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INTRODUCTION

The Monte Carlo method attempts to get the average behavior of

neutrons by simulating a large sample of neutron histories and using

the sample mean as an approximation to the average predicted by the

Neutron Transport Equation. The Monte Carlo method for neutron

transport calculations suffers, in part, because of the inherent

statistical errors associated with the method. Without an estimate

of these errors in advance of the calculation, it is difficult to

decide what estimator and biasing scheme to use, or whether a proposed

Monte Carlo calculation will be competitive with a discrete ordinates

calculation (a question not treated here).

Perhaps the most compelling reason for predicting statistical

errors is cost. If one is contemplating writing a Monte Carlo code

(or making major modifications to an existing code) incorporating a

new Monte Carlo technique, he would like to know how well the new

technique will work - before investing a great deal of time and money

writing the code.

If one uses a standard Monte Carlo code he would probably try sev-

eral techniques and uses the sample variance to select the best technique.

This trial and error method works well if one has enough insight into

both the transport problem and the Monte Carlo techniques he applies to

solve it. However, if one's insight is poor, trial and error will result

Using the law of large numbers
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in mostly error. Furthermore, the sample variance, by which one judges

the technique, becomes more and mort> unreliable as the technique

departs from optimum. Appendix B has an example of an unreliable

sample variance.

Recent work ' ' ' * on the prediction of statistical errors in

Monte Carlo calculations stems from a paper Amster and Djomehri pub-

lished in 1976, in which a set of integral equations were derived that,

when solved, predicted errors in Monte Carlo calculations in non-multi-

plying media. The present work allows error prediction in non-analog

Monte Carlo calculations of multiplying systems, even when supercritical.

Non-analog techniques such as biased kernels, particle splitting, and

Russian Roulette have been incorporated in this work. Coincidentally

(and independently of this work), Sarkar and Prasad have investigated

errors in non-analog Monte Carlo calculations of subcritical multiplying

systems.



Chapter I. Illustration of Concepts by Example

The Monte Carlo method simulates neutron behavior on a computer.

Real neutron transport problems are quite complex and the mathematics

required to predict errors in their Monte Carlo simulations is corres-

pondingly complex. In fact, the mathematics often obscures some very

simple concepts. This chapter illustrates, for a very simple trans-

port problem, concepts such as analog game, non-analog game, particle

weight, score, and importance sampling - using only high-school math-

ematics. The reader who is familiar with Monte Carlo may skip to

Chapter II which treats real transport problems.

An analog (Monte Carlo) game is a faithful simulation of the real

transport process; a non-analog game is a simulation In which the

simulated neutron does not behave exactly like a real neutron. As a

simple example, a two-state transport problem is simulated - first by

an analog game in I-A and then by a non-analog game in I-B. Section

I=C links the analysis of this simple problem to the analysis of the

real transport problems considered in Chapters II and III.

A few definitions are required before addressing the two-state

transport problem. In subsequent discussions, particle refers to a

computer simulated neutron. A particle's history 1s a sequence of

events, chosen in a random fashion, ending with the loss of the particle.

Every event (e.g. scattering) has two numbers associated with 1t: the

probability the event occurs and the event score. A particle's history



score (total score) is the sum of all the event scores the particle

generates in its history. Although nature supplies event probabilities,

at least for analog games, the calculator must assign appropriate event

scores. For example, if one is interested in the mean number of scatter-

ing events per particle he might assign each scattering event a "one" and

any other event a "zero"; a particle's history score would then be

equal to the number of times the particle was scattered.

A) Analog Game

Consider the simple transport problem below where a particle can be

in one of two states, labeled 1 and 2. The six possible events and their

probabilities and scores are depicted in figure 1 and described in table

1. These six events are independent and mutually exclusive.

*z .

'II

Fig 1. The two-state transport problem.



Table 1

Definitions for the two-state transport problem

Event

e.g scattering from state 1 to state 2

e_i scattering from state 2 to state 1

e.. scattering from state 1 to state 1

e~2 scattering from state 2 to state 2

e, absorption from state 1

e 0 absorption from state 2

Event
Probability

Pl2

P21

P22

Pi

p2

Event Score

S12

S21

S22
sl

S2



Decision 1 will be made by picking a random number, £,., between 0 and

0 p,

e occurs if 0<s.<p.,

e ^ occurs if Pj^fp-j+P^. and

e ] 2 occurs if p-j+

Decision 2 will be made by picking a random number, £., between 0 and

P2
+P22+P21=1

e 2 occurs if

e 2 2 occurs if p2<?i<p9+p22> and

e 2 1 occurs if P2
+P22

<?i-1 *

As an example, consider a particle starting in state 1. Suppose

that the £,. are:

P1+P11<?.<^1 implies e«2 occurs,

P2<C2SP2+P22 implies e 2 2 occurs,

P2+P22<S_<1 implies e21 occurs, and

Pi implies e. occurs.



In this case, referring to Table 1, the particle first scatters from

state 1 to state 2 (event e.2) and scores s.-. next scatters from

state 2 to state 2 (event e 2 2) and scores s 2 2, next scatters from

state 2 to state 1 (event e^,) and scores s2-, and lastly suffers

absorption from state 1 (event e.) and scores s... The history score

for this series of events is then s = s.? + s«2 + s_. + s..

This simple system could represent a particle roaming about in

an infinite homogeneous two nuclide medium (with only scattering and

absorption)

State 1 = particle entering a collision with nuclide type 1

State 2 - particle- entering a collision with nuclide type 2

If the scores are taken to be

Slf S12 = S21 = S22 = S2 = 0 and V 1 *

then a particle absorbed by nuclide 1 would have a history score of 1

and a particle absorbed by nuclide 2 would have a history score of 0.

If a large number of particles starting at nuclide j are followed, the

mean history score is an estimate of the mean number of particles ab-

sorbed by nuclide 1 per particle entering a collision with nuclide j.

(This problem is easily solved without Monte Carlo.)

Now return to the general two state problem. It is important

to know how many particles must be followed to obtain an acceptable

error in the estimate of the mean history score. Let M. be the mean

score and M~ be the mean-square score. According to the "central

limit theorem/ the means of samples, each of h histories, for h large.



are approximately normally distributed about M, with a variance

AP estimate of this variance can be obtained by substituting the

sample means r^ and M2 in place of the means M, and M_. There are two

problems with using the sample variance:

1) The error estimate is available only after the problem has been

programmed and run on a computer. Thus much investment in program-

ming time and computer time might be required simply to determine

that the variance is unacceptably high.

2) The sample means M, and M- tend to be unreliable estimates of M.

— 2 — 2and fL when the variance is high. Suppose M« < M_ and M, > M. ;

this results in a sample variance,

-2 V V VM12 2

which could be much less than the true variance.

As an example of the second problem, consider the two nuclide prob-

lem with the absorption cross section for nuclide 1 many orders of mag-

nitude smaller than any other cross sections. This corresponds to p^

being orders of magnitude smaller than any of the other probabilities.

Thus 100,000 particles might be followed and all result In absorption by

nuclide 2, i.e. history score zero. In this case,

M. = 0, sample mean history score,

M. = 0, sample mean-square history score, and



-2 2 1
h

a" = ~L '" = 0, sample variance, (3)

whereas, in fact, M = e, where e is some number greater than zero.

Thus, M. is infinitely smaller than the true mean M. at the same

time that the sample variance of zero indicates a very good sample

mean.

To avoid problems one and two it is useful to obtain an estimate

of the variance before attempting a Monte Carlo solution of the problem.

To obtain this estimate three terms must be defined:

= probability that a particle in state j will contribute

a cumulative score s in its subsequent history; (4)

S) = r moment of history score

(where the sum is over all possible

s values); and (5)

0 if s t s',
6 , = 1 where s and s' are not limited to integers. (6)
ss ] 1 if s = s1,

From these definitions eqn. (7) may be derived.

tMi.s) - P ^ + £ Pij •(J.s-s^) (7)

Let s n e (s^ete^ s ^ , s 1 2, s2> s^, &z})) be the score contributed by

the next event. The probability that a particle in state i subsequently

contributes a cumulative score s is equal to the sum, over all possible



next events, of the probability that the given event occurs multiplied

by the probability that all subsequent events contribute the remaining

score s-s , so that the total score is s + (s-s ) * s. If the nextne ne ne

event is an absorption then the probability that the cumulative score

is s is 6CC ; that is, if the absorption contributes a score s the
ssi

cumulative score will be s and if the absorption does not contribute a

score s the cumulative score will not be s. If the next event is a

scattering to state j then there is a score s.. contributed by the

scattering, which leaves a score s-s.. to be contributed in subsequent

events. The probability that a particle in state j contributes a

cumulative score s-s.. in subsequent events is iHj,s-s..) by definition
1 J IJ

(4).

Multiplying eq. (7) by sr and summing over all possible scores,

2>(i,s)sr = v 6 P.s
r
+y; Y, p.. *(j.*-«11)s

r. (8)

s s ssi s j 1J J

Using eq. (5) and recalling that s. is a possible value for s,

V ° = PiSii + I S Pij *(J.s-stj)s
r. (9)

d J

Letting s' = s-s.. or s = s' + s^.,

S j 5 J

then using the binomial expansion,

s1 j 1J n=0

8



and by using eq. (5)

C «„«> <10>

Substituting eq. (10) into eq. (9) yields the results,

r

Pulling out the M term from the sum,

z: py v « + p, •;+

and noting that

n

s

since ip(j.s) is a probability function, eq. (12) for r=l and r=2 may

be written:

, n ^ p12 M](2) + p1$1 + p, , . , , + p12s12 (14)

M1(2) = p21 M^l) + P^M^Z) + p2s2 + p22s22 + p2]s21 (15)

and

M2(l) = p n M2(l)

(16)



M2(2) = p 2 2 H2(2)

+ P21 (s21 + 2s21 M ^ l ) ) (17)

IB. Non-Analog Games

The equations derived above are for an analog simulation of the

real transport process; the probability that event i occurs in the

simulation is the same as the probability that event i occurs in the

real transport process. In practice, the transport problem can some-

times be solved more accurately, for a given number of particle his-

tories, if fictitious probabilities are used instead of the real trans-

port probabilities. Any Monte Carlo solution which is not an analog

simulation of the real transport process is termed a non-analog Monte

Carlo solution.

To understand non-analog Monte Carlo it is necessary to introduce

the concept of statistical weight for a particle. Statistical weight,

or simply weight, is a score multiplier. Thus, for a given event a

particle of weight w scores w times as much as a particle of weight

one.

Consider the general two state problem with the particle in state

j. There are three chains of events which may occur in the analog

game considered previously:

1) the particle is absorbed in state j contributing a cumulative his-

tory score s = s.
a J

10



2) the particle scatters to state 1 and contributes a score s.«.

Subsequently, from state 1 the particle contributes a score

s. - s., resulting in a cumulative history score from state j of

3) the particle scatters to state 2 and contributes a score s...

Subsequently, from state 2 the particle contributes a score s - s

resulting in a cumulative history score from state j of

Sj2 + (sc " Sj2 ) = V

The maan score for a particle in state j is then

3
M,(j) = £ (prob chain i occurs)*(score due to chain i) (18)
1 i=l

Suppose that the probabilities are altered in the following manner,

Pj2=7pj2 (20)

subject to the constraint that the probability that one of the three

events occurs is still one:

Then substituting eq. (20) into eq. (19),

= ap.sa + ep.,s. + YP.joS • (22)

Recall that for the same chain of events a particle of weight w contrib-

utes w times the score that a particle of weight one contributes,

11



Identifying a = v^, B - w^, and y = w, as particle weights eq. (18)

can be generalized to:

3
M-j(J) = J*, (prob chain i occurs in calc)*(score due to chain i

from a particle of weight w.). (23)

While the mean score, M., remains the same with the fictitious

probabilities the mean square score in general does not. To put these

ideas on a more rigorous footing eqs. (14)-(17) will be rederived for

arbitrary branch probabilities and branch weight multipliers. When

the branch probabilities are not the same as the real transport prob-

abilities this is called biasing or importance sampling.

IB-1 Biased Kernels

Consider a completely fictitious game in which the probabilities,

weights, and scores are completely arbitrary; later it will be shown

that with suitable choices for probabilities, weights, and scores, this

non-analog game can be made to yield the same mean score, M., as the

analog game. The following definitions are needed:

<l>(j»w,s) s probability that a particle of weight w in state j

contributes a score s, (24)

w. = weight multiplier for absorption from state i, (25)

w.. = weight multiplier for scattering from state i to state j, (26)

12



p. = prob of absorption from state i, (27)

p.. = prob of scattering from state i to state j, (28)

M (j,w) - £ $r $(J»w,s) E r moment of history score for a

particle of weight w in state j, (29)

s. (w) = score for absorption from state i of a particle of

weight w, (30)

s..(w) = score for scattering from state i to state j for a

particle of weight w, and (31)

0 if s1 i s
where s and s1 are not necessarily integers. (32)

1 if s = s1ss'

Next, consider eqn. (35) which is displayed and explained below.

