

CONF-810260-2
R85
SAND81-0373
Unlimited Release
UC-62

MASTER

Solar Thermal Energy: Abstracts of a Special Seminar for Industry

February 3, 4, 1981

Robert L. Alvis, Editor

Sandia National Laboratories

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

SAND81-0373
Unlimited Distribution; UC-62
Printed March 1981

SOLAR THERMAL ENERGY: ABSTRACTS OF A SPECIAL
SEMINAR FOR INDUSTRY

February 3, 4, 1981

Robert L. Alvis
Systems and Applications Development
Division 4725
Sandia National Laboratories
Albuquerque, NM 87185

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

PREFACE

This document is a compilation of the abstracts of the papers presented at the Modular Industrial Solar Retrofit (MISR) Conference, held at the Four Seasons Motor Inn, Albuquerque, New Mexico, under the sponsorship of the Department of Energy and Sandia National Laboratories.

CONTENTS

	Page
Session I - Technology Status and the MISR Project	5
<u>Line-Focus Solar Thermal Systems Status</u>	6
<u>The Solar Industrial Process Heat Field Test Program</u>	7
<u>MISR Market Survey and Land Use</u>	8
<u>Modular Industrial Solar Retrofit Project (MISR)</u>	9
Session II - MISR System Design Request for Proposal	10
<u>MISR System Specifications and Guidelines</u>	11
<u>MISR System - Preliminary Sample Design and Construction Specification</u>	12
<u>Summary of Contracting Plans</u>	14
Session III - MISR Field Experiments	15
<u>Modular Industrial Solar Retrofit Project Site Selection/Field Experiments</u>	16
<u>Technical Requirements for Site Participation</u>	17
<u>Evaluation of Selection Process for Site Participants</u>	18
<u>Data Acquisition System and Results Reporting</u>	19
Session IV - Seminar Attendees Participation	20
<u>Supplier/User System Evaluation Development</u>	21

Session I - Technology Status and the MISR Project

Karl Wally, Chairman
Systems and Applications Development
Division 4725
Sandia National Laboratories

LINE-FOCUS SOLAR THERMAL SYSTEMS STATUS

Virgil L. Dugan
Solar Thermal Projects Department 4720
Sandia National Laboratories
Albuquerque, NM 87185
(505) 844-3312

ABSTRACT

The primary purpose of the Solar Thermal Program has been to provide a sound technological and industrial base on which a viable solar thermal energy industry can be founded. In the Line-Focus Collector Project, all activities are designed to assist in establishing a line-focus solar resource option and a technological understanding which allows public decisions with high confidence. Consequently, a major objective is to reduce the uncertainty associated with the cost of energy produced by mature line-focus systems. The general strategy for fulfilling this objective involves (1) improving performance, reliability, and lifetime of hardware at the component, subsystem, and systems level; (2) reducing costs associated with fabrication and installation of systems; (3) demonstrating reliable system operation and maintenance; and (4) allowing opportunities for increased production levels.

Significant progress has been made in line with each of these strategies over the last five years. A number of commercial manufacturers are marketing parabolic trough collector hardware, and the total installed aperture area of this technology is rapidly approaching one million square feet. Advanced collector subsystem designs are demonstrating sunlight-to-thermal energy conversion efficiencies of over 60% at 315°C, and much improved tracking and control concepts are being demonstrated.

As new engineering and manufacturing developments are being accomplished, not only is the performance of collector hardware improving, but the cost of collector hardware is decreasing. The next step is to develop and implement integrated system designs which stress reliability along with improved system performance and which can be installed with a minimum of site specific engineering and construction costs. This step is key to the development of a solar thermal industry which is equipped to make significant contributions to the U.S. energy economy.

THE SOLAR INDUSTRIAL PROCESS HEAT FIELD TEST PROGRAM

Kenneth D. Bergeron
Sandia National Laboratories
Albuquerque, New Mexico 87185
(505) 844-2507

ABSTRACT

Over the past three years, the Department of Energy has been engaged in the development and demonstration of solar energy to supply the thermal needs of industry with the Solar Industrial Process Heat Field Test Program. A total of nineteen projects have been funded for construction at actual industrial plants around the country. Of these, eleven are parabolic trough systems.

