
A Field Lysimeter Facility for Evaluating the Performance of Commercial Solidified Low-Level Waste

M. B. Walter

M. J. Graham

G. W. Gee

November 1984

**Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830**

**Pacific Northwest Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC06-76RLO 1830

Printed in the United States of America
Available from
National Technical Information Service
United States Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161

NTIS Price Codes
Microfiche A01

Printed Copy Pages	Price Codes
001-025	A02
026-050	A03
051-075	A04
076-100	A05
101-125	A06
126-150	A07
151-175	A08
176-200	A09
201-225	A010
226-250	A011
251-275	A012
276-300	A013

A FIELD LYSIMETER FACILITY FOR EVALUATING
THE PERFORMANCE OF COMMERCIAL SOLIDIFIED
LOW-LEVEL WASTE

M. B. Walter
M. J. Graham
G. W. Gee

November 1984

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RL0 183D

Pacific Northwest Laboratory
Richland, Washington 99352

ACKNOWLEDGMENTS

This research was performed by Pacific Northwest Laboratory and was sponsored through the U.S. Department of Energy (DOE) under the National Low-Level Waste Management Program Office.

Management support to this program was provided within Pacific Northwest Laboratory by J. A. Stottlemyre, M. R. Kreiter, and L. T. Lakey. The authors wish to thank the following people who helped on this program at various times over the past two years: M. E. Dodson, S. R. Peterson, and A. P. Toste for their work on the geochemistry aspects of the program; P. E. Moore for overseeing the construction activities; the construction crew of J. A. Jones Construction Company for a job well done; T. L. Jones for his initial efforts as technical manager of the program; R. R. Kirkham for providing continuity and support throughout the lifetime of the program; P. R. Heller for providing analyses of the soils; W. A. Jordan of Rockwell Hanford Operations who helped in the design of the instrumentation and calibration of the moisture blocks; H. H. Hooper for his help with the instrumentation; R. L. Brodzinski for characterizing the waste forms; and Brookhaven National Laboratory (especially P. Columbo) for obtaining the waste forms and characterizing the waste streams.

SUMMARY

Shallow land burial is being used as a disposal method for commercial low-level wastes at waste disposal sites in Beatty, Nevada, the Hanford site near Richland, Washington, and Barnwell, South Carolina. The current trend in low-level waste management is to solidify liquid wastes from commercial power reactors with a solidifying agent (e.g., cement) and then ship the wastes to one of these waste disposal sites. This trend is encouraged by transportation regulations as well as the waste stabilization requirements contained in 10 CFR-Part 61 (NRC 1982).

Analyzing the potential migration of radionuclides from sites containing these wastes requires knowledge of contaminant concentrations in the soil solution surrounding the waste. This soil solution concentration is generally referred to as the source term and is determined by such factors as the concentration of radionuclides in the solid waste, the rate of leachate formation, the concentration of dissolved species in the leachate, any solubility reactions occurring when the leachate contacts the soil, and the rate of water flow in the soil surrounding the waste.

A field lysimeter facility established at the Hanford site is being used to determine typical source terms in arid climates for commercial low-level wastes solidified with cement, Dow polymer^(a) (vinyl ester-styrene), and bitumen. The field lysimeter facility consists of 10, 3-m-deep by 1.8-m-dia closed-bottom lysimeters situated around a 4-m-deep by 4-m-dia central instrument caisson. Commercial cement and Dow polymer^(a) waste samples were removed from 210-L drums and placed in 8 of the lysimeters. Two bitumen samples are planned to be emplaced in the facility's remaining 2 lysimeters during 1984. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste. Suction candles (ceramic cups) placed around the waste forms will be used to periodically

(a) Product of the Dow Chemical Co., Midland, MI 48640.

collect soil-water samples for chemical analysis. Meteorological data, soil moisture content, and soil temperature are automatically monitored at the facility.

Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle-size distribution, and distributions and concentrations of radionuclides in the waste forms.

CONTENTS

ACKNOWLEDGMENTS.....	iii
SUMMARY.....	v
INTRODUCTION.....	1
SITE SELECTION AND DESCRIPTION.....	3
FIELD LYSIMETER FACILITY DESIGN AND CONSTRUCTION.....	6
FACILITY DESIGN.....	6
EXCAVATION.....	6
CONSTRUCTION.....	6
INSTRUMENTATION AND WASTE EMPLACEMENT.....	13
MICROMETEOROLOGICAL INSTRUMENTATION.....	13
SOIL PHYSICS INSTRUMENTATION.....	13
WASTE ACQUISITION AND EMPLACEMENT.....	15
DATA COLLECTION AND REDUCTION.....	19
BASELINE DATA.....	20
REFERENCES.....	24
APPENDIX - ENGINEERING DRAWINGS FOR FIELD LYSIMETER FACILITY.....	A.1

FIGURES

1	Location of Field Lysimeter Facility Within the Hanford Site	4
2	General Topography of the Area Surrounding the Field Lysimeter Facility.....	5
3	Conceptual Drawing of the Field Lysimeter Facility for the Special Waste Form Lysimeters-Arid Program.....	7
4	Central Instrument Caisson on Concrete Pad in Center of Excavation.....	9
5	Drainline from a Lysimeter to the Instrument Caisson.....	10
6	Lysimeters Embedded in Cement Pad.....	11
7	Covered Field Lysimeter Facility Awaiting Waste Installation.....	12
8	Installation of Suction Candles.....	15
9	Construction Site Showing Sleeves in Empty Lysimeters.....	17
10	Cutting Barrel in Protective Building.....	17
11	Waste Form Removed from Barrel.....	18
12	Numbering Scheme for Field Lysimeters.....	22

TABLES

1	Waste Forms Obtained for the Special Waste Form Lysimeters-Arid Program.....	16
2	Water Retention Characteristics of the Field Lysimeter Facility Soils.....	21
3	Hydraulic Conductivities of the Field Lysimeter Facility Soils.....	21
4	Particle-Size Analysis of the Field Lysimeter Facility Soils.....	21
5	Radionuclide Concentrations in the Waste Forms.....	23

INTRODUCTION

Low-level radioactive wastes generated by commercial nuclear power reactors have been disposed of in licensed shallow land burial (SLB) sites since 1962 (O'Connell and Holcomb 1974). Three active low-level waste disposal sites currently exist (Holcomb 1980). Two sites are in the arid West (Hanford site near Richland, Washington; and Beatty, Nevada), and one site is in the humid Southeast (Barnwell, South Carolina). The current trend in low-level waste management is to solidify liquid wastes from commercial power reactors with a solidifying agent and then ship the wastes to one of these waste disposal sites. The solidifying agents in use or being evaluated for use are cement, bitumen, and Dow polymer^(a) (vinyl ester-styrene). This trend is encouraged by transportation regulations as well as the waste stabilization requirements contained in 10 CFR-Part 61 (NRC 1982). To predict the performance of solidified commercial wastes in SLB sites, information is required on the contaminant concentrations in the soil solution surrounding the waste. This soil solution concentration is generally referred to as the source term and is determined by the concentration of radionuclides in the solid waste, the rate of leachate formation, the concentration of dissolved chemical species in the leachate, solubility reactions occurring when the leachate contacts the soil, and the rate of water flow in the soil surrounding the waste.

The Department of Energy (DOE) has initiated research programs to quantify the performance of solidified commercial low-level wastes for humid SLB sites (Special Waste Form Lysimeters-Humid Program at the Savannah River site near Aiken, South Carolina) and for arid SLB sites (Special Waste Form Lysimeters-Arid Program at the Hanford site). The cornerstone of these research programs is the construction of lysimeter facilities, which are being used to conduct field-scale waste-form leaching tests. The use of lysimeters permits direct measurements of the migration of radioactivity from these waste forms. Measurement of the factors affecting this migration is also possible. These data will provide a technical basis for predicting how these waste forms will perform in actual SLB sites. The purpose of this document is to describe the

(a) Product of the Dow Chemical Co., Midland, MI 48640.

field lysimeter facility constructed at the Hanford site by Pacific Northwest Laboratory (PNL) as part of DOE's low-level waste management research efforts. In addition to the field monitoring, which is the central purpose of the program, a series of laboratory testing and geochemical modeling exercises is being conducted. The goals of the laboratory and modeling work are to identify which mechanisms are controlling the release of radioactivity from the waste forms.

SITE SELECTION AND DESCRIPTION

Selection of a site for the field lysimeter facility was based on several criteria: 1) a controlled government reservation where radionuclides could be used in situ within the facility; 2) a controlled area with limited public access; 3) a site where geologic media was uncontaminated (i.e., at or below background radiation levels with respect to isotopes used); 4) a nominally flat topography such that boundary effects would be minimized; 5) a site where the water table was at a sufficient depth to allow the facility to remain under partially saturated conditions at all times; 6) a site where the geologic media was analogous to that media actually used for SLB of radioactive materials and could be made isotropic and homogeneous; and 7) a site where a well was available.

The site selected in accordance with the above criteria is located adjacent to an existing buried waste test facility site in southeastern Washington State (Figure 1), and to lysimeters used in another low-level waste research program (Phillips et al. 1979). The location of this facility is also ~30 km from the commercial low-level waste burial site, operated by U.S. Ecology Company, on the DOE Hanford site (see Figure 1). Classified as a shrub-steppe grassland (Daubenmire 1970), the field lysimeter site is located on a river terrace plain within the Hanford site, ~3.5 km from the Columbia River. Figure 2 shows the general topography of the area.

The geologic material consists of glaciofluvial sediments deposited during the Pleistocene Epoch. Eolian sands mantle the ground surface at the site. The undisturbed sediments consist predominately of horizontally deposited units of coarse to medium sands with lenses of sands containing gravels and cobbles.

The water table at the test facility occurs at an approximate depth of 13 m. Several saturated zone monitoring wells are located within 100 m of the site. Two of these wells have permanently installed submersible pumps, thereby providing a permanent, accessible water supply. Having water available is important if a decision is made to irrigate selected lysimeters.

