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We review the status of Green’s Function Monte Carlo (GFMC) methods as applied
to problems in nuclear physics. New methods have been developed to handle the spin
and isospin degrees of freedom that are a vital part of any realistic nuclear physics
problem, whether at the level of quarks or nucleons. We discuss these methods and then
summarize results obtained recently for light nuclei, including ground state energies,
three-body forces, charge form factors and the coulomb sum. As an illustration of the
applicability of GFMC to quark models, we also consider the possible existence of bound
exotic multi-quark states within the framework of flux-tube quark models.

Introduction

Only within recent times has it become possible to solve realistic few-body problems accurately
in nuclear physics. Although these problems have a long history (one of the first Green’s function
Monte Carlo ap_‘plications was to s-shell nuclei!), the highly non-perturbative nature of the inter-
actions, along with their strong state-dependence, kept few-body problems largely out of reach.
Within the last ten years, these problems have been succesfully addressed by several computational
techniques. Faddeev methods, in particular, have been very valuable in solving three-body prob-
lems. In this lecture I will address the current status of Green's function Monte Carlo (GFMC)
methods as applied in nuclear physics.

I will first discuss the application of GFMC methods to light nuclei, and then review a few
intriguing new results obtained in flux-tube quark models. To a large degree, the Monte Carlo
techniques involved are the same, although of course different motivations underly the two areas.
In light nuclei, we are interested in studying problems such as three-nucleon forces, two-body
correlations and exchange currents. These calculations are all undertaken within a framework of
nucleons interacting through a complicated, primarily meson-induced, interaction.

In the latter case, our goal is to obtain a qualitative understanding of the underlying field theory
in the low energy and momentum regime typical of problems in nuclear physics. Toward this end,
we examine flux-tube quark models which are based upon the strong-coupling limit QCD. We have
recently employed GFMC techniques to study the so-called ‘exotic’ states in the flux-tube model;
we find them to be unbound in the extreme strong-coupling limit. Many experimental searches
for these particles are currently underway; for example the H particle search at Brookhaven. The
presence or abssence of these states experimentally may provide us with information concerning the
applicability of the strong-coupling limit.

Nuclear Hamiltonian & Monte Carlo Methods

First, consider solving the non-relativistic Schroedinger equation for a few-body nucleus:
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Variational? (VMC) and Green's Function Monte Carlo!®* (GFMC) methods have proven to
be very valuable in the study of light nuclei. These methods have for the most part originally been
developed in condensed matter'physics, where they have been used to study quantum fluids and
solids.>® The Hamiltonian in nuclear physics is at least superficially similar to these condenséd mat-
ter systems, as it consists of a very strong short-range repulsion coupled with long-range attractive
terms.

The nuclear Hamiltonian, though, is complicated by the strong state-dependence of the inter-

action. We will concentrate chiefly on the Argonne” NN interaction, which may be written:

Vii = 3. VK(ri;)0% (2)
ki<s
where the operators O are
ij = 1,0; - 95,85, L - S;,L S?j,L?J- (3)

| multiplied by either an isospin-independent (1) or -dependent (7; - 7;) operator. In these expressions
o and  represent the spin and isospin of a nucleon, S;; is the tensor operator (S;; = 30; - #i;0; -
#ij — 0; - 0;), and L;j is the relative angular momentum of nucleons i and j. All modern interactions
( Argonne,” Bonn,® Nijmegen® ...) may be written in a similar manner, although the choice
of non-local operators varies. These interactions consist of a one-pion interaction (which has a
strong tensor component) at long distances, an intermediate range attraction, and a.‘shortwrange
phenomenological repulsion; théy are fit to deutéron properties as well as two-body scattering data.

In a similar spirit, the three-nucleon-interaction (TNI) at long distances is assumed to have the
structure of a two-pion-exchange interaction, but its precise strength is adjusted to fit the three-
body binding energy.!® The full TNI consists of the two-pion exchange piece V3, and a short-range

repulsfve term:
Viik = Ug Z War(7i)Wan(rik) + Ao Z Var(Fijs Tik )s (4)

cyce cye
where the sums run over cyclic permutations of the particles, and the function W7, has the range
of a two-pion interaction. The parameters Uy and Ap can be estimated from calculating the effects
of suppressing A degrees of freedom, but their precise values are determined by fitting the binding
energy of A=3 nuclei. The three-body force is quite small compared to the two-nucleon interaction,
but nevertheless provides an important fraction of the total binding energy. ‘