The IPH Field Test Program can be considered a predecessor to MISR in the sense that many of the lessons learned can be directly applied in order to avoid problems and obtain a substantial improvement in system economics and effectiveness. Some of the applicable lessons learned will be discussed in this presentation. For example, the importance of choosing a load which can use all, or most, of the energy supplied by the solar energy system is now better appreciated. Another insight is that environmental effects on reflector surfaces are very variable from site to site and can pose significant problems. Identifying potential mirror soiling or corrosion problems early in a project history, in order to take appropriate actions, is now considered to be an important step prior to construction of a system.

There are also a number of ways that MISR is distinctly different from the IPH program. First, it is more narrowly focused regarding both applications and technology. Second, there are separate selection processes for both systems and applications. These new concepts are based on a fundamental assumption: excellent performance can be obtained with the same solar energy system at many different sites if the nature of the thermal load falls within a specified parameter range. Thus, the only custom engineering required is the plant interface, which should be low in cost compared to the complete system design cost.

MISR MARKET SURVEY AND LAND USE

D. O. Lee
Systems Analysis Division 4723
Sandia National Laboratories
Albuquerque, NM 87185

ABSTRACT

A limited market survey is being conducted to ascertain that the size requirements for the MISR experimental systems are valid. This activity is not a market survey in the usual sense of the word but is sufficient for the purposes of the MISR project. Boiler locations are obtained from the appropriate local or state agency. All but industrial boilers are screened out. Depending on the agencies' record-keeping process, either or both pressure and heat rates of the boilers are known. The operators at the locations are then contacted to determine land availability. Data for Western, Texas; Albuquerque, NM; and Maricopa County, AZ were obtained. In addition to this survey, a land utilization study involving the spacing of collectors and the cost of land will be discussed.

MODULAR INDUSTRIAL SOLAR RETROFIT PROJECT
(MISR)

Robert L. Alvis
Systems and Applications Development Division 4725
Sandia National Laboratories
Albuquerque, New Mexico 87185
(505) 844-8573

ABSTRACT

This paper describes the MISR project which is based on the premise that thermal energy is the basic solar thermal system output and that low-temperature, fossil-fuel applications are technically the first that should be retrofitted. A major Department of Energy (DOE) thrust is to bring line-focus solar thermal technology to commercial readiness. Commercial readiness is being approached in this project via the modular design of solar systems. Experience has shown the modular design approach offers potential for reducing engineering design costs, manufacturing installation time and expense, and for improving system operational reliability. The modular system design responsibility has been assigned to Sandia National Laboratories who will, in turn, contract industry to do final designs. Data on system operation, performance, and installation costs will be established by allowing selected industrial thermal energy users to purchase qualified MISR systems from suppliers and to operate them for a minimum of two years. Industries will be solicited by DOE/Albuquerque Operations Office to conduct these experiments on a cost-sharing basis. The project is divided into three development phases that represent three design and experiment cycles. The first cycle will use commercially available, trough-type solar collectors. Up to six awards will be made for system designs and up to ten experiments will be performed of up to 5,000 m² of collectors each. The project effort begins with this seminar and the first cycle is to be completed in 1985. Subsequent cycles will begin at 3-year intervals. The MISR project is success-oriented and, if the first cycle reaches commercial readiness, the project will be terminated. If not reached, a second, and possibly a third, development cycle will be conducted.