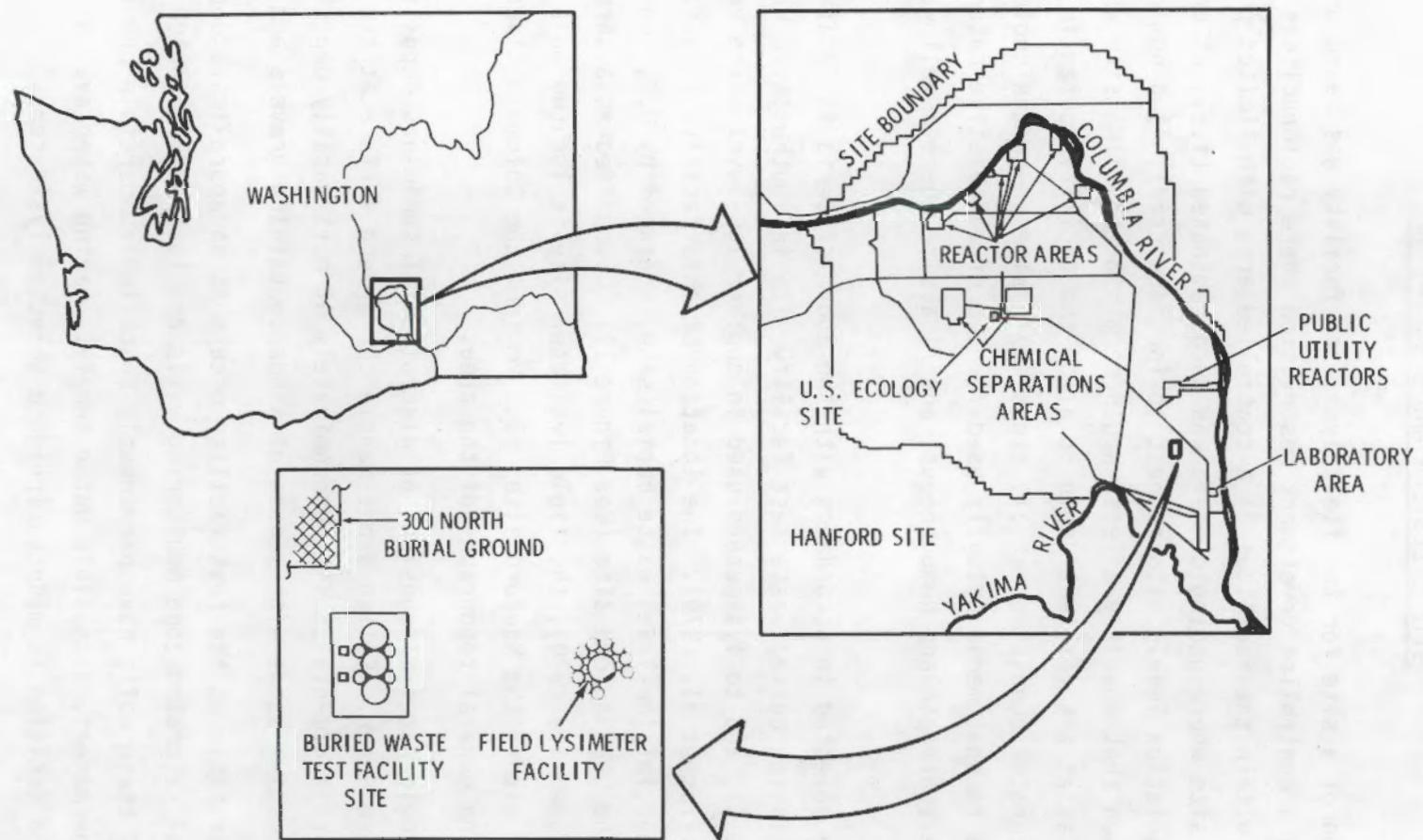



FIGURE 1. Location of Field Lysimeter Facility Within the Hanford Site

84G183-1

FIGURE 2. General Topography of the Area Surrounding the Field Lysimeter Facility

FIELD LYSIMETER FACILITY DESIGN AND CONSTRUCTION

After the field lysimeter site was selected, an environmental report was submitted to DOE. This report documented the preoperational, operational, and postoperational consequences resulting from the proposed facility. On approval of the report, facility design and construction proceeded.

FACILITY DESIGN

The field lysimeter facility is designed to accommodate 10 waste forms. Ten 3-m-deep by 1.8-m-dia closed-bottom lysimeters are arranged around a 4-m-deep by 4-m-dia central instrument caisson (Figure 3). The central caisson houses all data and sample collection equipment while providing access to sampling ports in each lysimeter for selective sampling of the soil and waste forms. Leachate from each closed-bottom lysimeter drains to the central caisson where it can be collected, measured, and sampled. Engineering drawings of the facility are included in the Appendix.


EXCAVATION

Two excavations were performed to prepare the field lysimeter site for installation of 1 instrument caisson and 10 lysimeter caissons. One dig removed $\sim 585 \text{ m}^3$ of soil and rock forming a hole $\sim 3.5 \text{ m}$ deep, 20 m in diameter at the soil surface, and 10 m in diameter at the bottom. A second dig removed an additional 21 m^3 of material for placement of the instrument caisson in the center of the lysimeter cluster. This second hole brought the depth at the center to $\sim 4 \text{ m}$ with a bottom hole diameter of $\sim 6 \text{ m}$.

The soil material removed from the excavation was stockpiled adjacent to the construction site and used as backfill in and around the caissons.

CONSTRUCTION

Construction of the facility proceeded in the following steps: 1) pouring the concrete structural pads, 2) emplacing the caissons, 3) connecting the

FIGURE 3. Conceptual Drawing of the Field Lysimeter Facility for the Special Waste Form Lysimeters-Arid Program

sampling ports between the instrument caisson and lysimeter caissons, 4) backfilling around the caissons, 5) sealing the inside surface of the lysimeters, and 6) backfilling inside the lysimeter caissons.

The 4-m-dia caisson in the center of the cluster was placed on a concrete pad at ~4 m below the soil surface in the center of the excavation (Figure 4). Drainlines were run under the steel reinforcement for the lysimeter pad (Figure 5), which was then poured at ~3.2 m below ground level, and the individual lysimeters were set into the concrete (Figure 6 and Appendix A.2).

The caissons for the lysimeters were formed from galvanized, corrugated steel. Seven 5-cm-dia sampling ports connect each lysimeter to the instrument caisson. Six of these ports extend 15 cm to the lysimeter caisson and one extends 91 cm to the middle of the caisson to facilitate near-source-term destructive sampling (Appendix A.5). Epoxy paint was applied to all inside surfaces of the caissons to further seal the lysimeters.

Soil from the excavation was used to backfill around the outside of the facility. At the end of 1983, the lysimeters had been covered as a safety precaution and to prevent intruding rainfall, and were ready to receive waste (Figure 7).

