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ABSTRACT

We apply a new semiclassical method to study radiative transitions of
high-charge ions. One-electron matrix-elements calculated with WKB wave-
functions are compared with self-consistent field calculations for molybdenum
at various stages of ionization. The WKB method is able to follow the (large)

changes in the 1s » np matrix-elements produced by ionization.
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More and Warren recently discovered a method to calculate matrix elements
for electronic transitions using semiclassical (WKB) wave—functions.]
Typically the accuracy is = 10% for all matrix-elements, although there are
a few exceptions. The method is simple and works for many non-relativistic
quantum systems. This brief report will describe a first application to one-
electron radiative matrix-elements for high-charge ions.

In brief, the method is based on the WKB travelling waves.
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where q(r) = (2m/ﬁ2)]/2 [E n * ev(r) - ﬂ2/2m (2 + 1/2)2/r2]]/2 is the radial

wave-vector (= m/f times the radial velocity). V(r) is the self-consistent

w(”)(r) - exp + 1[J q(r') dr' - =/4] (1)

potential.

The wave-functions are normalized by
Tre 1 ¢l ¢l (r) ar =11 (2)

and the dipole matrix-element is calculated by a saddle-point method as

follows:
R:;2| = % Re | Y( )(r) r T( ) ,(r) dr
= % Re | eig(r) dr
= 1 (+) () 2wl
= 5 Re [ (rg) rg ¥, .(r ) g"(rs) ] (3)

where the saddle-point rs is defined by requiring g'(rs) = 0. The saddle-
point is a complex number but with Eq. (1) there is no difficulty calculating

the wave-functions at complex radii, assuming the potential is known. For



hydrogenic fons, V(r) = Ze/r is analytic except at the origin, and there is no
problem.

We have compared Eq. (3) with exact quantum results for dipole and
quadrupole 1ine transitions of hydrogenic ions, and also for the photoelectric
transitions, and have compared to numerical results for 1line transitions in a
Debye-screened Coulomb potential, a simple model for an ion in a plasma. We
have also made comparisons for matrix-elements of spherical harmonic functions
and for the one-dimensional harmonic oscillator. To date the method succeeds
for everything.

By this we mean that it predicts matrix-elements to about 10% accuracy
(over a range of three or four orders of magnitude in the matrix-element) and
does this without modification to the basic formula. Thus the method is
robust and reliable.

To compare with quantum wave-fuctions we form
21 [ (+) (-) ]
¥oo(r) =5 Re | ¥ (r) + ¥ (1) (4)

In this equation, the instruction to take the real part replaces the usual
*connection formula" of the WKB theory, and gives a well behaved wave-function
which correctly decreases at large and small r. The numerical values are very
accurate except close to the turning-points of the classical motion, where
q(r) = 0; at these points the WKB functions have weak singularities.

Good agreement with quantum wave-functions is obtained despite the
unusual normalization rule of Eq. (2) and would not be found if one attempted
to force the customary quantum normalization upon the WKB wave-function. We
have discovered evidence that this reflects a more fundamental semiclassical
structure; we find (numerically) that our wave-functions satisfy a one-sided

orthonormality condition.



5 Re | w( )(r) w( ) (r) dr = & (' > n) (5)
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This relation applies for both Coulomb and screened-Coulomb cases, as well as
for other cases mentioned above. The diagonal terms (n = n') are obviously
unity as a consequence of Eq. (2) but the fact that the off-diagonal terms are
small (~ 10-3) points to something new and remarkable in the semiclassical
theory.

Equation (3) for the matrix-element gives a nearly closed-form expression
for Rn !.. which is very useful in attempting to see more clearly into the
physics. We have discovered that the magnitude of the saddle-point re is
nearly equal to the radius of second-order orbit-intersection, which is given
for hydrogenic transitions n, 8 » n, ¢ + 1 by

2 3/23:‘32 +(1) 1/2)2 Z (6)
(+ +

This leads to a simple intuitive picture for the matrix-element, in which the
radiative transition is seen as a quantum jump from initial to final orbit
occurring during the second-order orbit intersection.

The picture gives a number of useful insights. For example, the matrix-
element is typically larger with better orbit contact, a consequence of the
factor 1/VGTTF;7 in Eq. (3). We find that the matrix-element is very small
for transitions such as 2p » 3s which do not have second-order
orbit-intersection.

For application to high-charge ions it is necessary to know the atomic
self-consistent potential as a function of a complex radius in order to search
for the saddle-point of Eq. (3). We make the assumption that the potential is

generated by a charge-density of the form



TABLE 1

Hydrogenic Matrix-Elements

(atomic units)

Percentage

Transition WKB R(n, 1, n', 1") Exact R Difference
1s - 2p 1.2510 1.2903 3.04
1s - 3p 0.4782 0.5167 7.45
1s - 4p 0.2796 0.3046 8.21
1s - 5p 0.1910 0.2087 8.49
2s - 3p 3.1439 3.0648 2.58
2p - 3d 4.6123 4.7480 2.86
2p - 3s 1.0019 0.9384 6.76
3s - 4p 5.7413 5.4693 4.97
3p - 4d 7.6298 7.5654 0.85
3p - 4s 2.6982 2.4435 10.42
3d - 4f 9.9253 10.2303 2.98
3d - 4p 1.4379 1.3023 10.41

~2a I
p(r) = ze s(7) - 3 p AZ p2(N71) o (7)
n

Equation (7) gives the charge density resulting from hydrogenic wave functions
for states of angular momentum & = n -1 (e.g., 2p, 3d, 4f, ...). Pn is the
number of electrons in shell n in the ground state ion. The parameters @
must be chosen to represent the charge density in the ion in question; An is

determined by normalization to be

2n+]
2 _ (2a) "

Ay = Z=(2n)!



This charge density is easily integrated to give an analytic representation of
the potential, a form introduced by Klapisch under the name parametric
gotential.2

For our evaluations we determined the parameters e by use of effective
charges supplied by a screened-hydrogenic code.3 The results of this
procedure are neither self-consistent, relativistic nor terribly accurate. A
much better calculation could easily be done.

However the results are good enough to show that the WKB method is able
to reproduce the large systematic changes in oscillator-strengths with
jonization.

For transitions 1s » np we have found that the saddle-points are nearly
independent of the ion charge-state Q (especially for n = 4.5), even though
the oscillator-strength changes by a large factor = 5 due to variations in the
screening. We are able to unambigquously attribute the majority of this large
change to altered normalization of the upper-state wave-function: 1in the
less-ionized ions the upper level experiences a more strongly screened
potential, relaxes outward, and has reduced overlap with the K-shell wave-

function as measured by the product in Eq. (3).
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Figure 1. Oscillator-strength for transitions 1s » np of Molybdenum ions
calculated by the method of Eq. (3). The comparison data was

provided by D. A. Liberman and is obtained from a relativistic

self-consistent field calculation.
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