' f r (ANDH Ty
LA*UR  -90- 3819 ONF - /0('\).«;&)/-

i

L Alamos Nationa' (eborstory & 8% e Unwe’ dornig 1or the Unn 1 amenl of Emor AL W.Td0L END 2
ot ] ] uons' { oDe e by W sty o! Coldorrip fo Unned Busies hbﬁ 1ol € (34 whde: Contre T8 En
d . - R 4

LA-UR--90-3819

DE91 004835

TITLE
Rotating Rayleigh-Benard Convection:
The Kuppers lLortz Transition
AUTHOR(S
’ Fang Zhong, Robert Ecke and Victor Steinberg
SUBMITTED TO.

Proceedings of i i
o SNIS Annual Conference "Nonlinear Science;

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any Jegal liability or respansi-
bility for the accuracy. completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

By scceptance of this oricie the nOneRCIVD “OoNe

publishe’ recognizes thai the U § Gevernment

o pudIS

e BUDIENEC form B Thig CONIBULION. BF 10 Bhow Sthers ® §0 80. for US co‘:"mw w;o':"."rm ® neeesu

The Lot alamot NelOND!
LADOrB1OrY reQuUEsT that the PUDIBhT WMLy g B7RCIS B3 WOrk POTIOrMed UNGs' the Suapwas o he U § Depaniment of Energy

@S A @m@) Los Alamos National Laboratory

Los Alamos,New ﬁi%oT87§545
: ,‘g o

TSN e

=D 00 e

- BISTRIGUTISN 17 TeeS AATA it



Rotating Rayleigh-Benard Convection: Kiippers-Lortz Transition
Fang Zhong, Robert Ecke and
Victor Steinberg
Physics Division and Center for Nonlinear Studies,
Los Alamos National Laboratory
Los Alamos, NM 87545
Abstract

Rayleigh-Benard convection with rotation about a vertical axis is investigated for small
dimensionless rotation rates 0 < 2 < 50. The convection cell is cylindrical with aspect
ratio I' = 10 and the convecting fluid is water with a Prandtl number of 6.8 at T = 23.8C.
Comparisons are made between experimental data and linear stability theory for the onset
Rayleigh number and for the wave number dependence of the convective pattern. The
nonlinear Kiippers-Lortz transition is found to occur significantly below the theoretically

expected rotation rate (2. and to be nucleated by defects created at the lateral cell walls.

Introduction

Rayleigh-Benard (RB) convection with rotation about a vertical axis is an interesting
hydrodynamical system in that it combines elements of thermal buoyancy and rotation-
induced coriolis and centrifugal forces.!=* These forces determine the convective flows
which control the dynamics of planetary and stellar atmospheres and the circulation ocean
currents. It is also an excellent system for the study of general questions about pattern
formation and competition in the vicinity of the convective onset and of new types of
nonlinear hydrodynamic instabilities. A particularly interesting nonlinear instability in this
system was discovered by Kiippers and Lortz.3~* With no rotation stationary convection
rolls are stable solutions of the fluid equations. Kiippers and Lortz showed that below some
critical rotation rate straight rolls remain the stable state of the rotating system. Above

the critical rotation rate, however, the convection rolls are unstable to perturbations with
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a wave vector that does not coincide with the wave vector of the initial roll structure. One
conclusion from their analysis is that no stable stationary solution exists and complex time
dependence should occur. Thus one has a transition in a spatially extended convecting
system from a conducting state to one with complex time dependence in a regime where
the fluid equations are weakly nonlinear. This bifurcation should be describable by suitable
perturbation expansion about the convective onset. Some theoretical*~® and experimental
work’ ~? on this problem have been done but many questions remain. This prompted us to
make high resolution heat transport measurements with simultaneous optical shadowgraph
visualization of the convective flow field in rotating convection. After a discussion of the
previous theoretical and experimental work on the Kiippers-Lortz transition, we describe
our experimental apparatus and results. We conclude by laying out unanswered questions

and opportunities for future investigations, both experimental and theoretical.

Rotating RB convection describes a thin layer of fluid confined between conducting
boundaries, heated from below, and rotated about a vertical axis. The onset of convection
in the absence of rotation is controlled by a single dimensionless parameter the Rayleigh
number R = gad® AT /vk where g is the acceleration of gravity, « is the thermal expansion
coefficient, d is the layer thickness, AT is the temperature difference across the fluid layer,
v is the kinematic viscosity and « is the thermal diffusivity. The secondary convective
instabilities are influenced by the Prandtl number ¢ = v/x and are elucidated in a series of
papers by Busse and collaborators.!®~!® The two contributions of rotation are coriolis and
centrifugal terms in the fluid equation, the latter often ignored in theoretical considerations.
The coriolis term is represented by a dimensionless angular frequency = Qpd? /v where
Qp is the dimensional angular frequency in units of radians per second (this parameter is

often expressed as the Taylor number Ta = (202)?).

