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ABSTRACT 

NOTICE 

This report war prepared as an account of work 
sponsored by h e  United States Government. Neither lhc  
United States nor h e  United Slates Department of 
Energy, nor any o f  heir employees, nor any of lheir 
contractors, subcontraclan, or their employees, makes 
any warranty, express or implied, or assumes any legal 
liability or responsibility for h e  aceurncy, completeness 
or usefulness of any information, apparatus, product or 
process discloud, or rcpnunu that its u u  would not 
infringe privately owned righe. 

. . 
Four mainstream t h e o r e t i c a l  d e s c r i p t i o n s  of nuc lea r  matter flow 

a r e  measured a g a i n s t  s i x  phys i ca l  f e a t u r e s  of n u c l e i  and nuc lea r  
heavy-ion c o l l i s i o n s .  Conventional (one s ingle-de terminanta l  wave . . 

func t ion)  Time-Dependent Hartree-Fock Theory emerges favorably  f rom. .  ' .  

the  comparison, b u t  f a r e s  poorly a s  a phenomenology. A completely 
r e s t r u c t u r e d  theory,  t h e  T.D. -A-11. F. , involv ing  many s ingle-de tcr -  

' minanta l  wave func t ions  is  proposed by analogy wi th  S-matrix r eac - , ,  
t i o n  theory. , I t  l e a d s  one t o  p l ace  t h e  phys i ca l  i n t e r p r e t a t i o n  of 
t h e  r e a c t i o n s  upon time averages of asymptot ic  channel  s t a t e s  of 
"TDHF Droplets ,"  comprising the  t r a n s l a t i o n s  and p e r i o d i c  TDHF vibra-  

. t i o n s  of i s o l a t e d  integer-nucleon subsystems. I n  i ts  most na ive  form . 

(based on sma l l  amplitude p r o p e r t i e s )  t h e  theory  would c o n s i s t e n t l y  . 

desc r ibe  only  t h e  kinematic  behavior  of " c l a s s i ca l "  i n t r i n s i c a l l y  
d i s s i p a t i v e  TDHF d rop le t s .  But i f  t h e  p e r i o d i c  s o l u t i o n s  of TDHF 
were t o ' o c c u r  only a t  i s o l a t e d  ene rg i e s  and amplitudes then  t h e  
theory would desc r ibe  quant ized 'TDHF d r o p l e t s  w i th  (time-averaged) 
or thogonal  channels ,  i n  which p e r i o d i c  s o l u t i o n s  p l ay  t h e . r o l e  of 
e i g e n s t a t e s  i n  c l o s e  analogy wi th  t h e  Schrbdinger theory.  

SUMMARY INTRODUCTION 

Those q u a l i t a t i v e  p r o p e r t i e s  of n u c l e i ,  and of t h e i r  e n e r g e t i c  
c o l l i s i o n s ,  which seem l i k e l y  t o  be of most importance f o r  t h e  f low 
of nuc lea r  ma t t e r  i n  t hese  c o l l i s i o n s  a r e  l i s t e d  and b r i e f l y  d i s -  
cussed. It i s  suggested t h a t  n u c l e a r  ma t t e r  flow i s  novel  among 
f l u i d  dynamical problems: perhaps nowhere e l s e  i n  phys ics  w i l l  d a t a  
ob ta in  on t h c  f l u i d  dynamico of t h c  omall,  f i n i t e ,  oclf-bound Farmi 
l i q u i d .  The name, Nuclear Fermidynamics, i s  proposed a s  an  appro- 
p r i a t e  l a b e l  fur Ll i ib :  n e w  uf y h y ~ i c t ; .  

The P r i n c i p l e  of Commensurability, which sugges ts  t h e  measure- 
ment of t h e  t h e o r e t i c a l  conten t  of an approach a g a i n s t  i t s  expected 
p r e d i c t i v e  range and a g a i n s t  i t s  i n t r i n s i c  p h y s i c a l  conten t  is s e t  
f o r t h  and d iscussed .  Seve ra l  of t h e  c u r r e n t  approaches t o  t he  nu- 
c l e a r  mat tc r  flow problem a r e  l i s t e d  and subjec ted  t o  a commensur- 
a b i l i t y  t e s t .  

It i s  found tha t  t h e  Time-Dependent IIartree-Fock (TDHF) descr ip-  
t i o n ,  a lone  of al$ t h e  mgjor t h e o r e t i c a l  approaches c u r r e n t l y  i n  
vogue, seems a l r eady  t o  i nco rpora t e  each of t h e  major q u a l i t a t i v e  
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fea tu res  wi th in  i t s  very concise s i n g l e  mathematical'assumption. On 
the  o the r  hand, the  Fokker-Planck-type s t a t i s t i c a l  descr ip t ions  have 
s o  f a r  been the most successful  i n  describing measured r e s u l t s ,  and ' 

the  phenomenological a p p l i c a b i l i t y  of TDHF has been se r ious ly  re- 
s t r i c t e d  by d i f f i c u l t i e s  of i n t e r p r e t a t i o n .  

Subsequent d iscuss ion focusses on the  T.D. -A -H.F. generaliza- 
t i o n  of t h e  conventional s ingle-determinantal  method. One of i ts  
mechanistic de f ic ienc ies  ( the  "Spurious Cross Channel Correlations" 
introduced whenever one determinant must descr ibe  many reactionchan- 
n e l s )  is i d e n t i f i e d  and corrected by a complete r e s t r u c t u r i n g  of the  
theory from i ts conventional i n i t i a l - v a l u e  form i n t o  an S-matrix . 

analogy. The r e s u l t  is  a remarkable extension of the  conventional 
s ingle-determinantal  i n i t i a l  value problem i n t o  a theory with .a ' 

, separa te  and d i s t i n c t  determinant f o r  each poss ib le  i n i t i a l  and 
f i n a l  r eac t ion  channel, which however i s  s t i l l  a Hartree-Fock Theory 
properly s o  ca l l ed ,  s i n c e  every determinant evolves i n  time accor-. 
ding t o  i t s  own se l f -cons i s t en t  TDHP equation. 

The p r a c t i c a l  requirement t h a t  T.D.-d -H.F. one must be ab.le to: 
i n i t i a l i z e  the  time-reversed Hartree-Fock ca lcu la t ion  f o r  each f i n a l  
channel s t a t e ,  and the  requirement i n  p r i n c i p l e  t h a t  t h e  meas.ured . 

r e s u l t s  predic ted  by a quantum s c a t t e r i n g  theory must n o t  depend 
upon where the  ( d i s t a n t )  measuring apparatus is  located,  lead one .to 
charac te r i ze  t h e  channels by the  pe r iod ic  se l f -cons i s t en t  v ib ra t ions  
of separa ted  A1, A2 p a r t i c l e  systems and the kinematic va r iab les  f o r  
t h e i r  r e l a t i v e  motion, and t o  i n t e r p r e t  the  channel s t a t e s  only i n  

' 

the  time-averaged, sense. 
Thus one circumscribes the  apparent physica l  range of the  ' . 

theory: i t  descr ibes  t h e  react ions  between " c l a s s i c a l  TDHF drop-' 
lets" whose dynamical content  is .completely defined by t h e i r  per i -  . 

