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Abstract

Rayleigh-Benard convection with rotation about a vertical axis is investigated for small

dimensionless rotation rates 0 < f/ < 50. The convection cell is cylindrical with aspect

ratio F = 10 and the convecting fluid is water with a Prandtl number of 6.8 at T = 23.8C.

Comparisons are made between experimental data and linear stability theory for the onset

Rayleigh number and for the wave number dependence of the convective pattern. The

nonlinear Kiippers-Lortz transition is found to occur significantly below the theoretically

expected rotation rate tic m_d to be nucleated by defects created at the lateral cell walls.

Introduction

Rayleigh-Benard (RB) convection with rotation about a vertical axis is an interesting

hydrodynamical system in that it combines elements of thermal buoyancy and rotation-

induced coriolis and centrifugal forces. 1-2 These forces determine the convective flows

which control the dynamics of planetary and stellar atmospheres and the circulation ocean

currents. It is also an excellent system for the study of general questions about pattern

formation and competition in the vicinity of the convective onset and of new types of

nonlinear hydrodynamic instabilities. A particularly interesting nonlinear instability in this

system was discovered by K(ippers and Lortz. _-4 With no rotation stationary convection

rolls are stable solutions of the fluid equations. Ktippers and Lortz ._lio,;vedthat below some

critical rotation rate straight rolls remain the stable state of the rotating system. Above

the critical rotation rate, however, the convection rolls are unstable to perturbations wit,ii
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a wave vector that does not. coincide with the wave vector of the initial roll structure. One

conclusion from their analysis is that no stable stationary solution exists and complex tim(_

dependence should occur. Thus one has a transition in a spatiMly extended convccting

system from a conducting state to one with complex time dependence in a regime where

the fluid equations are weakly nonlinear. This bifurcation should be describable by suitable

perturbation expansion about the convective onset. Some theoretical 4-_ and experimental

work 7-9 on this problem have been done but many questions remain. This prompted us to

make high resolution heat transport measurements with simultaneous optical shadowgraph

visualization of the convective flow field in rotating convection. After a discussion of the

previous theoretical and experimental work on the Kiippers-Lortz transition, we describe

our experimental apparatus and results. We conclude by laying out unanswered questions

and opportunities for future investigations, both experimental and theoretical.

Rotating RB convection describes a thin layer of fluid confined bet_een conducting

boundaries, heated from below, and rotated about a vertical axis. The onset of convection

in the absence of rotation is controlled by a single dimensionless parameter the Rayleigh

number R - go_daAT/u_ where g is the acceleration of gravity, c, is the thermal expansion

coefficient, d is the layer thickness, AT is the temperature difference across the fluid layer,

r, is the kinematic viscosity and _ is the thermal diffusivity. The secondary convective

instabilities are influenced by the Prandtl rmmber a -_-r,/_ and are elucidated in a series of

10 15papers by Busse and collaborators. - The two contributions of rotation are coriolis and

centrifugal terms in the fluid equation, the latter often ignored in theoretical considerations.

The coriolis term is represented by a dimensionless angular frequency fl - X'lDd 2/_ where

_D is the dimensional angular frequency in units of radians per second (this parameter is

often expressed as the Taylor number Ta - (2f/)_).

Rotation has a stabilizing effect on the conducting state tllereby increasing the con-

vective onset as rotation increases. The marginal stability line is defined in the R- a

parameter space by a line Rc(_), see Figure 1, obtained from linear stability analysis, ls'lG
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For small a the possibility exists for overstable, oscillatory convection at onset. For t,he

fluid considered in this work, water at 23 ° C and o"= 6.8, such effects are not, expected. The

remaining important constraint which helps determine the convective state is the geometry

and boundary conditions of the convection cell. In these studies the cell is cylindrical with

a aspect ratfion P- D/2d = 19 where D = 10cm is the cell diameter and d = 0.5 eta.

The boundary conditions of the cell are made as close to ideal as possible, that is

conducting top and bottom boundaries and insulating sidewalls. The bottom plate is 0.25

in. thick copper, hard nickel coated and mirror polished to optical flatness. The upper

surface is single crystal sapphire, 0.125 in. thick, and is maintained at constant temperature

(4-0.5 mK peak to peak) by a temperature-regulated circulation system. A schematic of

the convection cell is shown in Fig. 2. A constant heat flux is applied to the bottom plate

and the bottom plate temperature monitored with a high sensitivity thermistor. Any time

dependence in the fluid motion shows up as temperature fluctuations in this thermometer.

