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We review the status of Green's Function Monte Carlo (GFlVIC) methods as applied

to problems in nuclear physics. New methods have been developed to handle the spin

and isospin degrees of freedom that are a vital part of any realistic nuclear physics

problem, whether at the level of quarks or nucleons. We discuss these methods and then
summarize results obtained recently for light nuclei, including ground state energies,

three-body forces, charge form facto2s and the coulomb sum. As an illustration of the
applicability of GFMC to quark models, we also consider the possible existence of bound

exotic multi-quark states within the framework of flux-tube quark models.

Introduction

Only withinrecenttimeshasitbecome possibletosolverealisticfew-bodyproblemsaccurately

innuclearphysics.Althoughtheseproblemshave a longhistory(oneofthe firstGreen'sfunction

Monte Carloapplicationswas tos-shellnucleil),the highlynon-perturbativenatureoftheinter-

actions,alongwith theirstrongstate-dependence,keptfew-bodyproblemslargelyout of reach.

Withinthelasttenyears,theseproblemshave beensuccesfullyaddressedby severalcomputational

techniques.Faddeev methods,in particular,havebeen veryvaluablein solvingthree-bodyprob-

lems.In thislectureI willaddressthe currentstatusof Green'sfunctionMonte Carlo(GFMC)

methods as applied in nuclear physics.

I will first discuss the application of GFMC methods to light nuclei, and then review a few

intriguing new results obtained in flux-tube quark models. To a large degree, the Monte Carlo

tect, niques involved are the same, although of course different motivations underly the two areas.

In light nuclei, we are interested in studying problems such as three-nucleon forces, two.body

correlations and exchange currents. These calculations are all undertaken within a framework of

nucleons interacting through a complicated, primarily meson-induced, interaction.

In the latter case, our goal is to obtain a qualitative understanding of the underlying field theory

in the low energy and momentum regime typical of problems in nuclear physics. Toward this end,

we examine flux-tube quark models which are based upon the strong-coupling limit QCD. We have

recently employed GFMC techniques to study the so'called 'exotic' states in the flux-tube model;

we find them to be unbound in the extreme strong-coupling limit. Many experimental searches

for these particles are currently underway; for example the H particle search at Brookhaven. The

presence or absence of these states experimentally may provide us with information concerning the

applicability of the strong-coupling limit.

Nuclear Hamiltonian & Monte Carlo Methods

First, consider solving the non-relativistic Schroedinger equation for a few-body nucleus:
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Variational 2 (vMC) andGreen's Function Monte Carlo 1,3,4 (GFMC) methods have proven to

be very valuable in the study of light nuclei. These methods have for the most part originally been

developed in condensed matter physics, where they have been used to study quantum fluids and

solids. 5,8 The Hamiltonian in nuclear physics is at least superficially similar to these condensed mat-

ter systems, as it consists of a very strong short-range repulsion coupled with long-range attractive

terms.

The nuclearHamiltonian,though,iscomplicatedby the strongstate-dependenceoftheinter-

action.We willconcentratechieflyon theArgonner NN interaction,which may be written:

= vk(,',j)oii (2)
kj<i

where the operators O are

0 ,k.= l,tr_ Sij,L SiiL. S.2.,j .ai, • , u,L_i (3)

multipliedby eitheran isospin-independent(I)or-dependent(vi"ri)operator.Intheseexpressions

(7and r representthespinand isospinofa nucleon,Siiisthetensoroperator(S_j= 3tri.rijtri'

i'ii-tri"tri),and Liiistherelativeangularmomentum ofnucleonsiand j,,Allmodern interactions

( Argonne,r Bonn,s Nijmegen9 ...)may be writtenin a similarmanner, althoughthe choice

ofnon-localoperatorsvaries.These interactionsconsistof a one-pioninteraction(whichhas a

strongtensorcomponent) at longdistances,an intermediaterangeattraction,and a,short.raalge

phenomenologicalrepulsion;theyarefittodeuteronpropertiesaswellastwo-bodyscatteringdata.

In a similarspirit,thethree-nucleon-interaction(TNI) at longdistancesisassumed tohave the

structureof a two-pion-exchangeinteraction,but itsprecisestrengthisadjustedto fitthethree-

body bindingenergy.I°The fullTNI consistsofthetwo-pionexchangepieceV2, and a short-range

repulsiveterm:

Viik = U0 _W2_(r"u)W2,r(,,k)" + Ao _-_ V2_(_j, _k), (4)
cyc cy¢

where the sums run over cyclic permutations of the particles, and the function W2,r has the range

of a two-pio_ interaction. The parameters U0 and Ao can be estimated from calculating the effects

of suppressing A degrees of freedom, but their precise values are determined by fitting the binding

energy of A=3 nuclei. The three-body force is quite small compared to the two-nucleon interaction,

but nevertheless provides an important fraction of the total binding energy.