Variational Monte Carlo (VMC) studies of light nuclei often employ a generalized Jastrow form
for the wave function:

@) =s (H) Fij|#). 5)
i<j

In this equation, ® is an anti-symmetric Slater determinant of one-particle states, and the F;; are

pair correlation operators:

Fij = f(rij) [1 + u3 (Z U"(rij)ofj)] (6)
k



equations ol the general 1orm:
[-=V? +0(r) + X()IF =0, (7)

where the function A contains several variational parameters. The ugz correlation in equation 6 is
a three-body term which reduces the strength of the operator-dependent two-body correlations for
some configurations of the nucleons.? The complete wave function ¥ is constructed to have the
correct asymptotic properties as one nucleon is separated from the system.

The straightforward variational Monte Carlo algorithm is limited to treating small systems,
optimistically up to A ~ 8. For the spin-independent interactions in condensed matter physics,
it is possible to simulate one to two hundred particles. For the interactions of interest in nuclear
physics, however, the problems are much more complex. The wave function of a nucleus consists of
2‘47&}'21 spin-isospin compdnents, the first factor represents the spin (up or down for each nucleon)
and the second the isospin. These states are explicitly summed in light nuclei.

This wave function (Eq. 5) is adequate for many purposes, yieldin‘g ground state energies within
a few per cent of the Faddeev values for A=3. It also gives similar results for the electromagnetic
form factors.!! Further improvements are possible by including L - S correlations and three-body
terms.!? For other purposes, though, especially for the study of three nucleon interaction terms in
the Hamiltonian, it is necessary to develop exact methods.

Since we are interested in projecting out the ground state of the system, GFMC methods offer
an attractive method for determining the exact solution. The ground state is projected through:

[¥o) = TlLrgcexp(—Hr)I\IIT), (8)

where |¥r) is an initial trial state, for example the Jastrow wave function described above. In
general one cannot compute exp (—H ), but by dividing the propagation time 7 into many small

steps AT:
exp (—Hr) = [Jexp(-HAr) = /G(ﬁn,ﬁn_l)....G(E1,Ro) (9)
: ,

the full propagator can be evaluated by Monte Carlo. In practice, one must use éeveral time steps
AT and extrapolate to Ar = 0 in order to eliminate time step errors associated with the non-
commuting nature of the kinetic and potential terms. Since the potential is not merely a number
here, but takes on different values in various spin-isospin channels, it is not clear how to implement
the exact sampling schemes used for state-independent potential problems in atomic and condensed-
matter physics. A state-independent potential can be incorporated into an eﬁuation for the exact
Green’s function as a probability for absorption, and hence used to terminate a random walk. The
fact that the potential is more complicated here means that various short-time approximations to
the Green’s function are valuable.!® In our GFMC calculations, we use time steps on the order of

1-5x10"* MeV~!, which yield very small extrapolations to zero time step.
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In this equation, the full G for 3A coordinates is approximately given by the free particle propa-
gator (a gaussian) times a product of all pair propagators divided by their respective free particle

propagators. The simplest approximation to the ratio in equation 10 is, of course,
9i;/9%; = exp[-(A1/2)(Vij(r) + Vii(r))], \ (11)

where V, and consequently g;;, are operators in spin-isospin space. Exponentiating the momentum-
independent terms in the two-body potential is rather straightfoward; momentum-dependent and
three-body terms are generally small and a linear approximation to the Green's function can be
used. ,

In fact, we employ a generalization of this expression, using antithetic sampling techniques to
sum over a variety of ‘sub-paths’ in.érder to determine the full two-body Green’s function. One
could also employ the methods used by Ceperley and co-workers!? to evaluate the pair Green’s
function analytically. Here, though, this technique is not as valuable as in studies of bulk-helium.

" There are two reasons for this difference between condensed matter and nuclear problems. First,
the core repuision in nuclear systems is comparatively soft, so that simple approximations to the
two-body propagator are not as bad. In addition, the strong state-dependence of the interaction
implies rather large three-body effects, since the potential acting between various pairs does not
- commute. Thus, equation 10 is not as effective an approximation for the full Green’s function. One
simple indication of the importance of three-body spin-dependent effects is the difference between
Jastrow variational calculations and exact results. For the 3-body problem with central interactions,
variational calculations and exact methods give ground state energies that agree within 0.02 MeV;
for more realistic inieractions the difference is 0.3-0.5 MeV.