, 

odic  TDHF v ib ra t ions .  The simplest  of e l a s t i c  s c a t t e r i n g  react ions :  
are s t rong ly  recommended a s  ob jec t s  of numerical computer experimen- 
t a t i o n ,  t o  a s c e r t a i n  t o  wha? degree the  T.D.-$-B.F. theory i n  t h i s  
c l a s s i c a l  approximation regains  the  quanta1 f e a t u r e s  l o s t  i n  t h e .  , 

conventional TDHF desc r ip t ion .  
A t  a more s u b t l e  l e v e l  i t  i s  noted t h a t  the  reac t ion  channels 

of t h i s  c l a s s i c a l  T.D. -d -H. F. theory a r e  very redundant compared , 

t o  t h e  complete orthogonal s e t  of Schradinger functions which they 
analogize.  One r e s u l t  is t h e i r  non-orthogonality, which i n  t u r n ,  
l eads  t o  some l o g i c a l  s t r a i n  between two axioms of the  theory: the  . . .  
s t a t i s t i c a l  i n t e r p r e t a t i o n  and the se l f -cons i s t en t  TDHF t i m e  evolu-,. ' 
t i o n  of each determinantal  wave function. The r e s u l t  is t h a t  "clas- 
sical TDHF droplets" on c lose r  look p r o m i ~ c  t o  be  i n t r i n c i c a l l y  die- 
s i p a t i v e ,  " in exhorably shar ing t h e i r  energy ever more widely among' 
the  d i s c r e t e  i n f i n i t y  of energy-degenerate v ib ra t ions  which e x i s t  a t  
every f i n i t e  e x c i t a t i o n  energy, and defeat ing thereby b o t h ' t h e  hope 
f o r  well-defined asymptotic s t a t e s ,  and t h e  p o s s i b i l i t y  f o r  unam- . 

biguous time-reversed TDHF ca lcu la t ion  from a s p e c i f i c  f i n a l  s t a t e .  
F ina l ly  i t  i s  noted t h a t  the v e r i f i c a t i o n  of a s i n g l e  conjec- .. 

t u r e  (namely, t h a t  t h e  t r u e  per iodic  so lu t ions  of t h e  TDHF equa- 
t i o n  a r e  i s o l a t e d )  would compel the  heal ing of a l l  of these diff$- .  . 

' 

c u l t i e s  a t  once, by a l t e r i n g  the  set of per iodic  so lu t ions  s u i t a b l e ' .  
f o r  charac te r i z ing  reac t ion  channels from a degenerate continuous 



s e t  i n t o  a  d i s c r e t e  s e t  or thogonal  on the  time average, and prospec- 
t i v e l y  a b l e  t o  de f ine  completely t h e  time-averaged asymptot ic  prop- 
e r t i e s  of t h e  "Quantized" TDHF d r o p l e t s  which such a t h e o r y  desc r ibes .  

Thus, one f i n d s  t h a t  t h e  T . D .-d-~ . F . theory desc r ibes  time- 
averaged quantum ampli tudes whose content  depends e s s e n t i a l l y  upon 
t h e  na tu re  of t he  p e r i o d i c  s o l u t i o n s  t o  TDHF. I f  t h e  p e r i o d i c  solu-  
t i o n s  a r e  i s o l a t e d  then the  theory desc r ibes  Quantized TDHF Drople ts  
which e x h i b i t  a  dynamical spectrum analogous t o  t he  e i g e n s t a t e s  
of t h e  Schrodinger theory;  o therwise ,  i t  desc r ibes  t h e  i n t r i n s i c a l l y  
d i s s i p a t i v e  c b a s s i c a l  TDHF d rop le t s .  C lea r ly ,  a  r i go rous  mathema- 
t i c a l  answer t o  t h i s  ques t ion  is of t h e  utmost importance. The 
ques t ion  is opexi wllether ia the l a t t e r  case,  a "Re-quantized" Drop;- 
l e t  Theory might s t i l l  be  cons t ruc ted  by t h e  ad hoc a d d i t i o n  of some 
s p e c i f i c  quan t i za t ion  assumption t o  t h c  theory. 

This  r e p o r t  comprises two major p a r t s  as fol lows:  

I. Nuclear Fermidynamics: Phys i ca l  and Theore t i ca l  
Commensurability 

11. Res t ruc tu r ing  TDHF Theory i n t o  T.D.-$-H.F.: 
C l a s s i c a l  and Quanta1 TDHF Drople ts .  

To f i t  t h i s  paper  i n t o  the l eng th  r e s t r i c t i o n ,  we have schema- 
t i z e d  p a r t  11, which a t  t h e  p re sen t  s t a g e  i s  of somewhat more tech- 
n i c a l  and s p e c i a l i z e d  i n t e r e s t  than p a r t  I. 

I. NUCLEAR FERYIDYNAMICS: 
PHYSICAL AND THEORETICAL COMMENSURABILITY 

RELEVANT PROPERTIES OF NUCLEI 

I n  t h i s  p a r t  I, we d i scuss  b r i e f l y  four  nuc lea r  p r o p e r t i e s  and 
two circumstances of nuc lea r  heavy-ion c o l l i s i o n s  which promise t o .  
be of q u a l i t a t i v e  s i g n i f i c a n c e  i n  t h e  d e s c r i p t i o n  of t h e  m a t t e r , f l &  
dur ing  such c o l l i s i o n s .  Table I l ists  t h e s e  i tems and i d e n t i f i e s  
them b r i e f l y .  Of the  f o u r ,  t he  SMALL and FINITE p r o p e r t i e s  a r e  two 
which a r e  unique t o  n u c l e i  and promise t o  s e t  nuc lea r  mat te r  dynam- 
i c s  a p a r t  from t h e  flow of ma t t e r  i n  o t h e r  phys i ca l  systems. . 

The nucleus is  s a i d  eo be "small" by v i r t u e  ul: L l ~ e  f a c t  t h a t  
t he  dimensionless  s i z e  parameter,  R/A (where A is  t h e  mean f r e e  pa th  ' ' 

of a nucleon i n s i d e  t h e  nucleus)  is  l e s s  than  one, l f o r  a substan-  
t i a l  range of low nuc lea r  temperatures .  