Rotation has a stabilizing effect on the conducting state thereby increasing the con-
vective onset as rotation increases. The marginal stability line is defined in the R — o

parameter space by a line R.(2), see Figure 1, obtained from linear stability analysis.!>!°
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For small o the possibility exists for overstable, oscillatory convection at onset. For the
fluid considered in this work, water at 23° C and o = 6.8, such effects are not expected. The
remaining importaat constraint which helps determine the convective state is the geometry
and boundary conditions of the convection cell. In these studies the cell is cylindrical with

a aspect ration I' = D/2d = 19 where D = 10cm is the cell diameter and d = 0.5 em.

The boundary conditions of the cell are made as close to ideal as possible, that is
conducting top and bottom boundaries and insulating sidewalls. The bottom plate is 0.25
in. thick copper, hard nickel coated and mirror polished to optical flatness. The upper
surface is single crystal sapphire, 0.125 in. thick, and is maintained at constant temperature
(£0.5 mK peak to peak) by a temperature-regulated circulation system. A schematic of
the convection cell is shown in Fig. 2. A constant heat flux is applied to the bottom plate
and the bottom plate temperature monitored with a high sensitivity thermistor. Any time

dependence in the fluid motion shows up as temperature fluctuations in this thermometer.

Theoretical work on this problem began with linear stability analysis,>~7 in which the
linear state is assumed to be straight, parallel rolls (cellular patterns of squares or hexagonal
symmetry are not distinguished from parallel rolls in the linear theory). Numerical data
on R.({?) and the range of overstability as a function of ¢ were provided by this linear
theory.>~" The nonlinear steady-state stability was studied by Kiippers and Lortz® who
showed that for < Q.(c) parallel rolls are stable solutions just as in the non-rotating
case. For 2 > Q.(0), however, rolls are unstable with respect to perturbations having a
wave vector oriented at an angle of about 60° relative to the initial roll wave vector. This
generates time dependent fluid motion as the rolls associated with one wave vector grow
at the expense of the initial rolls but are themselves unstable to a wave vector at an angle
6 to the new rolls. The wave number ¢ = 2rd/X () is the roll wavelength) dependence of
the stability boundaries for the Kiipper-Lortz instability and for other instabilities known

0

from non-rotating convection'? in the R, ¢ parameter space were calculated in detail by

Clever and Busse as a function of both ¢ and §. Figure 3 shows the predicted stability
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boundaries for ¢ = 7 plotted in the space of € = R — R.(€2) and ¢ — ¢, for three rotation
rates § = 0, 10 and 15. As Q is increased there is‘ a shrinking stable region which closes to
zero as §). is approached. As in non-rotating convection,'? the finite aspect ration of our
convection cell will certainly influence the selected patterns and effects of wave number

distortion will need to be considered.

Before reviewing experimental work on rotating convection we address the question of
the nature of the nonlinear state above Q.. Busse proposed a three-mode model for rotat-
ing convection based on the approximate 60° rotation of the Kiippers-Lortz instability.!s
The realization of this model for real fluid patterns would depend on € and @ — Q.. For
very small € and Q — . parallel rolls would be stable for long times and would de-stabilize
quickly to parallel rolls at 60° relative to the last orientation. Alternately for € =~ 1 or
2 — Q. = 1 all modes would be visible at once forming a fluctuating hexagonal pattern. In
both cases the dynamics would be aperiodic and perhaps sensitive to experimental noise
levels. In testing these models experimentally one would like to determine the mechanism
for noisy time dependence, understand the role of finite size imposed by lateral bound-
aries and investigate the stability diagram in R, ¢ parameter space and its role in defect
mediated pattern selection whick is known to be important in low and moderate Prandtl
number convection.!®=2% Other questions to be answered are 1) what is the nature of the
intersection point of the Kiippers-Lortz (KL) transition and the lines stability line; and 2)
is the KL transition a unique symmetry breaking bifurcation separating parallel roll states

below . from patterns with square or hexagonal symmetry above §.7?