Session II - MISR System Design Request for Proposal

Robert Alvis, Chairman
Systems and Applications Development
Division 4725
Sandia National Laboratories

MISR SYSTEM SPECIFICATIONS AND GUIDELINES

Karl Wally
Solar Energy Projects Department
Systems and Applications Development Division
Sandia National Laboratories
Albuquerque, New Mexico 87185

ABSTRACT

Specifications and Guidelines governing the design and construction of MISR systems have been developed in order to insure improved potential for wide applicability, reliable operation, and reduced installation costs. They incorporate lessons learned from previous solar experiments and demonstrations, and are based on proven engineering practices from the power and process industries. The Specifications, demanding mandatory compliance, are presented in two parts. The first, Design Conditions, defines a reference environment for which systems will be designed. This includes climatological conditions, utility and steam interfaces between the MISR system and the industrial process plant, legal and regulatory restrictions, and economic conditions to be used for design tradeoffs. The second, Design Requirements, details the conceptual, system, hardware, and construction requirements that are to be included in the MISR designs. Finally, the Guidelines, which are advisory, detail aspects of design and construction that can be recommended to enhance the convenience, reliability, or performance of the MISR systems.

MISR SYSTEM
PRELIMINARY SAMPLE DESIGN AND CONSTRUCTION SPECIFICATION
STEARNS-ROGER SERVICES INC.

ABSTRACT

A sample design and specifications have been developed for a system capable of generating 5200 lb/hr. of saturated steam at 250 psig pressure during periods off maximum insulation. Included with the specifications are preliminary design drawings. The specifications are subdivided in general, mechanical, piping, insulation, electrical, instrumentation and structural sections. Included is a commentary section which provides some background and reasons for the criteria used in the design.

In order to determine a collector field layout for the sample design, a cost comparison study was performed using three different collector field return (hot) heat transfer fluid temperatures. The collector gross aperture area was fixed at a nominal 25,000 ft.² for each of the three cases; the required heat transfer fluid flow rates differed widely and indicated different delta-T string lengths and field geometry for each case. A differential cost comparison was performed for each field layout; cost estimates were obtained for all components which were not common to the three designs.

As a result of the cost comparison, a design incorporating a central manifold and 8 delta-T strings of 24 collectors each was selected; this design was required for the highest (550°F) hot heat transfer fluid case. A single API-610 horizontal centrifugal pump was selected to circulate Thermal 60 heat transfer fluid to the collectors; the steam generator chosen consists of a shell and tube heat exchanger similar to a reboiler. A separate shell and tube feedwater preheater was incorporated in the design.

Piping between the equipment skid and the collector field is supported on an elevated rack to insure piping flexibility. An additional benefit is that the elevated rack allows access for maintenance vehicles along the length of the collectors.

It is conceptualized the proposed MISR field under consideration can be adequately served by a standard 208Y/120 volt, three-phase cable distribution system. A system can be constructed using these utilization voltages, conventional circuit design approaches, and industry-standard minimum-size conductors, which will experience acceptable voltage regulation during the probable demands of the MISR equipment. The envisioned system would utilize eight multiple-tapped feeder circuits for serving the collector field drives. Each circuit would serve the four drives of one Delta-T string. The system loads would be segregated as to their need for electrical service immediately after and during normal supply outages. The critical loads would be supplied from a distribution panel that would be transferred to an emergency engine-generator unit in the event of such an outage. The non-critical loads would be supplied from another panel that would only be connected to the normal supply. The system's emergency supply facilities would be fully automatic in that normal supply abnormalities would be detected, the emergency

engine-generator unit would be started, the critical loads would be transferred to the emergency supply, and the collectors stowed in preselected groups without operator action. Also, upon restoration of normal supply this condition would be detected, the critical loads would be transferred back, the engine-generator would be shutdown, and the collectors would be released to acquire the sun without operator action.

Instrumentation on the MISR system has been designed to allow remote, unattended operation of the system including daily startup and shutdown. Protective interlocks shut down the system when out of limits process conditions are detected which might damage the system and indication of the cause of an abnormal shutdown is provided at the local control panel. Also provided is local alarming of conditions which, if left uncorrected, would result in a system shutdown. Remote alarming to a users central control room of system trouble is also incorporated. Immediate shutdown or "tripping" of the system in the event of an emergency, can be accomplished by pushing a single button either locally or remotely. The design utilizes a combination of microprocessor based logic and conventional relay logic for control. Provision is made for addition of instrumentation to allow system parameters to be measured and sent to a remote data acquisition system for study of system efficiencies.

MISR Contracting Procedures

Jon A. Bedingfield
Sandia National Laboratories
505-844-5201

This presentation will include the contracting procedures which will be used to purchase the MISR Development.