The long mean f r e e  pa th  is, of co.urse., t h e  r e s u l t  of t h e  F e q i  
s t a t i s t i c s  of nucleons and the  r e s u l t i n g  P a u l i  exc lus ion  p r i n c i p l e .  
This same proper ty  provides  t h e  t h e o r e t i c a l  v a l i d a t i o n  of t h e  s h e l l  
model d e s c r i p t i o n  of nuc lea r  s t r u c t u r e .  W e  b e l i e v e ,  t he re f  ore, 
that i t  warrants  prime cons ide ra t ion  i n  t h e  cons t ruc t ion  of any 

1 0  theory of nuc lea r  mat te r  flow. 
The SMALLNESS of n u c l e i ,  on t h e  o t h e r  hand, o f f e r s  a  substan-  

t i a l  o b s t a c l e  t o  any assumption of l o c a l  equ i l i b r ium i n  any sma l l  
volume i n s i d e  t h e  nuc leus ,  and would seem t o  exclude t h e  p o s s i b i l i t y  
of a  hydrodynamical d e s c r i p t i o n  l l v i a  equa t ions  of t h e  Navier-Stokes 
type. For such t h e o r i e s  d e a l  w i th  i n t e n s i v e  v a r i a b l e s  which a r e  
assumed t o  vary smoothly ac ros s  t h e  nucleus.  



TABLE 5:  SALIENT FEATURES OF NUCLEAR FERMIDYNAMICS 

b. Four Nuclear P roper t i e s  
- - 

FERMI + SMALL, R/X < 1; implies 11- - - 
No Local Equilibrium 
Col l i s ions  of P a r t i c l e s  with Walls a r e  Crucia l  

2. FINITE-A, GRANULAR; implies 
STRUTINSKY GENERALIZED SHELL EFFECTS on 
POTENTIAL, INERTIAL, and DISSIPATIVE Parameters 1 3. LIOUID-SELF-BOUND : I 
System Reponds Self-Consistently t o  i t s  Own Motion 

4. BCS PAIRED 
I 

-- 

Energy Gap i n  Particle-Hole Spectrum; Altered I n e r t i a l  1 
I and Diss ipa t ion  (?)  Props r t i e s  

Two Circumstances of Heavy-Ion Col l i s ions  
1. NON-EQUILIBRIUM <-> Diss ipat ive  . . 

Suppressed Degrees of Freedom Serve a s  Diss ipa t ive  Sink 
2. US-DYNAMICAL <-> GLOBAL 

Matter Flow Subs tan t i a l ly  Al te r s  Average F ie ld .  d u r i n g .  
Process 

I n  add i t ion ,  NUCLEAR SMALLNESS focuses one 's  a t t e n t i o n  on the  
c o l l i s i o n s  of nucleons wi th  the  w a l l s  o f  t h e  nucleus, s i n c e  these  
are the  only c o l l i s i o n s  l e f t  when the  mean f r e e  path becomes very 
l a rge .  This q u a l i t a t i v e  f e a t u r e l o  is e levated  t o  an exclus ive  ro le .  
i n  t h e  "wall formula" r e c e n t l y  recommended by W. J. ~ w i a t e c k i l ~ , ~ ~  

. and p lays  an important p a r t  i n  the  various o the r  one-body approaches 
t o  d i s s ipa t ion .  l 

The second proper ty  l i s t e d  is t h e  FINITE-A, o r  GRANULARITY, 
proper ty  of n u c l e i w h i c h  a r i s e s  from the  d i sc re teness  of t h e i r  quan- 
tum desc r ip t ion .  This proper ty  leads  t o  spher ica l19 and general- . 

ized20 s h e l l  devia t ions  o f ,  the nuclear  collectivtS p o t e n t i a l  energy' 
from i ts  smooth l i q u i d  drop value." It a r i s e s  from the  f a c t  t h a t  
A (%lo2) p a r t i c l e s  a l low s u b s t a n t i a l  r e l a t i v e  f l u c t u a t i o n s  from a 
smooth average a s  compared with a t r u e  many-body system ( A t - ) .  For 
macroscopic systems wi th  A i e.g., t he  general ized s h e l l  cor- 

. . 
r e c t i o n s  would b e  much smal le r ,  r e l a t i v e l y ,  and the  smooth liqujld 
drop l i m i t  much more nea r ly  r ea l i zed .  

W e  a l ready know t h a t  i n  nuclear  physics these  general ized s h e l l  
co r rec t ions  a r e  s u f f i c i e n t  t o  e f f e c t  q u a l i t a t i v e  a l t e r a t i o n s  on t h e  
process of nuclear  deformation i n  r eac t ion  processes.  Especia l ly  i n .  
the  case  of f i s s i o n  they supply the  c u r r e n t l y  accepted b a s i s  f o r  
understanding t h e  mass asymmetry of the  f i s s i o n  of heavy n u c l e i a t  

, 

low and moderate e x c i t a t i o n  energy. 
I n  add i t ion ,  i t  has  been shown t h a t  t h e  i n e r t i a l  tensor  f o r  

nuclear  mass flow w i l l  a l s o  e x h i b i t  Strutinsky-type s t r u c t u r e  i n  N ,  
Z ,  and d e f ~ r m a t i o n ~ ~  which can be understood a s  e f f e c t i n g  a l o c a l y  
compressible flow f o r  the  nuclear  matter .  26 Fina l ly ,  one must an- .. 

t i c i p a t e  t h a t  i n  a  theory which c a l c u l a t e s  d i s s ipa t ive .  parameters , . 

from microscopic p roper t i e s ,  such parameters a l s o  w i l l  r e f l e c t  the  . 
e f f e c t s  of S t ru t inskyP  s general ized s h e l l s  .27 Thus, t h e  f a c t  t h a t ,  
t h e  nucleus is  a GRANULAR system w i l l  inf luence  the  p o t e n t i a l ,  



i n e r t i a l  and the  d i s s i p a t i v e  parameters-which is  t o  s ay ,  every 
aspect-of t h e  u l t ima te  d e s c r i p t i o n  of nuc lea r  Fermidynamics. 

T h e - t h i r d  proper ty  l i s t e d ,  t h a t  t h e  nucleus i s  a self-bound 
l i q u i d ,  emphasizes t h e  f a c t  t h a t  a s  nuc lea r  ma t t e r  flows t h e  average 

.binding f i e l d  a l t e r s  i n  accordance wi th  t h e  mat te r  d i s t r i b u t i o n .  
The nuc lea r  flow sha re s  t h i s  p a r t i c u l a r  proper ty  wi th  o t h e r  p h y s i c a l  . .  

l i q u i d s ,  b u t  n o t  wi th  gases ,  nor  wi th  t h e  flow of e l e c t r o n s  i n  a n '  
at.om, where a s t r o n g  e x t e r n a l  f i e l d  ( t h e  Coulomb f i e l d  of t h e  nu- 
c l e a r  charge) is  unresponsive t o  t h e  flow of t h e  e l e c t r o n  matter. . .  . 