There have been only a few experimental studies of rotating RB convection which
have addressed the questions raised above. For € < 100 Rossby?? found good agreement
between measured onset Rayleigh numbers R.(?) and the predictions of linear stability
theory. He also made a detailed study of heat transport but was only able to visualize
flows in silicon oil far above onset. Krishnamurti’s study of rotating convection showed a

transition to time-dependent flow at 2. = 6 for water in a cylindrical cell with aspect ratio
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I' = 11.5. Similar results?? by Heikes and Busse indicate the first time dependence at Q ~
8.5 for methyl alcohol (¢ = 6.9) in aspect ratio 74 or 121 cylindrical cells. They associated
a second transition at higher Q with the bulk KL instability although this identification
is somewhat subjective, being based on qualities of the showdowgraph images. They
also measured rotation angles in the range of 55° < 6 < 66° at various values of R
and Q. An important issue to resolve is the difference between the initinl transition to
time dependence, attributed to lateral wall initiated defects and the “spontaneous” KL
transition.?’ In particular, is this a sharp transition or a continuous progression of the

defect dynamics in real cells of finite lateral extent?

Experimental Results

We have made high resolution heat transport measurements of the convective fluid flow
with simultaneous optical shadowgraph flow visualization. The heat transport is measured
as the effective thermal conductivity K of the fluid layer (conductive and convective parts)
normalized by the thermally diffusive conductivity K.. The sharp increase of Nu = K/K.
at a critical temperature difference AT, indicates the onset of convection. In figure 3 we
show Nusselt number as a function of reduced stress parameter € = R/R.(Q) — 1. Q)-1
where the onset values R.() are plotted in Figure 1 as R.(2)/R.(0). Agreement is quite
good between data and the linear theory.

Next we want to understand how a state at Q = 0 is affected by increasing rotation,
keeping the thermal forcing approximatcly constant, ie. € & constant. A series of patterns
is shown in Fig. 4 which reveal the basic evolution of the convective state as §) is increased.
The pattern at @ = 0 is time-independent and contains defects of various types. Such
patterns are known to be due to a competition between the conditions imposed by the
boundaries and the bulk mechanism which favors parallel rolls.®=17 An overall trend that
one notices in the convective flow is the decrease in the roll wavelength with increasing .

The wavelength for parallel rolls is defined as the distance from one up flow (down flow)
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region to the next. Scaling that distance by the cell height d and converting to a wave
number q = 2nd/A.

In Fig. 5 the measured wavenumber is plotted versus §? and shows reasonable agree-
ment with the predictions of the linear theory. The finite size of the cell causes variation
in the wavenumber in each pattern. This distribution is reflected in the error bars in Fig,.
5. There is also some variation in ¢ between points so that the wavenumber may not
correspond precisely with the critical wavenumber. Even so the measured wavenumbers

follow the predicted dependence on €2 quite well.

As ) increases both small quantitative and distinct qualitative changes take place.
For {1 < 6, some small changes occur but the basic pattern remains qualitatively the same
as the 0 = O pattern. For 2 = 10.42 time-dependent motion of defects is observed. The
defects, primarily located close to the walls and nucleated in one of the focus singularities,
are dislocations which move counter to the direction of rotation (rotation here is counter
clockwise). The dynamics of the defect motion is shown in Fig. § where one can see a
pair of dislocations propagating along the right hand side wall and some roll reorganization
near the central disclination point. Defect dynamics of a similar nature persists indefinitely

with no obvious periodicity.

A further increase in 2 to 16.12 brings about a qualitative change in the convective
pattern. Instead of a pattern with the symmetry of the nonrotating one, there are parallel
rolls in the central region with defects on the opposing sides. In addition the defects act
to produce a discrete reorientation of the straight rolls in the central region. This discrete
angular change suggests the Kiippers-Lortz instability and is illustrated in a sequence of
images seen in Fig. 7. The mechanism for the pattern reorientation is shown in Fig.
8. Defects radiating from the wall regions are oriented at some angle with respect to the
central region. The defects grow and erode the central rolls, leading to a reorientation along
the direction of the defects. The reorientation mechanism produces discrete changes in,

rather than a continuous precession of the central roll structure. The patterns which have
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parallel rolls do not exactly recur after 2 recrientation nor is the period or angle change
constant between the discrete angular ¢ rientations. There are, however, characteristic
periods and angle changes at each rotation rate. The angular change in the patterns in
Fig. 7 1s 63° £ 3° averaged over 8 reorien‘tations. The average period 7 decreases rapidly
with increasing §2, Fig. 9.

The apparent divergence with decreasing Q suggested plotting 1/7 and indeecd this
frequency has an approximately linear dependence on Q with a zero frequency intercept at
. = 13.5. We identify Q. as the critical Kiippers-Lortz rotation frequency, appreciably
less than the theoretically predicted §2, = 20.5 for o = 6.8.