•(1.w.s) - p. « - ( , + £ p.. J(J. ww^, s-s\.(ww..) ) (33)

Let s be the score contributed by the next event. The probabil-

ity that a particle of weight w in state i subsequently contributes a

cumulative score s is equal to the sum, over all possible next events,

of the probability that the given event occurs multiplied by the prob-

ability that all subsequent events contribute the remaining score

s-s , so that the total score is s n e + (s-s ) = s.

If the next event is absorption then the particle's weight

becomes ww. and the probability that the cumulative score is s is

13



6S~ ^ j That is, the cumulative score will be s if and only if

the absorption contributes a score s.

If the next event is a scattering to state j then the particle's

weight becomes ww.. and there is a score s..(ww..) contributed by the

scattering. This leaves a score s-s..(ww..) to be contributed in

subsequent events. The probability that a particle of weight ww.. in
' J

state j contributes a cumulative score s-s..(ww..) in subsequent events

is by definition iMj.ww..,s-s..(ww..) ).
IJ 1 j IJ

Multiplying eqn. (33) by s and summing over all possible values

for s yields:

1 SS^WW. ) 4^ ^ K

...s-s-.jtww^) )s r . (34)

Using the definition of M and recalling that s.(ww.) is a possible

value for s,

M (i,w) = p.sf(ww.) + } P 2 J P-j 1*(J»ww. .,s-s. .(ww..) )s r . (35)
s j

Letting s1 = s - s\.(ww...) or s = s1 + s\.(ww...) yields (36)

)sr

-̂ iji(j»ww1j.,s
t)(s1 + i^.fww^.) ) r ,

j

and using the binomial expansion,

14



5
Z hi fe-«vs"> tosl" S

IJ
From the definition of fi .

i f? (ww 1̂ M H ww ^ f^7\
IJ **"?» n ij ij n ijnau

hence,

r
M (i,w) = p. s W ) + 2 ^ P^ Y.0 [si<(ww,<)]

r"n M (j.ww. ), (38)

and pulling out the M term from the sum,

(i.w) = 2-r P,-,- M (J»ww4H) + P< s.(ww.)

:)]r"n M (j.ww,,). (39)

Mr

Since for a given event a particle of weight w scores w times as much

as a particle of weight 1,

) = ww. s^l) (40)

i. .(^..) = ww.. s^l). (41)

Writing eqn. (39) for r = 1 (Noting as in eqn. (13)

+ p. ww. s.(l) + 51 Pi j^ i j^ i jO)- (43)
J

15



A particle's history score is proportional to its weight because:

1) the event probabilities are assumed independent of weight;

thus

2) a particle's history (sequence of events) is independent of

weight, and

3) each event score is proportional to the particle's weight.

Thus the probability that a particle of weight w contributes a history

score s is equal to the probability that a particle of weight one con-

tributes a history score s/w, that is

() $ (43A)

Hence using eqs. (29) and (43A)

Mr(i,w) =2}t(i,w,s)s
r = w^Mi.l.s/wHs/w)1" = v/Mr(i,n (44)

5 S

Thus eq. (43) becomes

j

Suppose the probabilities, weights, and scores are chosen such that

(remember they were arbitrary):

i j i j ij i i i 7 si sV1} = sij ( 4 6 )

then,

V i . U - £ p i j M ~ 1 ( J , l ) * P i s i + E p i j S i j (47)
J J

16



This is the same eqn. that M^i) satisfies [cf. eq. (12)], hence

M^i.l) =M ](i). (48)

The significance of this result is that a non-analog transport game

(with relations (46) holding) can be played with any probabilities

Pj.: > 0 (p.. must be greater than zero so that w^. is finite) and the

mean score for the non-analog game will be equal to the mean score for

the analog game. The second moments for the two games are in general

not equal, as will be shown below.

Writing eq. (39) for r=2,

M2(i,w) = ^ P ^ U . w w . . . ) + p^ww.s.O)]
2

+ E M C W W . ^ O ) ] 2 + 2ww.j.sij(l)ww.jM1(j,l)j . (49)

From eq. (44) with r=2,

iyi.w) = w2M2(i,l) (50)

17



Letting w=l and using eq. (EQ)

32, p.J.. M2(j,l) + p.[wi.(l)3
J

Using the relations (46) which resulted in fi^i.l) = M.(i),

^ u V f j Vu i K {52)

J

This is not the same as eqns. (16) and (17), hence

M2(i,l) / M2(i) (53)

It has been shown that there is a class of non-analog transport

games which have the same mean score but different mean square scores

and hence different variances. The object of importance sampling

(using non-analog probabilities) is to decrease the variance. The cen-

tral limit theorem (see eqn.(l) ) says that if « 2 can be reduced, while

M. remains the sair?, the variance will be reduced-



IB-2 Splitting, Russian Roulette, and Weight Cutoff

In general, the more often a state is sampled the better the

statistics associated with that state. In a given time only a certain

number of particles can be followed; usually some states are under-

sampled while other states are oversampled. Splitting refers to

replacing a particle of weight w in state j by k particles of weight

w/k, thus increasing the number of times state j is sampled while

keeping the total weight in state j constant. On the other hand, if

a state is being sampled more frequently than necessary, Russian

Roulette is played in which a fraction, say 1-a, of the particles

are killed off and the remaining a particles are followed with their

weight increased by a factor I/a. A Russian Roulette game cuts the

number of times a state is sampled while keeping the mean weight

followed in that state a constant.

A particle of very low weight is uninteresting since it cannot

make much contribution to the score; yet following the particle takes

time. To solve this problem a weight cutoff game is played in which a

particle whose weight w is less than the weight cutoff w is either

killed, or followed with a new weight w . The particle is killed with

probability 1-w/w and followed (with weight w ) with probability w/w

(this is a type of Russian Roulette).



IC Remarks on the Relationship of Chapter I to Chapter III

In the transport problems of Chapter III there is a continuum of

states a particle can occupy. The transition from Chapter I to

Chapter III is largely a transition from discrete states, probabilities,

and scores to continuous states, probabilities, and scores. 7hus8 in

eqn. (33) the discrete probabilities p\ and p\. will be replaced by

continuous probabilities and the sum over the discrete states will be

replaced by an integral over the continuum of states. The Kronecker

delta function (eqn. (6) ) for discrete scores will be replaced by the

Dirac delta function (eqn. (90) ) for continuous scores. These delta

functions serve similar purposes. Whereas the Kronecker delta function

has the property (when f is a function of a discrete variable)

si J

the Dirac delta function has the property (when f is a function of a

continuous variable)

/f(s)6{s-s')ds = f(s').

There are five other differences between Chapter I and Chapter III,

In Chapter III,

1) Particles are followed only for a finite time

2) Russian Roulette and splitting are included as events

3) A weight cutoff game is played as a particle departs an event

4) A particle may multiply (produce secondary particles as in fission)

§) The score for an event is sampled from a probability function.

20



Chapter II. Definitions

This chapter contains the definitions of terms used to derive

the equations of Chapter III for the expected errors in non-analog

Monte Carlo calculations of time dependent particle transport prob-

lems. It should be emphasized that these terms are for a non-analog

game with particle weights, biased kernels, Russian Roulette, and

splitting. It is shown later, in Chapter III, that particular choices

of weights and kernels exist that make the mean score the same as in

an analog game.

Definitions

R = (r\v)=(particle's position, particle's velocity) (54)

P = (r,v,w)=(particle's position, particle's velocity,

particle's weight) (55)

P = (R.w) (56)

P completely describes the state of a particle in this treatment.

* is the multiplication symbol A*B = AB

The probability that a particle contributes a score s in ds in

the next event is taken to be:

Pd(P»P'.s)ds for a departure from P followed by a collisionless

free flight to P' (57)

p_(P,P',s)ds for a departure from P followed directly by an

absorption at P1 (58)

p,(P,P',s)ds for a departure from P followed directly by a

scattering at P1 (59)

21



Pk(P»P'.s)ds for a departure from P followed directly by a

collision at P1 in which k particles emerge from the

collision (60)

Psk(P.P'»s)ds for a departure from P followed directly by a k for

one splitting event at P1 (61)

P (P»P',s)ds for a departure from P followed directly by a game of

Russian Roulette at P1 (62)

The following weight multipliers for use in non-analog games are

defined:

w.(R,R ) is the factor by which the particle's weight is multiplied

if the particle makes an eventless transit from R to R . (63)

w (R") is the factor by which the particle's weight is multiplied

if the particle has a collision at R'. (64)

w (R'.R") is the factor by which the particle's weight is multiplied
£1

if the particle enters a scattering event at R" and exits

at R". (65)

w (R1 ,R, ,"',R. ) is the factor by which the k secondary particles

which exit a multiplying event have their weights multiplied.

(66)

w is the weight cutoff. No particle may exit a collision with
CO

weight less than w (67)

w is the new weight assigned to a particle if the particle survives

the weight cutoff game. (68)

The following transport kernels are defined:

22



Transrni ssion Probabi 11 ty

T(P,P }dv dw = T(R,R )§(w -ww)dv dw

= T(r,r+,v)6(v+-v)6(w+-wtw)dv
+dw+ is the probability that a

particle departing P will arrive at P , with velocity in dv

and weight in dw , without undergoing any events. Note that

the velocity remains constant and the weight is multiplied by

w when the particle arrives at P . (69)

Collision Probability

o(P+,PI)dr+dPl = a(R+)6(R'-R+)6(wl-wow
+)dr+dR'dw( is the probability

that a particle entering dr about r will collide in dr and

change state to P' in dP'. Note that the only coordinate which

changes in this process is the particle's weight, which is

multiplied by w . a(R ) is the macroscopic total cross

section at R+. (70)

Splitting Probability

S.(P )dr is the probability that a particle (at v and w ) entering

dr about r will undergo a k for 1 split. (71)

Russian Roulette Probability

R.(P )dr is the probability that a particle (at v and w ) entering

dr about r will play Russian Roulette. (72)

Collisionless Free Flight (Drift) Probability

D(P,P+,t)dP4=T(P,P+)6(|7f-?|-vt)dP+

= T(r,r ,v)6(v -v)6(w -wtw)6(|r -rl-vtjdr^d^dw*

is the probability that a particle departing P will have a

collisionless free flight (or "drift") for time t and end this
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free flight in dP about P . Note that the velocity remains

constant in free flight while the position changes by vt

and the particle's weight is multiplied by w . (73)

Absorption Probability

A(P') is the probability that a collision at P1 results in

absorption. (74)

Scattering Probability

E(P' ,P")dP"=ei(P\P"}dP"=E(R',R")6(w"-we w
1)dR"dw"

=E(v',v")6(r"-r')S(w"-w w')dr"dv"dw" is the probability

that a particle colliding at P1 will scatter into dP" about

P". Note that the velocity, but not the position, changes

in a scattering event. The particle's weight is multiplied

by w in this process. (75)
el

Multiplication Probability

_lrj tlj 1 • * • A | 111 wLJ *Al 1
• W Vf I U V W i W »• /

x dR,dw • • •dR | dw k

k 1 k 1 k 1 e k -w E w1 )

x dr.dv^dw,•••dr|dvkdwk

is the probability that a particle colliding at P1 results

in k particles, the j t h of which (j=l,2,««*,k) exits in dP..

about P.. These are multiplying events such as (n,2n) and
J

fission. As with the scattering kernel immediately preceding,

an exiting particle's weight is multiplied (here by w£ )
K

while the position is unchanged. (76)
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Weight Change Probability for Splitting

Bsk(P
+,P")dP"=6(r"-rf)6(v"-v+)6(w"-w+/k)dr"dv"dw"

is the probability that a particle undergoing a k for 1

split at P+ results in k particles exiting at P" in dP".

