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ABSTRACT

We apply a new semiclassical method to study radiative transitions of 

high-charge ions. One-electron matrix-elements calculated with WKB wave- 

functions are compared with self-consistent field calculations for molybdenum 

at various stages of ionization. The WKB method is able to follow the (large) 

changes in the Is -» np matrix-elements produced by ionization.
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More and Warren recently discovered a method to calculate matrix elements 

for electronic transitions using semiclassical (WKB) wave-functions.1 

Typically the accuracy is = 10% for all matrix-elements, although there are 

a few exceptions. The method is simple and works for many non-relativistic 

quantum systems. This brief report will describe a first application to one- 

electron radiative matrix-elements for high-charge ions.

In brief, the method is based on the WKB travelling waves.

c o
*ir(r) = exp ± 1[J q(r') dr1 - */4] (1)

n!l ✓^KrT

where q(r) = (2mA2)172 [En!l + eV(r) - f,2/2m (l + l/2)2/r2]1/2 is the radial 

wave-vector (= m/fi times the radial velocity). V(r) is the self-consistent 

potential.

The wave-functions are normalized by

2 Re 1 *na)(r) dr = 1 (2)

and the dipole matrix-element is calculated by a saddle-point method as 

follows:

Rn't'
nil

sr

^ Re / ¥ 

^ Re J e

«><r>r ,r^

ig(r)

(r) dr

= 2 Re K^s) rs ’n'l'^s^ y/g"(rs) ] (3)

where the saddle-point r$ is defined by requiring g'(i"s) =: 0. The saddle- 

point is a complex number but with Eq. (1) there is no difficulty calculating 

the wave-functions at complex radii, assuming the potential is known. For
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hydrogenlc Ions, V(r) = Ze/r 1s analytic except at the origin, and there is no 

problem.

We have compared Eq. (3) with exact quantum results for dipole and 

quadrupole line transitions of hydrogenic ions, and also for the photoelectric 

transitions, and have compared to numerical results for line transitions in a 

Debye-screened Coulomb potential, a simple model for an ion in a plasma. We 

have also made comparisons for matrix-elements of spherical harmonic functions 

and for the one-dimensional harmonic oscillator. To date the method succeeds 

for everything.

By this we mean that it predicts matrix-elements to about 10% accuracy 

(over a range of three or four orders of magnitude in the matrix-element) and 

does this without modification to the basic formula. Thus the method is 

robust and reliable.

To compare with quantum wave-fuctions we form

+ *«<")] <4

In this equation, the instruction to take the real part replaces the usual 

"connection formula" of the WKB theory, and gives a well behaved wave-function 

which correctly decreases at large and small r. The numerical values are very 

accurate except close to the turning-points of the classical motion, where 

q(r) = 0; at these points the WKB functions have weak singularities.

Good agreement with quantum wave-functions is obtained despite the 

unusual normalization rule of Eq. (2) and would not be found if one attempted 

to force the customary quantum normalization upon the WKB wave-function. We 

have discovered evidence that this reflects a more fundamental semiclassical 

structure; we find (numerically) that our wave-functions satisfy a one-sided 

orthonormality condition.
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(n1 > n) (5)„(+)
2 Re > <r> dr nn'

This relation applies for both Coulomb and screened-Coulomb cases, as well as 

for other cases mentioned above. The diagonal terms (n = n') are obviously 

unity as a consequence of Eq. (2) but the fact that the off-diagonal terms are
_3

small (~ 10 ) points to something new and remarkable in the semiclassical

theory.

Equation (3) for the matrix-element gives a nearly closed-form expression 

n111for Rnl , which is very useful in attempting to see more clearly into the 

physics. We have discovered that the magnitude of the saddle-point r$ is 

nearly equal to the radius of second-order orbit-intersection, which is given 

for hydrogenic transitions n, l -» n, a + 1 by

r_________ 4(a + 1)_______!o ,6
ri ~ + 3/2j2 _ ^a -i- 1/2^2 Z

This leads to a simple intuitive picture for the matrix-element, in which the 

radiative transition is seen as a quantum .jump from initial to final orbit 

occurring during the second-order orbit intersection.

The picture gives a number of useful insights. For example, the matrix- 

element is typically larger with better orbit contact, a consequence of the 

factor l/v^TTy in Eq. (3). We find that the matrix-element is very small 

for transitions such as 2p -» 3s which do not have second-order 

orbit-intersection.

For application to high-charge ions it is necessary to know the atomic 

self-consistent potential as a function of a complex radius in order to search 

for the saddle-point of Eq. (3). We make the assumption that the potential is 

generated by a charge-density of the form
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TABLE 1

Hydrogenic Matrix-Elements 

(atomic units)

Transition WKB R(n, 1, n', 11) Exact R
Percentage
Difference

Is - 2p 1.2510 1.2903 3.04
Is - 3p 0.4782 0.5167 7.45
Is - 4p 0.2796 0.3046 8.21
Is - 5p 0.1910 0.2087 8.49

2s - 3p 3.1439 3.0648 2.58

2p - 3d 4.6123 4.7480 2.86
2p - 3s 1.0019 0.9384 6.76

3s - 4p 5.7413 5.4693 4.97

3p - 4d 7.6298 7.5654 0.85
3p - 4s 2.6982 2.4435 10.42

3d - 4f 9.9253 10.2303 2.98
3d - 4p 1.4379 1.3023 10.41

p(r) = Ze 6(r) - I Pn r2^"^ e ^ 
n

(7)

Equation (7) gives the charge density resulting from hydrogenic wave functions 

for states of angular momentum a. = n - 1 (e.g., 2p, 3d, 4f, ...). Pn is the 

number of electrons in shell n in the ground state ion. The parameters <*n 

must be chosen to represent the charge density in the ion in question; An is 

determined by normalization to be

,, .2n+l
A2, ____
ftn 4ir( 2n)!
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This charge density is easily integrated to give an analytic representation of

the potential, a form introduced by Klapisch under the name parametric 
2

potential.

For our evaluations we determined the parameters an by use of effective
3

charges supplied by a screened-hydrogenic code. The results of this 

procedure are neither self-consistent, relativistic nor terribly accurate. A 

much better calculation could easily be done.

However the results are good enough to show that the WKB method is able 

to reproduce the large systematic changes in oscillator-strengths with 

ionization.

For transitions Is -» np we have found that the saddle-points are nearly 

independent of the ion charge-state Q (especially for n = 4.5), even though 

the oscillator-strength changes by a large factor * 5 due to variations in the 

screening. We are able to unambiguously attribute the majority of this large 

change to altered normalization of the upper-state wave-function: in the

less-ionized ions the upper level experiences a more strongly screened 

potential, relaxes outward, and has reduced overlap with the K-shell wave- 

function as measured by the product in Eq. (3).
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Figure 1. OsciViator-strength for transitions Is -» np of Molybdenum ions 

calculated by the method of Eq. (3). The comparison data was 

provided by D. A. Liberman and is obtained from a relativistic 

self-consistent field calculation.

Cvtc I I 00.1/1 •i
-8-