Variational Monte Carlo (VMC) studies of light nuclei often employ a generalized Jastrow form

for the wave function:

,_)=S(i<_j)Fij[_ ). (5)

In this equation, (I) is an anti-symmetric Slater determinant of one-particle states, and the Fij are

pair correlation operators:

k



equations of the general Iorm:

[- h-:"V2 + v(r) + A(r)]F = 0, (7)
m

where the function A contains several variational parameters. The u3 correlation in equation 6 is

a three-body term which reduces the strength of the operator-dependent two-body correlations for

some configurations of the nucleons. 2 The complete wave function _ is constructed to have the

correct asymptotic properties as one nucleon is separated from the system.

The straightforward variational Monte Carlo algorithm is limited to treating small systems,

optimistically up to A _ 8. For the spin-independent interactions in condensed matter physics,

it is possible to simulate one to two hundred particles. For the interactions of interest in nuclear

physics, however, the problems are much more complex. The wave function of a nucleus consists of

2A_. spin-isospin components, the first factor represents the spin (up or down for each nucleon)

and the second the isospin. These states are explicitly summed in light nuclei.

This wave function (Eq. 5) is adequate for many purposes, yielding ground state energies within

a few per cent of the Faddeev values for A=3. It also gives similar results for the electromagnetic

form factors, n Further improvements are possible by including L. S correlations and three-body

terms, n For other purposes, though, especially for the study of three nucleon interaction terms in

the Hamiltonian, it is necessary to develop exact methods.

Since we are interested in projecting out the ground state of the system, GFMC methods offer

attractive method for determining the exact solution. The ground state is projected through:an

I_0) = lim exp(-Hr)l_T/, (8)
7"'*00

where I_T/ is an initial t:ial state, for example the Jastrow wave function described above. In

general one cannot compute exp (-Ht), but by dividing the propagation time r into many small

steps/Xr:
n i,

exp(-Hz)= Hexp (-HAt)=/G(/_.,/_._,) ....G(/_I,/_o) (9)
1

thefullpropagatorcan be evaluatedby Monte Carlo.In practice,one must useseveraltimesteps

Ar and extrapolate to /Xr = 0 in order to eliminate time step errors associated with the non-

commuting nature of the kinetic and potential terms. Since the potential is not merely a number

here, but takes on different values in various spin-isospin channels, it is not clear how tO implement

the exact sampling schemes used for state-independent potential problems in atomic and condensed-

matter physics. A state-independent potential can be incorporated into an equation for the exact

Green's function as a probability for absorption, and hence used to terminate a random walk. The

fact that the potential is more complicated here means that various short-time approximations to

the Green's function are valuable. 13 In our GFMC calculations, we use time steps on the order of

1 - 5 × 10-4 MeV -1, which yield very small extrapolations to zero time step.
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In this equation, the full G for 3A coordinates is approximately given by the free particle propa-

gator (a gaussian)times a product of all pair propagators divided by their respective free particle

propagators. The simplest approximation to the ratio in equation 10 is, of course,

gij/g°j : exp[-(AT"/2)(V_j(r) "FV_j(r'))], (11)

where V, and consequently gij, are operators in spin-isospin space. Exponentiating the momentum-

independent terms in the two-body potential is rather straightfow_rd; momentum-dependent and

three-body terms are generally small and a linear approximation to the Green's function can be

used.

In fact, we employ a generalizatio n of this expression, using a_tithetic sampling techniques to
[

sum over a variety of 'sub-paths' in 0rder to determine the full two-body Green's function. One

could Mso employ the methods used by Ceperley and co-workers 14 to evaluate the pair Green's

function analytically. Here, though, this technique is not as valuable as in studies of bulk-helium.

There are two reasons for this difference between condensed matter and nuclear problems. First,

the core repulsion in nuclear systems is comparatively soft, so that simple approximations to the

two-body propagator are not as bad. In addition, the strong state-dependence of the interaction

implies rather large three-body effects, since the potentiM acting between various pairs does not

commute. Thus, equation 10 is not as effective an approximation for the full Green's function. One

simple indication of the importance of three-body spin-dependent effects is the difference between

Jastrow variationM calculations and exact results. For the 3-body problem with central interactions,

variationM calculations and exact methods give ground state energies that agree within 0.02 MeV;

for more realistic interactions the difference is 0.3-0.5 MeV.