The following information will be included in the presentation:

1. Number of system contracts to be awarded.
2. Type of contract to be utilized.
3. Approximate RFP schedule.

Session III - MISR Field Experiments

George Pappas, Chairman
Department of Energy/ALO

MODULAR INDUSTRIAL SOLAR RETROFIT PROJECT
SITE SELECTION/FIELD EXPERIMENTS

George N. Pappas
Solar Energy Division
Albuquerque Operations Office
U.S. Department of Energy
Albuquerque, NM 87115
(505) 846-5205

ABSTRACT

This first cycle of MISR projects consists of two principal activities: 1) the designs of the modular systems and qualifications of the hardware being administered by SNLA, and 2) the selection of sites on which to perform the field experiments being administered by DOE.

This presentation describes the solicitation approach to be used in selecting the site participants for the experimental phase. A Program Research and Development Announcement (PRDA) will be issued by the Albuquerque Operations Office which will solicit proposals from prospective site participants. The site selection process is comprised of two phases. In the first phase, up to 20 sites will be selected and provided with some funding to enhance the quality of their final proposal for acquisition and installation of a qualified MISR system at their facility, without financially burdening these prospective site firms. The second phase of the site selection will be the evaluation of the 20 proposals. Up to ten industry users will be selected to acquire and install systems and operate them for a minimum of two years for the purpose of establishing and collecting cost and performance data.

The procurement strategy is aimed toward assigning responsibility to the site participant for prudent and efficient acquisition, installation, and operation of the MISR system. It is expected that agreements between industry and ALO will be of a cost-sharing type, and that the solar system will become the property of the participating industry at the end of the data collection period.

TECHNICAL REQUIREMENTS FOR SITE PARTICIPATION

D. O. Lee
Systems Analysis Division 4723
Sandia National Laboratories
Albuquerque, NM 87185

ABSTRACT

There will be a set of "hard" requirements for site participation. These requirements will be explicitly stated in the site PRDA and are a "must" for a potential site participant to be considered. Thus, they represent a set of minimum hurdles which must be met. These will be discussed along with their background. Some of the "softer" requirements will also be discussed. These requirements are somewhat intangible in nature but yet must be evaluated in order to obtain suitable sites for the MISR experiments.

EVALUATION OF SELECTION PROCESS FOR SITE PARTICIPANTS

Oscar W. Wehlander
Contracts and Procurement Division
Albuquerque Operations Office
U.S. Department of Energy
Albuquerque, NM 87115
(505) 844-8721

ABSTRACT

This paper describes the evaluation criteria to be used for selecting industrial thermal energy users for the MISR project. The proposals received will be evaluated and selected in accordance with DOE regulations and criteria set forth in the Program Research and Development Announcement (PRDA). A preliminary review of each proposal will be made to determine whether: (1) sufficient cost, technical, and other information is included to make a meaningful and comprehensive evaluation, (2) it is responsive to the requirements of the PRDA, and (3) the proposal has been signed by a responsible official who is authorized to obligate the organization. After this review, a technical evaluation will be made resulting in a numeric score for all of the factors for award listed in the PRDA as well as a narrative evaluation describing the strengths and weaknesses of each proposal. For all technically acceptable proposals, a business management/cost review will be performed. This will include evaluation of such factors as probable cost to DOE, past performance, financial capability, and compliance with prerequisites of the PRDA. After the proposals have been ranked technically and the business management/cost review completed, the DOE Source Selection Official will select up to 20 proposers who have demonstrated the capability for advancing the overall Phase I MISR program goals.

DATA ACQUISITION SYSTEM AND RESULTS REPORTING

George Bush
Lawrence Livermore National Laboratory
P.O. Box 808, L-393
Livermore, California 94550
(415) 422-1463

ABSTRACT

Current solar industrial process heat field tests employ a variety of different types of data acquisition systems. In general, data acquisition has been unreliable for these projects; and, as a result, only a limited amount of performance data has been available. This paper discusses the problems encountered and the current program to develop a standardized data acquisition system for Modular Industrial Solar Retrofit and future industrial process heat field tests.