The f o u r t h  f e a t u r e ,  t h e  ~ardeen-cooper-~chrieffer*~ p a i r i n g  of 
n u c l e i  i s  a long recognized proper ty30  of low energy n u c l e a r  s p e c t r a  , 

It i s  known t o  imply a moment of i n e r t i a  sma l l e r  than  t h e  r i g i d  
va lue ,  r educ t ions  of v i b r a t i o n a l  i n e r t i a l  parameters ,  2 5  and an . . 

energy gap i n  t h e  spectrum of p a r t i c l e  ho le  e x c i t a t i o n  of t h e  ground 
state.32 Its importance f o r  f i s s i o n  b a r r i e r  rocesses  has  long been 
recognized, 3 3  and f o r  d i s s i p a t i o n ,  s u ~ p e c t e d . ! ~  It is  n o t  y e t  known 
how important  i t s  e f f e c t s  w i l l  b e  i n  t h e  Fermidynamics. Indeed, on 
the  grounds t h a t  i t s  in f luence  would be q u a n t i t a t i v e ,  r a t h e r  than 
q u a l i t a t i v e ,  i t  was omit ted from pre l iminary  ve r s ions  of t h e  p r e s e n t .  
l i s t .  35-36 W e  he re  r e v i s e  t h i s  omission. 

RELEVANT CIRCUMSTANCES OF NUCLEAR HEAVY-ION COLLISIONS 

I n  a d d i t i o n  t o  t he  above f o u r  n u c l e a r  p r o p e r t i e s ,  two circum- 
s t a n c e s  of t h e  nuc lea r  heavy-ion r e a c t i o n s  seem e s s e n t i a l .  The 
f i r s t  i s  t h a t  t h e  c o l l i d i n g  system i s  i n i t i a l l y  extremely DIS-EQUIL- 
IBRIZED-containing, i n  f a c t ,  a l l  of i t s  f r e e  energy i n  t h e  s i n g l e  
degree of freedom desc r ib ing  t h e  d i s t a n c e  between t h e  two n u c l e i  
about t o  c o l l i d e .  One can t h e r e f o r e  be  c e r t a i n  t h a t ,  immediately 
upon c o l l i s i o n ,  t h i s  energy w i l l  beg in  f lowing i n t o  o t h e r  degrees of 
freedom, wi th  a s t r o n g  tendency towards e q u i l i b r a t i o n .  The theoret- '  
i c a l  d e s c r i p t i o n  of t h e  subsequent motion, s i n c e  p r a c t i c a l  consider-. . 
a t i o n s  r e q u i r e  i t  t o  involve  some number of dynamical v a r i a b l e s  l e s s  
than t h e  complete s e t ,  w i l l  involve  from time t o  time t h e  t r a n s f e r  
of energy, momentum, o r  o t h e r  phys i ca l  q u a n t i t i e s  i n t o  degrees of 
freedom which a r e  being suppressed i n  t h e  theory.  Such t r a n s f e r s  
which l eave  t h e  l imi t ed  space of t h e  r e t a i n e d  v a r i a b l e s  must be  con- 
s ide red  " d i ~ s i p a t i o n . ~ '  We t h e r e f o r e  expect  t o  d e a l  u l t i m a t e l y  i n  
t h i s  problem n o t  simply w i t h  one "d i s s ipa t ion"  b u t ,  r a t h e r ,  with 
s e v e r a l  a l t e r n a t i v e  p o s s i b l e  d i s s i p a t i v e  schemes, corresponding t o  
t he  va r ious  numbers of e x p l i c i t  degrees of freedom which we may wish 
t o  r e t a i n  i n  a p a r t i c u l a r  d e s c r i p t i o n ,  t h e  remainder of which, 
having been suppressed,  provide  t h e  s i n k s  f o r  t he  d i s s i p a t e d  quan- 
t i t i e s .  

The second important  circums tance  of hard3  nuc lea r  heavy-ion 
c o l l i s i o n s  a r i s e s  from t h e  f a c t  t h a t  t h e  s u b s t a n t i a l  mass flow can .  
occur i n  such r e a c t i o n  processes  on a s h o r t  t ime s c a l e ,  and c a n , ' ,  
t he re fo re ,  imply s u b s t a n t i a l  readjustment  of t h e  average s h e l l  
model f i e l d  during t h e  time of t h e  c o l l i s i o n .  This requirement of a 
knowledge of t h e  nuc lea r  s h e l l  model p r o p e r t i e s  over a f i n i t e  reg ion  
o f ' n u c l e a r  shapes ( inc lud ing  shapes desc r ib ing  ruptured  configura-  
t i o n s )  we r e f e r  t o  a s  t h e  GLOBAL proper ty  of such c o l l i s i o n s .  We 
c o n t r a s t  i t  w i t h  t h e  f a c t  t h a t  t r a d i t i o n a l  nuc lea r  s t r u c t u r e  s t u d i e s  



TABLE 11: STRUCTURAL'ASPECTS OF COMPLEX MODELS 

PHENOMENOLOGICAL: Does t h e  theory descr ibe  the  data  e f f i c i e n t l y ?  

: Do the  processes which a r e  important i n  the  model . ' .  

MECHANISTIC: 'correspond with the  physica l  processes i n  the  
sys  tem? . . 

. . Has the  t h e o r e t i c a l  model been r e l a t e d  t o  well- 
e s tab l i shed  bas ic  physical  l a w s ?  

. . 
generally requ i re  no more than a knowledge of nuclear  p r o p e r t i e s .  . . 
(and one o r  two der iva t ives )  a t  an equil ibrium point .  This GLOBAL- 
MASS-DYNAMICAL prsper ty  may, a s  the  descr ip t ion ,of nuclear  heavy-ion ' . '  

c o l l i s i o n s  moves forward, come t o  p lace  demands uponour mathematical 
capacity,  which can no t  be met with t h e  techniques current ly  avai l -  . . .  
able, Bvf if is a l s o  poss ib le  t h a t  t h e  d i s s i p a t i v e  processes i n  
nuclear  Fermidynamics w i l l  be so  dominant over the mass flow p r o p e r  . 

t ies a s  t o  s u b s t a n t i a l l y  a l l e v i a t e ,  and even q u a l i t a t i v e l y  a l t e r ,  :. . . . . 
t h e  Fermi dynamical problem i n t o  a dissipation-dominated process, , 

r a t h e r  than a kinetic-dominated mass flow problem. This expectat ion 
has  been vigorously advanced by W.  3 .  Syia tecki ,  i n  p a r t i c u l a r .  l" 

THEORETICAL ADEQUACY OF THE MODEL 
, ' 