Incorporating momentum-dependent interaction terms in GFMC calculations is more difficult.

Realistic models of the NN interaction do contain such pieces, including I,. S,Z. S2,L 2, and

pi2joperators. To date, we have only been able to include the first of these operators, L. S,

successfully in the exact GFMC algorithm. The difficulties in treating the second-order derivatives

term are discussed in reference 13, and are essentially due to the fact that the nucleons gain different

effective masses in the different spin-isospin channels. Of course, incorporating state-independent

but momentum-dependent terms is feasible. It may be feasible t;o employ point symmetry group

methods to treat at least a few higher-order partial waves with GFMC, although the statistical

errors associated with this proceedure may be prohibitive.

The ArgOnne interaction, though, has been constructed to some degree with the idea that these

terms should be small. In fact, the expectation value of the sum of these terms in light nuclei

is only one to two MeV. Consequently, we solve exactly for a modified Argonne "V8(containing

only the eight operators through L. S) interaction which best approximates the full Argonne V14

model. This model reproduces the deuteron, the singlet S, and triplet P waves (with the exception

of coupling to F waves) exactly. Perturbation theory is then used to estimate the difference between



Ground State Results for Light Nuclei

I will first present a new set of results for the alpha particle with the Argonne V8 NN interaction

plus Urbana model 8_TNI. 15 The GFMC method converges very rapidly for the alpha particle, as

demonstrated in figure 1. This figure shows the ground state energy plotted as a function of the

total iteration time r. The variational energy is shown at r = 0; the energy then quickly drops to

the exact ground state energy. In fact, the plot covers only the initial part of the calculation, up to

a total iteration time of 0.012 MeV -1. The actual calculation includes 5 times as many iterations to

generate additional statistics, the horizontal lines in the figure are statistical error bounds obtained

by averaging the results between 0.024 and 0.060 MeV -1. Other quantities, of course, may not

converge as rapidly as the energy. In this case, the energy converges very quickly because (1)

there are no bound excitations in the four-nucleon system, the lowest resonance is approximately

20 MeV above the ground state, and (2) the primaxy deficiencies in the wave function seem to be

' short-range high-energy excitations.

q

o

!

• .

_o.

uS'
°

I I ' ' '"1 I I I " ! I

0.000 0.002 0,004 0,006 O,OOll 0.010 0,012

Figure 1) Alpha Particle Ground State Energy vs. iteration time r.

We obtain a ground state energy of -29.20 4- 0.15 MeV for the Argonne V8 plus TNI model 8

interaction, approximately one MeV overbound compared to the experimental -28.3 MeV. Using

first-order perturbation theory, we estimate the difference between the Argonne V14 NN interaction

and the V8 model is 0.9 MeV; yielding a total energy of-28.3 =t=0.2 MeV, in remarkably good

agreement with the experimental result.

Hence, it appears that the same three body force can be used to provide very accurate binding

energies for three and four-body nuclei. The Urbana TNI model 8 was constructed to provide a

good fit to the triton binding energy, ]6 Faddeev results give -8.46 compared to the experimental
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energies of these nuclei as well with an appropriate TNI model.

The variational wave function used in this calculation was optimized for the Argonne V14 plus

Urbana model 7 TNI. 4 Consequently, it does not provide a very good estimate for the ground state

energy with the model 8 TNI, which has a stronger repulsive component and a weaker two-pion-

exchange term. However, the rms radius of this trial wave function is very near the exact result,

hence it requires smaller extrapolations for the estimates of other properties. GFMC produces a

wave function only in a statistical sense, and hence ground state energy expectation values other

than the energy are extrapolated from 'mixed' and variational estimates via:
i

, !
( olHlmo) ( TlOlr). j (12)

!/

The extrapolationsrequired with the present variational wave function are generally quite small.,

The most accurate variational calculations to date12give a binding energy approximately one MeV

higher than this GFMC calculation.
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Figure 2) VMC and GFMC results for the proton density in the alpha particle.