Final data acquisition system selection should be completed soon and implementation details will be discussed. Transducer selection and installation will be addressed, and performance reporting guidelines outlined.

Session IV - Seminar Attendees Participation

David Lee, Chairman
Systems Analysis Division
Division 4723
Sandia National Laboratories

SUPPLIER/USER SYSTEM EVALUATION DEVELOPMENT

Karl Wally
Solar Energy Projects Department
Systems and Applications Development Division
Sandia National Laboratories
Albuquerque, New Mexico 87185

ABSTRACT

As outlined in the MISR project plan, two of the three major procurement activities - user site preliminary selections and supplier/user experiment team selections - will involve numerous contract awards. Because this will entail the solicitation and evaluation of a correspondingly numerous pool of proposals, it is important that a methodology be available to guide evaluators in making consistent and effective evaluations. It is anticipated that this can be achieved using a two-step evaluation process. First, individual proposals will be evaluated using a multi-attribute decision analysis technique. In this technique, each proposal is evaluated by examining and scoring each of a set of significant attributes. These individual attribute scores are then weighted relative to each other and combined to produce a single score for each proposal. Second, a portfolio analysis technique utilizing the results from this first evaluation will be used to identify a "best" or "most effective" subset of proposals to be recommended for selection. A questionnaire has been developed to assist Sandia National Laboratories in identifying these significant attributes of the individual solar systems, user sites, and experiment team proposals. Additionally, the questionnaires also seek to identify significant attributes describing groups of field experiments that will be perceived as effective in furthering the MISR project goals.

Distribution:
TID-4500-R66, UC62 (301)

AAI Corporation
P. O. Box 6787
Baltimore, MD, 21204

Acurex Aerotherm
485 Clyde Avenue
Mountain View, CA 94042
Attn: J. Vindum

Advanco Corporation
999 N. Sepulveda Blvd.
Suite 314
El Segundo, CA 90245
Attn: B. J. Washom

Alpha Solarco
1014 Vine Street
Suite 2230
Cincinnati, OH 45202

American Boa, Inc.
Suite 4907, One World
Trade Center
New York, NY, 10048
Attn: R. Brundage

Anaconda Metal Hose Co.
698 South Main Street
Waterbury, CT 06720
Attn: W. Genshino

Applied Concepts Corp.
P. O. Box 2760
Reston, VA 22090
Attn: J. S. Hauger

Applied Solar Resources
490 East Pima
Phoenix, AZ 85004
Attn: W. H. Coady

Arizona Public Service Co.
Box 21666 MS 1795
Phoenix, AZ 85036
Attn: Dr. B. L. Broussard

Argonne National Laboratory (3)
9700 South Cass Avenue
Argonne, IL 60439
Attn: K. Reed
W. W. Schertz
R. Winston

BDM Corporation
1801 Randolph Street
Albuquerque, NM 87106
Attn: T. Reynolds

Battelle Memorial Institute
Pacific Northwest Laboratory
P. O. Box 999
Richland, WA 99352
Attn: K. Drumheller

Bechtel National, Inc.
P. O. Box 3965
50 Beale Street
San Francisco, CA 94119
Attn: E. Y. Lam

Black and Veatch (2)
P. O. Box 8405
Kansas City, MO 64114
Attn: Dr. J. C. Grosskreutz
D. C. Gray

Boeing Space Center (2)
M/S 86-01
Kent, WA 98131
Attn: S. Duzick
A. Lunde

Boomer-Fiske, Inc.
4000 S. Princeton
Chicago, IL 60609
Attn: C. Cain

Budd Company
Fort Washington, PA 19034
Attn: W. W. Dickhart

Budd Company (The)
Plastic R&D Center
356 Executive Drive
Troy, MI 48084
Attn: J. N. Epel

Burns & Roe (2)
185 Crossways Park Dr.
Woodbury, NY 11797
Attn: R. J. Vondrasket
J. Wysocki

Carrier Corp.
Energy Systems Div.
Summit Landing
P. O. Box 4895
Syracuse, NY 13221
Attn: R. A. English