Note that only the particle's weight, which is multiplied

by 1/k, changes in a splitting event. (77)

Weight Change Probability for Russian Roulette

B0(a,P
+,P")dP"do=6(r" -r^Wv" -v+){a6(wll-w+/a)+(l-a)6(w11)}

x dr"dv"dw"da

is the probability that a particle undergoing Russian

Roulette at P (with probability o in da of survival)

exits in dP" about P". Note that only the particle's

weight changes; the particle is either killed (i.e. w"=0)

or the particle's weight is multiplied by I/a. (78)

Weight Change Probability for Weight Cutoff

B(P",Pc)dPc=6(rc-r")6(vc-v")[H(w"-wco)6(wc-w") +

(l-H(w"-wrA)){^6(w-we)+(l-w'7we)6(wj}]dr dvdw r

e
is the probability that a particle exiting a collision

at P" will have its coordinates changed to Pc in dPc

before the particle's next flight begins. This is the

weight cutoff kernel - note that only the particle's

weight changes. If the exit weight, w", is greater than

or equal to the cutoff weight, w , the particle continues

with weight w =w". If w"<w then a game of Russian
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Roulette 1s played in which the particle is either killed.

w =o, or the particle is followed with weight w =w . (79)
c c ©

Next define the history score probability function and the r

moment of the history score:

^(P.s.t)ds is the probability that a particle at P will contribute

a cumulative score in ds about s in the remaining time I. (80)

Mr(P,t)= /i(P,s,t)s
rds is the rth moment of the history score. (81)

Now define

A0(R')=A(P') is the probability zero particles exit a collision,

A1(R
l)=ydR"E(R',R") is the probability one particle exits a

collision, and

Ak ( R I ) =/ d Rr 4*/ d Rk ek ( R I' Rr'" t Rk ) 1s the P r o b a bi i ny k

particles exit a collision. (82)

An obvious requirement is:

£A.(R')=1 (83)
k=0 K

The score assigned to an event should be proportional to the particle's

weight; the probability that a particle of weight w1 contributes a

score in ds about s is equal to the probability that a particle of

unit weight contributes a score s/w' in ds/w'. Thus

p(P,R',w',s)ds=p(P,R',1,s/w()ds/w' and

y"p(P,R' ,w',s)srds=w'r/*p(P,R' ,1 ,s)srds, or
/*p(P,R' ,wow,s)s

rds=wjyp(P,R' ,w,s)srds. (84)
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H(x)

This thesis also uses the notations

0 if x<0

x>Q

j° 1f

11 if
Heaviside function (85)

6(q) -
o if

if q = 0
Oirac delta "function"

/

/f(q') if q' is in the region Q
f(q)5(q-qg)dq = {

y 1.0 if q' is not in the region Q

* is the multiplication operator, A*B=AB.

(86)

(87)

(88)
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Chapter III. Derivation of Moment Equations and Choice of Weights

In this chapter equations for the r moment, M (P,t), of the

history score are derived. The "central limit theorem" states that

the means of samples, each of h histories, are, for large h, approxi-

mately normally distributed about M. with a variance

VAR = (M0-M?)/h (89)

Thus I«L and M« determine the expected error in a Monte Carlo transport

calculation.

A) Derivation

The equation for M is obtained by deriving a probability conser-

vation law (eq. (91)) and multiplying this law by the r power of the

history score, sr, and integrating over all possible scores. Let

t = t' be the time required for a free flight from P to P . (Since

a collision process requires no time, t' may be interpreted as the time

between departing P and a collision at P1.) Note that «J>(P,s,t)ds is

the probability of obtaining a score in ds about s in the time t

remaining; a particle departing P is limited in its possible next

event points to those states P that can be reached from P in time

t+<t. This 1s the reason for the t <t limitation on the Integrations

over P+ in eq. (91). The first term in eq. (91) (see page 36) has a

t+=t restriction on the integral over P+ since this term is due to a

free flight for the entire time t; thus the states P are limited to
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those states that can be reached in exactly time t.

In order to obtain a history score s in ds a particle that

obtains score s1 in the next event must obtain a cumulative score

in ds about s-s1 in all subsequent events. If there are no sub-

sequent events, as in TERM! and TERM2 of eq. (91), then the

entire history score must be contributed at the next event, i.e. s'=s

in ds.

There are six possible ways a particle departing P can end Its

free flight:

1) run the clock out (free flight for the entire time t)
2) absorption at P' +
3) play Russian Roulette at P
4) split at P+

5) scatter at P'

6) multiply at P'

Each of the six terms in eq. (91) is a product of probabilities of

the form

probability event\ / P ™ b a b i 1 ^ tha* a11
\ / subsequent events) /probability event\ ^

/ contributes \ / subsequent events
* I score s' 1 * 1 contribute the remaining

1 f \ score in ds about s-s1

\ \ / \in the remaining time t-tV

(90)
Each of these three factors will be listed for each of the six terms

of eq. (91). After these factors have been listed a detailed explana-

tion of eq. (91) will be given.
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1) Free Flight for remaining time t

(D(P,P+,t)dP+)x(pd(P,P
+,s')ds')x(<S(s-si}ds)

2) Absorption (free flight to P+, collision in dP , absorption at P1)

(T(P,P+)a(P+,P')dP+dP'A(P1))x(p0(P,P
1s1)dsl)x(6(s-s1)ds)

3) Russian Roulette (free flight to P , Russian Roulette game at P ,

exit Russian Roulette game at P")

(T(P,P+)R0(P
+)dP+B0(a,P

+,P")dadP")x(pp(P,P
+,s')ds')

x(*(P",s-s',t-tl)ds)

4) Splitting (free flight to P+, split k for 1 at P , exit splitting

at P")

(T(P,P+)Sk(P
+)dP+Bsk(P

+,P")dP")x(psk(P,P
+,s')ds')

5) Scattering (free flight to P , collision in dP , exit collision in

dP", Russian Roulette game at P", exit Russian Roulette game in

(T(P,P+)a(P+,P')dP+dP'E(P',P")dP"B(P",PC)x(p1(P,P
l
9s')ds')

x(iKPc,s-s',t-t')ds)

6) Multiplying (free flight to P+, collision in dP+, k particles exit

collision in dP..•••,dPk, Russian Roulette games at P.j,•••,?.,

exit Russian Roulette games in dP.,«*',dPk)
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The score accumulation probability i^(P,s,t)ds is separated into

the six terms given on the right hand side of eq. (91). These six

terms are score accumulation probabilities for particles that end

their first flights from P by:

1) a collisionless free flight for the remaining time t (TERM)
2) being absorbed at P1 (TERM2)
3) playing Russian Roulette at P (TERM3)
4) splitting at P+ (7ERM4)
5) scattering at P( (TERM5)

6) multiplying at P1 (TERM6)

In TERM! D(P,P ,t)dP of the particles departing P arrive in

dP about P in exactly time t without undergoing any events and

Pd(P.P »s')ds' of the D(P,P ,t)dP particles contribute a score s' in

ds1; and 6(s'-s)ds of the D(P,P*,t)dP+pd(P,P',s')ds' particles con-

tribute a score in ds about s. The history score, s, for 3 particle

departing P which undergoes no events in the entire time t consists

only of the single score s' due to the free flight of the particle;

thus the history score will be in ds about s if and only if s1 is in

ds about s, hence the delta function.

In TERM2 T(P,P ) of the particles departing P make a free flight

to P+. a(P+,P')dP+dP' of the T(P,P+) particles collide in dP+ and

have their state changed (only the weight coordinate changes) to P'

in dP'. A(f>') of the T(P,P+MP+,P')dP+dP' particles are absorbed at

P\ PptP.P'.s'Jds' of the T(P,P+)o(P+fP')dP
+dP'A(P') particles con-

tribute a score s1 in ds1. The history score, s, for a particle that

is absorbed in its first event consists only of the single score s1
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due to the absorption; thus the history score will be in ds about s

if and only if s' is in ds about s. Hence T(P,P+)a(P+,P')dP+dPlA(Pl)

x 6(s-s')ds of the particles departing P contribute a score in ds about

s by being absorbed in the next event.

In TERM3 T(P,P+) of the particles departing P free flight to P+.

RQ(P
+)dP+ of the T(P,P+) particles play Russian Roulette in dP+.

B0(<x,P
+,P")dadP" of the T(P,P+)R()(P

+)dP"!' particles exit the Russian

Roulette game in dP". p (P,P+,s')ds' of the T(P,P+)R0(P
+)dP+B0(a,P

+,P")

x dadP" particles contribute a score s' in ds1 at this event.

^(P",s-s',t-t+)ds of the T(P,P+)R()(P
+)dP+B0(a,P

+,P")dadP"pp(P,P
+,sl)dsl

particles subsequently contribute cumulative scores in ds about s-s' to

make the history score in ds about s'+(s-s')s. Thus T(P9P )RQ(P )

x dP+B0(a,P
+,P")dadP"p (P,P+,s')ds>(P",s-sl ,t-t+)ds of the particles

departing P contribute a score in ds about s by having the next event

be a Russian Roulette game.

•,i TERM T(P,P+) of the particles departing P free flight to P+.

Sk(P )dP of the T(P,P ) particles undergo a k for 1 split in dP .

Bsk(P
+,P")dP" collections of k particles exit the T(P,P+)Sk(P

+)dP+

splitting events (into dP"). psk(P,P
+,s*)ds' of the T(P,P+)Sk(P

+)dP+

xB .(P ,P")dP" splitting events contribute a score s' in ds'.

of the collections of k particles subsequently contribute the remaining
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score, s.,+s,,+«--+s. 1i+[s-(s'+s.+«*-+s. ,)] = s-s'„ to make the history

score in ds about s'+s.+*«*+s. -+[s=(s'+s-«-<">»+s. 1 ) > s . Restating

this last idea, each of the T(P,P+)Sk(P
+)dP+Bsk(P

+,P")dP"ps|c(P,P
+,sl)dsl

collections of k particles exiting P" has already contributed a score s'

of the desired history score si thus the k particles exiting P" must

collectively contribute a cumulative score in ds about s-s' in the

remaining time t-t . The probability that k particles departing P"

collectively contribute a cumulative score in ds about s-s" in time t-t

is

" ,Sl »t=t
+)

That is, if particles 1 through k-1 contribute scores s. through s k .,

then the k particle must contribute a score in ds about

s=(s"-5-s 4-°°°-s-s. .) so that the score s', due to splitting, plus the

scores due to the k particles departing dP" results in a total score

in ds about s. The integrations over s. to s. .. give all possible

ways that s. through s. can sum to s-s1.

In TERM5 T(P,P+) of the particles departing P free flight to P+.

a(P+
0P')dP

+dP' of the T(P0P
+) particles collide in dP+ and change

state (only the weight coordinate changes) to P' in dP1.

E(P\P")dP" of the T(P,P+)o(P+,P')dP+dP' particles suit the collision

in dP". B(P"tP
C)dPC of the T(P,P+)a(P+,P1)dP+dP'E(Pl

eP")dP"

particles playing the weight cutoff game at P" exit the game in dPC.
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P^P.P'.s'Jds' of the T(P,P+)a(p\p')dP+dPlE(P\P")dP"B(P\PC)dPc

particles contribute a score s' {in ds1) in the scattering event.

*(PC,s-s'.t-tI)ds of the T(P,P+)a(?+,Pl)dP+dP'E(P',P")dP"B(P\Pc)dPc

x p.(P.P'.s'Jds1 particles departing Pc subsequently contribute the

remaining score in ds about s-s1 in the remaining time t-t1 so that

the total history score is s'+(s-s')=s in ds.

In TERM6 T(P,P+) of the particles departing P free flight to P+.

o(P ,P')dP dPp of the T(P,P ) particles collide in dP+ and change

state (only the weight coordinate changes) to P' in dP'.

ek(P\P.|,"%Pk)dP, "*dPk collections of k particles exit

(the T(P,P+)a(P+,P')dP+dPl collisions in dP+) in d P ^ - - - ^ .

B(P ,P^)dP,«"B(P ,P^)dp£ of the T(P,P+)a(P+,P')dP+dP'e. (P' ,P r",P.)
V I 1 K K K K l K

x dP^•••dP. collections of k particles playing the weight cutoff

game at P.t'°°>P. exit the game in dp!?,*",dPp. p,(P,P' ,s')ds' of
i K I K K

the T(P,P+)o(P+,P1)dP+dP'ek(P',Pr«",Pk)dP1»'«dPk

^ ^ ^ ^ J p ^ collections of k particles departing

Pf.**#»Pf contribute a score s" (in ds1) in the multiplying event.
1 K

h ,t-f Jds, - •/•(Pj.1 , s w ,t-f

of the collections of k particles contribute the remaining score

s,+Sp+°»»+sk .+[s-(s
l+s,+-"+s,._, )]•-£:.-s1 in the remaining time t-t\

to make the history score in ds about s'+Sj+"»+sk_.j+[(s-(s
l+Sj+*"+S|(_.j)]=s.

Restating this last idea, each of the T(P,P+)a{P+,P1)dP+dP1pk(P,P
1,sl)dsl
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collections of k

particles exiting pi»***»P^ has already contributed a score s1 of the

desired history score s; thus the k particles exiting P I » * " » P L
 m"St

collectively contribute a cumulative score in ds about s-s' in the

remaining time t-t1. The probability that k particles departing

c cP, ,'",P. collectively contribute a cumulative score in ds about s-s1

in time t-t' is

A(P, ,t-t'

That is, if particles 1 through k-1 contribute scores s.. through s. .,

then the k particle must contribute a score in ds about

s-(s'+s.+"»+sk .) so that the score s
1, due to multiplication, plus

the scores due to the k particles exiting P1»*"»Pk results in a total

score in ds about s. The integrations over s1 to s. . give all possible

ways that s.. through sk can sum to s-s
1.