. . 
Besides t h e  ques'tion whether a given model adequately incorpor-' 

a t e s  t h e  necessary s p e c i f i c  physics,  one can a l s o  ask whether the; 
' 

r e s u l t i n g  desc r ip t ion  is  s t r u c t u r a l l y  adequate. I n  p a r t i c u l a r  w e  . . 

consider t h e  th ree  theore t ' ica l  s t r u c t u r a l  p roper t i e s  l i s t e d  i n    able * 

11. 
COMPARISON AMONG SOME CURRENT THEORIES . . 

I n  Table Ill. we t a b u l a t e  tour  current  mainstream t h e o r e t i c a l  . 
approaches t o  nuclear  heavy-ion c o l l i s i o n ,  Time-Dependent Hartree- , 

F ' o c l ~ , ~ ~ ' ~ ~  Naviar-Stokes  hydrodynamic^,^^ Fokker-Planck Transport 
. Theory4 and the  One-Body Diss ipat ion Wall Formula, l and evaluate  

them aga ins t  the  s i x  physica l  f ea tu res  of heavy-ion c o l l i s i o n s ,  and 
the  t h r e e  genera l  t h e o r e t i c a l  p roper t i e s  l i s t e d .  A "Yes" i s  entered 
for  each f e a t u r e  which a given theory meets; a "No" f o r  each fea tu re  
which a given t h e o r e t i c a l  approach omits. Sometimes a Y e s  o r  No 
seems too simple. Then the following remarks attempt f u r t h e r  t o  
expla in  some aspec t s  of Table 111. 
(A) The TDHF;~, 38'39 a s  a single-determinantal model of the  exact  

t ime-dependen t Schradinger problem, would seem t o  incorporate 
a l l  the physics of the  s h e l l  model, including,  i n  i ts  Hartree- 
Fock-Bogolyubov genera l iza t ion,  the  pa i r ing  proper t ies .  A 

, p r i o r i ,  one would have presumed t h a t  TDHF would a l s o  incorpor- 
a t e  the c o l l i s i o n s  of p a r t i c l e s  with the moving wa l l ,  which is  
the  e s s e n t i a l  physics of the  Wall Formula f o r  One-Body Dissipa- 
t i o n ,  l4 and, therefore ,  the  d i s s ipa t ion  which these c o l l i s i o n s  ' 
a r e  thought t o  e f f e c t .  However, recent  TDHF ca lcu la t ions  39' of '  
f i s s i o n  y i e l d  considerably l e s s  d i s s i p a t i o n  than the  One-Body 
d i s s i p a t i o n  process f o r  a s i m i l a r  event ,  r a i s i n g  some quest ion 
whether t h i s  presumption i s  correc t .  Thus, t h e  ent ry ,  "Yes?" . 



. Conventional TDHF has a l s o  been phenomenologically d i s sapo in t -  
i n g  i n  i t s  i n a b i l i t y  t o  p r e d i c t  any spec i f i c  reaction cross 
sections whatsoever (except f u s i o n ) ,  and i n  t h e  f a c t  t h a t  t h e  
fu s ion  c r o s s  s e c t i o n s  which i t  can p r e d i c t  a r e  no t  unabmiguously 
f ixed  b u t  seem t o  respond t o  adjustment of t h e  f i n i t e  r a n g e .  . . 

p a r t  of t h e  nuc lea r  p o t e n t i a l . 4 4  I n  summary, as a phenomenology, ' 
convent ional  TDHF s o  f a r  o f f e r s  (sometimes) no p red ic t ions  o r  
o f f e r s  a v e h i c l e  t o  vary fundamental parameters i n  such a way 
as t o  e x t r a c t  a broad v a r i e t y  of  prediction^,^^ which however 
may o r  may no t  adhere e s s e n t i a l l y  t o  t he  phys ics  of TDHF. Thus, 
"No?". Mechanis t ica l ly ,  TDHF appropr i a t e ly  desc r ibes  nuc leonic  
motion of long mean f r e e  pa th ;  i n  complex r e a c t i o n s ,  however, 
i t  s e r i o u s l y  m i s t r e a t s  multi-channel s i t u a t i o n s ,  as d iscussed  
i n  p a r t  I1 below. Thus, " Y e s ,  but*". 

(B) . Navier-Stokes ~ ~ d r o d ~ n a m i c s ~ ~  as t h e  dynamical g e n e r a l i z a t i o n  
of t h e  s t a t i c  l i q u i d  drop model of n u c l e i  i s  a most n a t u r a l  
candida te  f o r  desc r ib ing  Fermidynamics. However i t  seems es- ' , 

s e n t i a l l y  r e l a t e d  t o  t h e  s h o r t  mean f r e e  pa th  proper ty  of water- 
l i k e  l i q u i d s ,  l 3  and t h e r e f o r e  most un l ike ly  t o  desc r ibe  t h e  
small, f i n i t e ,  pa i r ed  Fermi system. This de f i c i ency  makes ' i ts  . 

mechanis t ica l ly  unsound, and, defea ts ,  i n  the. n u c l e a r  case  
hydrodynamics ' demonstrated connection1 f o r  o t h e r .  l i q u i d s  w i th  
more fundamental' physics .  

(CD The Fokker-Planck Transport  theory d e s c r i p t i o n 4  of energy, 
charge, and mass e q u i l i b r i z a t i o n  between two fragments i n  deep . 

i n e l a s t i c  con tac t  might desc r ibe  systems w i t h  va r ious  mean f r e e  
. , pa ths  o r  flow p r o p e r t i e s  by inco rpora t ing  t h e i r  r e s p e c t i v e  

e f f e c t s  i n t o  i t s  phenomenological t r a n s p o r t  c o e f f i c i e n t s .  , The 
. d i f f i c u l t y  of t r a c i n g  these  c o e f f i c i e n t s  to ,  '- . . . 

t h e i r  mechanist ic  causes seems a f a i r  b a s i s  f o r  some r e s t r a i n t  
upon t h e  optimism which the  phendinenological success  of t h i s  
approach might otherwise s u s t a i n .  Therefore t h e  e n t r i e s ,  "?" . 