Compudrive Corp.
76 Treble Core Road
N. Billerica, MA 01862
Attn: T. Black

Cone Drive
Division of Excello Corp.
P. O. Box 272
240 E. 12 St.
Traverse City, MI 49684
Attn: J. E. McGuire

Congressional Research Service
Library of Congress
Washington, DC 20540
Attn: H. Bullis

Corning Glass Company (2)
Corning, NY 14830
Attn: A. F. Shoemaker
W. Baldwin

Custom Engineering, Inc.
2805 South Tejon St.
Englewood, CO 80110
Attn: C. A. de Moraes

DSET
Black Canyon Stage
P. O. Box 185
Phoenix, AZ 85029
Attn: G. A. Zerlaut

Del Manufacturing Co.
905 Monterey Pass Road
Monterey Park, CA 91754
Attn: M. M. Delgado

Desert Research Institute Energy
Systems Laboratory
1500 Buchanan Blvd.
Boulder City, NV 89005
Attn: J. O. Bradley

Donnelly Mirrors, Inc.
49 West Third Street
Holland, MI 49423
Attn: J. A. Knister

E-Systems, Inc.
Energy Tech. Center
P. O. Box 226118
Dallas, TX 75266
Attn: R. R. Walters

Easton Utilities Commission
219 North Washington St.
Easton, MD 21601
Attn: Mr. W. H. Corkran, Jr.

Eaton Corporation
Industrial Drives Operations
Cleveland Division
3249 East 80 St.
Cleveland, OH 44104
Attn: R. Glatt

Edison Electric Institute
90 Park Avenue
New York, NY 10016
Attn: L. O. Elsaesser

Electric Power Research
Institute (2)
3412 Hillview Avenue
Palo Alto, CA 94303
Attn: Dr. J. Cummings
J. E. Bigger

Energetics
833 E. Arapahoe Street
Suite 202
Richardson, TX 85081
Attn: G. Bond

Energy Institute
1700 Las Lomas NE
Albuquerque, NM 87131

Eurodrive, Inc.
2001 W. Main St.
Troy, OH 45373
Attn: S. D. Warner

Exxon Enterprises (3)
P. O. Box 592
Florham Park, NJ 07923
Attn: J. Hamilton
P. Joy
Dr. M. C. Noland

Florida Solar Energy Center (2)
300 State Road, Suite 401
Cape Canaveral, FL 32920
Attn: C. Beech
D. Block

Ford Aerospace and Communications
3939 Fabian Way
Palo Alto, CA 94303
Attn: H. H. Sund

Ford Glass Division
Glass Technical Center
25500 West Outer Drive
Lincoln Park, MI 48246
Attn: H. A. Hill

General Atomic
P. O. Box 81608
San Diego, CA 92138
Attn: A. Schwartz

General Electric Co. (2)
P. O. Box 8661
Philadelphia, PA 19101
Attn: W. Pijawka
C. Billingsley

General Motors
Harrison Radiator Division
Lockport, NY 14094
Attn: L. Brock

General Motors Corporation
Technical Center
Warren, MI 48090
Attn: J. F. Britt

Georgia Institute of Technology
Atlanta, GA 30332
Attn: J. D. Walton

Georgia Power Company
270 Peachtree
P. O. Box 4545
Atlanta, GA 30302
Attn: J. Roberts

Glitsch, Inc.
P. O. Box 226227
Dallas, TX 75266
Attn: R. W. McClain

Haveg Industries, Inc.
1287 E. Imperial Highway
Santa Fe, Springs, CA 90670
Attn: J. Flynt

Hexcel
11711 Dublin Blvd.
Dublin, CA 94566
Attn: R. Johnston

Highland Plating
1128 N. Highland
Los Angeles, CA 90038
Attn: M. Faeth

Honeywell, Inc.
Energy Resources Center
2600 Ridgeway Parkway
Minneapolis, MN 55413
Attn: J. R. Williams