We have also computed the proton density for both the variational and GFMC wave functions

(Fig; 2). In the impulse approximation, the charge form factor of the nucleus can be obtained

as the fourier transform of the one-body charge distribution. The GFMC one-body density has a

slight dip in the core which does not appear in the variational results. This dip is associated with

a very small region of phase space, and consequently does not affect the rms radius or charge form

factor significantly at small momentum transfer. It does make a significant difference, though, in

the region near and beyond the first diffraction minimum.



contributions to the charge and current operators. In particular, the importance of pion exchange

currents has been know for a long time. lZiska 17 has developed a method for constructing models

of the exchange currents which satisfy the continuity equation:

+ i[v j,p]= 0

with an arbitrary potential Y_j. This equation is used to constrain the 'model-independentl exchange

currents. In addition, there are transverse pieces in the current ( e.g. NA7,pTr7 , and WZrT)which

are not so constrained. Using this method, Schiavilla and Pdska have computed the magnetic form

factors of 3He and 3H, as well as the backward cross-section for the electrodisintegration of the

deuteron. Their results a good agreement with experiment up to quite high values of momentum

transfer.

They have also computed the charge form factors of the three'body nuclei, is and obtain good

agreement with experimental results. The charge operators are more speculative since they involve

relativistic corrections and are not constrained by the continuity equation. However, in the alpha

particle some of the uncertainties are decreased because of the i_oscalar nature of the system. We

have combined the fbllowing one-body charge operator: _

q2 1 s
p,(q) = [1 8m2l'_[GE(q) _ G_(q)rz]

-i a .q.8_m"_xP 21([GS(q) _ 2GS(q)]/+i [Gr(q) - 2GV(q)]rz }' (14)

incorporating the Darwin-Foldy term and a small L. S correction, with a two-body charge operator

due to pions: ,, "' :

' 3

p,(q) = _m{[FlS(q)r,.rj + FiV(q)rjr] (a, .qaj. kj)_(kj)+

[FlS(q)ri.rj + FlV(q)riz] (aj.qai . ki)O,(kl)} (15)

to calculate th¢ charge form factor of the alpha particle. This form of charge operator was first

considered bY Kloet and Tjon in examining pion photoproduction) 9 We have also included the

remaining terms of SchiaviUa and Riska, but their effect is an order of magnitude smaller than the

terms above up to a momentum transfer of _ 5.5 fm -1.

Figure 3 illustrates the contribution of one-body and pion-exchange terms to the charge form

factor. As is apparent in the figure, the VMC and GFMC results give nearly identical results for the

exchange currents. However, the one-body terms do show a significant difference in the i'egion of

the second maximum. This difference is a result of a sensitive cancellation in the lburier transform

(it is down by two order_ of magnitude from its value at k = 0) and hence small chang_,s in density

can produce large effect:s.
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'= charge form factor.

The fullcalculationsarecompared toexperimentalresultsinfigure4. The GFMC calculation

isin excellentagreementwith experimentalresultsup to a mo_ntum transferof _ 4.5fm-I.

Beyond that point,the calculatedform factorissiguificantly!¢rgerthan experimentalresults.

Nevertheless,the overallagreementisexcellent,particularlyat lowermomentum transferswhere

one would expectthetheorytowork best.
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Figure 4) Alpha particle charge form factor, experimental and calculated.



where RL is the longitudinal response of the nucleus and GE isthe proton form factor. The integral

extends from energies just above elastic scattering to infinity, which allows us to use closure to

calculate the Coulomb sum as a ground state expectation Value.

i [ A A [ZFc(q2)]2 (17)
S --'_ L(°IZPr(q) _pk(q)lo)- [GE(q2)]2 ,j=l k=l

' where

Pk(q) = exp(iq, rk)[ ,1"+'2rzkI (18)

if we ignore small neutron contributions (which are included in the calculations) and two-body

terms. In this approximation, the Coulomb sum is simply:

S = I- Z [Ft(q2)]2 I
[GE(q2)] 2 + _ppp(q), (19)J

where Fc is the charge form factor of the nucleus and ppp(q) is the fourier transform of the two-body

distribution function integrated over the pair's center-of-mass.

Figure 5 compares the theoretical and experimental calculations. Since experiments extend

only to a finite energy, they have been extrapolated using energy- and energy-squared weighted

sum rules by SchlaviUa et al.20al using variational wave functions. The contributions of this tail

region are given by the difference between the points labeled 'extr' and '_runc'; the latter includes

only the response up to the experimental limit. As shown in the figure, the VMC and GFMC

curves are nearly identical, and both agree very well with the extrapolated results.
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Figure 5) Coulomb sum in the alpha particle.



penmen_aa Ppptq) is mucn nigher oeyona _ne nrs_ minimum. 1ms woum lnuica_e even a s_ronger

correlation in the protons than is present theoretically, but contributions of two-body operators to

the Coulomb sum should be included before strong conclusions are drawn.