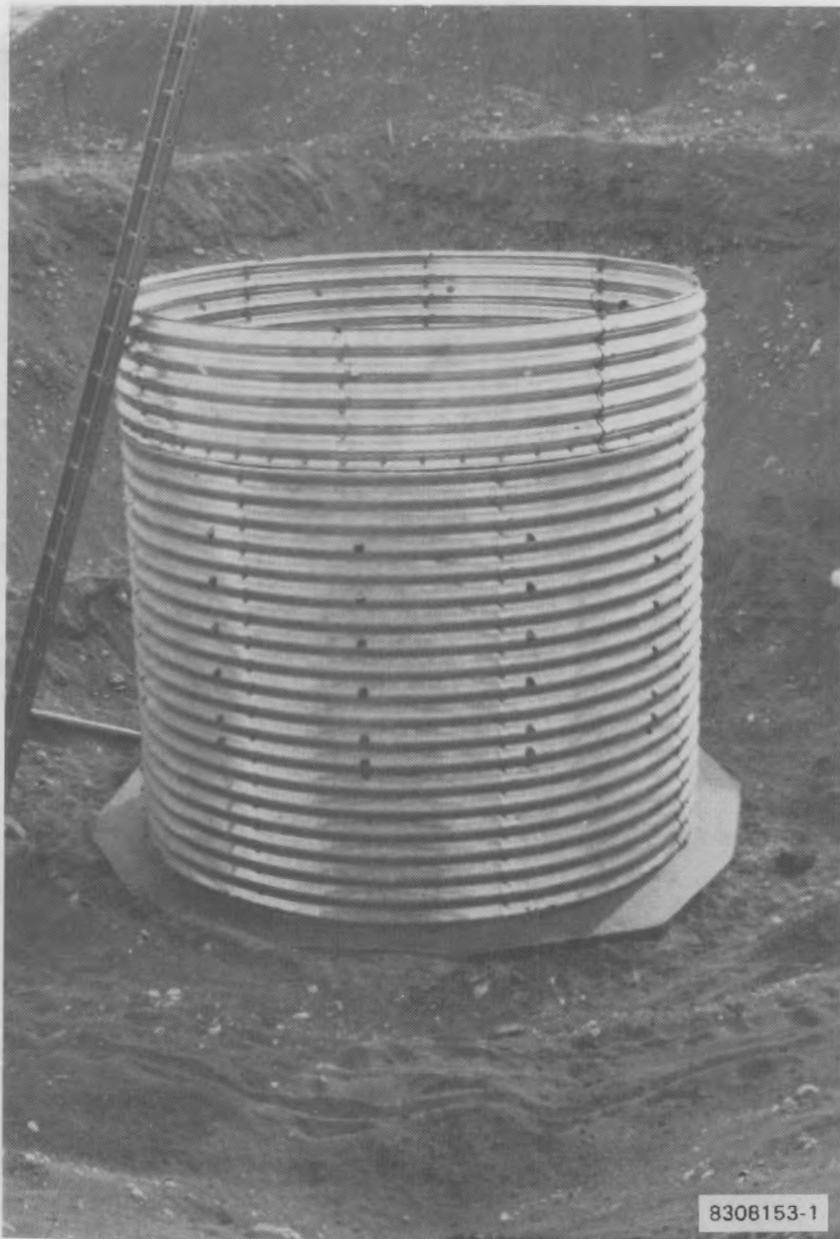


FIGURE 4. Central Instrument Caisson on Concrete Pad in Center of Excavation

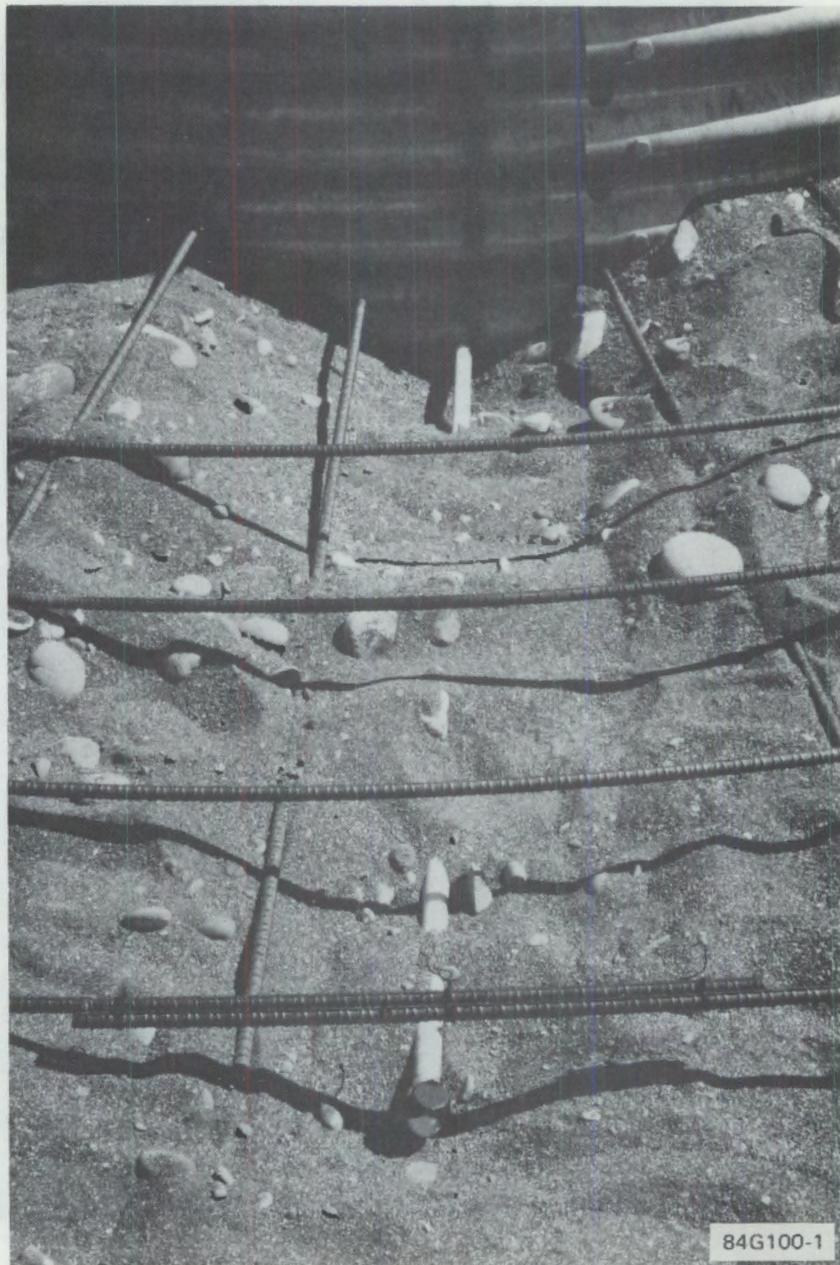


FIGURE 5. Drainline from a Lysimeter to the Instrument Caisson

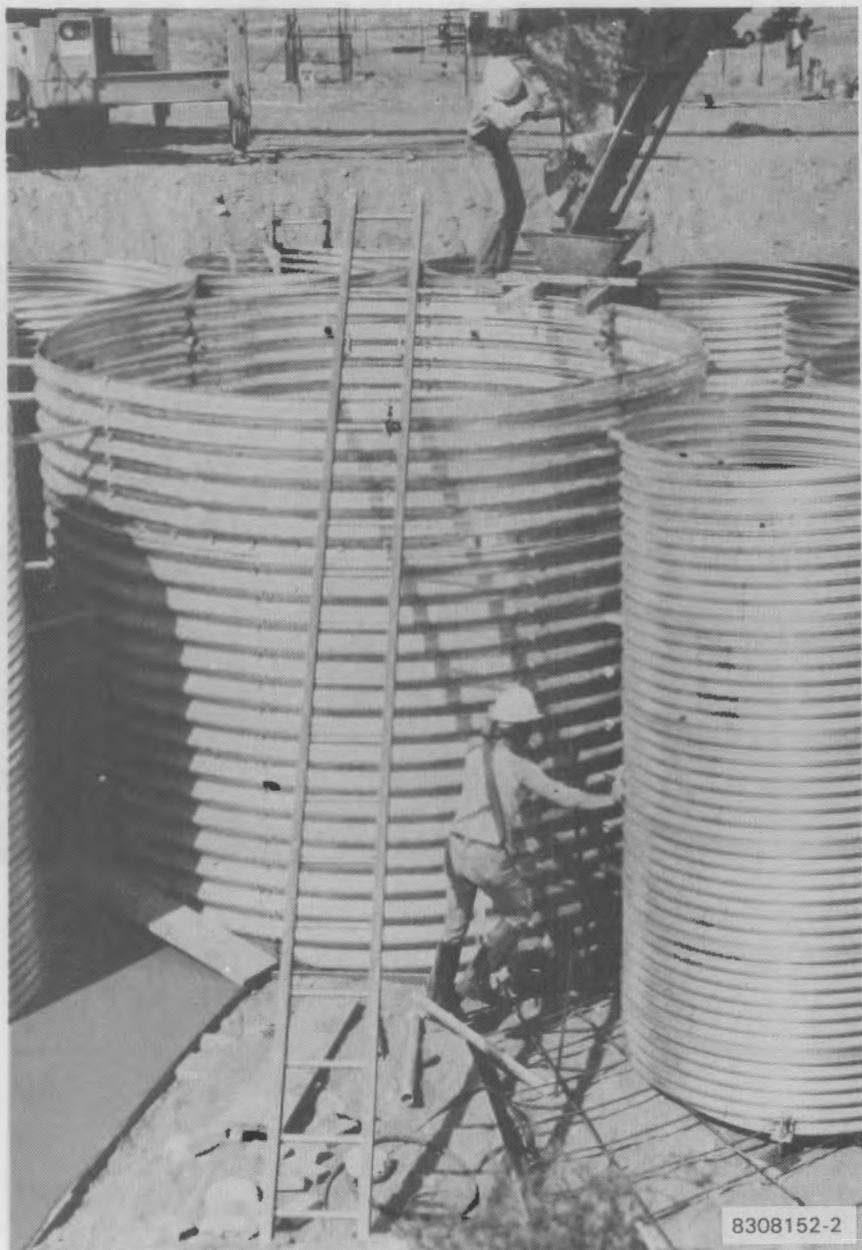


FIGURE 6. Lysimeters Embedded in Cement Pad

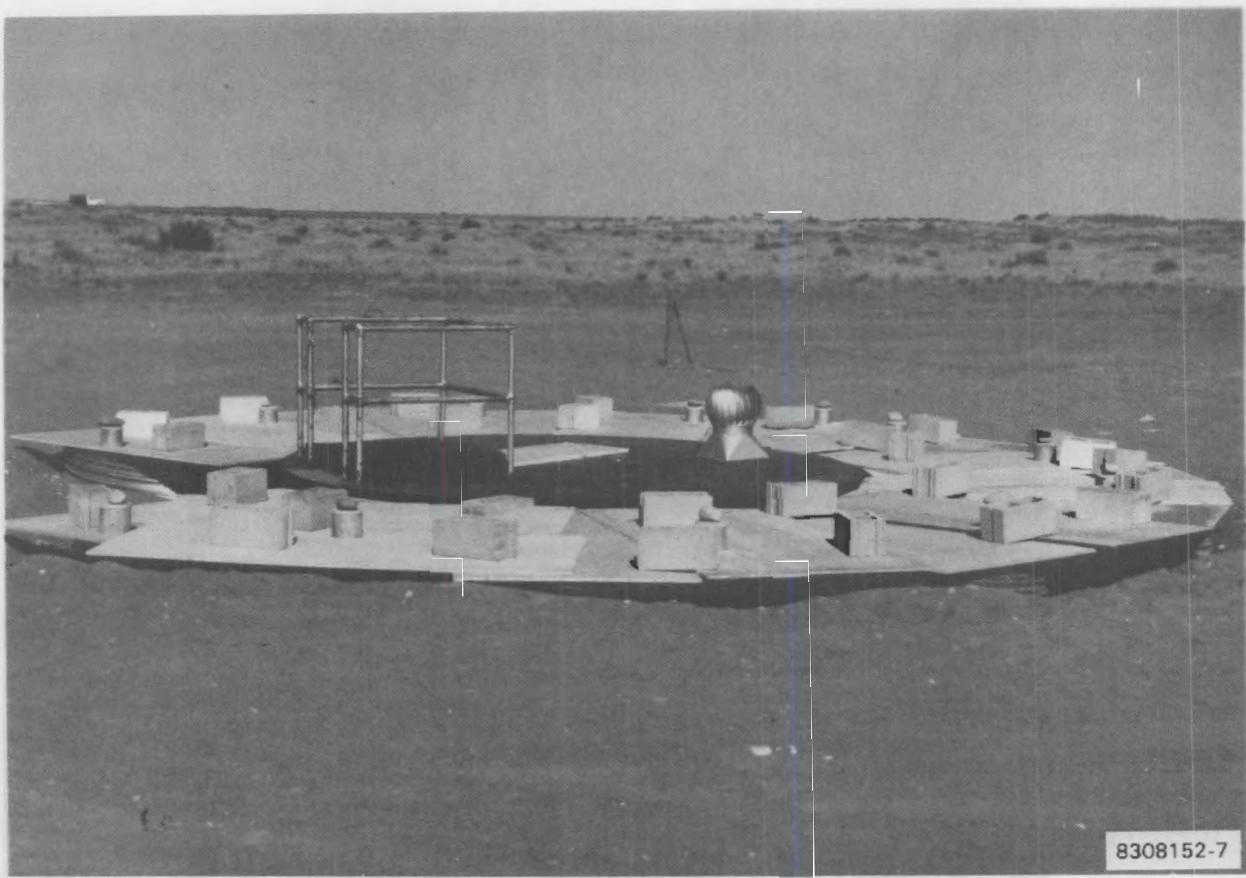


FIGURE 7. Covered Field Lysimeter Facility Awaiting Waste Installation

INSTRUMENTATION AND WASTE EMPLACEMENT

Facility construction was completed at the end of 1983. Waste emplacement and instrumentation activities were initiated in early 1984.