Adding TERM! through TERM6 results in the final equation for the

probability of obtaining score s in the time t remaining

*(P,s,t)ds = ./ dP+D(P,P+,t) fds'prf(P,P
+,s' )6(s-s' )ds

t =t J

+ + / dP+T(P,P+)/dP'a(P+,P' )fds'pQ{P,P' ,s' )A(P' )6(s-s' )ds

+ +/dP
+T(P,P+)R0(P

+)/ds'pp(P,p\s')ydP"y daB0(a,P
+,P")

00 -

x •(P-.s-s'.t-t+)ds + Z + / dP+T(P,P+)S.(P+)/ds'pc.(P,P
+,s')

k=2 t <t J SK
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),t-t+)ds + f dP+T(P,P+)/dP'a(P+,P')
t <tt <t

CO

v=i t <t

x •(Pj.s,,t-f )«-*(P^1 , s w , t - f MPk,s-(s
l+s1+---+sk_1),t-t

1 )ds (91)

This equation is of the form

TERMO = £ TERMI
1=1

Multiplying eq. (91) by sr and integrating over s results in the

desired equation for M . The integrations are done term by term below.

TERMO = yds<MP,s,t)sr = Mr(P,t) (92)

TERMI = +/dP
+D(P,P+,t) ydspd(P,P

+,s)sr (93)

TERM2 = +/dP
+T(P,P+)/dP'a(P+,P')/dspn(P,P',s)A(P')s

r (94)

TERM3 = /dP+T(P,P+)Rn(P
+)/ds'p (P,P+,s')/*dP"/* daB0(a,P

+,P")
t <t u y p y «fQ

xjds\l>(P",s-s',t~t+)sr (95)

Using eq. (A5)

= x/dP
+T(P,P+)Rn(P

+)/*ds'p (P,P+.s')/dP"/" daB (a,P+,P")
t<t 0 7 P 7 JQ

 u

x £ (^s'r"nMn(P",t-t
+) (96)

TERM3
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00

TERM4 = S +/dP
+T(P.P+)Sk(P

+)/ds'psk(P.P
+,s')/dP"Bsk(P

+.P")

x/*ds1 • • •/dsk.1*(P
11 .s1 ,t-t

+).. .^(P" ,sk ., ,t-t
+)y*ds sr

x ij)(P",s-(s
l+s1+---+sk_1),t-t

+) (97)

Using eq. (A5) on J ds

TERM4- £ +/dP
+T(P,P+)Sk{P

+)yds'psk(P,P
+,s')/dP»Bsk(P

+,P")

Mn («*"•*-**) (98)

1

Using eq. (A5) on J 4%^ .,

TERM4 = T +/dP
+T(P,P+)Sk(P

+)yds'psk(P,P
+,s')ydP"Bsk(P

+,P")

x E ( n 7 Mn (p".t-t )(s'+Sl+..e+sk_2)
 ] Z (99)

Using eq. (A5) repeatedly on Tds k_ 2""j ds1

TERM4 = f ) +/dP
+T(P,P+)Sk(P

+)ydstPsk(P,P
+.s')ydP"Bsk(P

+.P11)

i: 1 / r " n r # " " V i V <p-.t-t+)

^ l 1.7b ^ nk J\

x s.
r"nl ^ (100)

r i
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TERM5 = /dP+T(P,P+)/Va(P+,Pl)/dslp1(P.P',s')/*dP
11E(P1,P")

t < t J J ' J

CB(P",Pc)y*ds^(Pcts-s'.t-t
l )sr (101)

Using eq. (A5)

TERM5 = f dP+T(P,P'?>)/dP<o(P+,P>)/*ds1p.(P.P'.s1)/dP"E(P1,P11}
t < t J ' y ' ^

x/dPCB(P:',PC) V (r) Mn(P
C,t-t')s'r'n (102)

TERM6 = Y, + A P + T ( P , P + ) /dP'a(P+,P')/ds'p. (P.P1 ,s')
k=2 t <t ' y K

x/dPr**/dPkGk(p''F'r'**'pk)/dPiB(prpi)''*/dpkB(pk'pk)

x ^(Pk,s-(s'+s1+---+skl),t-t
1)sr (103)

Using eq. (A5) repeatedly as in TERM4

TERM6 = Y +fdP
+T(P,P+)fdP'a(P+,P')fds'pii(P,P',s')J'(iP]"'f<iPk

1_ k-1 /^_n -• ••-n,

nk=O \ "k

Changing the dummy variable s' to the dummy variable s and adding

TERMO = 2 ^ TERMI
1=1

gives the equation for the r moment
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,t) = +/dP+D(P,P+,t)y"dspd(P,P+,s)sr

+ /

+/dP+T(P,P+)R0(P+)ydspp(P,P+,s)/dP"/ daE0(a,P+,P")

E f n K ^ " ' ^ ^ ^ " " + £ +/dP+T(P,P+)Sk(P
+)/dsp . (P,P+,s)

nFO"1/ n k=2 t <t ^

x Mn (P\t- t+)s r"n l "k + +/dP+T(P,P+)/dP'a{P+,Pl)/dsp1(P.P',s]
nk t <t J ' '

x/dP"E(P',t ')/*dPcB(P".Pc) f ; ( > (PC,t-t')s r"n + £ + / d P +

^ ^ n̂ O n n k=2 t <t

k

Recall p(P,P',s) and ^(P>s,t) are probability functions so that

yp(P,P\s)s°ds « 1 (106)

HQ(P,t) = yW,s,t)s°ds = 1 (107)

Note in TERM4 and TERM6 that any one of the n. (j=l k) could be

equal to r and hence there are k ways to get M from these terms.

Collecting the M terms
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Mr(P,t) • +/dP+T(P,P+)R0(P
+)y*dP"y daB0(a,P+,P")Mr(P",t-t+)

CD - •

+ 2 + / dP+T(P,P+)S.(P+)/dP"B .(P+,P")kM (P\ t - t + )
k=2 t " t K ^ SK r

+ J dP+T(P,P+) /dP'otP*,?') /dP"E(P' ,P") /dPCB(P",PC)M (PC,t-f
t <t J J J r

£ +/

where

Mr(Pj.t-f) + Qr(P,t) (108)

+/ +/
x/dspn(P,P\s)A(P')s r + . / dP+T(P,P+)Rn(P+)/*dsp(P,P+,s)
J U • ^ 0 J p

1 r~l go f

x /dP"/*daBn(a,P+,P") V ( r Vi (P", t - t ' )s r"n + £ . / dP4>T(PfP
+)S. (

•̂  •'O ° n̂ O \ n / n k=2 t <t

x/*dsp . (P,P+,s) /dP"B . (P+.P")

g"
K

t <t

(>n(PC.t-t')sr"n C ,/*dP+T(P,P+)/dP'o(P+,P')
=2 t'<t J
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The first two moments are usually the only ones desired. The

source term Q, for the M, equation and the source term Q_ for the M_

equation are given below. From eq. (109)

Q,(P.t) = +/dP
+D(P,P+,t)/dsp.(P,P+,s)s + +/dP

+T(P,P+)/dP'a(P+,P')
1 t =t J d t <t J

dspn(P,P',s)A(P')s + 2 . / dP+T(P,P+)S.(P+)/dsp .(P,P+,s)s
U k=2 t <t K y SK

+ +/dP
+T(P,P+)R0(P

+)ydsPp(P,P
+,s)s + +/dP

+T(P,P+)/dP'a(P+,P'}

xydsp1(P,P',s)/dP"E(P
t,P")s + J +ydP

+T(P,P+)y*dP'a(P+,P')

kek{P',Pv>..,?k)s (110)

For r=2 the splitting and multiplication terms in eq. (109) have a

number of sums which must be evaluated. First consider the sum in

the multiplication term in eq. (109) for r=2

k / nk ' 1=1 ni 2
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Note by the summation limits that

0 £ £ 2 (111A)

and also that the (1-6 9 ) factor requires n.^2 so that

0 £ n. £ 1 (TUB)

for 1 < i < k. The terms in the sum (111) are separated below into

k+1 mutually exclusive groups of terms which are evaluated and then

summed to produce a simpler expression for v . The j group

(j = 1.2,--•,k) of terms consists of all terms for which n.-n2=«*
#=n. .=0

and n =1. The k+1 —group of terms consists of the single term for

which n1=n«=»«»=n.=0. These groups are evaluated in the following

paragraph.

If n =1 then by eq. (111A) either one or zero other

n.=l (i=2,3,«»»,k), yielding

[W c 1£ M,(P* t-t')+s
j=l ' J J

One)

If n.=0 and n2=l then either one or zero other n.=l (i=3,4,»««,k)

"k-2
(112)

If n.=n =0 and n =1 then either one or zero other n.=l (1=4,5,•••tk)

k-3
(113)
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If n1
=n_s»<

n.=l (i=k)

"k l
o n e o r z e r o o t n e r

(114)

If n.=*«»=n. ,=0 and n =1

(115)

If n.j=»»»=n.=0

(116)

Hence adding eqs. (111C)-(116)

s 2 * 2s

(117)

Note that the term in eq. (109) involving the k particles emerging from a

splitting event has the same form as the term involving k particles emerging

from a collision except that in a splitting event all particles exit

at P". Thus using eq. (117) with Py=P"

Xs = s
2 + 2 skM1(P",t-t

+) + 2M2(P\t-t+)

m j=i

(118)

(119)
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Xs = s
2 + 2skM1(P\t-t

+) + k(k-l)M2(P\t-t+)

From eqs. (109),(117), and (120)

Q2(P.t) = + /dP
+D(P,P+,t)^spd(P,P

+,s)s2 + + /dP
+T(P.P+)

xydP'a(P+,P')ydsp0(P,P',s)A(P')s
2 + +/dP

+T(P,P+)R0(P
+)

x/Gsp (P,p\s)/dP"/~ daB (a,P+,P") V( 2)M n(P",t-f )s
2"n

J p ^ •'0 n3b

E +/dP
+T(P,P+)Sk(P

+)/dspsk(P,P
+,s)/dP"Bsk(P

+,P")|s2 +

+/dP
+T(P,P+)

<t
2skM1(P",t-t

+) (P,
1 +

t <t
(P.P1 . CB(P",PC) ^ ( 2 ) s2)s 2" n

)

x MB(P
c.t-f) + X +/dP

+T(P,P+)/dPIff(P+.Pl)/dsp.(PfP
I,s)

n k=2 t"t ^ ^

|s2 + 2s X; M^P^.t-f) + 2 £ M^pJ.t-f) £ VPj.t-t'

(120)

(121)
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B) Choice of Non-Analog Kernels and Weight Multipliers.

By using non-analog kernels one tries to obtain the same M. as in

the analog game but with a smaller variance. I f there are no Russian

Roulette or splitting events, i .e.

R0(P
+) = Sk(P

+) = 0

then it is easy, if somewhat tedious, to show how to pick kernels and

weight multipliers which result in a game with the same N. as in the

analog game. Substituting the definitions of Chapter II into eq. (108)

results in

M (R,w,t) = ./dR+dw+T(R,R+)6(w+-w.w)/dR'dwl
0(R')

x 6(R'-R+)5(w'-w w+)/dR"dw"E(R\R")6(w"-w w')/dRcdw
O J Ĝ  J C

:C-R")JH(w"-wco)6(wc-w") H

+/dR+dw+T(R,R+)6(w+-w .w+/
k=2 t <t

x ( a ) y

x 6(wk-we W) TT/^wc«(Rj-Ri)|H(wrwco}<S(wc -w.)e T T / ^ c . j i | r c o c w.

j j S(wCj -we) «(wCi )J J
(122)

45



Performing the integrations over 6 functions and noting:

1) w. - w w' for all i, thus either w. >. w or w. < w for all i (123)
1 £» 1 CO 1 CO

2) M (R.O.t) = 0 since a particle of weight zero can contribute

nothing to the score, hence M (R,w6 ,t) =6 -M (R,w,t) (124)
I flyl fl) I I

3) t changes to t1 when the integration of 6(R'-R ) makes

R1 = R+ (124A)

one arrives at

Mr(R,w,t) = f dR1T(R,R')a(R')ydR"E(R1,R")|H(wwtW(jwe -W£
ww. w w

x M r ( R " , w w t V t-f ) + (l-H(wwtw w - w A - ^ - i
i N i / e

x M (R\w ,t-t')i + Y. J dRlT(R,R')a(R')/dR1---j

Si
I*

X r t j » e » J b . i i
j=l J

The sums over the b.'s give all possible combinations for the

survivals or deaths of the k particles playing the weight cutoff

Vgame= Survival of the S. particle corresponds to b =1 and death

corresponds to b =0. The 6. ^ in eq. (124B) allows only surviving
j'
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particles to contribute.