Incorporating momentum-dependent interaction terms in GFMC calculations is more difficult.
Realistic models of the NN interaction do contain such pieces, including L - §,L - §%, L2, and
p?j operators. To date, we have only been able to include the first of these operators, L - S,
successfully in the exact GFMC algorithm. The difficulties in treating the second-order derivatives
term are discussed in reference 13, and are essentially due to the fact that the nucleons gain different
effective masses in the different spin-isospin channels. Of course, incorporating state-independent
but momentum-dependent terms is feasible. It may be feasible to employ point symmetry group
methods to treat at least a few higher-order partial waves with GFMC, although the statistical
errors associated with this proceedure may be prohibitive.

The Argonne interaction, though, has been constructed to some degree with the idea that these
terms should be small. In fact, the expectation value of the sum of these terms in light nuclei
is only one to two MeV.'Consequently, we solve exactly for a modified Argonne V8 (containing
only the eight operators through L - §) interaction which best approximates the full Argonne V14
model. This model reproduces the deuteron, the singlet S, and triplet P waves (with the exception

of coupling to F waves) exactly. Perturbation theory is then used to estimate the difference between



Ground State Results for Light Nuclei

I will first present a new set of results for the alpha particle with the Argonne V8 NN interaction
plus Urbana model 8 TNI.}® The GFMC method converges very rapidly for the alpha particle, as
demonstrated in figure 1. This figure shows the ground‘ state energy plotted as a function of the
total iteration time 7. The variational energy is shown at 7 = 0; the energy thea quickly drops to
the exact ground state energy. In fdct, the plot covers only the initial part of the calculation, up to
a total iteration time of 0.012 MeV~!. The actual calculation includes 5 times as many iterations to
generate additional statistics, the horizontal lines in the figure are statistical error bounds obtained
by averaging the results between 0.024 and 0.060 MeV-1, Other quantities, of course, may not
converge as rapidly as the energy. In this case, the energy converges very quickly because (1)
there are no bound excitations in the four-nucleon system, the lowest resonance is approximately
20 MeV above the ground state, and (2) the primary deficiencies in the wave function seem to be

“ short-range high-energy excitations.
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Figure 1) Alpha Particle Ground State Energy vs. iteration time r.

" We obtain a ground state energy of —29.20 + 0.15 MeV for the Argonne V8 plus TNI model 8
interaction, approxifna.tely one MeV overbound compared to the experimental —28.3 MeV. Using
first-order perturbation theory, we estimate the difference between the Argonne V14 NN interaction
and the V8 model is 0.9 MeV; yielding a total energy of -28.3 + 0.2 MeV, in remarkably good
agreement with the experimental result.

Hence, it appears that the same three body force can be used to provide very accurate binding
energies for three and four-body nuclei. The Urbana TNI model 8 was constructed to provide a

good fit to the triton binding energy,!® Faddeev results give -8.46 compared to the experimental
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energies of these nuclei as well with an appropriate TNI model.

The variational wave function used in this calculation was optimized for the Argonne V14 plus
Urbana model 7 TN1.4 Consequently, it does not provide a very good estimate for the ground state
energy with the model 8 TNI, which has a stronger repulsive component and a weaker two-pion-
exchange term. However, the rms radius of this trial wave function is very near the exact result,
hence it requires smaller extrapolations for the estimates of other properties. GFMC produces a
wave function only in a statistical sense, and hence ground state energy expectation values other
than the energy are extrapolated from ‘mixed’ and variational estimates via:

(ol H| o)  (¥r|H|¥o) — (¥1]0|¥7). d (12)

i

The extrapolations required with the present variational wave function are generally quite small.-
The most accurate variational calculations to date!? give a binding energy approximately one MeV
higher than this GFMC calculation.
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Figure 2) VMC and GFMC results for the proton density in the alpha particle. -

We have also computed the proton density for both the variational and GFMC wave functions
(Fig." 2). In the impulse approximation, the charge form factor of the nucleus can be obtained
as the fourier transform of the one-body charge distribution. The GFMC one-body density has a
slight dip in the core which does not appear in the variational results. This dip is associated with
a very small region of phase space, and consequently does not affect the rms radius or charge form
factor significantly at small momentum transfer. It does make a significant difference, though, in

the region near and beyond the first diffraction minimum.