MICROMETEOROLOGICAL INSTRUMENTATION

Micrometeorological instruments were installed at the field lysimeter site to collect information used in the assessment of mass transport and energy balance within the lysimeters. Short-wave solar radiation at the site is measured with a pyranometer that, when installed vertically upward, monitors total incoming radiation between wavelengths of 0.2 to 4.5 μm . Heat transfer above the ground surface is measured continuously using thermistors and thermocouples to a height of 2 m. Wind velocity and direction are measured with a cup anemometer and wind vane placed near the lysimeter site. Relative humidity data are collected from two separate humidity sensors. One is a capacitive sensor that functions independently of temperature; the other is a combined relative humidity and temperature probe that compensates for temperature before providing the output. In addition, weekly wet and dry bulb temperatures are measured manually at the site using a standard Assmann psychrometer. These psychrometer readings are used to check the calibration of the two continuously recording humidity sensors. Ambient precipitation on the site, the largest factor in mass transfer of water through the lysimeter, is measured with a tipping bucket rain gauge. The gauge is propane heated for snow collection and has a resolution of 0.025 cm of rainfall.

SOIL PHYSICS INSTRUMENTATION

Thermocouples and moisture blocks were placed in the lysimeters and used to monitor thermal and moisture gradients, respectively. Thermocouples transmit temperature from locations inside the caissons, providing both vertical and horizontal gradients. Several thermocouples were strategically placed near the waste forms to monitor the temperature effects produced by radioactive samples buried in the lysimeters. Fiberglass moisture blocks were installed near the waste forms and at levels of interest in the caissons. When

moisture levels rise adjacent to a fiberglass block, more moisture is absorbed by the block, causing an increase in the electrical conductivity between two electrodes. The electrical conductivity in mmhos is recorded by the CR5 data logger.^(a) The correlation between this conductivity and actual moisture conditions was determined in the lab prior to installation of the blocks. Each block was evaluated in standard laboratory tests, and a calibration curve was produced. Computer programs were generated for converting the block readings directly into moisture content, which can be displayed graphically.

In addition to thermocouples and moisture blocks, suction candles^(b) were installed during the backfilling operation (Figure 8). The suction candles used were 30-cm-long porous, ceramic tubes placed near the waste form to facilitate sampling of the leachate. Two polyethylene tubes were attached to one end of each closed candle, and the loose ends were directed through a sampling port into the instrument caisson. The samples may then be analyzed as representative leachate at various locations near the waste form.

The backfilling operation and instrument installation were conducted in concert. Sorted gravel (0.6 cm to 5 cm) was placed at the bottom of each lysimeter to a depth of 15 cm. Sifted sand was poured into each caisson to the level of an instrument placement or 30 cm, whichever was less, and the soils tamped to a bulk density of ~ 1.6 g/cm³. Instrument locations were measured to the surface and the height adjusted to correspond with the design specifications. This process was repeated until the level that corresponded with the bottom of the waste form was reached. At this point an ~ 27 -m-long by ~ 0.6 -m-dia steel sleeve was suspended in the center of the caisson. The last suction candles were angled under the bottom of the sleeve, and sand and more instruments were placed outside the sleeve to a level just above the estimated height of the waste form.

(a) CR5 data logger is a product of Campbell Science, Logan, UT 84321.

(b) Suction candles are a product of Soil Moisture Equipment Company, Santa Barbara, CA 93117.

FIGURE 8. Installation of Suction Candles

WASTE ACQUISITION AND EMPLACEMENT

Brookhaven National Laboratory acquired actual commercial solidified low-level waste samples (forms) for this program. The waste forms consisted of boric acid waste from a pressurized water reactor and evaporator-concentrate and ion-exchange-resin wastes from a boiling water reactor (Table 1). Duplicates of each waste form were received. The samples were shipped in 210-L steel barrels from the utilities and off-loaded and stored near the field lysimeter facility.

A protective building was placed over a lysimeter opening (Figure 9). Then a barrel was lowered by crane into the building where the top of the barrel was opened with a cutting torch or unbolted, exposing a hook embedded in the waste form (Figure 10). While suspended from this hook, the barrel was cut away. In the case of the Dow polymer and masonry cement waste forms, the use

TABLE 1. Waste Forms Obtained for the Special Waste Form
Lysimeters-Arid Program

Waste Stream	Reactor	Solidifying Agent
Boric acid concentrate waste	PWR	Masonry cement
Evaporator-concentrate (regenerative) waste	BWR	Portland Type III cement
Evaporator-concentrate (regenerative) waste and ion-exchange-resin waste	BWR	Portland Type III cement
Evaporator-concentrate (regenerative) waste and ion-exchange-resin waste	BWR	Dow polymer (Vinyl ester-styrene)

Note: PWR = pressurized water reactor.
BWR = boiling water reactor.

of a liner made it possible to slip off the barrel without cutting it (Figure 11). Samples were taken of the loose material on top of the form (when present). The waste form was lowered through the sleeve and uncoupled. Total depth to the waste form was measured, and the sleeve was pulled up through the roof. The exposed waste form was covered with sand, and the building was hoisted to the next installation site. Several more instruments were installed above the waste, and backfilling continued until the backfill was flush with the top of the caisson.

FIGURE 9. Construction Site Showing Sleeves in Empty Lysimeters

FIGURE 10. Cutting Barrel in Protective Building

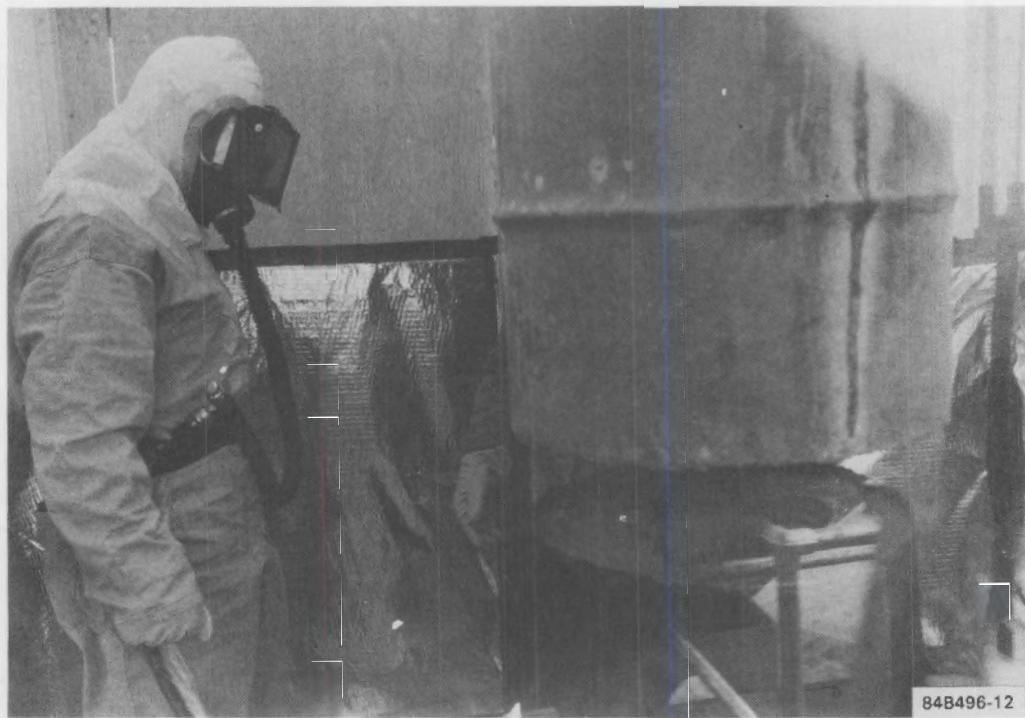


FIGURE 11. Waste Form Removed from Barrel

DATA COLLECTION AND REDUCTION

Monitoring will be done in two ways: continuous remote data collecting and data collecting by a field technician during onsite visits. Two data loggers operating on preset cycles record information provided by micro-meteorological and soil physics instruments. These data are stored on magnetic tape and in data logger memory for access by telephone link. Offsite automated computer equipment contacts the data logger on assigned intervals to collect recent data and insert it into permanent storage.

Moisture profile data for each lysimeter are collected by a field technician at regular intervals using a downwell neutron probe. A neutron probe is lowered into monitoring wells connected to the caisson walls, and neutron return counts are recorded for various depths. Neutrons have approximately the same mass as hydrogen; therefore they will be slowed by collisions with hydrogens in the soils water molecules. The neutron probe is commonly used to monitor soil moisture (Gardner 1965). In our particular application, the downwell access tube is much larger (15.2 cm) than the instrument probe (4.7 cm), and the hole is positioned next to the edge of the lysimeter. Special saturation procedures are needed to properly adjust the geometry and account for absolute water content changes. Relative moisture content changes can be accounted for by the changes in the count using techniques described by Gardner (1965) and Greacen (1981). We are currently working on special calibration procedures that will allow construction of moisture profiles to represent the level and distribution of moisture in each lysimeter.

BASELINE DATA

Baseline data collected on the field lysimeter facility include characterization of the soils in the lysimeters and the waste forms. The soils data include water-retention characteristics, hydraulic conductivities, and particle-size distributions for samples collected from each of the lysimeters (Tables 2, 3, and 4). Samples L1 through L10 represent composite samples taken from each of the 10 lysimeters. (See Figure 12 for the lysimeter numbering scheme.) Standard laboratory procedures were used in the analyses of the soils (Klute 1965; Richards 1965; ASTM 1972).

The waste forms were characterized with waste package assay instrumentation before the steel drums were removed. The instrumentation consists of a high resolution germanium diode gamma-ray spectrometer incorporated in a segmented gamma scanner and a passive neutron interrogation system (Brodzinski 1983). This instrumentation is designed to measure the neutrons emitted spontaneously from a waste package. By measuring the neutrons emitted from calibration standards made with matrix materials similar to the waste forms, the concentrations of radionuclides in the waste forms were calculated (Table 5). These radionuclides were found to be uniformly distributed in the waste forms.