(D) The Wall Formula f o r  On'e-Body ~ i s s i ~ a t i o n l ~  (which is  an  exten-  
s i o n  of t h e  p i s t o n  model16 t o  t h e  complete  IT s u r f a c e '  s o l i d  ' . 

angle)  i nco rpora t e s  t h e  long mean f r e e  pa ths  by omi t t i ng  'a l l  
c o l l i s i o n s  except those  wi th  t h e  wa l l .  On t h e  o t h e r  hand, i t  . . 
i s  a c l a s s i c a l  d e s c r i p t i o n  and inco rpora t e s  no f u r t h e r  e f f e c t s , ,  . 
of t h e  P a u l i  exc lus ion  upon t h e  Fermi p a r t i c l e s  ( t hus ,  "Yds?" 
i n  Table 111). Also, i t s  r e c e n t  g e n e r a l i z a t i o n  t o  wave mechan- 
i c a l  motions of t he  p a r t i c l e s  i n  t h e  boxla and the  previous ly  
' es tab l i shed  connections2* between t h e  degeneracies  o f .  such so- , 

l u t i o n s  and t h e  S t ru t in sky  gene ra l i zed  s h e l l s  opens t h e  poss i -  
h i l i t y  (Yes?) t h a t  Finite-A e f f e c t s  may f i n d  a n a t u r a l  p l ace  i n  
t h e  one-body Wall Formula. S ince  t h e  Wall Formula is narrowly 
aimed a t  d i s s i p a t i o n  i t  seems t o  involve  no p a r t i c u l a r  assump-. : 
t i o n s  about b inding ,  ma t t e r  flow, o r  p a i r i n g .  Therefore w e  . '  

l e ave  f o r  t h e s e  i tems blank.  The Wall Formula has  been phenom- 
eno log ica l ly  s u c c e s s f u l  i n  desc r ib ing  t h e  f i s s i o n  fragment 
k i n e t i c  energ ies .  But a t  t h e  fundamental l e v e l  i t  c l e a r l y  
s u f f e r s  from ove r s impl i f i ca t ion :  wi thout  ad hoc a l t e r a t i o n  i t  
v i o l a t e s  G a l l i l e a n  inva r i ance ,  conse rva t ion 'o f  momentum, and 
Lhr Pau l1  exc lus ion  p r i n c i p l e  f o r  t he  rebounding p a r t i c l e s .  ' . 



TABLE 111: PHYSICAL AND THEORETICAL PROPERTIES OF SEVERAL THEORIES. 

Theory : 

SMALL-FERMI 
(A > R) 

NUN-E~UlLlDKIUfl 

DIS S IPATIVE . 

FINITE-A 
(Generalized She l l s )  3 1 L I Q U I D  

H (Self-bound) 

I Yeg(?) I Yea I Y e s  I Yes I 

Y e s  

See Spurious Cross Channel Corre la t ions  i n  p a r t  11, and Refs. 
35, 36, 46. 

Yes 

Yes 

, We emphasize t h a t  t h e  successful  incorporat ion of a l l  the  im- 
po r tan t  q u a l i t a t i v e  physica l  aspects  i n t o  a s i n g l e  concise assump- 
t i o n ,  which the  Time-Dependent Hartree-Fock method achieves, y i e l d s  
no assurance t h a t  the  r e s u l t i n g  desc r ip t ion  w i l l  adequately describe 
observed nuclear  data.  Nevertheless, w e  f e e l  t h a t  TDHF should be of 
g r e a t  i n t e r e s t  i n  and of i t s e l f ,  .and espec ia l ly  because of . .  

the  very economy of i ts  assumptions, as  a t h e o r i s t s '  theory, whence 
t o  l e a r n  how t o  look a t  . the problems of the  Fermidynamics. It is  
f o r  t h i s  reason, r a t h e r  than from an cxpectat ion of imminent suc- 
c e s s f u l  confronta t ion between TDHF and observed da ta ,  t h a t  we devote 
some considerable discussion t o  t h i s  model below. And i f ,  i n  the , 

process,  t h e  phenomenology can be improved, then a l l  the  b e t t e r .  
Also, i t  need hardly  be s a i d  t h a t  Table I11 i s  i t s e l f  a t i m e - .  

dependent function of one' s understanding of the  problem. 

THE PRINCIPLE OF CO~~ENSVRABILITY IN THE ASSESSMENT OF DESCRIPTIONS, 
OF COMPLICA!ED PHENOABNA ' .  

No 

We note  t h a t  one can formulate the  present  approach consciously 
i n t o  a method of assessment of theor ies  f o r  complicated processes 

Nb? I Yes? ( . 

Yes? 

.---- 

L 

No 

Y e s  

No? 

No 



such a s  t he  p re sen t  phys i ca l  problem poses.  This  method employs The 
P r i n c i p l e  of C ~ m m e n s u r a b i l i t y , ~ ~ , ~ ~ , ~ ~  s t a t e d  a s  fol lows:  

A sound theoretical model should unly yield 
information commensurate with i t s  input and i t s  structure. 

. . We consider  t h i s  s ta tement  t o  be se l f -ev ident .  However, i t  
. impl ies  immediately t h e  p r a c t i c a l  c o r o l l a r y  t h a t  models which g ive  

too  much may be  erroneous,  o r  may involve  hidden assumptions. I n  
add i t i on  it leads  one t o  eva lua t e  t h e o r e t i c a l  models, and e s p e c i a l l y  . . . 

complicated models, by emphasizing t h e  "commensurability" between 
the  i n p u t ,  t h e  s t r u c t u r e  and t h e  p r e d i c t i v e  capac i ty  of t h e  model. 
Such an evaluat ion,  can he h e l p f u l  i n  focusing t h e  search  f o r  limita- 
t i o n s  and/or shortcomings i n  any proposed t h e o r e t i c a l  desc r ip t ion .  

F ina l ly ,  f o r  a model cha rac t e r i zed  complete1.y hy mathematicat . . 
assumptions, t h e  p r i n c i p l e  of commensurability sugges ts  t h e  ques- 
t i on :  What is  t h e  physical range of t h e  model? This  ques t ion  be- 
comes t h e  more d i f f i c u l t  (and i t s  answer t h e  more u s e f u l ) ,  t h e  more 
concise and compact i s  t h e  assumptive mathematical b a s i s  of a given 
model. I n  p a r t i c u l a r ,  a s  Table I i l l u s t r a t e s  f o r c e f u l l y ,  t h e  s ing le -  
determinant  assumption of t h e  Time-Dependent Hartree-Fock descr ip-  
t i o n  provides an appropr i a t e  s p e c i f i c  .example of a very  concise  
assumptive. axiomatic  b a s i s  f o r  a model, which is  a b l e  ( c f .  Table 11 )  
t o  i nco rpora t e  an impressive range of app ropr i a t e  phys i ca l  proper- 
t i e s ,  b u t  whose physical imp l i ca t ions  a r e  no t  immediately t rans-  . , 

parent .  

11. RESTRUCTURING TDHF THEORY INTO T. D. -$-H. F. : 
CLASSICAL AND QUANTUM DROPLETS 

[For b r e v i t y ,  t h i s  s e c t i o n  is  presented  i n  lec ture-note  o u t l i n e  
form. Some e l a b o r a t i o n  w i l l  be found i n  Refs. 35, 36, and 46.1 

CONVENTIONAT, T ~ ~ H F ~ ~ * ~ ~ , ~ ~  . 