contributions to the charge and current operators. In particular, the importance of pion exchange
currents has been know for a long time. Riska!” has developed a method for constructing models

of the exchange currents which satisfy the continuity equation:
V. Jex +i[Vijrol = 0 - (13)

with an arbitrary potential V;;. This equation is used to constrain the ‘model-independent’ exchange
currents. In addition, there are transverse pieces in the current ( e.g. NAv,pry, and wry) which
are not so constrained. Using this method, Schiavilla and Riska have computed the magnetic form
factors of 3He and 3H, as well as the backward cross-section for the electrodisintegration of the
deuteron. Their results a good agreement with experiment up to quite high values of momentum
transfer. ‘

They have also computed the charge form factors of the three;body nuclei,!® and obtain good
agreement with experimental results. The charge operators are more speculative since they involve
relativistic corrections and are not constrained by the continuity equation. However, in the alpha
particle some of the uncertainties are decreased because of the isoscalar nature of the system. We

have combined the following one-body charge operator:

2
pa) = [ - £55151G5() + GE (]
I P {163(0) - 26540 + (GE(@) - 26K (a)In} (14

incorporating the Darwin-Foldy term and a small L - S correction, with a two-body charge operator

due to pions:

po(0) = 5 [EE (@) 73 + FY (0)7is] (04 05 i )oe i)
[FE(@)mi - 73+ FY (a)mi] (05 - g0 - ki)oe(ki)} (15)

to calculate the charge form factor of the alpha particle. This form of charge operator was first
considered by Kloet and Tjon in examining pion photoproduction.!® We have also included the
remaining terms of Schiavilla and Riska, but their effect is an order of magnitude smaller than the
terms above up to a momentum transfer of ~ 5.5 fm™~1.

Figure 3 illustrates the contribution of one-body and pion-exchange terms to the charge form
factor. Asis apparent in the figure, the VMC and GFMC results give nearly identical results for the
exchange currents. However, the one-body terms do show a significant difference in the vegion of
the second maximum. This difference is a result of a sensitive cancellation in the 1ourier transform
(it is down by two ordert of magnitude from its value at k = 0) and hence small changes in density
can produce large effects. |
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Figure 3) VMC and GFMC results for one-body and pion contributions to the alpha particle

charge form factor.

The full calculations are compared to experimental results in fignre 4. The GFMC calculation
is in excellent agreement with experimental results up to a momentum transfer of ~ 4.5 fm-1,
Beyond that point, the calculated form factor is significantly 'arger than experimental results.
Nevertheless, the overall agreement is excellent, particularly at lower momentum transfers where
one would expect the theory to work best. “
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Figure 4) Alpha particle charge form factor, experimental and calculated.



Q= -Z/w; ——-———[GE‘(qz)]'zaw, (10)

where Ry, is the longitudinal response of the nucleus and Gg is the proton form factor. The integral
extends from energies just above elastic scattering to infinity, which allows us to use closure to

calculate the Coulomb sum as a ground state expectation value.

_ 1l 2 [2F(¢®)]?
S—-Z <0l;p§(q),§;pk(q)|0)— ColF | | (17)
wfiere L
pi(g) = exp(ig - rk)[—iz-@-]“ (18)

if we ignore small neutron contributions (which are included in the éalculations) and two-body

terms. In this approximation, the Coulomb sum is simply:

212 ‘

§=1- Z[g;((zz))]]z + ';'Ppp(‘I); (19)
where F, is the charge form factor of the nucleus and ppp(g) is the fourier transform of the two-body
distribution function integrated over the pair’s center-of-mass.

Figure 5 compares the theoretical and experimental calculations. Since experiments extend
only to a finite energy, they have been extrapolated using energy- and energy-squared weighted
sum rules by Schiavilla et al.?%?! using variational wave functions. The contributions of this tail
region are given by the difference between the points labeled ‘extr’ and ‘trunc’; the latter includes
only the response up to the experimental limit. As shown in the figure, the VMC and GFMC

curves are nearly identical, and both agrée very well with the extrapolated results.

Coulomb Sum

12

1.0 -

08
]
a

- | é'{'_f_i,........l

3 Q | ]
" v ¢
“ | ]
° . ’ o = Expt (extr)
v 8 = Expt (trunc)
pl v - == VAR
e e = QFMC
e e’
OM | U . I
0.0 1.0 2.0 3.0

q (fm™)

Figure 5) Coulomb sum in the alpha particle.



peninentai pgpp\q) 15 mMuci nlghel veyold tiie st Ininlnum. - L 4ls would 1idicdte evell 4 stTOligel
correlation in the protons than is present theoretically, but contributions of two—body operators to
the Coulomb sum should be included before strong conclusions are drawn.