Using eqs. (A16) and (A18) one arrives at

M (R.w.t) = /*dR1T(R,Rl)a(R')/dR"E(R',R") IH(WW.W M -W
r v{t J { t o E| c

x M (R'\ww.w w ,t-t') + (l-H(ww.w w -w ) 1 — ^

x H (R",w ,t-t')J + T * /dRnT(R,R')a(R')/dR1'»»/dR.r e I k=2 t'<t j i j K

x &,(R'.R1i-".Rw)<H(wwl.w w -w ) Y * M (R.,ww w w ,t-t'

ww.w w

(125)

Eq. (125) is of the form

Mr(R,w9t) = KMr(R,w,t) + Qf(R,w,t) (125A)

where the form of the operator K can be inferred from eq. (125).

A Neumann sequence may be generated using the iterative procedure

(index i)

Mj(RBw,t) = 0 O25B)



and

MJ,+1(R,w,t) = KM^R.w.t) + Q (R,w,t). (125C)

With suitable restrictions on K (see Appendix C) the Neumann

sequence converges to a unique solution. From here on, it will be

assumed K is such that there exists a unique solution to the M equation.

Now attempt to separate the weight dependence of M . Replace w by

aw in eq. (125) and then substitute

Mr(R,aw,t) = a
rFr(R,w,t) = a

rwrF(R,l,t) (125D)

y*

into eq. (125), divide the result by a , and note that for a>0

H(ax-b) equals H(x-b/a), this yields

FjR.w.t) =/" dR1T(R,R')a(R1)/dR"E(R1,R")/H(ww.w w -w /a)
r Jt,<t J I t a e1 co

WŴ WJrf..
X

« FJR",r»t-t')! + T, I dR1T(R»R1)a(R1)/dR1.-/dR
r a > k=2*t'<t J Jk=2*t'<t

R

»
w
f

+ Qf(R9awst)a"
r (125E)

If w and w are proportional to the particle weight, that is:
6 CO

w (aw) = awe(w) (125F)

= awcQ(w) (1258)
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and if Q is proportional to the r ^ power of the particle weight,

that is

Qr(R,aw,t) = a
rQr(R,w,t) (125H)

then eq. (125B) for F is independent of "a" and identical to eq. (125)
r

for M . Thus if eqs. (125F) - (125H) hold the separation works and Fr

equals M , which implies
M^R.w.t) = wrMr(R,l,t). (1251)

(Conditions (125F) and (125G) make the particle's history independent

of its weight as in Chapter 1)

When r is equal to one, conditions (125F) and (1256) are not

required. To see this, use eqs. (125D) and (125H) to set every weight

argument in eq. (125E) to w and then use H(x) + (l-H(x) ) = 1 to obtain

F,(R,w,t)=/" dR'T(R,Rl)a(R')/dR"E(R\R")w.w w F.(Rsw,t-t')i Jt,<t J t a e1 i

x £/1(R.j»w.t-t
l) + q].(R,w,t). (125J)

Note that F. is independent of w and w so eq. (125H) is the only

requirement for

MjfR.w.t) = wMjfRJ.t) (125K)

From eq. (110) and the definitions in Chapter II
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Q,(R,w,t) = +/dR+dw+T(R,R+)5(w+-ww.)6CI^-r!-vt)
1 t = t z

pd(P,R+,w+,s)s + +/dR+dw+T(R,R+)6(w+-wwt)+ /

+ydR+dw+T(R,R+)6(w+-wwt)JdRtdwla(Rl)6(R'-R+)5(wtVwa)

1(P,R*,w',s)s/dR"dw"E(R',R")6(w"-we w1)

+/dR+dw+T(R,R+)6(w+-ww j/dR'dw'afR1 )6(R'-R+)
<t J

=2 t <t

x ek(R
D,Rr---,Rk)6(w1-we w')--<5(wk-w£ w

1)

Performing the integrations over the delta functions and using

(123) and (124A)

Q^R.w.t) = +/dR
+T(R,R+)6(|r+-r|-vt)ydspd(P,R

+,wwt,s)s

,R')a(R')A(R'y
f

(126)

+ £ ydR'T(R,R l)a(R')/dspk(P,R l,ww twa,s)s^R1-.ydRkek(R1,Rr...,Rk) (127)

By eqs. (84) and (127) Qj must be proportional to w. Thus, by eqs. (125H)

and (125K)

M^R.wwQ.t) = wM^R.WQ.t) (128)
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From eq. (121) and the definitions of Chapter 11

Qo(R.w.t) = +/dR
+dw+T(R,R+)6(w+-ww.)6(r?+-r|-vt)

£ t s t
 z

pd(P,R
+,w\s)s2 + +/dR

+dw+T(R,R+)6(w+-wwt)

'dvi'o{.R' }6(R1-R+)6(w'-w+wa)/dsp0(P,R' ,w
e ,s)s2A(R')

/dR+dw+T(R,R+)6(w+-ww )/dRldw'a(Rl)6(R'-R+)6(w1-w+w )
t <t XJ

^ (P.R1 ,w' ,s)/dR"dw"E(R' ,R")6(w"-we w
1 )/dRcdwc6(R

C-R")

| H ( W " - W C O ) 6 ( W C - W " ) + (l-H(w"-wco) )|";7-S(wc-we)

e w

+dw+T(R,R+)6(w+-ww.) /dR'dw'o(R')6(R1-R+)
l J

(wk-we W ) "JT/
dRidw

c.
6(Ri-Ri)

-w.) * (l-K(w.-wco) ) ^ «(wc,

(129)
p
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Integrating over the delta functions and noting (123)-(124A)

Q2(R,w,t) = j f dR+T(R,R+)6(|r^-r|-vt)/ds Pd(P,R+,wwt,s)s
X •" X

dR'T(R,R' )a(R' )A(R'

f dR'T(R,R')o(R')/ds p1(P,Rl,ww.wf7,s)/dR"E(Rl,R"
V<t J J

.. )s2-n

ww.ww

£ / dR'T(R,R')a(R')/ds p.(P,R'.ww w ,s)/dR.-»-/dR
^2l '<t ^ k t o y I ^ K

k(R'.R1.....Rk)[H(«« tVek-wC0)js2+2s ^ ( R ^ w w ^

2J M (R ,ww w w ,
j ^ 1 J t a ek

V

t-f)

k

/ t

1 w "k
ww^w_w. vk-b,-'''-b..

! s 2 +

t a e. \ 1

*)

I, V

k i y k

+ 2 2 Z M,(R ,w .t-t1;
1=2.

(130)
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Combining the scattering and multiplication terms and using eqs. (A12)-

(A21)

Q/R.w.t) = f dR+T{R,R4)6(|^+-r|-v^/ds Pd(P,R
+,wwt,s)s

2

<t
pn(P,R',ww w ,s)s

+ T ) / dR'TOl.R'MR'j/ds p.(P,R',ww.wo.s)/dR ••• dR
k=l V<t ^ K t a y i K

+ 2

H(wwtwowe -wCQ) Js + 2s Z ^ C ^

^ ^ .t-f)

H(wwtwow -wco))j

W e , \2 k

2 * ° eks' + 2s -w

2 (130A)
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Using eq. (128), and noting H(x) + O-H(x) ) «

Q2(R.w,t) = Pd(P.R
+,wwt>s)s

dRIT(R,R')a(R')A(R')/ds p (P.R1,ww w ,s)s
'<t

1=2

ek(R',R1, — .Rk) is
2 + 2s J )

,wwtwaw t-f)

t V e »t"t')

I LJUf \tt Id ^ » t ' l (130B)

Note that (L and Q2 (eqs. (127) and (130B) ) are independent

of the weight cutoff game. By eqs. (84), (128), and (130B) Q2 must
2

be proportional to w . Thus if the exit weight and cutoff weight

are chosen as in eqs. (125F)-(125G) then eq. (1251) with r=2 implies

M2(R,wwo,t) = w
2H2(R,wo,t) (131)
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Consider eq. (125) for M.. Let * indicate analog functions.

For an analog game eq. (127) with w =w_=w ^w_°1 and w =0 becomes
1 1 k

Q*(R,w,t)= +ydR+T*(R,R+)6( | V-r\ -vt)/dsp*(P,R+,w,s)s
t =t

/'dRlT*(R,Rl)a*(R')A*(R1)/dsp*(P,Rl,w,s)s
t '*t J U

/*dR'T*(R.R' )a*(R' )/dsp*(P,R' ,W,S)S£R"E*(R' ,R")
t'5t J \ J

Now consider a non-analog game with weight multipliers:

«t = T*(R,R')/T(R,R')

w a = a*(R')/a(R')

w = E*(RI,R")/E(R',R")

w£ = e*(R1,R1,---,Rk)/ek(Rl,Rr- sR k)

Using eqs. (133),(127), and (84) the equation for Q, becomes:

Q^R.w.t) = +

+ /dR'T(R,R')0(R' $ $ $ A(R' )/dspo(P,R' ,w.s)s

(132)

(133)

(/dR'T(R,R')a(R') T*^^,' j 2^fr}</dsp1 (P,R',w.s)s/dR"E(R

(134)



Let

AQ(R') = A(R')

A^R') =y*dR"E(R',R")

A k ( R I ) = / d R r * / d R k e k ( R ' ' R r " * » R k ) k-2

(135)

If

Pd(P,R
+,w,s) = p2(P,R+,w,s), and

A.(R')p.(P,R\w,s) = £ A*(R')p*(P,R',w,s), then
K k=0 K k

.w.t) = Q*(R,w,t).

(136)

(137)

(138)

For an analog game eq. (125) with W B W =w =w =1 and w =0 becomes
i a e1 ek co

M*(R,w,t) = /dRlT*(R,RI)o*(Rl)/dRl>E*(RI,R")M*(R",w,t-t')
t'<t J '

t'<t

(139)

For the non-analog case eq. (125) becomes (using eqs.(128) and (133) )

M^R.w.t) = /dRIT(R,R')a(R')/dR"E(R'.R")(H(ww.w w - w )i t, t̂ J y \ a e1 co

T*(R,R') a^Rl) E^R'.R")
X T(R,R') o(R') E(R',R") l tVe^c
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e*(R'0R ,.-.,R . k , v T*(R,R')

o(R') ek(R
l,R1,«--,Rk) V ^(Rj.w.t-t'JJ + Q^R.w.t) (140)

Using H(x) + (l-H(x) ) = 1 eq. (140) becomes

M.(R.w.t) = /dR1T*(R,Rl)a*(Rl)/5R"E*(R1,R")M.(R",w,t-t')
1 t'<t J '

+ Y, /"dR'T*(R,R')a*(R1)/dR.—/dR.eMR'.R-.'-.R.) V M.(R.,w,t-t')
k=2 t'<t i=i

+ Q1(R,w,t) (141)

Since Q. = Q? this is exactly the same equation that M* satisfies,

hence if eqs. (133), (136), and (137) are satisfied,

M^R.w.t) = M*(R,w,t). (142)

This shows it is possible to play a non-analog game whose mean score

is the same as the mean score for the analog game. In general

M? f Mi, which implies the variances are different; several examples

of this will be given in Chapter IV.
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Chapter IV. Examples

In IV-A two different estimators for flux 1n a region are compared.

Using the equations of Chapter III it is shown (for an arbitrary medium)

that both estimators give the same mean but different variances. The

equations of Chapter III are then specialized in IV-B to one-speed

infinite medium problems, and an analytic solution method is provided

to solve these specialized equations exactly. The equations of IV-B

are then used in IV-C to predict the variances in four different tech-

niques for obtaining the expected number of collisions. Finally, in

IV-D the sample variances In Monte Carlo calculations are compared with

the predicted variances for each of the four techniques in IV-C.

A^ Collision and Track Length Estimators Compared

Consider the problem of obtaining the integral of the flux over a

given region T in (r,v) space. Two estimators can be used to solve

this problem; the collision estimator scores I/a every time a collusion

occurs in T and the track length estimator scores the distance (track

length) a neutron travels through r between events. It is shown below,

first on physical grounds and then using eqs. (125) and (127), that

these estimators result in the same expected value for the flux but

different variances.

Collision Estimator

The number of collisions per unit volume at energy E is equal to

the flux <t>(̂ »E) multiplied by the macroscopic cross section o(r,E), or
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dN(r,E) = o(r,E)<|>(r,E)dV

= dN(r,E)/o(r,E) (144)

Each collision in dV contributes I/a to the flux in the volume dV. Thus

an estimate of the integral (over space, energy, and time) of the flux

in region r may be obtained by scoring l/o(r,E) at each collision occur-

ring in the region in the given time interval.