Discussion

The predictions of linear stability analysis for the marginal stability line and for the
critical wave number are in quite good agreement with experimental data. Qualitative
features of the Kiippers-Lortz transition in the nonlinear steady state are also obserired.
In particular there is a discrete angular reorientation of the convective pattern for 2 > 16,
see Fig. 3, with an average angle of about 63° £ 5° and an aperiodic switching between
orientations. The switching time diverges at a critical rotation Q. = 13.5, Fig. 4, in
qualitative agreement with the Busse 3-mode model for rotating convection above the
critical rotation rate.

More direct comparisons are complicated by the finite aspect ratio of our convection
cell. As in non-rotating cylindrical cells, 2°=22 the competition between the straight rolls
preferred in a laterally infinite system and the sidewall boundary conditions force com-
plex patterns with defects of various types. Time dependence can be produced by local
wavenumber distortions which produce wave numbers outside the stable region.?® Defects
are nucleated in regions of high distortion, propagated away and disappear in some other
region of the cell. In nonrotating fluids it is the skew-varicose (SV) instability which nu-

cleates the local defects. Croquette has reviewed most of the available literature on this
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problem.?*

Applying similar arguments to the rotating convection problem helps in the under-
standing of several features of the data. The observed Q) = 135 s appreciably less than
QY =205 predicted by Kiippers for ¢ = 6.8. There is also time dependence for 2 < ole)
consisting of nucleated defects which propagate around the sidewalls, always counter to the
direction of rotation. This time dependence probably arises from local wavenumber distor-
tions whi‘ch cause unstable wavenumbers outside the Kiippers-Lortz instability boundary,
Fig. 1. This comes about as the KL instability moves inside the SV boundary at high
wavenumber. A good reason for believing that this is the KL instability is that the pro-
gressive formation of these defects at slightly higher € nucleates the angle reorientation
characteristic of the infinite system KL state, Fig. 4. The lower Q. for experiment is
therefore likely due to a finite size effect causing wavenumber distortion and local insta-
bility. Since the KL boundary is shrinking rapidly with increasing §2, a distribution of
wavenumbers will nucleate an effective transition below Q.

Some of the linear and nonlinear theoretical predictions for rotating Rayleigh-Benard
convection have been confirmed by this experimental study. Many questions remain to be
answered. The mechanism for the propagation of defects counter to the rotation directions
is not understood. Quantitative questions regarding the KL transition below the predicted
QE” remain: how does the transition depend on aspect ratio and how does Qte) vary with ¢?
What is the distribution of wavenumbers for experimental patterns? How do experimen-
tally determined stability boundaries experimentally compare with calculations of Clever
and Busse? Is the 3-mode model for the KL transition a good enough approximation to
describe experiments? What is the nature of the interscction of th¢ KL transition line and
the marginal stability line?

These unanswered questions suggest future experimental work, some of which we are
investigating. We hope that these experiments will encourage theoretical work on this

fascinating convective system.
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Figure Captions

Fig. 1. Parameter space R/R.(0) and Q for rotating Rayleigh-Benard convection.
Fig. 2. Schematic of convection cell.

Fig. 3. Stability diagram in parameter space of R-R. and q-q. for rotation rates 2 = 0
(—), Q=10 (" ), and © = 15 (- — — — ——) after references 4 and 10.

Fig. 4. Nu vs. e = R/R.(Q) — 1 for Q = 0(0), = 6.1(z), Q = 16.2(0).

Fig. 5. Optical shadowgraph visualization at ¢ = 0.3 for successively higher rotation rates:
a) 2 =0,b) Q =258, ¢) 2 =5.51,d) Q = 10.42, &) Q = 16.12, f) Q = 20.80, g) L = 24.72
and h) = 51.07.

Fig. 6. Pattern wavenumber vs. ) for small € = 0.4, solid line is linear stability result for

critical wavenubmer from reference 20.

Fig. 7. Patterns showing defect motion on cell boundaries. Time is scaled by vertical
thermal diffusion time d 2/, = 170 sec. The direction of rotation is counter clockwise

while the motion of defects is always clockwise.

Fig. 8. Patterns showing discrete angular reorintation of rolls, Transition time is not

periodic but has an approximate period of T = 5.

Fig. 9. Patterns illustrating reorientation mechanism for central region due to defect

motion.

Fig. 10. Dimensionless switching time T (frequency T7!') vs. Q. Time is in units of

7« = 170 sec. The intercept of the frequency curve gives Q) =135,
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