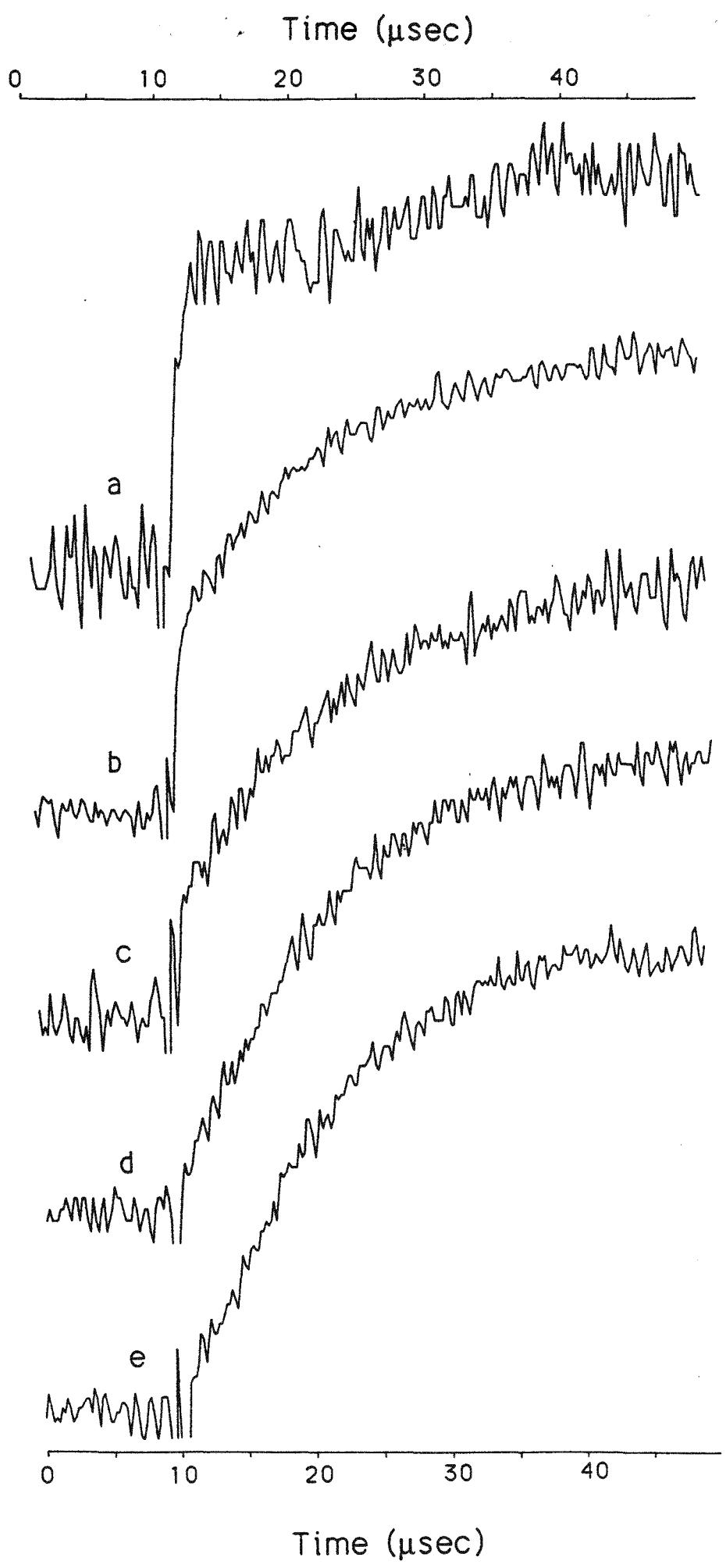
PRODUCT BRANCHING RATIOS FOR NH₂ + NO BETWEEN 300 K AND 1200 K

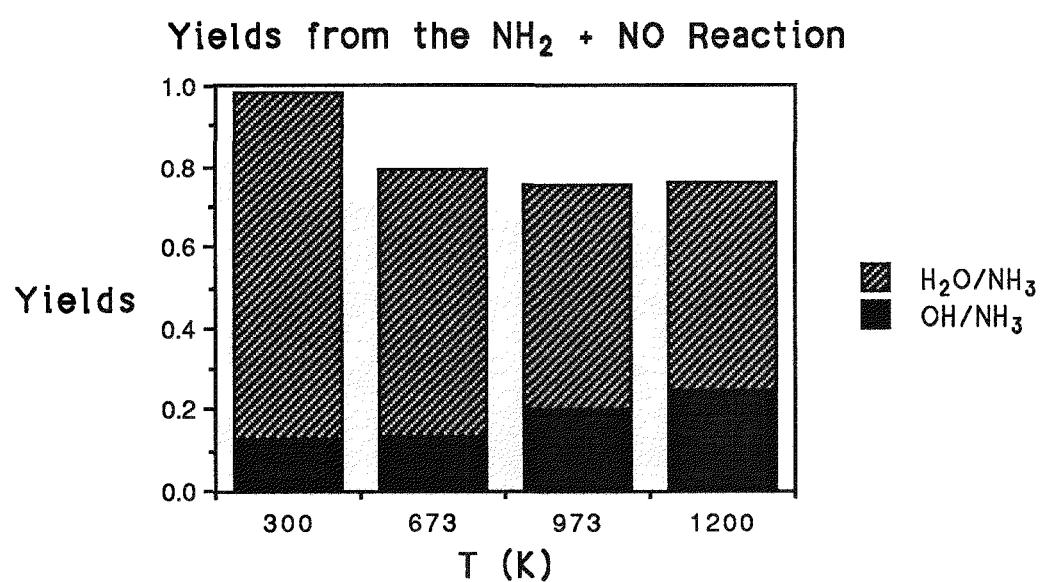
The reaction between NH₂ and NO lies at the heart of the "Thermal DeNOx" process. Unfortunately, four recent measurements showing that the room temperature reaction yields predominantly N₂ and H₂O are inconsistent with the need of studies modelling the thermal deNOx process for a chain branching mechanism.

We have almost completed a study of the branching ratio between H₂O and OH for this reaction at four temperatures: 25, 400, 700, and 925 °C. The branching ratio was determined by comparison of the observed intensities of the OH and H₂O transient absorptions with the transient loss of absorption of NH₃ upon photolysis. This not only gives the fraction of NH₂ converted to OH or to water, but also shows how well these two product channels account for the reaction products. Figure 2 is a bar graph summarizing our preliminary results.

Figure Legends

Figure 1. Comparison of the CO signals arising from different vibrational transitions on a short time scale. (a) CO(v=5↔4) R(14) absorption signal; (b) CO(v=4↔3) R(6) absorption signal; (c) CO(v=3↔2) R(2) absorption signal; (d) CO(v=2↔1) P(4) absorption signal; (e) CO(v=1↔0) P(12) absorption signal.


Figure 2. Yields of OH and H₂O for the reaction NH₂ + NO studied at 4 different temperatures. NH₃ pressure = 15 mTorr, NO pressure = 400 mTorr, SF₆ pressure = 400 mTorr, He pressure = 18 Torr.


DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Publications

1. "Reaction Mechanism of C₂H + O₂", D. R. Lander, K. G. Unfried, J. W. Stephens, G. P. Glass and R. F. Curl, *J. Phys. Chem.* (in press).
2. "Absorption Cross-section for the OH Fundamental", J. W. Stephens, G. P. Glass and R. F. Curl, *J. Quant. Spectr. and Rad. Transfer* (submitted).