Track Length Estimator

The significance of this estimator follows from the property that

flux at a given energy equals speed times particle number density.

Thus, the integral of flux over a given region at a given time equals

speed times the number of neutrons then in that region. For each

neutron, the integral of speed times the number of neutrons within the

region (i.e. one or zero) over the time interval equals the sum of one

times the track length within the region plus zero times the track length out-

side the region. Summing over alj_ neutrons shows that the expected mean

track length equals the flux integrated over the region and the time

interval.

In accordance with these conclusions, the equations of Chapter III

will be shown here to imply that the H 's, but not the PL's, of the two

estimators are equal. It is sufficient to prove the Q ' s , but not the

Q2's, are equal, for T(P,P
+), o(P+,P'}, B(P',P"), E(P',P"), and

ek(P',Pj,»'»,Pk) in eq. (108) do not depend on the scoring distributions



P(P.P'.s). An analog game will be considered here but one can use

the results of eq. (142) to generalize to a non-analog game.

Let x* be the coordinate along fl, the direction of the neutron's

flight. Let

r'-r = (x\y\z') (145)

so that the neutron's position is described in a Cartesian coordinate

system where the X1 axis lies along ft. The transmission probability

that a particle travels a distance x' through a medium (of macroscopic

total cross section a) is

T(R.x') = T(r,r',v) =

exp r-/"x'o(r+fth,v)dh] if x' > 0
l J ° J (146)

0 if x1 < 0

That is

T(R,R') =
6(v-v')6(y')6(z1)T(R,x1) if x1 >

(147)

I if x' < 0

Differentiating eq. (146)

dT(R.x') = J -o(r"+Gx\v)T(R,x') if x1 > 0 (U8)
dx' " \ 0 1f x1 < 0

.•••

Now consider a spatially convex region r of (r,v) space (it will

be shown at the end of this section that the results are valid even if

r is not spatially convex). Let the possible path length inside r extend

from x1 to x 2 and let r extend over all velocities.
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If vt is less than the distance to r, then the neutron cannot

reach r in time t and x. = xo = 0. If r is inside r then x, = 0, and
I c 1

if r + vt is inside r then x~ = vt. If the neutron's flight path does

rot intersect r then x. = x = 0 and no score is possible.

Q's for Collision Estimator

For the collision estimator each collision inside r contributes a

score I/a and a free flight for the entire time remaining contributes

zero. Thus

Pk(P.P'.s)

S(s-l/a) Rl in r

R1 not fn r

k » 0,],2°»- (149)

Pd(PDP',s) = 6(s) (150)



Let

a(x',v) = a(r+nx\v) (151)

Using equations (146)-(151) with all weights unity, eqs. (127) and

(130) become

M.t) = f 2 dx'T(R.x' ) (152)

Q2(RJ,t) = J

dR k£ k(R\R r---,R k)

(153)

Q's for Track Length Estimator

For the track length estimator each track the neutron leaves in

r contributes a score equal to the length.of the track. Thus

Pk(P,P
!.s) = Pd(P,P'9s) = p(P,P',s) for k = 0,1,2"-, where (154)

p(P.P'.s) =

<5(s) if x' <

if < x ' < x 2

) if x2 < x
1

(155)
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Using eqs. (146), (147), (148), (154), and (155) with all weights

unity eq. (127) becomes

.x

"x
c dx1T(R.xl)o(xl,v)(xl-x1)

1

(156)4 ^
Substituting eq. (148) into eq. (156) yields

-x^KR.vt) *f.x,

'xl
/•T(R.vt)

^ ) / dT. (157)
T(R,x2)

Integrating the first integral by parts,

x.
Q,(R.l.t) = / T(R,x')dx' (158)

xl

As expected, the Q. for the track length estimator equals the Q1 for

the collision estimator. Substituting eqs. (146) and (147) into eq.

(130), noting that w is zero for an analog game, and using eqs. (82) -
2

(83) to collect terms in s :
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Q2(R.l,t) = TtR.vtJfxg-x^
2 + f

vt
+ f dx'TCR.x^oCx'.vJCXg-x^2 + / dx'T(R,x'}a(x\v)

r2(xl-x1)ydR"E(R',R")M1(R",l,t-t') +fe^

£=1 £=2
(Rrl,t-f)

£=1

.-1

"tl) + 2

£=2

(159)

(L for the collision estimator and CL for the track length estimator

are not generally equal, as can be seen by comparing the case in which

0 approaches zero in the medium

Q •*• (x2-x.) for the track length estimator

for the collision estimator

(160)

(161)
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Thus for optically thin systems the M_ for the track length estimator

will be much less than the M_ for the collision estimator, resulting

in the track length estimator having a much smaller variance than

the collision estimator.

The above analysis can be applied to non-convex regions as well

as to convex regions. Any bounded region which arises in practice

can be approximated, to any accuracy desired, by a finite number of

convex parts {see Appendix D). For either estimator the Q for any

region equals the sum of the Q 's for its parts.

Since the equation for M is linear, the Mr for any region equals the

sum of the M 's for its parts. (The M^ fed into the equation for Q_

in any subregion should be the M^ for the entire region r and not the

M. for the subregion.)
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B^ One-Speed Infinite Medium Equations

Consider a one speed problem in an infinite homogeneous medium

(with macroscopic total cross section a*) where an event score depends

only on the relative coordinate, r'-r, between the next event point

and the departure point. Let

A*(R')=A* (k=0.1,2,"«) independent of R1 (162)

so that all cross sections are constant.

Suppose one attempts to solve this problem using s. non-analog

Monte Carlo Method in which

o(R' y-o independent of R1 (163)

Ak(R')=Ak (k=0,l,2,«") independent of R
1 (164)

With these choices, the fictitious Monte Carlo medium looks infinite

and homogeneous just as the real medium does. Since the Monte Carlo

medium is infinite and homogeneous M (r,n,w,t) should be independent of

r and fl. That is, any location looks the same as any other location

since there are no reference points, or

Mr(r,n,w,t)=Mr(w,t). (165)

+ for simplicity weight cutoff is not considered (I.e.
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The cross sections are all constant so the probability of an

eventless transmission from r to r* is

-alr'-rl
e

0

if r'-r is along the neutron's flight path

otherwise
(166)

Let

r'-r=(x\y\z') (167)

If x1 is taken along n, the direction of the neutron's flight, then

the transmission probability kernel becomes:

T(P,P')=e"0X' 6(fi-Kl)6(y')6(z1)6(wl-wtw) (168)

where

o(R')=a (169)

The free flight kernel becomes

D(P,P'.t)=e"axl 6(3-3')6(y')6(zI)6(w'-wtw)6(x
t-vt) (170)

Substituting eqs. (82), (84), (86), (168), (169), and (170) into

eqs. (125), (127), and (130) results in eqs. (171), (172), and (173).

» *vt . ,
M>,t) " H I dx'oe"™ kAA(ww.w w .t-t^+Q^tw.t) (171)r k=1̂ , K r t o ek r
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1 =/dxle"<3X'6(x1-vt)|dspd(xl,wwt,s)s

,wwtwa,s)Aks (172)

Q2 =/dx'6(x'-vt)/dspd(x'.wwt,s)e"ax s

" V t wry'/*

dx'oe"0 ydspk(x',ww two ,s)Ak

1 twaw£ , t - f )+k(k-l ) H J ( W W ^ ^ , t - f ) } (173)
k '

Let

y = ovt C174)

y' = cvt° = ax°

Changing variables t and t1 to y and y' results in

fy<*y'e"y '/dspk(y'.ww tw_,s)A.s

o-o J k t a

= e"ydspd(y,wwt,s)s

eo »y ,

Mjw.y) = £ kA f dy'e"y M (ww w w .y-y1 ) + Q (176)
r k=l J0 k

k=trO

• 2skM. (ww. w w ,y-y' )*k(k-l JM ĈWW w w ,y -y ' ) I (178)
i to t. i k
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From eqs. (176) and (A6)

M (*.y) = 2 * ̂ AJ[Mr(ww w w ,y)] + Q (179)

Expanding M and Q In power series

Hr(w

Qr(w

,y)

,y)

00

= wr 53
n=0
00

n=0

n

Z kA
k(

wtw
a
w
e )

k=l k l ° ek

then using eq. (A10)

(180A)

Substituting eqs. (180) and (180A) into eq. (179):

Let

£ a / o a £ (.1)"+In!an £ (-l)J £ + f b / (183)
n=0 n=0 j=n+l J* n=0

Collecting like powers

Hence as long as Q can be expanded in a power series the solution

to eq. (125) Is given by eq. (184). Thus solving for the expected errors,

in a problem where the moments are dependent only on time and weight, has

been reduced to solving for the a , given the b .
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This power series method fails, of course, when Q is not

analytic in y. Q need not be analytic. Suppose

Pk(y',wwtwo,s) = 6(s) and

then eq. (177) becomes

Q1
 = wwtH(y-yo)e"

y.

Thus Q, is Independent of space (recall y is a relative coordinate) and

angle, but not analytic in y.
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C... Theoretical Comparison of Four Estimators for Collisions

The variances of four Monte Carlo techniques for obtaining the

mean number of collisions a particle (and its secondaries) makes in

time t are compared below using ths equations of section B.

Consider an infinite homogeneous medium with the following proper-

ties:

A* = 1/3; a third of the collisions result in absorption (185)

A| = 1/3; a third of the collisions result in scattering (186)

A| = 1/3; 2 third of the collisions result in two exiting particles (187)

A* = 0 for m > 3; no collision results in more than two exiting

m — a

particles (188)

a* = macroscopic cross section (188A)

a* = 2
k=l

The following four estimators for collisions are compared:

1) analog collision estimator
2) track length estimator
3) survival biased collision estimator

4) survival biased track length estimator

All kernels, score distributions, and weight multipliers are chosen in

accordance with eqs. (133), (136), and (137) so that eq. (142) holds

when biased kernels are used, thus ensuring estimators 1) and 3) have

the sam2 M^ and estimators 2) and 4) have the same M.. Estimators 1)
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and 2) are the same as the estimators described in IV-A except that

the scores in 11 and 2) are a constant o times the scores In IV-A. Thus

the M ^ s for the estimators 1) and 2) will be a times the H ^ s for the

corresponding estimators in IV-A. The M 's in IV-A are equal; hence the

Mj's for estimators 1) and 2) are equal. Thus estimators 1), 2), 3)

and 4) can be expected to have the same means but different variances.

One possible point of confusion should be addressed before obtain-

ing the variances for the four estimators. Quantities such as T*. o*,

A*, E*. and E * which describe the medium must be Independent of biasing

schemes and choice of estimator. However, the score distributions

p*(P,P'.s) (used with unbiased kernels) do depend on the choice of

estimator. Thus the p*(P,P',s) for estimators 1) and 3) are different

from the p*(P,P',s) for estimators 2) and 4).
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Game 1 Analog Collision Estimator

Unbiased kernels are used and the particle's weight 1s scored at every

collision. For an analog game a particle's weight never changes.

AQ(R') = A*(R
() AQ = A* = 1/3 (190 A,B)

T(R,R+) = T*(R,R+) wt = 1 (191 A,B)

c(R') = o*(R') w = 1 (192 A,B)
o

E(R',R"} = E*(R\R") w = 1 A. » A* • 1/3 (193 A.B.C)
el ' '

e2(R'0RrR2) = e*(R',RrR2) w£ = 1 Ag = A* = 1/3 (194 A,B,C)

D(R,R+,t) = D*(R,R+,t) (195)

Pk(P.P',s) = p*(P,P',s) = 6(s-w') k = 0,1,2 (196)

Pd(P.P',s) = p*(P,P',s) = 6(s) (197)

Substituting relations (185)-(197) into eq. (177)

Q1 =( e^'w/A^+Agidy' = vf e*y'dy' (198)

From eq. (182) and (191)-(194)

a = £ kA.w.ww = 1 (199)
k=l k Z ° ek

Using eqs. (A6) and (A10) eq. (198) becomes

Q, = wT[l] = w 2 J - D $r (200)
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therefore from eq. (180A)

n+l

n nl n > 1

From eqs. (184) and (201)

a =n

Solving eq. (202) for the first few

(201)

(202)

Inductive Proof that a = 0 for n > 2
n —

Suppose a = 0 then from eq. (202)

(-l)V =0
rn=l

From eq. (202)

n+l

n!
an+l " (n+l): a - 0

Hence a = 0 implies a _,, = 0; but ao = 0 hence a = 0 for n > 2.
n n+1 2 n —

Thus by eq. (180)

Mjtw.y) = Ky = wovt (203)

Using eqs. (190)-(197), (203), and (A6), eq. (178) becomes

(2A]+4A2)T[y] + 2A2T[y
2]J w (204)
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Using eq. (A10)

co

=2. .
w

n=3 n!