TABLE 2. Water Retention Characteristics of the Field Lysimeter Facility Soils
(All samples packed to 1.6 g/m³ density; water content, cm³/cm³)

Sample	Saturation	Hanging Water Column					Pressure Plate		
		5 cm	10 cm	20 cm	50 cm	100 cm	100 cm	1020 cm	1530 cm
L1	0.465	0.463	0.457	0.249	0.073	0.071	0.10	0.048	0.043
L2	0.462	0.461	0.435	0.197	0.083	0.069	0.11	0.048	0.044
L3	0.389	0.386	0.368	0.144	0.088	0.072	0.09	0.049	0.045
L4	0.395	0.394	0.375	0.158	0.086	0.071	0.10	0.050	0.046
L5	0.389	0.374	0.363	0.153	0.082	0.069	0.11	0.050	0.046
L6	0.347	0.347	0.335	0.119	0.075	0.071	0.12	0.055	0.047
L7	0.397	0.389	0.382	0.145	0.089	0.077	0.08	0.045	0.044
L8	0.400	0.392	0.388	0.144	0.080	0.076	0.09	0.050	0.046
L9	0.409	0.405	0.397	0.209	0.097	0.081	0.09	0.051	0.049
L10	0.382	0.380	0.370	0.162	0.094	0.082	0.09	0.049	0.049

TABLE 3. Hydraulic Conductivities of the Field Lysimeter Facility Soils

Sample	Hydraulic Conductivity (cm/s)
L1	2.19E-03
L2	2.80E-03
L3	2.50E-03
L4	2.02E-03
L5	2.22E-03
L6	2.66E-03
L7	2.92E-03
L8	2.15E-03
L9	2.35E-03
L10	2.43E-03

TABLE 4. Particle-Size Analysis of the Field Lysimeter Facility Soils

Sample	Soil Type (%)		
	Sand	Silt	Clay
L1	90	9	1
L2	91	7	2
L3	91	7	2
L4	92	6	2
L5	93	5	2
L6	92	6	2
L7	93	5	2
L8	93	5	2
L9	95	3	2
L10	96	3	1

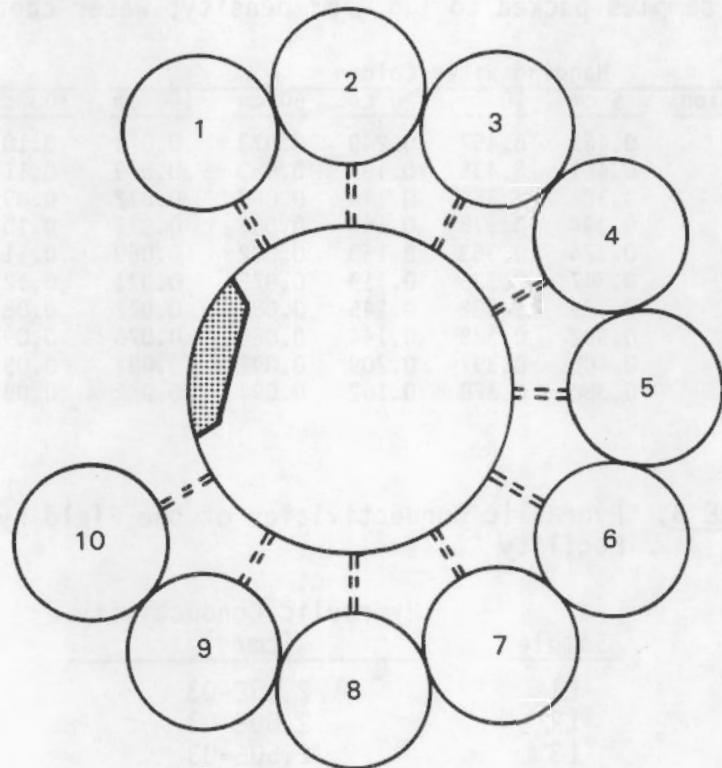


FIGURE 12. Numbering Scheme for Field Lysimeters

TABLE 5. Radionuclide Concentrations in the Waste Forms (mCi)

Lysimeter Number	Waste Type	Solidification Agent	^{54}Mn	^{60}Co	^{134}Cs	^{137}Cs
1	Boric acid concentrate	Masonry cement	0.0920	0.491 ± 0.055	6.0 ± 1.5	11.3
2	Evaporator concentrate	Portland Type III cement	4.2 ± 1.3	89.0	<10.0	14.6 ± 5.4
3	Evaporator concentrate and ion exchange resin	Portland Type III cement	7.0 ± 1.6	134.0	<7.4	37.8 ± 6.7
4	Evaporator concentrate and ion exchange resin	Vinyl ester-styrene	3.15 ± 0.95	111.3 ± 0.6	<12.0	<11.0
7	Boric acid concentrate	Masonry cement	0.100	0.545 ± 0.075	7.1 ± 1.8	13.2
8	Evaporator concentrate	Portland Type III cement	5.3 ± 1.3	90.4	1.53 ± 0.74	16.5 ± 5.4
9	Evaporator concentrate and ion exchange resin	Portland Type III cement	7.00 ± 0.63	154.0 ± 12.0	2.34 ± 0.27	19.4 ± 1.7
10	Evaporator concentrate and ion exchange resin	Vinyl ester-styrene	4.4 ± 1.0	131.2 ± 0.5	<6.3	<20.0

REFERENCES

ASTM. 1972. "Particle Size Analysis of Soil." Annual Book of ASTM Standards, Part 18, ASTM D422, American Standard Testing Materials, Philadelphia, Pennsylvania.

Brodzinski, R. L. 1983. Instrumentation and Assay Procedures for Verification of the Radionuclide Content of Low-Level Waste Packages. PNL-4848, Pacific Northwest Laboratory, Richland, Washington.

Daubenmire, R. 1970. "A Canopy-Coverage Method of Vegetation Analysis." Northwest Sci. 33:43-64.

Gardner, W. H. 1965. "Water Content-Neutron Thermalization." In Methods of Soil Analysis, Part 1, ASA Monograph No. 9, ed. C. A. Black. American Society of Agronomy, Inc., Madison, Wisconsin.

Graecen, E. L. 1981. Soil Water Assessment by the Neutron Method. CSIRO. East Melborne, Australia.

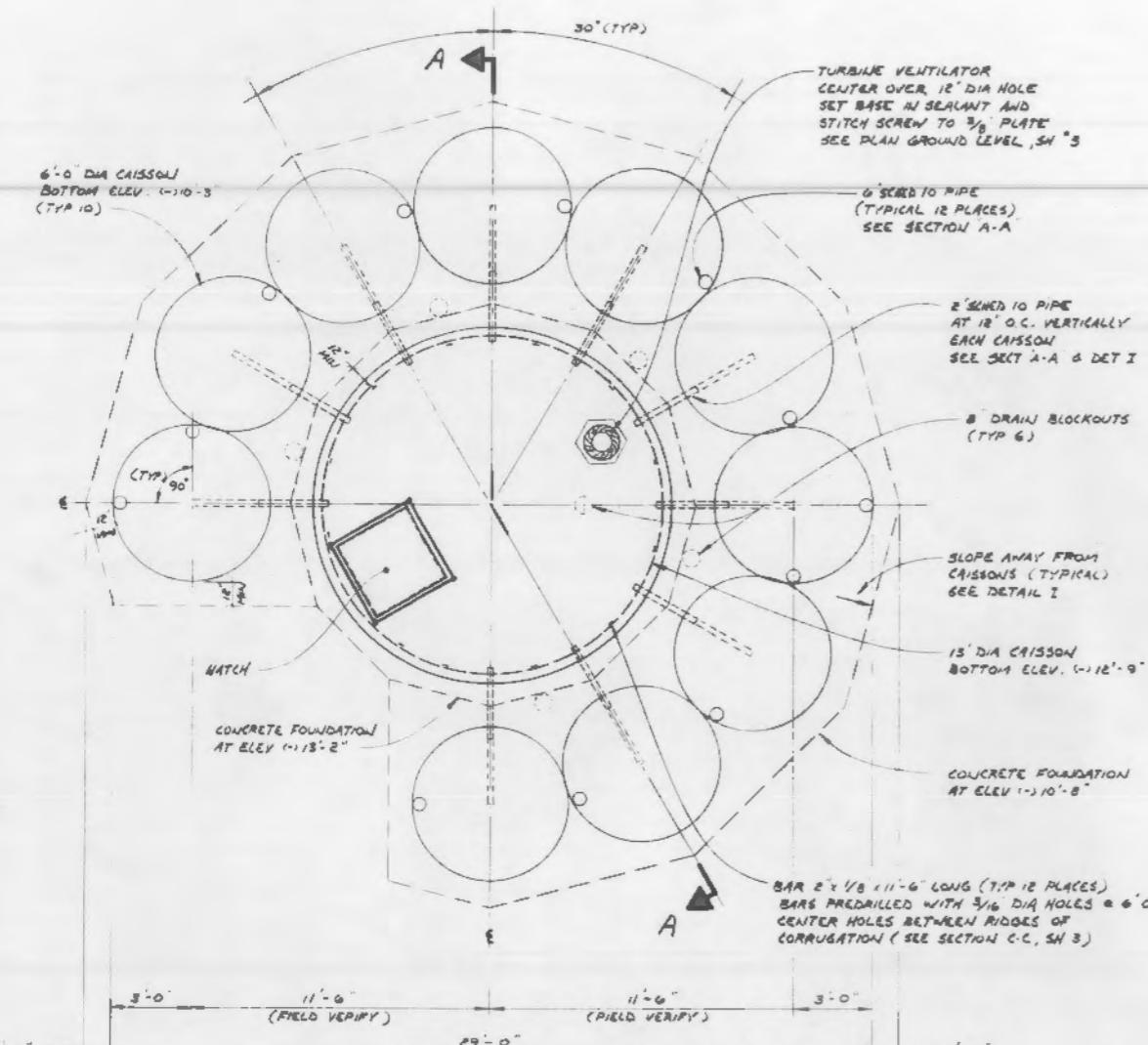
Holcomb, W. F. 1980. "Inventory (1962-1978) and Projections (to 2000) of Shallow Land Burial of Radioactive Wastes at Commercial Sites: An Update." Nucl. Safety. 21(3):380-388.

Klute, A. 1965. "Laboratory Measurement of Hydraulic Conductivity of Saturated Soil." In Methods of Soil Analysis, Part 1, ASA Monograph No. 9, pp. 210-222, ed. C. A. Black. American Society of Agronomy, Inc., Madison, Wisconsin.