1. Replaces ekac t  Y -t @, a s i n g l e  determinant  
' 2 .  propagates  i n  time v i a  non l inea r  TDHF Equation, from 
3. t h e i n i t i a l v a l u e , @ ( t ) l  t-ti = Q O .  
4. TDHF is  approximate: 

a )  I n i t i a l  s ingle-determinant  is inexac t  and 
i n f l e x i b l e .  4'' 

b )  Time propagat ion is  approximate. 48 
c )  Post-breakup determinant is  too  s imple and, 

he re to fo re ,  un in t e rp re t ab le .  

SPURIOUS CROSS CHANNEL CORRELATIONS 35 9 36 

1. I n  l a t e  s t a g e s  of t he  , r eac t ion  many channels must be 
descr ibed.  But, 

2. a s ingle-determinant  can a t  most desc r ibe  some crude 
average channel,  and the re fo re ,  such a determinant  . 

3 .  cannot be s e l f - c o n s i s t e n t  f o r  any s p e c i f i c  channel. 



TDHF S-MATRIX ANALOGY 

Consider Jfi, the  TDHF analog of the  exact  S-Matrix 

obtained b y  replacing t h e  exact  Y by Qg, the  TDHF so lu t ions  i n i t i a l -  
g i zed  with condit ions g, . . 

Evidently dfimay vary rap id ly  with t ime .  Then const ruct  . . 
To 

.I. 

by t i m e  averaging Jfi over t h e  i n t e r a f c i o n  inverval." T l ~ l 1 . u  l r a ~  a 
desc r ip t ion  i n  which Qi( t )  a t  l a t e  t i m e s  i s  replaced by 

. . 
n 

where A ind ica tes  normalized with r e s p e c t -  t o  i n i t i a l  s t a t e .  9 i?-. .:: . 
volves 

a )  one separa te  conventional TDHF ca lcu la t ion  f o r  each channel, f .  . . 
b) no spurious c ross  channel co r re la t ions .  

DEFINITION OF CHANNELS I N  T.D.-d-H.F. 
. .  . 

For each channel, f ,  demand the  a b i l i t y  
. . 

a) t o  i n i t i a l i z e  unambiguously TDHF propagation of Q f ,  
(the I n i t i a l i z a t i o n  Reqwirement) ( 5 4  

b) t o  measure information, on fragments inde- 
pendent of the '  (asymptotic) loca t ion  of the  apparatus. , . , .  

'(5b) 
. . 

( the  Asymptoticity Requirement) 

Then f i n d  tha t  

c) i n t r i n s i c  s t a t e s  must be ( s t ab le )  s t a t ionary  H.F. solu- 
t ions ,  o r  ( i f  time average is  considered) pe r iod ic  . .. 

TDHF solut ions .  (N.B., aZmost.periodic so lu t ions  do 
not s u f f i c e  because the  i n i t i a l i z a t i o n  process becomes 

' 

impractical .  ) ( 6 ) .  . , :  

We then a r r i v e  a t  t h  following set of l a b e l s  f o r  desc r ib ing . the  
. . channelwave funct ion Q('?(tf): f . . 

This set of l a b e l s  symbolizes: 
. .. . . 

1. A s ing le  (A1+A2) X (A1+A2) determinant constructed by a n t i -  
symmetrizing; 

2. an (AIxA2) determinant describing the  S 1 the s t ab le '  s t a t ion-  
a r y  so lu t ion  of the i so la ted  A1-particle Hartree-Fock.system, . , 

and 



3.  an  analogous (A2xA2) determinant  center$d a t  time t = t  f  a t  
some f ixed  ( l a r g e  !) s tandard  d i s t ance ,  1 ~ ~ 1 ,  i n  the cen te r  of 
mass frame from the cen te r  of mass of A 1 .  

4. Each subdeterminant a t  t h e  time tf desc r ibes  
a)  a  ( s t a b l e )  Hartree-Fock s t a t i o n a r y  s t a t e ,  l a b e l l e d  Si, 

which i s  
-b 

b) t r a n s l a t i n g  a t  v e l o c i t y ,  Vf ( r e l a t i v e  t o  i t s  p a r t n e r  i n  
t he  cen te r  of mass frame), and 

c)  v i b r a t i n g  p e r i o d i c a l l y ,  wi th  per iod  T and wi th  ampli- 
A 

tude and 
d) a t  time t = t f  i s  a t  a  p a r t i c u l a r  phase of i t s  o s c i l l a -  

t i o n ,  denoted by $A.  
I n  add i t i on ,  

5. t he  time-dependent complex C-number phase of t h e  wave func- 
t ion4 '  i s  chosen according t o  t h e  cons tan t  -<%> presc r ip -  
t ion50 t o  be exp - i<Hit /%. 

FUNDAMENTAL AXIOMS OF T . D . - aQ-H . F  . 
A) The s t a t i s t i c a l  i n t e r p r e t a t i o n  of quantum mechanics holds  f o r  

TDHF s o l u t i o n s ,  @ 
g' 

B) Se l f - cons i s t en t  TDHF propagat ion desc r ibes  t h e  time evolu t ion  
of any determinant  : 

% [ @ ( t ) ] @ ( t )  = i* i ( t ) .  (8) 

Axiom (A)  j u s t i f i e s  i n t e r p r e t a t i o n  of < m i - )  ( t ' )  1 a!+) ( t ' ) ,  i n  
Eq. (2) a s  t h e  p r o b a b i l i t y  amplitude t h a t  Qi would b e  found a t  t '  t o  
be  t h e  s t a t e  @ f ,  which would subsequent ly evolve i n  time i n t o  t h e  
s p e c i f i c  channel s t a t e  (£1.  

However, c o n s i s t e n t  a p p l i c a t i o n  of axiom (A) a l s o  impl ies  t h a t  
(time-averaged) non-orthogonality of channel func t ions  

t-tu 
( t )  = Lim ( 2 0 ) ~ '  J <a:-)(tl) 1 m:;)(tl)> d t ' ,  

Off '  0- . . t-u 

should b e  i n t e r p r e t e d  t o  i n d i c a t e  t r a n s i t i o n s  among channel s t a t e s ;  : 
i . e . ,  continued a l t e r a t i o n  of t h e  popula t ion  of var ious  channels ,  
even a t  asymptot ica l ly  l a t e  times-in v i o l a t i o n  of t h e  asymptot ic i ty  . 

' 

requirement (5b). 