We seem to have in hand a theoretical picture of light nuclei that Js consistent with a wide

range of nuclear properties. This picture relies upon the importance of three-body forces and also

of exchange current contributions to the electromagnetic properties Oflight nuclei. Several avenues
i ,,

for futureresearch remain open, however. In particular, the effect of relativistic dynaxctics may be

important. This could in principle be studied with light cone methods, but little tlas been done to

date with realistic interaction models. In addition, of course, one would liket 0 study heavier nuclei

to determine w,hether their properties can also be explained within a consistent scheme.

Low- Energy Scattering

The five-nucleon system is particularly interesting in this regard. Although there are no five-

nucleon bound states experimentally, the J_ = I/2- and 3/2- states do exist as sharp low-energy

resonances. In the simplest picture, these states are one-body p-wave scattering off an alpha p_.rticle

core; with an L. S splitting describing the difference between the J=l/2 and 3/2 states. These

states have been studied variationally_by enclosing the system within a spherical box, 23 and then
i

matching the asymptotic wave function to the nodes at the boundalies of the box. Variational ,

calculations of the five-body system give fair agreement with experimental results for the 1/2 state,

which is somewhat higher in energy, but indicate that the Hamiltonian is not attractive enough in

the J=3/2 channel.

Other methods are available for extremely low-energy calculations or calculations in non-
i

resonant channels. By specifying the logarithmic derivative at the boundary and then minimizing

the energy with respect to changes in the variational wave function, the scattering length (and

effective range)can be d.etermined, something that is often important in the study of astrophysical

reactions. This methofi h_ recently been used to study the thermal capture of neutrons by 3He, a

very interesting reacti!_n in that it is dominated by two-body currents. 24 The impulse approxima-

tion (one-body currents only) would give a zero cross section for this reaction in the absence of the

te:_s0r force due' to a pseudo-orthogonality condition. Even with the fairly strong tensor forces in

the Argonne V14 + TNI 7 model, we find that the impulse approximation gives only _ 10% of the

measured cross section. These same methods are currently being used to study the weak-capture

reaction in the four-body system. 25 This reaction produces the highest-energy end-point neutrinos

from the sun, aud it might be feasible to distinguish their contribution to the total flux in future

solar neutrino observatories.

I have described these methods in terms of a one-channel problem. In principle they can also

be applied to many-channel problems, in which case one specifies the boudary conditions in all

channels. The solutions thus obtained are called eigenphase _olutions, and are characterized by the

fact that they correspond to zero net flux in each channel (and hence do not correspond directly



Each of these methods can be employed in GFMC c

wave function can be specified by using the well-kn0_

The same idea can be used when fixing the logarithmic

flux enter!ng the internal region from the scattering ws

magnitude of the image as well as its distance from the

the wave function at the surface has a specific logarithm

are currently Being undertaken for 5He in order to vet

calculations.

GFMC and Flux-Tube C

Another area in nuclear physics where Monte Carl,

stituent quark models. These models are designed tos

with a limited number of degrees of freedom. It is hop

of the behaviour of the underlying field theory with tt

spectral properties of mesons and baryons and also th_

Of course, lattice QCD algorithms are steadily ps

this volume. It may be possible in the fairly near 5

QCD, for example the lowest-lying hadronic massesi f

theory. Nevertheless, simple phenomenological quark

the structure and excitation properties of hadrons.

In particular, we examine flux-tube quark models bl
I

In the past, these models have been used to describ

produce spectra which are generally in good agreemel

work on the so-called 'exotic' states in the flux-tube m,

q71pairs or qqq triplets. Predictions of bound exotic

H-particle originally proposedby J affe, 2s a six-quark

nature of confinement plays a vital role in these calcul

Predictions of the H and other exotics must, to s0I
,

inherent in the various models. In particular, a mea_

the confinement picture of many models, 2s-32 includiz

hadrons (MQH) having 2q 271,4q - 7t, and 6q statesl

confinement mechanism. These 'exotic' multi-quark

within this model.

In the flux-tube quark model it is assumed that t

stringlike tubes joining the quarks. A flux tube starts t

i, and three flux-tubes ij,k can end or start from an

junction. The resulting flux-tube patterns for the fan



Y-junction and two a_ti-quarks or quarks.

Figure 6) Possible flux tube configurations states of 2 to 6 quarks.