Theoretical work on this problem began with linear stability analysis, s-7 in which the

linear state is assumed to be straight, parallel rolls (cellular patterns of squares or hexagonal

symmetry are not distinguished from parallel rolls in the linear theory). Numerical data

on R_(ft) and the range of overstability as a function of a were provided by this linear

theory. 5-7 The nonlinear steady-state stability was studied by Kiippers and Lortz s who

showed that for f2 < fie(a) parallel rolls are stable solutions just as in the non-rotating

case. For f/ > tic(a), however, rolls are unstable with respect to perturbations having a

wave vector oriented at an angle of about 60 ° relative to the initial roll wave vector. This

generates time dependent fluid motion as the rolls associated with one wave vector grow

at the expense of the initial rolls but, are themselves unstable to a wave vector at an angle

0 to the new rolls. The wave number q - 2rrd/A (A is the roll wavelength) dependence of

the stability boundaries for the Kfipper-Lortz instability and for other instabilities known

from non-rotating convection 1° in the R, q parameter space were calculated in detail t)y

Clever and Busse as a function of both a and ft. Figure 3 shows the predicted stability
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boundaries for _ = 7 plotted in the space of e - R - Rc(ft) and q - qc for three rotation

rates ft = 0, 10 and 15. As ft is incrcased there is a shrinking stable region which closes to

zero as Ftc is approached. As in non-rotating convection, 1° the finite aspect ration of o111'

convection cell will certainly influence the selected p_tterns and effects of wavc number

distortion will need to be considered.

Before reviewing experimental work on rotating convection we address t.he question of

the nature of the nonlinear state above f_c. Busse proposed a three-mode modcl for rotat-

ing convection based on the approximate 60° rotation of the K/ippers-Lortz instability. 15

The realization of this model for real fluid patterns would depend oi1 e and Ft- Ftc. For

very small e and Ft- ftc parallel rolls would be stable for long times and would de-stabilize

quickly to parallel rolls at 60 ° relative to the last orientation. Alternately for E _ 1 or

ft- Ftc ,_ 1 all modes would be visible at once forming a fluctuating hexagonal pattern. In

both cases the dynamics would be aperiodic and perhaps sensitive to experimental noisc

levels. In testing these models experimentally one would hke to determine the mechanism

for noisy time dependence, understand the role of finite size imposed by lateral bound-

aries and investigate the stability diagram in R, q parameter space and its role in defcct

mediated pattern selection which is known to be important in low and moderate Prandtl

number convection. 19-2° Other questions to be answered are 1) what is the nature of the

intersection point of the K/ippers-Lortz (KL) transition and the lines stability line; and 2)

is the KL transition a unique symmetry breaking bifurcation separating parallel roll states

below Ft_ from patterns with square or hexagonal symmetry above ftc?

There have been only a few experimental studies of rotating RB convection which

have addressed the questions raised above. For ft < 100 Rossby 22 found good agreement

between measured onset Rayleigh mmabers Rc(Ft) and the predictions of linear stability

theory. He also made a detailed study of heat transport but was only able to visualize

flows in silicon oil far above onset. Krishnamurti's study of rotating convection showed a

transition to time-dependent flow at f_ _ 6 for water in a cylindrical cell with aspect ratio
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I" = 11.5. Similar results 22 by Heikes and Busse indicate the first time dependence at f/

8.5 for methyl alcohol (ct = 6.9) in aspect ratio 74 or 121 cylindrical cells. They associated

a second transition at tfigher Ft with the bulk KL instability although this identificat, ion

is somewhat subjective, being based on qualities of the showdowgraph images. They

also measured rotation angles in the range of 55° < 0 < 66 ° at various values of rf

and f_. An important issue to resolve is the difference between the initi:d transition to

time dependence, attributed to lateral wall initiated defects and the "spontaneous" I,_L

transition. 2° In particular, is this a sharp transition or a continuous progression of the

defect dynanfics in real cells of finite lateral extent?