Insights West
900 Wilshire Blvd.
Los Angeles, CA 90017
Attn: J. H. Williams

Jacobs Engineering Co. (2)
251 South Lake Avenue
Pasadena, CA 91101
Attn: B. Eldridge
R. Morton

Jet Propulsion Laboratory (3)
4800 Oak Grove Drive
Pasadena, CA 91103
Attn: J. Becker
J. Lucas

Kingston Industries Corporation
205 Lexington Ave.
New York, NY 10016
Attn: M. Sherwood

Lawrence Livermore Laboratory
University of California
P. O. Box 808
Livermore, CA 94500
Attn: W. C. Dickinson

Los Alamos Scientific Lab. (3)
Los Alamos, NM 87545
Attn: J. D. Balcomb
C. D. Bankston
D. P. Grimmer

McDonnell-Douglas Astronautics
Company (3)
5301 Bolsa Avenue
Huntington Beach, CA 92647
Attn: J. B. Blackmon
J. Rogan
D. Steinmeyer

Morse Chain
Division of Borg-Warner Corp.
4650 Steele St.
Denver, CO 80211
Attn: G. Fukayama

Motorola, Inc.
Government Electronics Division
8201 E. McDowell Road
P. O. Box 1417
Scottsdale, AZ 85252
Attn: R. Kendall

New Mexico State University
Solar Energy Department
Las Cruces, NM 88001

Oak Ridge National Laboratory (3)
P. O. Box Y
Oak Ridge, TN 37830
Attn: S. I. Kaplan
G. Lawson
W. R. Mixon

Office of Technology Assessment
U. S. Congress
Washington, DC 20510
Attn: R. Rowberg

Omnium G
1815 Orangethorpe Park
Anaheim, CA 92801
Attn: S. P. Lazzara

Owens-Illinois
1020 N. Westwood
Toledo, OH 43614
Attn: Y. K. Pei

PPG Industries, Inc.
One Gateway Center
Pittsburg, PA 15222
Attn: C. R. Frownfelter

PRC Energy Analysis Company
7600 Old Springhouse Road
McLean, VA 22101

Parsons of California
3437 S. Airport Way
Stockton, CA 95206
Attn: D. R. Biddle

Progress Industries, Inc.
7290 Murdy Circle
Huntington Beach, CA 92647
Attn: K. Busche

Ronel Technetics, Inc.
501 West Sheridan Rd.
McHenry, IL 60050
Attn: N. Wensel

Scientific Applications, Inc.
100 Mercantile, Commerce Bldg.
Dallas, TX 75201
Attn: Dr. J. W. Doane

Scientific Atlanta, Inc.
3845 Pleasantdale Road
Atlanta, GA 30340
Attn: A. Ferguson

Schott America
11 East 26th St.
New York, NY 10010
Attn: J. Schrauth

Solar Energy Information Center
1536 Cole Blvd.
Golden, CO 80401
Attn: R. Ortiz

Solar Energy Research Institute (13)
1536 Cole Blvd.
Golden, CO 80401
Attn: B. L. Butler
L. G. Dunham (4)
B. P. Gupta
F. Kreith
J. Thornton
K. Touryan
N. Woodley
D. W. Kearney
C. Bishop
B. Feasby

Solar Energy Technology
Rocketdyne Division
6633 Canoga Avenue
Canoga Park, CA 91304
Attn: J. M. Friefeld

Solar Kinetics, Inc.
P. O. Box 47045
8120 Chancellor Row
Dallas, TX 75247
Attn: G. Hutchison

Southwest Research Institute
P. O. Box 28510
San Antonio, TX 78284
Attn: D. M. Deffenbaugh

Stanford Research Institute
Menlo Park, CA 94025
Attn: A. J. Slemmons

Stearns-Rogers
4500 Cherry Creek
Denver, CO 80217
Attn: W. R. Lang

W. B. Stine
317 Monterey Rd., Apt. 22
South Pasadena, CA 91303

Sundstrand Electric Power
4747 Harrison Avenue
Rockford, IL 61101
Attn: A. W. Adam