We seem to have in hand a theoretical picture of light nuclei that is consistent with a wide
range of nuclear properties. This picture relies upon the importance of three-body forces and also
of exchange current contributions to the electromagnetic properties of light nuclei. Sevéral avenues
for future, research remain open, however. In particular, the effect of r‘elativ“istic‘ dynamics may be
important. This could in principle be studied with light cone méthods, but little has been done to
date with realistic interaction models. In addition, of course, one would like to sfudy heavier nuclei

to determine whether their properties can also be explained within a consistent scheme.

Low-Energy Scattering

The five-nucleon system is particularly interesting in this regard. Although there are no five-
nucleon bound states experimentally, the J™ = 1/2~ and 3/2" states do exist as sharp low-energy
resonances. In the simplest picture, these states are one-body p-wave scattering off an alpha particle
core; with an L - § splitting describing the difference between the J=1/2 and 3/2 states. These
states have been studied variationally by enclosing the system within a spherica.l box,?3 and then
matching the asymptotic wave function to the nodes at the boundaries of the box. Variational
calculations of the five-body system give fair agreement with experimental results for the 1/2 state,
which is somewhat higher in energy, but indicate that the Hamiltonian is not attractive enough in
the J=3/2 channel. '

Other methods are available for extremely low-energy calculations or calculations in non-
resonant channels. hy specifying the logarithmic derivative at the boundary and then minimizing
the energy with respect to changes in the variational wave function, the scattering length (and
‘effe‘étive’ range) can be (etermined, something that is often important in the study of astrophysical
reactions. This methogl has recently been used to study the thermal capture of neutrons by 3He, a
very interesting reaction in that it is dommated by two-body currents.?4 The impulse approxima-
tion (one-body currents only) would give a zero cross section for this reaction in the absence of the
tessor force due'to a pseudo-orthogonality condition. Even with the fairly strong tensor forces in
the Argonne V14 + TNI 7 model, we find that the impulse approximation gives only ~ 10% of the
measured cross section. These same methods are currently being used to study the weak-capture
reaction in the four-body system.?® This reaction produces the highest-energy end-point neutrinos
from the sun, and it might be feasible to dfstinguish their contribution to the total flux in future
solar neutrino observatories.

I have described these methods in terms of a one-channel problem. In principle they can also
be applied to many-channel problems, in which case one specifies the boudary conditions in all
channels. The solutions thus obtained are called eigenphase solutious, and are characterized by the

fact that they correspond to zero net flux in each channel (and hence do not correspond directly
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" FEach of these methods can be employed in GFMCec
wave function can be specified by using the well-know
‘The same idea can be used when fixing the logarithmic
flux entering the internal region {rom the scattering wa
magnitude of the image as well as its distance from the
the wave function at the surface has a specific logarithm
are currently being undertaken for SHe in order to ver

. calculations.

GFMC and Flux-Tube €

Another area in nuclear physics ’where Monte Carle
stituent quark models. These models are designed tos
with a limited number of degrees of freedom. It is hop
of the behaviour of the underlying field theory with tl
spectral properties of mesons and baryons and also the

Of course, lattice QCD algorithms are steadily px
this volume. It may be poss'ible in the fairly near f
QCD, for example the lowest-lying hadronic masses, {
theory. Nevertheless, simple phenomenological quark
the structure and excitation properties of hadrons.
I particular, we examine flux-tube quark models b:
In the past, these models have been used to describ

produce spectra which are generally in good agreemer
work on the so-called ’exotic’ states in the flux-tube m«
¢q pairs or qqq triplets. Predictions of bound exotic
H-particle originaliy proposed by Jaffe,?® a six-quark
nature of confinement plays a vital role in these calcul

Predictions of the H and other exotics must, to sor
inherent in the various models. In pdrticular, a meax
the confinement picture of many models,28-32 includit
hadrons (MQH) having 2¢ - 24, 4¢ — §, and 6q states
confinement mechanism. These ‘exotic’ multi-quark
-within this model. ‘

In the flux-tube quark model it is assumed that t
stringlike tubes joining the quarks. A flux tube starts t
%, and three flux-tubes i,j,k can end or start from an

junction. The resulting flux-tube patterns for the fan



Y-junction and two anti-quarks or quarks.

Figure 6) Possible flux tube configurations states of 2 to 6 quarks.