By eq. (180A)

b , - l

K « 1/2

From eqs. (184), (199), and (207)

V

(205)

(206)

(207)

v
Using eq. (208)

. « , ] _ !
a3 3! 3
a4 - 0

Proof (by induction) that a = 0 for n > 4
' III ~~"

Suppose a = 0; then from eq. (208)
n

, ,\i"... . . 1 _ n

m=l

Writing eq. (208) for n + 1

1=]
a =an+l »: an +2J (-D'V

1

m=l 0

(208)

(208A)

(208B)



Using 3 = 0 and eq. (208A) In eq,. (208B) results in a . ~ 0. Thus

a^ = 0 implies a ~ 0 for n >, 4.

From eq, (180)

M2(w.y) = W
2(y + y2 + § y 3 } (208C)

Using eqs. (203) and (208C)

VAR = M2(w,y) - M*(w,y) - w
2(y+| yJ) (209)

Game 2 Track Length Estimator

Unbiased kernels are used and the event score generated by a particle

of unit weight is a times the distance travelled between events.

AQ(R') = AJ(R') AQ = A* (210)

T(R,R+) = T*(R5R
+) wt = 1 (211)

o(R') = o*(R') wo = 1 (212)

E(R',R") = E*(R\R") w = 1 A. = A* (213)
e] 1 1

£2(R'sRrR2) = e*(R',RrR2) W£ = 1 Ag = A* (214)

D(R,R+Ot) = D*(R,R
+,t) (215)

Pk(P.P'.s) = p*(P,P',s) = 6(s-w'ax') = 6(s-w'y') k = 0,1,2 (216)

Pd(P,P',s) = p*(PBP',s) = 6(s-w'ox') = 6(s-w'y') (216A)

From eqs. (177) and (216)

Q, = w f"ye-y +/ydy'e"y'| Htf' + A,y' + A2y'}l (217)
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Using eq. (A7) and (A8)

$
Q./w = ye"y + YCyJ • ye"y + e"y

1 j=2 J<

V* - e"y t 4 - •"V-D - £ (-I)**1 £ (219)
1 j=l J' J

and from eq. (182) with r = 1

a = E ™k»e wawt = 1 (220)
k=l K ek ° *

Q1 (and hence b ) and a are the same as in game 1. Thus following the

same steps as in game 1 yields

M^w.y) = wy (221)

From eqs. (17C) and (221)

% = w 2 y V y + w2 /* d y ' e " y / A y ' 2 + A .y | 2 + A9y'2
1 •'o * °

+ 2A1y'(y-y ') + 4A2y'(y-y ' ) + 2A2(y-y') \ (222)

Using eqs. (A6) - (A10)

w"2Q2 = y V y - V [ y 2 ] + 2yV[y] + | T[y 2 ] (223)

w"2CL = | ( e " y - l ) + | y 2 + | y (224)

-2 2 2 ^ n vn

c n=3

b. = 0 b. = 1 and for n > 3 b, = | ( - l ) n ~ (226)
I c ~~ n o n.



From eqs. (182) with r = 2

CO

£ Ve Va (227)

k=l k

Using eq. (184) a, = 0, «2 = 1, and for n >_ 3

^v-f] (228>

•rt. 1 4 „ nThus a, = rr r-, a = 0, ac = 0, and a£ = 0.6 o. 3 4 3 0

Proof (by induction) that a = 0 for n >_ 4

Suppose a = 0;then from eq. (228)

(-l)V1 a - | = 0 (229)

Again from eq. (228)

- (da
n+1 = /rrTTT-K-1) n- a^ + 2 ^ (-1) m» a_ - T I lZ3°J

Thus using eq. (229) in eq. (230) it follows that a = 0 implies

a _,_. = 0. But a. = 0;hence for n > 4, a = 0.
n+i 4 — n

Thus from eq. (180)

M2(w,y) = w
2(y2 + | y 3 ) , and (231)

VAR = M2(w,y) - M
2(w,y) » w2 | y3 (231A)
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Game 3 Survival Biased Collision Estimator

The exit kernels are biased so that absorption cannot occur. This is

known as absorption by weight reduction, or survival biasing. A part-

icle of weight w generates a score of w every time the particle col-

lides.

A0(R') = 0 no absorption, called "survival biased" (232)

T(R,R+) = T*(R,R+) wf = 1

o(R') = o*(R') wo = 1

next collision location
not biased

(233)

(234)

E(R',R") = | E * ( R ' , R " ) W = | A. = §A* = I (235)

e 2 (R \R r R 2 ) = |e*(R' ,R rR 2 ) W£ = | A? = | A * = I (236)

Pk(P,P',s) = p*(P.P',s) = 6(s-w') k = 0,1,2 (237)

Pd(P,P\s) = p*(P,Pl,s) = 6(s) (237A)

Substituting eqs. (232) - (237A) into eq. (177) yields

Q = wf dy'e"y' (238)
1 /0

Using eqs. (A6) and (A10)

h (239)
1 n=l n*

Substituting eqs. (233) - (236) into eq. (182) with r=l yields
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Qj and a are the same as they were in game 1; thus following the same

steps as in game 1 yields

M^w.y) = wy (241)

Substituting eqs. (232) - (237A) and (241) into eq. (178) yields

Q2 = w
2 ^ dy'e"y' f \ (\ + f(y-y') + 1 + f(y-y') + f(y-y')2) 1 (242)

Using eqs. (A6) and (A10)

w"2Q2 = T[l] + 2T[y] + |r[y
2] (243)

-2 1 2 1 ^ n vn

w!2 = y + 5y + J 2 - H ) Jr (244)
n=3

From eq. (180A)

1 1 (-l)n

b. = 1 b0 = -x and for n>3 h = x ^-r*- (245)

Substituting eqs. (233) - (236) into eq. (182) yields

a = | (246)

Inserting eqs. (245) - (246) into eq. (184) yields

f 1

Proof (by induction) that an = (-1}
R+1 -̂ —• for n>3

n n.'3n
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Suppose

n.3

Writing eq. (248) for n+1

V l • ?=f». f t 2J H r X + t(-D"n!a. - i } (250)

Dividing eq. (248) by -3(n+l)

Subtracting eq. (251) from eq. (250)

Substituting a from eq. (248) into eq. (252)

h ° ° {253)

Substituting eq. (249) itito eq. (253)

Eq. (249) is true for n=3; thus by eq. (254) the assertion is proven.

Thus by eq. (180)

fUw,y) = w2 f y • |y2 + £ (-l)n+1 ̂ ~ yn] (255)
2 [ b n=3 n.'3n J

VAR • M2(w,y) - M
2 (w,y) (256)



Using eqs. (247) and (255)

VAR
n=3 n.'3n

(257)
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Game 4 Survival Biased Track Length Estimator

The exit kernels are biased so that absorption cannot occur and

the event score generated by a particle of unit weight is a times the

distance travelled between events.

A (R1) = 0 no absorption, "survival biased" (258)

' » a«_. * K. a. •" 1

T(R,R ) = T*(R,R next collision location (259)

a(R')=c*(R') - ' "Ot biased

E(R',R") =|E*(R',R") W = 1 A, = | A * = } (261)
* e l J I * I *

e2(R' .R, ,R2) = |E*(R' ,R, .Rg) w£ = f A2 = |A* = j (262)

Pd(P,P'.s) = Pk(P,P',s) = p*(P,P',s) = p*(P,P',s)

= fi(s-w'ax') = 6(s-w'y') k = 0,1,2 (263)

Substituting eqs. (258) - (263) into eq. (177)

Q = wye°y •!• w f dy'e°y y' (2G4)
1 •'0

( y w = ye"y + e"y(-y-l) + 1 = l-e'y (265)

1 n=l n'

Substituting eqs. (259) - (262) Into eq. (182) for

a = 1 (267)
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Q, and a are the same as in game 1; thus following the same steps as

in game 1 yields

M^w.y) = wy (268)

Substituting eqs. (258) - (263) and (268) Into eq. (178)

2 2 -v 2 /*y -v 1 / 2 i
Q? « w y e y + vi\ d y ' e y A, IV + 2y'w ( y - y ' ) |

JQ ' ( e l '

+ w 2 f dy'e"y' A / y ' 2 + 4y'wr (y-y1) + 2w2 (y-y1)2} (269)
•'0 \ 2 2

Using eqs. (259) - (262) and (A6) - (A7)

Q2/w
2 = y2e"y - V[y2] + 2yV[y] + | T[y2] (270)

Usings Eqs. (A8.1) and (All)

2 f T
3 n=3

From eqs. (180A) and (272)

bT = 0 b2 - 1 bn = ( -1 ) " | J r , n > 3 (273)

Subst i tu t ing eqs. (259) - (262) i n to eq. (182) f o r r=2

a = § (274)
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Using eqs. (273) and (274) In eq. (184)

3 3!33

2
3

Proof (by induction) that a = (-1)

Suppose

]0

n+1 6

n:3n

n >̂  3

for n > 3

7
n!3

Writing eq. (276) for n+1

"n+1

Dividing eq. (276) by -3(n+l)

-a_

„:, + (-i)n 1 „: a -^
m ' 3 n 9

m=l

Subtracting eq. (278) from eq. (277)

a

10 \
9 )

Using eq. (276) in the right hand side of eq. (279)

Vl

Substituting eq. (276A) Into eq. (280)

(275)

(276)

(276A)

(277)

(278)

(279)

(280)

(280A)
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Now eq. (276) Us true for n=3, so by induction it is true for n ̂  3.

From eq. (180)

M2(W.y) = w
2y2 + W

2 £ ( - l ) n + 1 - ^ y n (281)
n=3 n!3

Using eqs. (268) tnd (281)

00

VAR = N (w,y) - H2(w,y) = w2 ^ (-l)n+1 - 5 - yn (282)
* ' n=3 n!3n
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Comparisons of Four Estimotors for Collisions

T

VAR

09



D̂ _ Numerical Comparison of Four Estimators for Collisions

Monte Carlo calculations were performed (using the NCNP code at

the Los Alamos Scientific Laboratory) for each of the four games in

IV-C. Forty thousand neutron histories were followed in each game.

The sample means and variances are compared below with the theoretical

means and variances predicted in IV-C.

M. = sample mean score

M» = sample mean-square score

VAR * M2 - K. = sample variance

S = (VAR/40000) = standard deviation of the sample mean

M. = mean score

M« = mean-square score

VAR = M« - M« = variance

1/2
Sm = (VAR/40000) ' = standard deviation of the mean

88



Game 1 Analog Collision Estimator

VAR

m

VAR

m

y=l

.99786

2.2039

1.2082

.00550

1.0000

2.2222

1.2222

.00553

2

1.9914

7.6530

3,6875

.00960

2.0000

7.7778

3,7778

.00972

3

3.0000

17.9861

8.9857

.01499

3.0000

18.0000

9.0000

.01500

4

3.9954

33.9382

17.9748

.02120

4.0000

33.2222

18.2222

.02134

5

4.9828

57.1933

32.3650

.02845

5.0000

57.7778

32.7778

.02863
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Game 2 Track Length Estimator

Ml

M2

VAR

if
m

Ml
M2

VAR

S

1

1

1

•S9935

.2208

.22207

.00236

.0000

.2222

.22222

.00236

2.

5.

1.

m

2.

5.

1.

•

2

0002

7783

7745

00666

0000

7778

7778

00667

3.

15.

6.

•

3.

15.

6.

•

3

0027

0690

0524

01230

0000

0000

0000

01224

4

4.0002

30.1939

14.1815

.01883

4.0000

30.2222

14.2222

.01886

5

4.9816

52.3384

27.5215

.02623

5.0000

52.7778

27.7778

.02635
m
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(game 3 Survival Biased Collision Estimator

M l

M2

VAR

?
m

M l

M2

VAR

S

.99735

1.8763

.88156

.00469

1.0000

1.8846

.88455

.00470

2

2.0001

5.7110

1.7089

.00654

2.0000

5.7126

1.7126

.00654

3

2,9976

11.6566

2.6711

.00817

3.0000

11.6891

2.6891

.00820

4

3.9895

19.8487

3.9331

.00992

4.0000

19.9610

3.9610

.00995

5

4.9831

30.4348

5.6034

.01184

5.0000

30.6335

5.6335

.01187
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Game 4 Survival Biased Track Length Estimator

Ml

M2

VAR

\ .

Ml

M2

VAR

S

1

1

1

y=i

.99928

.0328

.03420

.00092

.0000

.0341

.03415

.00092

2

1.9989

4.2499

.25409

.00252

2.0000

4.2528

.25283

.00251

3

2.9962

9.7701

.79303

.00445

3.0000

9.7927

.79272

.00445

4

3.9951

17.7210

1.7605

.00663

4.0000

17.7518

1.7518

.00662

5

4.9862

28.0534

3.1910

.00893

5.0000

28.2001

3.2001

.00894
m
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Chapter V. Conclusion

The equations for M. and M~ are useful for at least two reasons.