Sun Gas Company
Suite 800, 2 No. Pk. E
Dallas, TX 75231
Attn: R. C. Clark

Sun Heet, Inc.
2624 So. Zuni
Englewood, CO 80110

Sunpower Systems
510 S. 52 Street
Tempe, AZ 85281
Attn: W. Matlock

Suntec Systems, Inc.
2101 Wooddale Drive
St. Paul, MN 55110
Attn: L. W. Rees

Swedlow, Inc.
12122 Western Avenue
Garden Grove, CA 92645
Attn: E. Nixon

3M-Decorative Products Division
209-2N 3M Center
St. Paul, MN 55101
Attn: B. Benson

3M-Product Development
Energy Control Products
207-1W 3M Center
St. Paul, MN 55101
Attn: J. R. Roche

Team, Inc.
120 West Broadway, No. 41
Tucson, AZ 85701
Attn: Roger Harwell

Texas Tech University
Dept. of Electrical Engineering
P. O. Box 4709
Lubbock, TX 79409
Attn: J. D. Reichert

TRW, Inc.
Energy Systems Group of TRW, Inc.
One Space Park, Bldg. R4, Rm. 2074
Redondo Beach, CA 90278
Attn: J. M. Cherne

Toltec Industries, Inc.
40th and East Main
Clear Lake, IA 50428
Attn: D. Chenault

U. S. Department of Energy (3)
Albuquerque Operations Office
P. O. Box 5400
Albuquerque, NM 87185
Attn: G. N. Pappas
C. B. Quinn
J. Weisiger

U. S. Department of Energy
Division of Energy Storage Systems
Washington, DC 20545
Attn: J. Gahimer

U. S. Department of Energy (8)
Division of Solar Thermal Energy Sys.
Washington, DC 20585
Attn: W. W. Auer
G. W. Braun
J. E. Greyerbiehl
M. U. Gutstein
L. Melamed
J. E. Rannels
F. Wilkins
J. Dollard

U. S. Department of Energy (2)
San Francisco Operations Office
1333 Broadway, Wells Fargo Bldg.
Oakland, CA 94612
Attn: R. W. Hughey

University of Kansas Center for
Reserch, CRINC
2291 Irving Hall Rd.
Lawrence, KS 66045
Attn: R. F. Riordan

University of New Mexico (2)
Department of Mechanical Eng.
Albuquerque, NM 87113
Attn: M. W. Wilden
W. A. Cross

Viking
3467 Ocean View Blvd.
Glendale, CA 91208
Attn: G. Guranson

Winsmith
Div. of UMC Industries, Inc.
Springville, NY 14141
Attn: R. Bhise

Wyle Lab
7800 Governor's Drive West
Huntsville, AL 35807
Attn: R. Losey

1520 T. J. Hoban
1530 W. E Caldes
1550 F. W. Neilson
2320 K. L. Gillespie
2323 C. M. Gabriel
2324 R. S. Pinkham
2326 G. M. Heck
3161 J. E. Mitchell
3600 R. W. Hunnicutt
Attn: H. H. Pastorius, 3640
3700 J. C. Strassel
4000 A. Narath
4231 J. H. Renken
4700 J. H. Scott
4710 G. E. Brandvold
4713 B. W. Marshall
4714 R. P. Stromberg (20)
4715 R. H. Braasch
4718 E. Burgess
4719 D. G. Schueler
4720 J. H. Scott (Actg) 100
4725 R. L. Alvis (20)
4721 J. V. Otts
4722 J. F. Banas
4723 W. P. Schimmel
4725 J. A. Leonard
4750 V. L. Dugan
5510 D. B. Hayes
5513 D. W. Larson
5520 T. B. Lane
5523 R. C. Reuter
5810 R. G. Kepler
5820 R. E. Whan
5830 M. J. Davis
5833 J. L. Jellison
5840 N. Magnani
8266 E. A. Aas (2)
8450 R. C. Wayne
8451 C. F. Melius
8452 A. C. Skinrood
8452 T. Bramlette
8453 W. G. Wilson
3141 T. L. Werner (5)
3151 W. L. Garner (3)
(Unlimited Release)
For DOE/TIC
(Unlimited Release)