The quarks are treated as semi-relativistic spin 1/2 Pauli particles. In contrast, bag?®-! and
other mean-field3?33 models treat quarks more accurately as relativistic Dirac spinors. We solve

for eigenstates of a Hamiltonian Hg with three terms involving only quark degrees of freedom:
Hg = Ho+ Hr + Hy, (20)

where Hy is the relativistic kinetic energy of the quarks:

Ho= Y (mi+p})'/% (21)
i=1,N

The confining interaction Hp represents the energy of the flux tubes. It is obtained by minimizing
the total length of the tubes for any given position of the Y-junctions. If L is the minimum length
for a configuration {r;,i = 1, N} of the quarks, the energy is:

Hp = /oL(r;) - NéM. (22)

The factor /0 is the string tension of the tubes and 6 M is a constant term.. When fitting mesons
and baryons, this constant appears to be proportional to N, :ace it is natural te associate them
with the free ends of the tubes. ‘ M ‘

| H| represents the short range one-gluon-exchange interaction between the quéxks. It consists
of a Coulomb, spin-spin, tensor, and spin-orbit terms. Our primary interest here is in low-energy
S-wave hadrons in which the tensor and spin-orbit interactions are not very important.‘ Hence, for

the sake of simplicity, we use

‘ 1 27 ,
Hi=ac Z L?B F,"Ff{;; = 3728(rij)oi - oj}. (23)
1<) a=l,
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‘ 2 r
s(r) = (_\/_E'K)a eXP(—m)- (24)

The interaction parameters used are obtained by fitting the masses of light mesons and baryons.?’
The interpretation of this model is trivial for ¢¢ and 3¢ states, however things are not as simple
for N > 4. Three different ﬂux-tlibe arrangements are possible for the 2¢ — 27 state, as shown in
figure 7. Even when the quark positions are the same, in the extreme strong-coupling limit the
states |I), |IT), and |IIT) are orthogonal to each other due to differences in the link operators (flux
tubes). They have different flux topologies, and hence are not coupled by the Hamiltonian Hg.
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Figure 7) The three flux tube configurations for 2¢ — 27 states.

Of course a more realistic QCD Hamiltonian would have other terms in addition to Hg. One
such term is a string-breaking term which couples states with different numbers of particles. Models
for this term have been used to study the decay of mesons into two mesons,34 the meson-baryon
couplings,3336 and the A — N+ width.3" It gives second-order corrections to the hadron energies”‘ ”
which can partly be absorbed into the values of the parameters /o and M. Hp can couple the
four-quark states |I) and |II) in 4th order. It cannot change the number of Y-junctions, and hence
does not couple |III) to either |I) or |IT).

There should also be a term which creates or destroys closed plaquettes of flux tubes; this term
can create or annihiliate Y-junctions. The effect of this term 611 hadron spectroscopy has not been
studied. In the limit that the quark mass is large one can take the point of view that these terms
can change the flux topology faster than the motion of the quarks. In this limit one may be able to
use the topology that gives the lowest Hr for a given configuration of quarks, as has been assumed
in some models.3® In the present work we assume that for light quarks it is more reasonable to start
with Hg and treat effects of Hp and Hp perturbatively.

There are also some novel anti-symmetry requirements imposed by this Hamiltonian. Obviously,
a specific configuration of flux-tubes; for example quarks (1,2), (3,4), and (5,6) paired together
within Y-junctions in a 6q state; does not describe a fully symmetric Hamiltonian. In fact, in
strong coupling QCD states with different pairings are in general orthogonal to each other by the

same arguments given above. Thus, there is no special anti-symmetry required between quarks in



of quarks are exchanged.

Quark Model Calculations

We have studied the MQH states in the flux-tube inodel with both Variational Monte Carlo
(VMC)??" and Green’s Function Monte Carlo (GFMC)** methods. For the most part, the algo-
rithms are very similar to those used to study light nuclei, here I only brieﬁy discuss the variational
wave functions and the few novel techniques required.