The quarks are treated as semi-relativistic spin 1/2 Pauli particles. In contrast, bag 2s-31 and

other mean-field 32'33 models treat quarks more accurately as relativistic Dirac spinors. We solve

for eigenstates of a Hamiltonian Hq with three terms involving only quark degrees of freedom:

HQ - Ho + HF + Hl, (20)

where H0 is the relativistic kinetic energy of the quarks:

go = _ (m_ + p_)1/2. (21)
i=l,N

The confining interaction HF represents the energy of the flux tubes. It is obtained by minimizing

the total length of the tubes for any given position of the Y-juuctions. If L is the minimum length

for a configuration {ri,i = 1, N} of the quarks, the energy is:

HF = v/'_L(ri)- hr_/. (22)

The factor vfa is the string tension of the tubes and dM is a constant term. When fitting mesons

and baryons, this constant appears to be proportional to N, :_ce it is natural te associate them

with the free ends of the tubes.

Iii represents the short range one-gluon-exchange interaction between the quarks. It consists

of a Coulomb, spin-spin, tensor, and spin-orbit terms. Our primary interest here is in low.energy

S-wave hadronb in which the tensor and spin-orbit interactions are not very important. Hence, for

the sake of simplicity, we use

, , { (2a)
Hl=acid< j _ F aFa 1 2ra= !,S rij



vertex Iorm Iacmrs, so _na_

2 )3 exp( r2= - (24)
The interaction parameters used are obtained by fitting the masses of light mesons and baryons. 27

r

The interpretation of this model is trivial for qq and 3q states, however things are not as simple

for N >_4. Three different flux-tube arrangements axe possible for the 2q- 2q state, as shown in

figure 7. Even when the quark positions axe the same, in the extreme strong-coupling limit the

states ]I), III), and [III) are orthogonal to each other due to differences in the link operators (flux

tubes). They have different flux topologies, and hence are not coupled by the Hamiltonian HQ.

1 1 1 _ 1 ,,

o o

o _ _
2 2 2 2 2

II> III> lm:,

Figure 7) The three flux tube configurations for 2q- 2q states.

Of coursea more realisticQCD IIamiltonianwould have othertermsinadditionto HQ. One

suchtermisa string-breakingtermwhichcouplesstateswithdifferentnumbersofparticles.Models

forthisterm have been usedto studythedecayof mesons intotwo mesons,34 the meson-baryon
_

couplings,35,36and theA _ N-{-Trwidth.3vltgivessecond-ordercorrectionstothehadronenergies3r

which can partlybe absorbedintothevaluesof theparameters_'o:and SM. HB can couplethe
l

four-quarkstates[I)and III)in4thorder,ltcannotchangethenumber ofY-junctions,and hence

doesnotcouple]III)to eitherII)or III).

There shouldalsobe a term whichcreatesordestroysclosedplaquettesoffluxtubes;thisterm

can createor annihiliateY-junctions.The effectofthisterm on hadronspectroscopyhasnotbeen

studied.In thelimitthatthequarkmass islargeone can takethepointofview thattheseterms

can changethefluxtopologyfasterthanthemotionofthequarks.Inthislimitone may be ableto

usethetopologythatgivesthelowestHF fora givenconfigurationofquarks,ashas beenassumed

insome models.3sIn thepresentworkwe assumethatforlightquarksitismore reasonabletostart

withHQ and treateffectsofHB and Hp perturbatively.

Therearealsosome novelanti-symmetryrequirementsimposedby thisHamiltonian.Obviously,

a specificconfigurationof flux-tubes;forexample quarks(1,2),(3,4),and (5,6)pairedtogether

withinY-junctionsina 6q state;does not describea fullysymmetricHamiltonian.In fact,in

strongcouplingQCD stateswithdifferentpairingsareingeneralorthogonaltoeach otherby the

same argumentsgivenabove.Thus,thereisno specialanti-symmetryrequiredbetweenquarksin



of quarks are exchanged.

Quark Model Calculations

We have studied the MQH states in the flux-tube tnodel with both Variational Monte Carlo

(VMC) 26'2"rand Green's Function Monte Carlo (GFMC) 44 methods. For the most part, the algo-

rithms are very similar to those used to study light nuclei, here I only briefly discuss the variational

wave functions and the few novel techniques required.

Our choiceof variational(triM)wave functionsforthe 'exotic'hadrons(statesin which all

quarksareconfinedintoone regionby fluxtubes)was guidedby previousstudiesofthe mesons

and baryons.Initially,we consideronlythelowest-energyspatialwave function,determiningthe

loweststateofthespin-independentHaxniltonian;thesum ofkinetic,flux-tubeand colorcoulomb

energies.The symmetry requirementscan thenbe satisfiedby an appropriatechoiceofspin-flavor

wave functions.Forthe2q - 2q system,the spatialpartofthewave function_T is:

_T- f(ri2)f(r34)F(R12, R34) (25)

where particles 1 and 2 are quarks and 3 and 4 are anti-quarks The fij are functions of the

distance between particles land j, and have the same functional form used previously in the meson

and baryon studies:

f(r) = r _ exp[-w(r)(71r + 72r 2) - (1 - w(r))vi.srLS]. (26)

The factors 7 and the constant di are variational parameters, and w(r) is a Woods-Saxon function

whose strength and range are additional variation parameters. This form interpolates between a

Coulomb-like solution near the origin to the behavior appropriate to a linear potential at large

separations. The function F describes correlations between the center-of-mass of the quarks (1&2)

and the anti-quarks (3&4), and it is chosen as:

F(R) = exp[-%Rl's]. (27)

The constant % is an additional variational parameter.