Experimental Results

We have made high resolution heat transport measurements of the convective fuid flow

with simultaneous optical shadowgraph flow visualization. The heat transport is measured

as the effective thermal conductivity K of the fluid layer (conductive and convective parts)

normalized by the thermally diffusive conductivity K_. The sharp increase of N_ -K/K_

at a critical temperature difference &Tc indicates the onset of convection. In figure 3 we

show Nusselt number as a function of reduced stress parameter e - R/R_(ft) - 1. n)-I

where the onset values Rc(ft) are plotted in Figure 1 as Rc(ft)/Rc(O). Agreement is quite

good between data and the linear theory.

Next we want to understand how a state at ft = 0 is affected by increasing rotation,

keeping the thermal forcing approximately constant, ie. e _ coT_,stant. A series of patterns

is shown in Fig. 4 which reveal the basic evolution of the convective state as ft is increased.

The pattern at ft = 0 is time-independent and contains defects of various types. Such

patterns are known to be due to a competition between the conditions imposed by the

boundaries and the bulk mechanism which favors parallel rolls. 1_-17 An overall trend that

one notices in the convective flow is the decrease in the roll wavelength with increasing f_.

The wavelength for parallel rolls is defined as the distance from one up flow (down flow)
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region to the next• Scaling that distance by the cell height d and converting to a wave

number q - 27cd/A.

In Fig. 5 the measured wavenumber is plotted versus ft and shows reasonable agree-

ment with the predictions of the linear theory. The finite size of the cell causes variation

in the wavenumber irl each pattern. This distribution is reflected in the error bars in Fig.

5. There is also some variation in e between points so that the wavenumber mas' not

correspond precisely with the critical wavenumber. Even so the measured wavenumbers

follow the predicted dependence on ft quite well.

As ft increases both small quantitative and distinct qualitative changes take place.

For ft < 6, some small changes occur but the basic pattern remains qualitatively the same

as the ft = O pattern. For ft = 10.42 time-dependent motion of defects is observed. The

defects, primarily located close to the walls and nucleated in one of the focus singularities,

are dislocations which move counter to the direction of rotation (rotation here is counter

clockwise). The dynamics of the defect motion is shown in Fig. 5 where one can see a

pair of dislocations propagating along the right hand side wall and some roll reorganization

near the central disclination point. Defect dynamics of a similar nature persists indefinitely

with no obvious periodicity.

A further increase in ft to 16.12 brings about a qualitative change in the convective

pattern. Instead of a pattern with the symmetry of the nonrotating one, there are parallel

rolls in the central region with defects on the opposing sides. In addition the defects act

to produce a discrete reorientation of the straight roils in the central region. This discrete

angular change suggests the Kfippers-Lortz instability and is illustrated in a sequence of

images seen in Fig. 7. The mechanism for the pattern reorientation is shown in Fig.

8. Defects radiating from the wall regions are oriented at some angle with respect to the

central region. The defects grow and erode the central rolls, leading to a reorientation along

• C •the direction of the defects. The reorientation mechanism produces discrete changes in

rather than a continuous precession of the central roll structure. The patterns which have
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parallel rolls do not exactly recur after a rec_Aentation nor is the period or m_gle change

constant between the discrete angular _ rientations. There are, however, characteristic

periods and angle changes at each rotation rate. The angular change in the patterns in

Fig. 7 is 63° + 3° averaged over 8 reorientations. The average period r decreases rapidly
J

with increasing Ft, Fig. 9.

The apparent divergence with decreasing Ft suggested plotting 1/r and indeed this

frequency has au approximately linear dependence on Ft with a zero frequency intercept at

frc = 13.5. We identify Ftc as the critical Kiippers-Lortz rotation frequency, appreciably

less than the theoretically predicted _tc = 20.5 for a = 6.8.

Discussion

The predictions of linear stability analysis for the marginal stability line and for tile

critical wave number are in quite good agreement with experimental data. Qualitative

features of the Kfippers-Lortz transition in the nonlinear steady state are also observed.

In particular there is a discrete angular reorientation of the convective pattern for Ft > 16,

see Fig. 3, with an average angle of about 63 ° + 5 ° and asi aperiodic switching between

orientations. The switching time diverges at a critical rotation f_c = 13.5, Fig. _1,in

qualitative agreement with the Busse 3-mode model for rotating convection above the

critical rotation rate.