Our choice of variational (trial) wave functions for the ‘exotic’ hadrons (states in which all
quarks are confined into one region b‘y flux tubes) was guided by previous studies of the mesons
and baryons. Initially, we consider only the lowest-energy spatial wave function, determining the
lowest state of the spin;independent Hamiltonian; the sum of kinetic, flux-tube and color coulomb
energies. The symmetry requirements can then be satisfied by an appropriate choice of spin-flavor

wave functions. For the 2¢ — 27 system, the spatial part of the wave function ¥r is:

Ur = f(r12)f(raa)F(Ra2, R34) (25)

where particles 1 and 2 are quarks and 3 and 4 are anti-quarks. The f;; are functions of the
distance between particles i and j, and huve the same functional form used previously in the meson
and baryon studies:

f(r) = P expl-w(r)(nr + 72r®) = (1 = w(r))msr'). (26)

The factors ¥ and the constant § are variational parameters, and w(r) is a Woods-Saxon function
whose strength and range are additional variation parameters. This form interpolates between a
Coulomb-like solution near the origin to the behavior appropriate to a linear potential at large
separations. The function F describes correlations between the center-of-mass of the quarks (1&2)

and the anti-quarks (3&4), and it is chosen as:
F(R) = exp[-7.R"®). (27)

The constant +, is an additional variational parameter.
The spatial part of the trial functions for the other systems are similar; pair correlations between
quarks attached to the same Y-junction are multiplied by correlations between the central junctions

themselves. For example, the six-quark wave function is given by

Y7 = f(r12)f(r34)f(r56) F(R12, R34) F(R12, Ree) F(Ra4, Rse)[1 - ﬂVS(-R12,RM,R56)]- (28)

The quarks 12, 34, and 56 are paired in this wavefunction, and we use the same form for the
two-body correlations f and the pair center-of-mass correlations F as in the 2¢ — 2§ case. The last
term in this expression is a small three-body correlation between the centers-of-mass of the pairs,
its functional form is the same as the three body correlations used previously in studies of the

baryon wave function. The (1 — 3V3) correlation is an attempt to incorporate the most important
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I will not describe the spin-flavor parts of the wave functions here, they are presented in detail
_ in reference 43. I merely note that it is energetically favorable to couple quarks paired to the same
Y-junction to a total spih 0; these quarks are more strongly correlated by the confining interaction,
hence they are most affected by the hyperfine interaction. For example, in the H-dibaryon all
the paired quarks can be coupled to spin 0, giving a more attractive hyperfine interaction than is
present in two isolated baryons.

Evaluating the two-body potential terms is straightforward using traditional Monte Carlo meth-
ods; “he many-body confining interaction is only slightly more complicated. For example, given
a specific set of quark coordinates in the six-quark state; we guess the position of the central Y-
junction (figure 6). The position of the remaining Y-junctions then be determined algebraically
using the formulas given in reference 26. The remaining task is to minimize the total length by
varying the position of the central Y-junction. The simplex method works quite well here, and
typically requires of the order of 10 iterations to provide a very accurate potential energy.

We also need to evaluate the prbp‘agator for the semi-relativistic kinetic energy operator, as well
as devising a method for evaluating the kinetic energy in a variational calculation. This operator

involves all powers of the‘momentum; hence the free-particle propagator

(Ur|exp(—/(p} + mP)AT)¥T) | (29)

is non-local in character. The free particle propagator is given in reference 44 :

4t Pa?

G(R) = ga g ¢ gy Kol + A9, (30)
with
g = hcgr
= mcR/h. ‘ (31)

The propagation distance is R, and K3 is a Bessel function of order two. This propagator has
a long-distance tail that decays with the Compton wavelength of the particle. The rate of decay
is independent of time step, but the amplitude of the tail is ?roportiona.l to Ar. In the long-
time (low-momentum) lim‘it, it coincides with the non-relativistic propagator, as expected. The
semi-relativistic propagator is only slightly more difficult to sample than the gaussians used in
non-relativistic calculations. When calculating the expectation value of the kinetic energy, it is
possible to determine the propagator terms linear in A7 analytically, and hence sample the kinetic
energy without introducing any approximations.

The spin-independent Hamiltonian contributes the dominant terms in the energy, therefore we
initially consider the results for this simplified Hamiltonian. The results are summarized in figure
8, their most striking feature is that each additional particle added to the system raises the energy
by a roughly constant amount. The additive constant is large (~ 540 MeV), and hence the exotic
MQH states are four to five hundred MeV higher than states composed of two isolated hadrons.
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exactly the same additive effect would be predicted in simple the simple di-quark picture.
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Figure 8) Lowest single-hadron energy vs. number of quarks and anti-quarks.