First, it is possible to use the equations to prove certain well known

or conjectured results » • • » (e.g. see IV-A of this work). Second,

the equations are useful in predicting errors in specific Monte Carlo

transport calculations (e.g. see IV-C). Often a proposed variance

reduction technique will reduce the number of histories required, but

increase the computation time per history. The equations for M. and

Mo allow prediction of how much a specific technique reduces the number

of histories required, to be weighed against a change in the time

required per history.

Tie moment equations derived here are linear integral equations,

and thus can be solved by several techniques. One possibility is

simply to truncate the Neumann series of eq. (C7). Another possibility

is to convert the moment equations to their integro-differential forms

as Amster and Djomehri do, and then use a P.. or an SN solution technique.
3

(Sarkar and Prasad have used a P, approximation to the integro-differ-

ential forms of the moments equations to study the exponential transform.)

This work generalizes the theory developed by Amster and Djomehri

to include:

1) Error prediction in Monte Carlo transport calculations of time-

dependent multiplying systems, even when supercritical.
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2) Score distributions which depend on the preceding event point

as well as the current event point. This allows prediction of

errors in calculations using a track length estimator.

3) Russian Roulette and splitting events. These are standard

variance reducing techniques.
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APPENDIX A - Useful Results

Result #1

Consider

6 *yi(P,s-s*,t)srds (Al)

Let § = s-s*. that is s = t+s* (A2)

6 =yi(P,s.t)(§+s*)rd§ (A3)

Using the binomial theorem

^ ( f,Df (A4)

Using eq. (81)

"" Mn(P-t> =/dsi|»(P,s-s*,t)s
r (A5)
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Result #2

Consider the operators

T[R(y)] -/ V y R(y-y')dy' (A6)

V[R(y)] = f e"y' R(y')dy' (A7)

•'o
From integral tables

V[ym] = m\e'
y £ £ for m>0 (A8)
j=m+l J*

V[ym] = n! ( l»e'y £ £ ) for m>0 (AB.l)

Let )«=y-y' in eq. (A6)

T[R(y)] = e^^RCxJdx (A9)
5

From integral tables

T[ym] = (-i)m+1
m: J3 ( -D J v- f o r m>° <A1°)

j=m+l J#

STEy"1] = ( - i r ' m ! (e"y- ^ (-1)J £- ) for m>0 (AH)
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Result #3

Consider the sum

S = V . . . V x ] k (l-x) ] k (A12)
5,-0 b^t)

This sum can be rewritten

1 b. 1-b. 1 b. 1-b.
S= ^ x 1 (l-x) 1... £ x k (l-x) \ (A13)

but

xn(l-x)1"n = 1, (A14)
n=0

thus

S = l. (A15)

Consider the sum

1 1 b,+""+b, k-b, b,

k
X>(j)«b j (A16)
J J

Rearranging the sum over the b's as in eq. (A13) and using eq. (A14)

3 (l-x) J «K , (A17)
b.,1
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or

x 2 * F(J) (A18)
0

Consider the sum

1 1 b.+« ••+!>. k-b. b.

Rearranging the sum over the b's as in eq. (A13) and using eq. (A14)

__, 1 b 1-b.

• 2L F(J) Y. x J (1-x) J 6 . S 6(£) (A20)
D j j l I

^ "X > . X (,-,, ^ . 0,

{A21)
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Appendix B

Simple Example of an Unreliable Sample Variance

Consider particles trying to penetrate a thick shield. If the

shield is any good, very few of the particles will penetrate the shield.

Thus, it is possible to simulate a huge number of particles without any

of the particles penetrating the shield. If none of the simulated

particles penetrate the shield, the sample mean and the sample variance

will both be zero. However, even for the best shields the probability

of penetration is some number e>0. The sample mean is thus in error,

at the same time the samp.e variance is indicating zero error.
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APPENDIX C

CONVERGENCE OF THE NEUMANN SERIES

FOR EQUATION (125)

Let x' be the coordinate along fl, the direction of the neutron's

flight. Let

r'-r » (x'.y'.z1)

so that the neutron's position is described in a Cartesian coordinate

system whose origin is at r and whose X1 axis lies along ft. Let

x' = vt'

r' - r + fix' = r+vt'

T(R.R') - 5 (v -v ' )6 (y ' )6 (2 l )T(R ,r I , v ' j

a(R') = a ( r ' , v ( )

( l l

Thus eq. (125) may be rewritten:

M (R.w.t) =/ vdt'T(R,r+vt')o(r+vt',v)
r •'o

OO

x 2*,J i'"J k V r + v ' v» T * " ' k \ (wwtWawe ' w c o '

k wwtwoW£ / \

x V Hr(Rr«wtwow .t-f) • _^L ( l - H ( « V A - „ ) )
j=i K e

x V M ( R . , w o , t - t ' ) J + Q (R.w.t) (Cl)
TTI r j e j r
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Define the operator

x(f)G(R,w,t-t') = vT(R,r+vt')o(r+vt',v)

X * - # , - ] J'K'K' ! ' ' K' \ t a e l ,
WW.W W

t o e
x X G(R.,ww w w , t - t ' )

J l o t . .

„ G(R.,w , t - t ' ) l IC2)
3=1 J 6 >

Thus

M^CR.w.t) = / dt,X(t )M (R,w,t-t.) + Q (R.w.t) (C3)
r ^ i i r i r

or replacing t by t- t1 and t . by t"

J.-V
M (R,w8t-t

D) = / dt"x(t")M (R,w,t-t'-t") + Q (R.w.t-t1) (C4)

5̂ow use eqs. (C3)-(C4) to generate a Neumann series.

Mr(R,w5t) =J dt1x(t1) | j ldtzx(t2)Mp(R,w,t-t1-t2)

* Q ( R . w . t - t j U Q (R.w.t) (C5)
B II M B

Let T = tj+t2+"*+t and substitute eq. (C4) into eq. (C5) for the

next term in the series

M (R,w,t) = Q,,(R,w,t) +/" dt,x(t,)Qr(R,w,t-T1)r « jn I I r i

.t-T,
J dt1x(t1)J+
'0

(C6)
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Repetitively substituting for Mr(R,w,t-Tn) yields:

A ^t-T,
= Qr(R,w,t) + 2 ^ J ^ } J

xf q dt xvt )QjR,w,t-T ), the Neumann series. (C7)

Physically T is the time elapsed between a particle's birth

("zero event") and n event, t is the elapsed time between a

particle's n-1 and n events, and finally, t-T is the history

time remaining after a particle's n event.

In the following theorem, unless otherwise specified, eqs. (C8)-

(C15) hold for all possible arguments of the bounded function. All

maxima are taken over the full range of all variables. For instance,

max(A,B,C) = max(A(X), B(Y), C(Z) )

all X.Y.Z

where X, Y, Z may be n-tuples of vectors.

Theorem C. The Neumann series (C7) converges if there exists a

uniform bound, B>1, such that:

1) The particle starting weight is bounded.

w<B (C8)

2) All weight multipliers are bounded.

w <B, wa<B, and w£ <B (C9)

3) The exit weight from a Russian Roulette game is bounded.

we<B and w c o(R
l)<w e(R

1,R r"-,R k) (CIO)
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4) The speed is bounded.

v<B (Cll)

5) The macroscopic total cross section is bounded, thus

T(R,r+vt')o{r+vt',v)<B (C12)

6) The number of particles departing an event is bounded.

k<B (C13)

7) The source function Q (R,w ,t ) is bounded
r oo

Qr(R,wo,to)<B for 0 £ wQ < max(wwtwawe ,we,w) (C14)
ft

0 < t < t— o —

Before proving this theorem, let us discuss conditions 1) - 7).

Conditions 1), 2), and the first part of 3) ensure that the particle

weights are always finite. The second part of 3) simply says that

in Russian Roulette, the exit weight is larger than the cutoff. The

speed of light bounds any particle velocity, so condition 4) holds.

Condition 5) is satisfied for any real problems. (For delta function

cross sections condition 5) could be altered to

0 TfR.r+vt'Mr+vt'.vJvdt'^eBv,

Ve

so that the expected number of next collisions in any time Interval is

bounded.) Condition 6) should always hold in practice, although it is

somewhat stronger than the condition actually required:

k=l *

103



That is, the mean number of particles departing an event is bounded.

The source term Q (R,w,t) must be bounded because it is the first

term of the Neumann series. (The limitation on w in eq. (C14) is

required since we desire to bound both Q (R.ww wQwe , t-t') and

Qr(R.we,t-t') in order to say x(t')Qr(Rflw,t-t') is bounded.) Qr will

be bounded if conditions 1) - 6) are met, M is bounded for £<r, and

the moments of the event score are bounded, i.e.,

dsp(P.P',s)s*<S , for t<r.
max

For example, see eqs. (127) and (130).

Thus we proceed in the following manner. Q. is bounded and thus

by theorem C, M. is bounded. But M. bounded implies CL is bounded,

and thus by theorem C, Mo is bounded. But M. and M, bounded imply Q,

is bounded, and so forth.

Proof of Theorem C

Consider a bounded function

0 < w < max(ww.w w ,w )~ o ~~ t o e. e

G(R,w ,t ) < 6 for 0 < t < t (CIS)
. o o m — o "~

Note that H(ww.w w -w ) <. 1 and that, since by assumption 3)
U £ k c

w < w ,
co - e

ww. w w
t q e k
we
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Using these facts and eq. (C2)

x(t')G(Rtw,t-t') < vT(R,r+vt')o(r+vt',v)

x l]jdR1---/dRkek(r+vt
I,v,Rr---,Rk)2kGm, (C16)

where the 2k comes from the two sums on j of eq. (C2). By eqs. (82)a

(C?l), and (C12)

x(t')G(R,w,t-t«) < 2BZGm ] T kA.(rfvt',v).
m k=l k

At this point we insist

£ ] A (r+vt',v) < Bj( where B1 > 1,
k=l

which will certainly be true if k is bounded, in view of eq. (83).

Thus

x(t')GlR,w,t-t') < 2B2B1Gm - C (C17)

Now let's look at the q term of the Neumann series of eq. (C7).

Nq =fo
 dtlx(tl}jr ^ X l t j j - j f dtJjltq)Qr(R.w,t-Tq)

Since the functions Q and 1 both meet conditions (C15) then by (C17)
r

Q /** Ct'1^ ^"Vi. q̂
< CM# dt. / dt9*"/ dt; « CHT
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Recall that T = t .+"«+t and letn l n

V'-V'-VrV then

dy f 1dy9f
 2dy3—f

 q " V
•'O "•'0 J 0 q

t f 9
'O •'O " • '0

•

-2

q

Hence the q term of the Neumann series

N < Cqtq/q!

Thus the Neumann series is less than the series for exp (Ct) and

hence Neumann series (C7) converges. This completes the proof of

theorem C.
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APPENDIX D

Approximation of a Bounded n-Dimensional Region

by Convex Subregions

Theorem Any bounded n-dimensional set possessing a volume as defined

by the Peano-Jordan content, can be approximated arbitrarily closely

(in volume) by a finite number of closed convex, n-dimensional

intervals which are separate.

This theorem can be demonstrated using well-known results from the

theory of volume and measure in mathematics. Here the term closed

interval is defined as the Cartesian product of n one-dimensional

closed intervals — namely, a closed interval I is defined as the set

of points P = (x.,x-,'",x ) in n-space satisfying the inequalities

a . £ x . £ b . 1 < 1 < n.

By separate it is meant that <iny two of the closed intervals have only

boundary points in common.

The theorem follows immediately from the development of the
g

theory o* content. A bounded set has content if the inner content is

equal to the outer content, and each of these latter two quantities is

approximated to any desired degree of accuracy by the volume of a finite

sum of separate intervals. (The volume of an n-dimensional interval I
__n

is given by the productTT(b.-a.), as expected.) Since an interval
i=l 1 1
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is convex, the result follows. Clearly the approximation is not unique

in fact, there are infinitely many ways to make the approximation.

The above result states that whenever a bounded set in n-space has

a volume as defined by the content, then the approximation by convex

intervals exists. This definition of volume, although superseded by

the definition of measure (Lebesque) for purely mathematical reasons

in the modern theory of integration, is entirely adequate for all prac-

tical applications. For the latter, any region occurring in a real

problem will have the same volume measured by the two definitions.

content and measure. It is true that unbounded regions can arise where

the above result does not hold, but usually in practice unbounded

regions either can be approximated by a finite set of convex sub-

regions or else the unbounded region can bi* replaced, without any

appreciable loss of accuracy, by a bounded region.
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