SMALL AMPLITUDE VIBRATIONS: CLASSICAL TDHF DROPLETS 

If t h e  ,Small Amplitude se l f - cons i s  t e n t  TDHF v i b r a t i o n s 5  a r e  
adopted a s  t h e  p e r i o d i c  s o l u t i o n s  l a b e l l e d  i n  ( 7 ) ,  then 

a )  a t  every e x c i t a t i o n  energy, t hese  pe r iod ic  s o l u t i o n s  
e x h i b i t  a .  d i s c r e t e l y  i n f i n i t e  degeneracy. ( l l a )  

b) t h e  over lap  func t ion ,  ( 9 ) , i n d i c a t e s  (time-averaged) 
non-orthogonality f o r  t h e  channels.  (lib) 

Because.of the  f a c t  t h a t  t h e  v i b r a t i o n a l  ene rg i e s  i n  t h i s  case  
are contirluuus we refer t o  such s y s t e m s  as "c l a s s i ca l "  TDHF droplets. 



CLASSICAL TDHF DROPLETS ARE INTRINSICALLY DISSIPATIVE 

Then the  only asymptotical ly constant  s t a t e  ( i f  any ex i s t ed)  of 
c l a s s i c a l  d rop le t s  (12)# would have t o  be some "thermalized" i n t e r n a l  
equi l ibr ium s t a t e  character ized s o l e l y  by the  e x c i t a t i o n  energy, E*. . . 
Therefore, we say t h a t  c l a s s i c a l  TDHF drop le t s  a r e  " i n t r i n s i c a l l y  . 

diss ipa t ive . "  Their  theory can descr ibe  a t  most mass t r a n s f e r  and . , 

t h e  reac t ion  kinematics of r e l a t i v e  motion, b u t  no s p e c i f i c  informa- 
t i o n ' a b o u t  the  i n t e r n a l  s t a t e s  of the  f i n a l  drople ts ,  except f o r  ex- 
c i t a t i o n  energy, E* . 
I F  PERIODIC SOLUTIONS ARE ISOLATED, TDHF DROPLETS ARE QUANTIZED AND 

- CHANNELS ARE ORTHOGONAL 

A q u a l i t a t i v e l y  d i f f e r e n t  s i t u a t i o n  p r e v a i l s  i f  the  pe r iod ic  
TDHF so lu t ions  e x i s t  only a t  i s o l a t e d  values of the  period and the  
amplitude (and the re fo re  with d i s c r e t e  energy) r a t h e r  than i n  contin- . . .  
uous fami l i e s ' such  a s  those describing small  amplitudes. Then i n  each 
p e r i o d i c  channel solut ion,  f ' 1, one fragment wave function i s  of the  
f o m  

P + +  @,, = {exp - i Eft t M j I  1 $f (r-vfr  t )  exp i p o f ,  t )  (12) . .. . . 

P 

with a d i s c r e t e  t o t a l  energy, E , and a time-averaged overlap 
i n t e g r a l  with another channel  I f  1 ,  gfven by (10) : 

q + +  P + +  off = LLU ( ~ u ) - '  J ~ L *  c B i ( r - v f ~ )  I (I-" * L); , 
- f f u'* 

which vanishes  unless + -f 

vf = vf 1 , and (i4)' . 

E - p+i [ I I ~ ~  = Et  - ~ 4 5 ~ ~ .  f '  (15). 

Since, a p a r t  from an acc iden ta l  degeneracy of the  d i s c r e t e  energies ,  
these  condit ions can be m e t  only by' {f 3 - { f '  3 ,  w e  obta in  the channel 
or thogonal i ty  condit ion 

Thus, i s o l a t e d  pe r iod ic  TDHF so lu t ions  imply . . . . .  
. . 

a)  Quantized TDHF drop le t s  with d i s c r e t e  v i b r a t i o n a l  energies.  
b )  Asymptotic channels which a r e  

i )  (time-averaged) orthogonal, and 
i i )  propagate without changing i n  time (on the  average) 

according t o  both T.D.-J-H.F. axioms ( A )  and (B). , ' .  . . 
c )  A T.D.-$ -H.F. r eac t ion  theory exh ib i t ing  a s t r u c t u r e  f u l l y  

analogous t o  t h e  Schr'ddinger theory,  i n  which per iodic  
so lu t ions  play t h e  r o l e  of eigensolutions.  .. . 

It i s  obvious t h a t  the  mathematical na ture  of the  TDHF per iodic  
. '  . so lu t ions  i s  c r u c i a l  t o  i n t e r p r e t i n g  the  T.D.-d-H.F. react ion , ' 

theory and t h a t  the  mathematical property of i s o l a t i o n  of the  per i -  



od ic  TDHF s o l u t i o n s ,  would impose most n a t u r a l l y  upon TDHF a f u l l  ' '  

analogy wi th  the  exac t  Schrodinger theory.  
But i f  t he  p e r i o d i c  s o l u t i o n s  a r e  i n  f a c t  n o t  i s o l a t e d ,  then 

the  questionwould a r i s e  whether a  s u i t a b l e  t h i r d  axiom could b e  
found which would s e l e c t  a  d i s c r e t e  subse t  of p e r i o d i c  s o l u t i o n s  a s  
t h e  app ropr i a t e  s e t  of channel s t a t e s .  These channels ought t o  con- 
form t o  t h e  i n i t i a l i z a t i o n  and a sympto t i c i t y  requirements (5), meet ' 
the  or thogonal i ty  condi t ion  (16) ,  and s u f f i c e  t o  c h a r a c t e r i z e  ex- 
haus t ive ly  any pos t - reac t ion  s t a t e  ( 4 ) .  Whether such an axiom can 
be found i s  an open ques t ion .  

RECAPITULATION 

A broad-based comparison of t h e  phys i ca l  conten t  of s e v e r a l  
t h e o r i e s  of Fermidynamics i d e n t i f i e s  TDHF a s  e s p e c i a l l y  r e l e v a n t  t o  
t h e  problem even though i t  is  ax ioma t i ca l ly  t e r s e .  One mechanist ic  
de f i c i ency  (spurious c ros s  channel c o r r e l a t i o n )  i s  obvia ted  by re -  
s t r u c t u r i n g  the  theory from a s i n g l e  wave func t ion  theory i n t o  a 
multi-wave func t ion  theory,  w i th  one s ingle-de terminanta l  wave func- 
t i o n  f o r  each r e a c t i o n  channel. Depending upon t h e  n a t u r e  of t h e  
p e r i o d i c  s o l u t i o n s  t o  the  TDHF problem t h e  r e s u l t i n g  theory  can o f f e r  
a  r e s t r i c t e d  kinematic  d e s c r i p t i o n  of r e a c t i o n s  among c l a s s i c a l  TDHF 
d r o p l e t s  o r  a  d e s c r i p t i o n  of r e a c t i o n s  of quant ized .TDHF d r o p l e t s  
s u b s t a n t i a l l y  analogous t o  t h e  Schrodinger theory. Whether i n  t h e  
former case  t h e  d r o p l e t s  might be "requant izedff  by an a d d i t i o n a l  
axiom is  an open ques t ion .  
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