More direct cornparisons are complicated by the finite aspect ratio of our convection

cell. As in non-rotating cylindrical cells, 20-22 the competition between the straight rolls

preferred in a laterally infinite system and the sidewall boundary conditions force com-

plex patterns with defects of various types. Timc dependence can be produced by local

wavenumber distortions which produce wave numbers outside the stable region. 23 Defects

are nucleated in regions of high distortion, propagated away and disappear in some other

region of the cell. In nonrotating fluids it is the skew-varicose (SV) instability which nu-

cleates the local defects. Croquette has reviewed most of the available literature on this
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problem. 24

Applying similar arguments to the rotating convection problem helps in the under-

standing of several features of the data. The observed f_e) = 13.5 is appreciably less than

g_(t)
c = 20.5 predicted by K/ippers for cr = 6.8. There is also time dependence for ft < fl_)

consisting of nucleated defects which propagate around the sidewalls, always counter to the

direction of rotation. This time dependence probably arises from local wa,venumber dist0r-

tions which cause unstable wavenumbers outside the Kiippers-Lortz instability boundary,

Fig. 1. This comes about as the KL instability moves inside the SV boundary at higtl

wavenumber. A good reason for believing that this is the KL instability is that the pro-

gressive fon_tation of these defects at slightly higher _ nucleates the angle reorient, at,ion

characteristic of the infinite system KL state, Fig. 4. The lower frC for experiment is

therefore likely due to a finite size effect causing wavenumber distortion and local insta-

bility. Since the KL botmdary is shrinking rapidly with increasing ft, a distribution of

wavenumbers will nucleate an effective transition below f/_t).

Some of the linear and nonlinear theoretical predictions for rotating Rayleigh-Benard

convection have been confirmed by this experimental study. Many questions remain to be

answered. The mechanism for the propagation of defects counter to the rotation directions

is not understood. Quantitative questions regarding the KL transition below the predicted

ft_ ') remain: how does the transition depend on aspect ratio and how does _) vary with e?

What is the distribution of wavenumbers for experimental patterns? How do experimen-

tally determined stability boundaries experimentally compare with calculations of Clever

and Busse? Is the 3-mode model for the KL transition a good enough approximation to

describe experiments? What is the nature of the intersection of the KL transition line and

the marginal stability line?

These tmanswered questions suggest future experimental work, some of which we tLre

investigating. We hope that these experiments will encourage theoretical work on this

fascinating convective system.
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Figure Captions

Fig. 1. Parameter space R/Rc(o) asad ft for rotating Rayleigh-Bena,rd convection.

Fig. 2. Schematic of convection cell.

Fig. 3. Stability diagram in parameter space of R-Rc and q-qc for rotation rates ft = 0

(---), ft = 10( ........ ), and ft = 15 ( ' ) after references 4 and 10.

Fig. 4. Nu vs. e -- R/R_(ft)- 1 for ft = 0(0), 12= 6.1(x), ft = 16.2(0).

Fig. 5. Optical shadowgraph visualization at e _ 0.3 for successively higher rotation rates:

a) ft = 0, b) t2 = 2.58, c) ft = 5.51, d) ft = 10.42, e) ft = 16.12, f) ft = 20.80, g) f_ = 24.72

and h) 9..= 51.07.

Fig. 6. Pattern wavenumber vs. ft for small e _ 0.4, solid line is linear stability result for

critical wavenubmer from reference 20.

Fig. 7. Patterns showing defect motion on cell boundaries. Time is scaled by vertical

thermal diffusion time d 2/_, _ := 170 sec. The direction of rotation is counter clockwise

while the motion of defects is always clockwise.

Fig. 8. Patterns showing discrete angular reorintation of rolls. Transition time is ;aot

periodic but has an approximate period of T = 5.

Fig. 9. Patterns illustrating reorientation mechanism for central region due to defect

motion.

Fig. 10. Dimensionless switching time T (frequency T -1) vs. ft. Time is in units of

w_ = 170 sec. The intercept of the frequency curve gives ft[_) = 13.5.
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