Of course, the hyperfine interaction must be included in any reasonable calculation. The
strength of the hyperfine interaction has been adjusted to roughly reproduce the experimental
N - A splitting of ~ 290 MeV; with these parameters we obtain a splitting of .27 GeV. Other
effects, including coupling to pions (string-breaking) may also contribute ~ 0.1 GeV to this split-
ting.3” This model reproduces the experimental = — p splitting of 630 MeV, however the pion has
a rather small energy of 55 MeV. ‘

Consider the six quark systems; both the S=0 H dibaryon and a proposed S=3 exotic six-quark
state. In the latter, of course, the hyperfine interactioﬁ is repulsive, However, if the six-quark state
is larger in spatial extent than the spin 3/2 baryon, the hyperfine interaction may be less repulsive.

Hence, this state is a possible candidate for a bound exotic. The results for these systems are given
in Table 1.

Table 1: Energies of Six-Quark States

State Energy (GeV)
2x N ‘ 2.00
6g(S = 0) 2.30
2x A 2.54
6q(S = 3) ‘ 2.99

Green's function Monte Carlo results for the two hadron and MQH 6 quark states with the full

interaction, assuming SU3 symmetry.
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spin-dependent term, while the H dibaryon gains ~ 500 MeV. This shift is close to what one would
expect from ﬁrsf order perturbation theory. The 3q baryons have one S=0 pair each, thus their
total energy shift is roughly equal to the N — A splitting. The H-dibaryon has three such pairs,
and consequently gains an energy of nearly 1.5 times the N — A splitting. However, this additional
attraction is not nearly strong enough to overcome the much higher energy of the 6-quark state in
the confining potential; indeed the full calculation reveals that the energy difference between the H
and two baryon states is 300 MeV in the SU3 limit. Including the affects of a larger strange quark -
mass only increases the mass of the H relative to the two isolated baryons.

Next, consider the proposed S=3 dibaryon. In this case the two isolated baryons (As) are
pushed up approximately 200 MeV by the hyperfine interaction. This shift is somewhat smaller
than that of two nucleons due to non-perturbative effects in the nucleon channel.?” The energy shift
in the six-quark state ( ~ 190 MeV ) is only slightly smaller. Consequently, the six-quark state
again remains higher in energy than two baryons, this time by approximately 450 MeV. Mean-field
models typically pi;oduce a six-quark state of significantly larger spatial extent than baryons; and
hence a smaller hyperfine repulsion in the spin 3 dibaryon. This effect is very small in the present
model; here the results are dominated by the spin-independent interaction.

Results in the 2¢g — 2§ and 4¢ — § systems are similar. The spin 0 four-quark state is very
high in energy compared to two pions; as expected, since the pions feel an extraordiharily strong
hyperfine interaction. We would also predict no strong spin-2 exotic resonance with the flux tube
model. We do not expect these MQH states to exist as sharp resonances at high energy. We have
explored an extreme limit of the theory in order to better understand the possible range of quark
models. In this limit there is no coupling between the MQH and multi-hadron states. Physically
the Hp (neglected in this work) provides this coupling, and thus all MQH states will have a width. -
Unfortunately, since Hp is largely unknown, we cannot provide any reliable estimate of the widths.
This term in the Hamiltonian is an important topic for future study.

In summary, we find that in the limit of weak coupling between different flux-tube configurations
there are no bound multi-quark states. Oul;‘ results stand in sharp contrast to mean-field models

which explain traditional meson and baryon spectroscopy with a similar degree of accuracy. They
also differ considerably from two-body potential based quark models, in which the hyperfine inter-
action provides enough attraction to produce sharp low-energy resonances in certain spin-isospin
channels. Consequently, the presence or absence of these exotic states in the experimental spectrum

may be an important guide in our understanding of QCD.

Outlook

Monte Carlo methods provide a valuable tool for understanding the properties of few-body
systems in nuclear physics. Due to the complexities of nuclear interactions, these methods have
not been exploited to the degree they have in other fields of physics. Nevertheless, Monte Carlo

methods have a wide range of applicability, including the study of very light nuclei, quark models,
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three-nucleon-interactions and the presence of exchange currents. They are also being emplbyed to
study correlations within the nucleus, as well as low-energy reactions of astrophysical interest.
Many important challenges lie ahead, of course. Foremost among these are calculations of
larger nuclei and development of new techniques for treating the dynamic properties of nuclei.
Heavier nuclei offer the opportunity for studying very neutron-rich nuclei, which are important
astrophysically through their‘connection‘ with neutron stars. A better understanding of current
and future electron scattering experiments requires reliable calculations of the dynamic response of
' nuclei, perhaps the most challenging goal for Monte Carlo (br' any other) methods.
This work was supported by the U. S. Department of Energy.
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