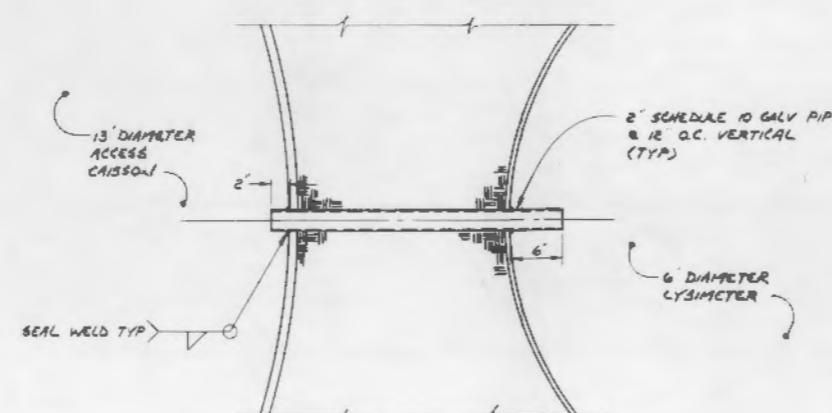
NRC. 1982. Licensing Requirements for Land Disposal of Radioactive Waste, Title 10, Code of Federal Regulations-Energy, Part 61, U.S. Nuclear Regulatory Commission, Washington, D.C.

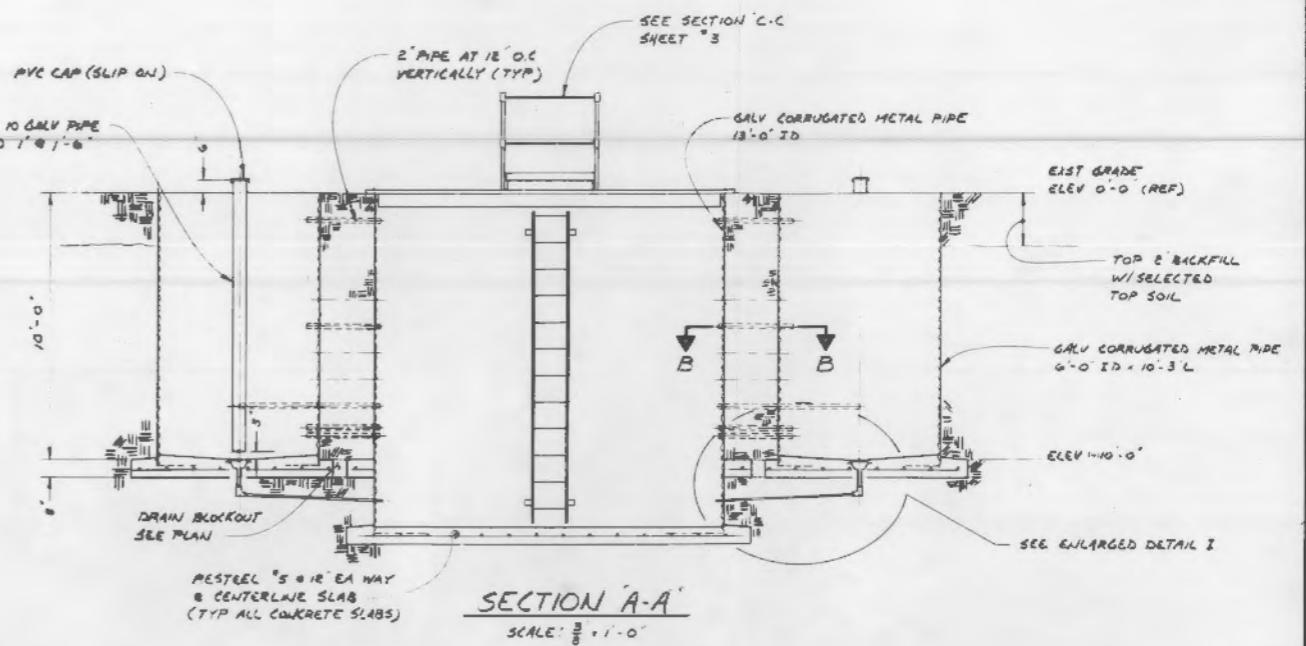
O'Connell, M. F., and W. F. Holcomb. 1974. "A Summary of Low-Level Radioactive Wastes Buried at Commercial Sites Between 1962-1973, with Projections to the Year 2000," Radiat. Data Rep. 15(12):759-767.

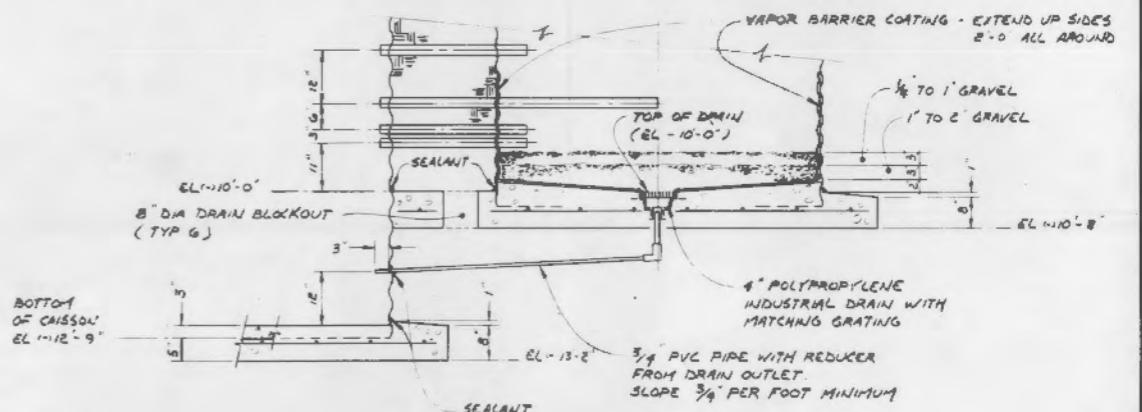
Phillips, S. J. et al. 1979. A Field Test Facility for Monitoring Water/Radionuclide Transport through Partially Saturated Geologic Media: Design Construction, and Preliminary Description. PNL-3226, Pacific Northwest Laboratory, Richland, Washington.

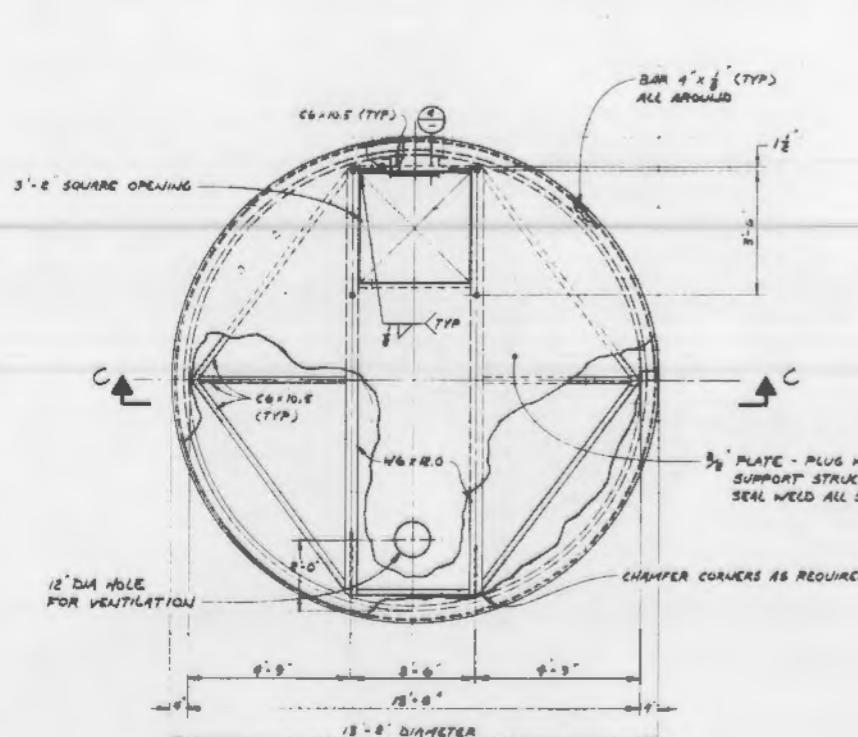

Richards, L. A. 1965. "Physical Conditions of Water in Soil." In Methods of Soil Analysis, Part 1, ASA Monograph No. 9, pp. 128-137, ed. C. A. Black. American Society of Agronomy, Inc., Madison, Wisconsin.