The spatial part of the trial functions for the other systems are similar; pair correlations between

quarks attached to the same Y-junction are multiplied by correlations between the central junctions

themselves. For example, the six-quark wave function is given by

_T = f(r12)f(r34)f(rs6)F(R12, R34)F(R12_Rse)F(R34, Rse)[1- flVz(R, lz,R34,Rse)]. (28)

The quarks 12, 34, and 56 are paired in this wavefunction, and we use the same form for the

two-body correlations f and the pair center-of-mass correlations F as in the 2q - 2q case. The last

term in this expression is a small three-body correlation _between the centers-of-mass of the pairs,

its functional form is the same as the three body correlations used previously in studies of the

baryon wave function. The (1 - flV3) correlation is an attempt to incorporate the most important



typmaUy wltlnnnearlyone stanclarclerrortw 2o MeV) oltheexact_t Ivlt_result.

I willnot describethespin-flavorpartsofthewave functionshere,theyarepresentedindetail

inreference43.I merelynotethatitisenergeticallyfavorableto couplequarkspairedtothesame
r:

Y-junctionto a totalspin0;thesequarksaremore stronglycorrelatedby theconfininginteraction,

hence they are most affectedby the hyperfineinteraction.For example,in the H-dibaryonall

thepairedquarkscan be coupledto spin0,givinga more attractivehyperfineinteractionthanis

presentintwo isolatedbaryons.

Evaluatingthetwo-bodypotentialtermsisstraightforwardusingtraditionalMonte Carlometh-

ods;_,hemany-bodyconfininginteractionisonlyslightlymore complicated.For example,given

a specificsetof quark coordinatesinthesix-quarkstate;we guessthe positionofthecentralY-

junction(figure6). The positionof the remainingY-junctionsthenbe determinedalgebraically

usingtheformulasgiveninreference26. The remainingtaskisto minimizethe totallengthby

varyingthe positionofthe centralY,junction.The simplexmethod works quitewellhere,and

typicallyrequiresoftheorderof10 iterationstoprovidea veryaccuratepotentialenergy.

We alsoneed toevaluatethepropagatorforthesemi-relativistickineticenergyoperator,aswell

as devisinga method forevaluatingthekineticenergyin a variationalcalculation.Thisoperator

involvesallpowersofthem°mentum; hencethefree-particlepropagator

(_TIexp(-_/(p_+ m_)Ar)l_r) (29)

isnon-localincharacter.The freeparticlepropagatorisgiveninreference44 :

41r /_a2 K2[a(1%/_2)1/2], (30)= R (1+Z2)
with

hcAr

Z =
= mn/h. (31)

The propagation distance is R, and K_ is a Bessel function of order two. This propagator has

a long-distance tail that decays with the Compton wavelength of the particle. The rate of decay

is independent of time step, but the amplitude of the tail is proportional to Ar. In the long-

time (low-momentum) limit, it coincides with the non-relativistic propagator, as expected. The

semi-relativistic propagator is only slightly more difficult to sample than the gaussians used in

non-relativistic calculations. When calculating the expectation value of the kinetic energy, it is

possible to determine the propagator terms linear in Ar analytically, and hence sample the kinetic

energy without introducing any approximations.

The spin-independent Hamiltonian contributes the dominant terms in the energy, therefore we

initially consider the results for this simplified Hamiltonian. The results are summarized in figure

8, their most striking feature is that each additional particle added to the system raises the energy

by a roughly constant amount. The additive constant is large (,._ 540 MEV), and hence the exotic

MQH states are four to five hundred MeV higher than states composed of two isolated hadrons.
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exactly the same axiditive effect would be predicted in simple the simple di-quark picture.
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Figure 8) Lowest single-hadron energy vs. number of quarks and anti-quarks,

Of course, the hyperfine interaction must be included in any reasonable calculation. The

strength of the hyperfine interaction has been adjusted to roughly reproduce the experimental

N - A splitting of ,,_ 290 MeV; with these paraarteters we obtain a splitting of .27 GeV. Other

effects, including coupling to pions (string-breaking) may also contribute _ 0.1 GeV to this split-

ting. zr This model reproduces the experimental lr - p splitting of 630 MeV, however the pion has

a rather small energy of 55 MeV.