APPENDIX

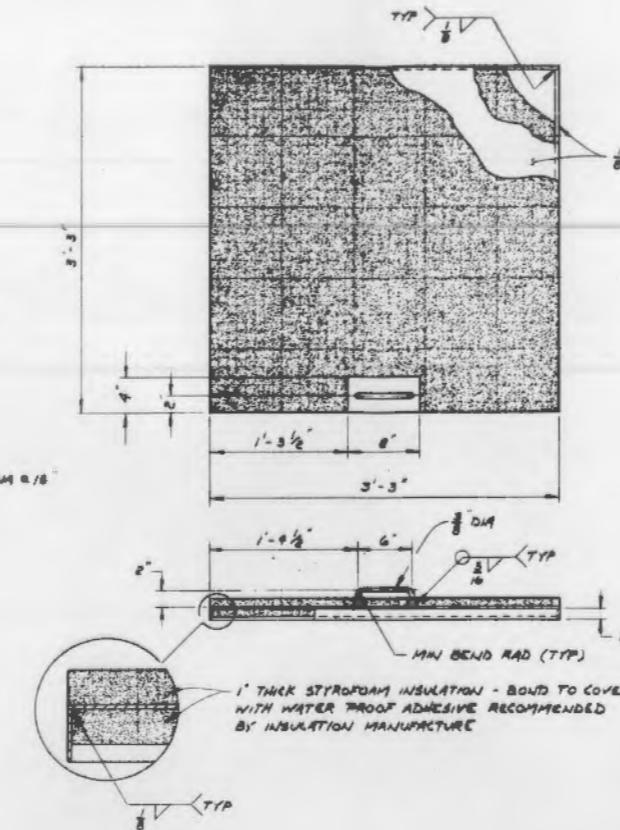

ENGINEERING DRAWINGS FOR FIELD LYSIMETER FACILITY

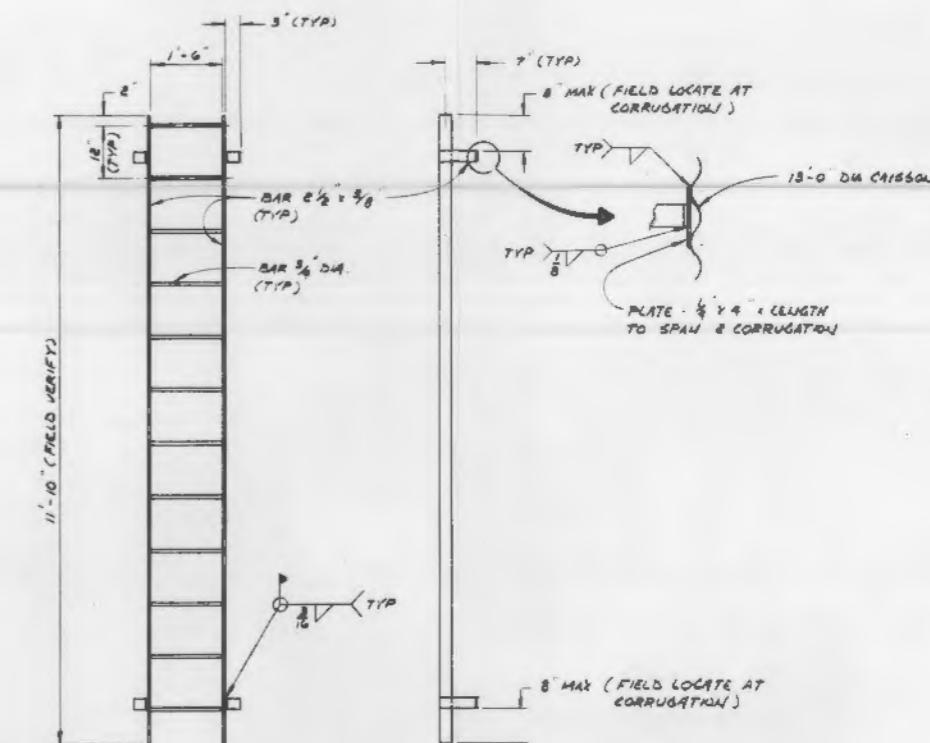



PLAN

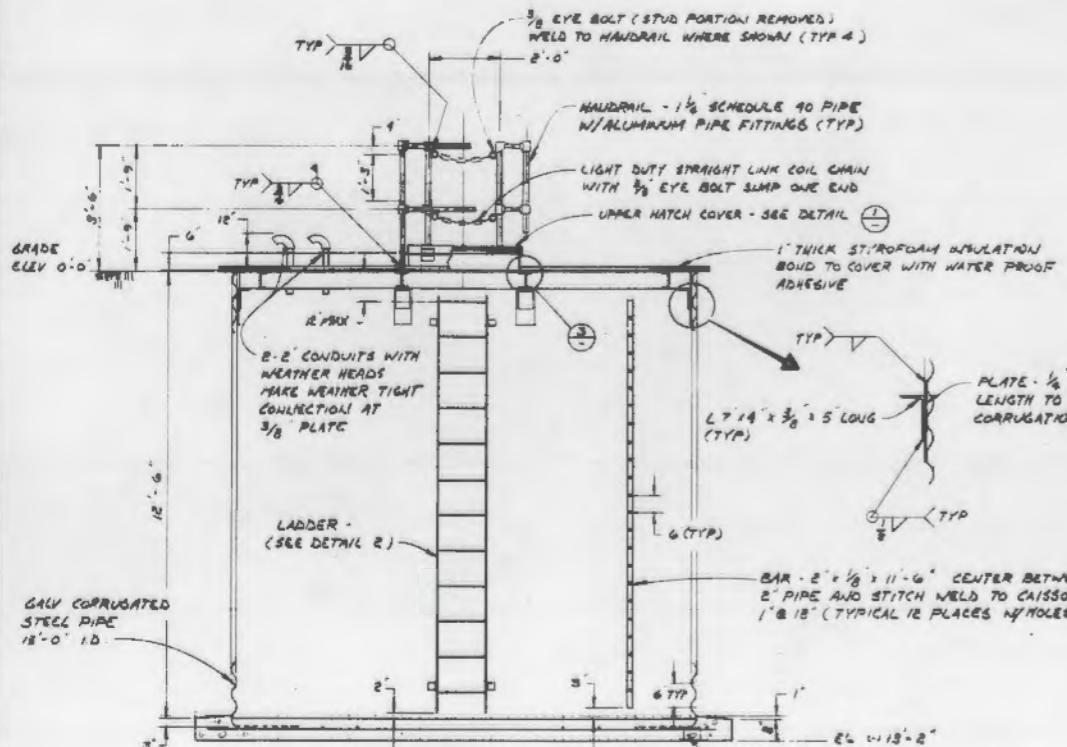

SECTION B-B

DETAIL I

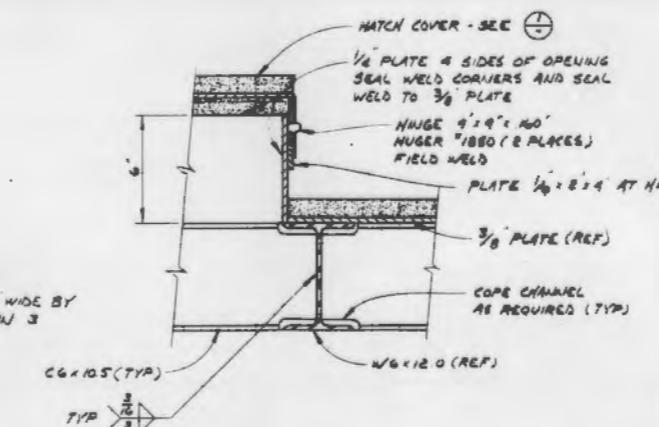



PLAN - GROUND LEVEL

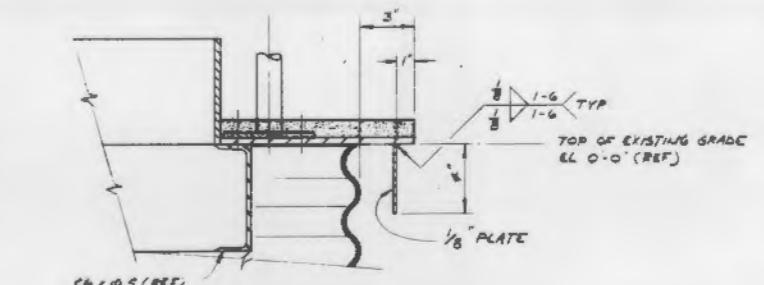
SCALE: 1:100


① UPPER HATCH COVER

SCALE: $1\frac{1}{2} = 1'$


② LADDER
SCALE: 1:12

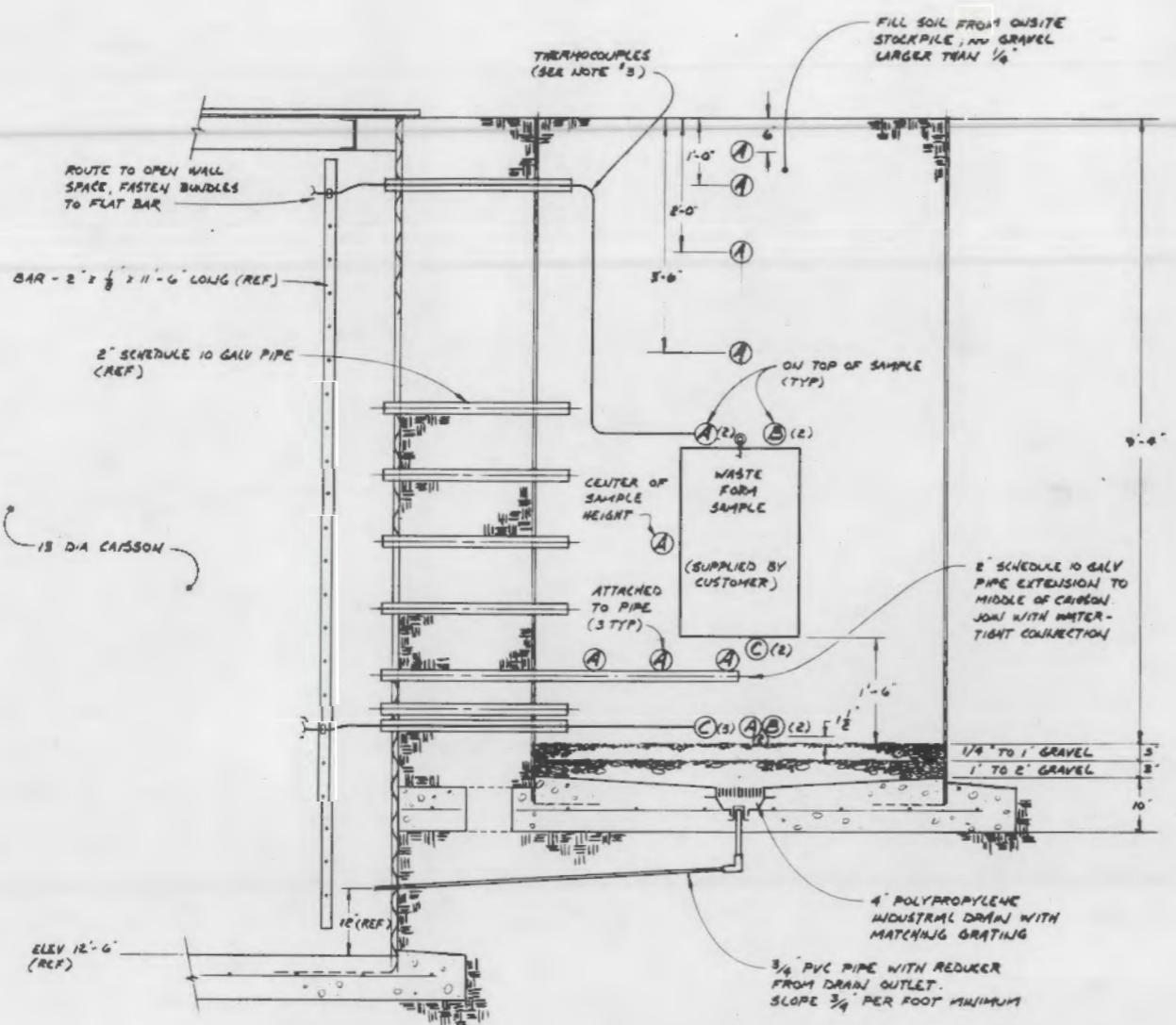
SCALE: $\frac{1}{2}$ in. = 1'