Consider the six quark systems; both the S=0 H dibaryon and a proposed S=3 exotic six-quark

state. In the latter, of course, the hyperfine interaction is repulsive. However, if the six-quark state

is larger in spatial extent than the spin 3/2 baryon, the hyperfine interaction may be less repulsive.

Hence, this state is a possible candidate for a bound exotic. The results for these systems are given

in Table 1.

Table 1' EnergiesofSix-QuarkStates

State Ene.r.gy.

2xs 2.00li
eq(S=o) 2.30II
2xA 2.54II
6q(S = 3) 2.99 ]]

Green's function Monte Carlo results for the two hadron and MQH 6 quark states with the full

interaction, assuming SU3 symmetry.
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spin-dependent term, while the H dibaryon gains _ 500 MeV. This shift is close to what one would

expect from first order perturbation theory. The 3q baryons have one S=0 pair each, thus their

total energy shift is roughly equal to the N - A splitting. The H-dibaryon has three such pairs,

and consequently gains an energy of nearly 1.5 times the N - A splitting. However, this additional

attraction is not nearly strong enough to overcome the much higher energy of the 6-quark state in

the confining potential; indeed the full calculation reveals that the energy difference between the H
;

and two baryon states is 300 MeV in the SU3 limit. Including the affects of a larger strange quark

mass only increases the mass of the H relative to the two isolated baryons.

Next, consider the proposed S=3 dibaryon. In this case the two isolated baryons (As) are

pushed up approximately 200 MeV by the hyperfine interaction. This shift is somewhat smaller

than that of two nucleons due to non-perturbative effects in the nucleon channelfl r The energy shift

in the six-quark state ( _ 190 MeV ) is only slightly smaller. Consequently, the six-quark state

again remains higher in energy than two baryons, this time by approximately 450 MeV. Mean-field

models typically produce a six-quark state of significantly larger spatial extent than baryons; and

hence a smaller hyperfine repulsion in the spin 3 dibaryon. This effect is very small in the present

model; here the results are dominated by the spin-independent interaction.

Results in the 2q - 2q and 4q - q systems are similar. The spin 0 four-quark state is very

high in energy compared to two pions; as expected, since the pions feel an extraordinarily strong

hyperfine interaction. We would also predict no strong spin-2 exotic resonance with the flux tube

model. We do not expect these MQH states to exist as sharp resonances at high energy. We have

explored an extreme limit of the theory in order to better understand the possible range of quark

models. In this limit there is no coupling between the MQH and multi-hadron states. Physically

the Hp (neglected in this work) provides this coupling, and thus ali MQH states will have a width.

Unfortunately, since Hp is largely unknown, we cannot provide any reliable estimate of the widths.

This term in the Hamiltonian is an important topic for future study.

In summary, we find that in the Limit of weak coupling between different flux-tube configurations,

there are no bound multi-quark states. Our results stand in sharp contrast to mean-field models

which explain traditional meson and baryon spectroscopy with a similar degree of accuracy. They

also differ considerably from two-body potential based quark models, in which the hyperfine inter-

action provides enough attraction to produce sharp low-energy resonances in certain spin-isospin

channels. Consequently, the presence or absence of these exotic states in the experimental spectrum

may be an important guide in our understanding of QCD.

Outlook

Monte Carlomethods providea valuabletoolforunderstandingthe propertiesof few-body

systemsinnuclearphysics.Due to thecomplexitiesof nuclearinteractions,thesemethods have

not been exploitedto thedegree they haveinotherfieldsof physics.Nevertheless,Monte Carlo

methods havea widerangeofapplicability,includingthestudyofverylightnuclei,quark models,



three-nucleon-interactions and the presence of exchange currents. They are also being employed to

study correlations within the nucleus, as well as low-energy reactions of astrophysical interest.

Many important challenges lie ahead, of course. Foremost among these are calculations of

larger nuclei and development of new techniques for treating the dynamic properties of nuclei.

Iieavier nuclei offer the opportunity for studying very neutron-rich nuclei, which are important

astrophysically through their connection with neutron stars. A better understanding of current

and future electron scattering experiments requires reliable calculations of the dynamic response of

nuclei, perhaps the most challenging goal for Monte Carlo (0r any other) methods.

This work was supported bY the U. S. Department of Energy.
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