SECTION C-C

SCALE: 1:10"

③ HATCH DETAIL

SCALE: 3" = 1


④ HATCH DETAIL

DATE: 3-2-19

ELEVATION (SECTION)

SCALE: 1" = 1'-0"

NOTE: 1. INSTRUMENT WITH NUMERICAL QUANTITY
EXAMPLE **A** (2) = 2 THERMOCOUPLES
2. ROUTE LEADS FROM **A** & **B** THROUGH
2" PIPE @ ELEV 6.118'
ROUTE TUBE FROM **C** THROUGH
2" PIPE @ ELEV 6.197'
3. THERMOCOUPLES ABOVE THE 39' LEVEL IN 2 CAISSENS ONLY
4. INSTRUMENTATION - FURNISHED BY B&W
5. ALL EXTERIOR BACKFILL BY FIXED
PRICE CONTRACTOR

KEY

- ④ THERMOCOUPLE
- ⑤ MOISTURE POTENTIAL SAMPLER
- ⑥ SUCTION CANDLE (WITH PLASTIC TUBES)

DISTRIBUTION

No. of
Copies

OFFSITE

D. E. Large, National Program
Manager ORO Radioactive Waste
Management Program
Oak Ridge Operations Branch
U.S. Department of Energy
P.O. Box E
Oak Ridge, TN 37830

L. J. Mezga, Program Manager
Low-Level Waste Management
Program
Oak Ridge National Laboratory
P.O. Box X
Oak Ridge, TN 37830

M. J. Barainca, Program Manager
Low-Level Waste Management
Program
Idaho Operations Office
U.S. Department of Energy
550 Second Street
Idaho Falls, ID 83401

R. Boland
Waste Management Project
Office
Nevada Operations Office
U.S. Department of Energy
P.O. Box 14100
Las Vegas, NV 89114

T. C. Chee
R&D and Byproducts Division
DP-123 (GTN)
U.S. Department of Energy
Washington, DC 20545

B. W. Church, Director
Health Physics Division
Nevada Operations Office
U.S. Department of Energy
P.O. Box 14100
Las Vegas, NV 89114

No. of
Copies

J. A. Coleman, Director
Division of Storage and
Treatment Projects
NE-25 (GTN)
U.S. Department of Energy
Washington, DC 20545

C. P. Gertz, Chief
Radioactive Waste Technology
Branch
Idaho Operations Office
U.S. Department of Energy
550 Second Street
Idaho Falls, ID 83401

F. Gorup, Program Manager
Nuclear Waste Management Group
Chicago Operations Office
U.S. Department of Energy
9800 South Cass Avenue
Argonne, IL 60439

J. J. Jicha, Director
R&D and Byproducts Division
DP-123 (GTN)
U.S. Department of Energy
Washington, DC 20545

E. A. Jordan
Low-Level Waste Program
Manager
Division of Storage and
Treatment Projects
NE-25 (GTN)
U.S. Department of Energy
Washington, DC 20545

L. Lanni, Chief
Waste Management Nuclear
Magnetic Fusion Division
San Francisco Operations Office
U.S. Department of Energy
1333 Broadway
Oakland, CA 94612

<u>No. of Copies</u>	<u>No. of Copies</u>
B. Lawless Process and Weapons Division Savannah River Operations Office U.S. Department of Energy P.O. Box A Aiken, SC 29801	H. Saucier Process and Weapons Division Savannah River Operations Office U.S. Department of Energy P.O. Box A Aiken, SC 29801
J. M. McGough, Jr., Director Waste Management and Transportation Development Division Albuquerque Operations Office U.S. Department of Energy P.O. Box 5400 Albuquerque, NM 87115	J. B. Whitsett, Chief Production and Waste Management Branch Idaho Operations Office U.S. Department of Energy 550 Second Street Idaho Falls, ID 83401
D. M. Lund Waste Management and Transportation Development Division Albuquerque Operations Office U.S. Department of Energy P.O. Box 5400 Albuquerque, NM 87115	27 DOE Technical Information Center
S. Mann, Senior Program Manager Technical Management Division Chicago Operations Office U.S. Department of Energy 980D South Cass Avenue Argonne, IL 60439	S. M. Brown, P.E. Anderson-Nichols 2666 E. Bayshore Road Palo Alto, CA 94303
C. L. Mathews, Chief Fission Reactor Branch Oak Ridge Operations Branch U.S. Department of Energy P.O. Box E Oak Ridge, TN 37830	C. S. Abrams, Manager of Radiological Engineering Argonne National Laboratory - West P.O. Box 2528 Idaho Falls, ID 83401
D. B. Leclaire, Director Office of Defense Waste and Byproducts Management DP-12 (GTN) U.S. Department of Energy Washington, DC 20545	J. Howard Kittel, Manager Office of Waste Management Programs Argonne National Laboratory 970D S. Cass Avenue, Bldg. 205 Argonne, IL 60439
	Technical Library Argonne National Laboratory Argonne, IL 60439
	Beverly Rawles Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

<u>No. of Copies</u>	<u>No. of Copies</u>
3 Peter Colombo, Group Leader Nuclear Waste Research Brookhaven National Laboratory Building 701 Upton, NY 11973	Jack G. Couch Fermi National Accelerator Laboratory P.O. Box 500 Batavia, IL 60510
R. H. Hawkins E. I. DuPont de Nemours and Company Savannah River Laboratory Aiken, SC 29808	R. E. Anderson Goodyear Atomic P.O. Box 628 Piketon, OH 45661
C. Morgan King E. I. DuPont de Nemours and Company Savannah River Laboratory Aiken, SC 29808	Technical Library Idaho National Engineering Laboratory Idaho Falls, ID 83401
S. B. Oblath E. I. DuPont de Nemours and Company Savannah River Laboratory Aiken, SC 29808	Dr. T. Harvey Mail Stop L-262 Lawrence Livermore National Laboratory P.O. Box 808 Livermore, CA 94550
R. H. Beers, Manager Waste Management Programs Division EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, ID 83415	Donald T. Oakley Program Manager for Waste Management Los Alamos National Laboratory P.O. Box 1663 Los Alamos, NM 87545
R. L. Dodge EG&G Idaho, Inc. P. O. Box 1625 Idaho Falls, ID 83415	J. G. Steger Los Alamos Scientific Laboratory Los Alamos, NM 87545
E. A. Jennrich Low-Level Management Program EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, ID 83415	Technical Library Los Alamos National Laboratory Los Alamos, New Mexico 87545
Environmental Protection Agency Technology Assessment Division Office of Radiation Programs Washington, D.C. 20460	J. McMenamin Mason and Hanger - Silas Mason Co. Pantex Plant P.O. Box 30020 Amarillo, TX 79177

<u>No. of Copies</u>	<u>No. of Copies</u>
R. R. Jaeger, Manager Nuclear Waste Technology Monsanto Research Corporation P.O. Box 32 Miamisburg, OH 45342	E. L. Albenesius Savannah River Laboratory P.O. Box A Aiken, SC 29801
National Academy of Sciences National Research Council 2101 Constitution Avenue Washington, DC 20418	Technical Library Savannah River National Laboratory Aiken, SC 29081
J. S. Baldwin Low-Level Waste Management Program Oak Ridge National Laboratory P.O. Box X Oak Ridge, TN 37830	Jack Fischer Office of Hazardous Waste Hydrology U.S. Geological Survey 410 National Center Reston, VA 22092
T. H. Row, Director Nuclear Waste Programs Oak Ridge National Laboratory P.O. Box X Oak Ridge, TN 37830	D. S. Morgan U.S. Geological Survey 705 N. Plaza Street Carson City, NV 89701
Technical Library Oak Ridge National Laboratory Oak Ridge, Tennessee 37830	I. J. Winograd U.S. Geologic Survey Reston, VA 22092
E. W. Kendall Waste Management Project Manager REECO P.O. Box 642 Mercury, NV 89023	E. P. Weeks U.S. Geological Survey Federal Center Mail Stop 413 Denver, CO 80225
J. J. Blakeslee, Program Manager Nuclear Waste Processing Rockwell International P.O. Box 464 Golden, CO 80401	E. Conti Division of Health, Siting and Waste Management Research U.S. Nuclear Regulatory Commission Washington, DC 20555
C. E. Wickland Manager, Waste Operations Rockwell International Rocky Flats Plant P.O. Box 464 Golden, CO 80401	R. C. DeYoung Division of Site Safety and Environmental Analysis U.S. Nuclear Regulatory Commission Washington, DC 20555

<u>No. of Copies</u>	<u>No. of Copies</u>
<p>E. O'Donnell Earth Sciences Branch Division of Health, Siting and Waste Management Research U.S. Nuclear Regulatory Commission Washington, DC 20555</p> <p>M. W. Boback, Director Health and Safety Division P.O. Box 39158 Cincinnati, OH 45239</p>	<p><u>United Nuclear Industries</u></p> <p>P. Ortiz</p> <p>45 <u>Pacific Northwest Laboratory</u></p> <p>M. E. Dodson D. W. Dragnich M. J. Fayer G. W. Gee (5) M. J. Graham (10) P. C. Hays T. L. Jones C. T. Kincaid R. R. Kirkham L. T. Lakey I. C. Nelson S. R. Peterson A. E. Reisenauer R. J. Serne C. S. Simmons O. R. Simpson J. A. Stottlemyre A. P. Tosti S. W. Tyler M. B. Walter (5) L. L. Wendell Technical Information (5) Publishing Coordination (2)</p>
<u>ONSITE</u>	
<p><u>Hanford Engineering Development Laboratory</u></p> <p>R. E. Lerch</p> <p>4 <u>Richland Operations Office</u></p> <p>M. Dayani G. Orten H. E. Ransom J. D. White</p>	
7 <u>Rockwell Hanford Operations</u>	
<p>M. Adams J. F. Albaugh R. E. Isaacson W. A. Jordan S. L. Phillips J. F. Relyea R. C. Routson</p>	