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Abstract

This paper presents a comparison of dynamic responses of piping systems sub-
ject to Independent support excitation using the response spectrum and time his-
tory methods. The BNL finite element computer code 'PSAFE2' has been used to
perform all the analyses. The time history method combines both the inertia as
well as static effect on the piping responses due to independent support excita-
tions at each time point, thus representing the actual responses. A sample prob-
lem is analysed subjected to two independent support excitations and the results
are presented in comparison with the response spectrum methods with uniform or
independent support motiom.

Introduction

In the past decade, several investigators have studied the problem of inde-
pendent support excitation of a piping system to identify the real need for such
an analysis. Penzien and Clough [1]* have presented the matrix formulations in
their book for developing a computer analysis, Memmott and Vinson {[2] later im-
plemented this in their piping code and found the methodology works well against
SAP IV time history results. Vashi's [3] work identifted the so-called pseudo-
static and dynamic components and their importance in such an analysis. His work
was directed towards the formulation details and has indicated the importance of
each stress result. Latey, Wu, Hussain and Liu [4] compared the results obtained
by independent support response spectrum analysis agaiust the convention:1l umbrel-
la spectrum results and time history results. Recent work by Leimbach and Schmid
[5} on an automated procedure for such analysis and by Leimbach and Sterkel [6}
on some real piping system analyses concluded that such an analysis offers an
increase in accuracy at a small increase in computational costs.

411 the above studies describe the mathematical formulations for an analysis
with independent support movements and identify the influence of each parameter
involved without quantitative clarifications. Specifically, the pseudo-static
component has been identified qualitatively without any results to show its con-
tribution to the total response of such a system. Therefore, this work was under-
taken to make a study of the approach and its impact on current design practice.

The method 1is formulated by a basic and rational mathematical procedure in a
general form, for a realistic computation of the seismic response of a piping

*
Numbers in brackets [ ] designate references in section 5 of this paper



system. The conventional approach with uniform excitation is derived from this
general formulation. The response spectrum method accounts for the contribution
of individual excitations acting at each support group through a modified defini-
tion of the modal participation factors. Tn the time history method a time de-
pendent modal load vecior corresponding to each support group is defined. Both
approaches, as can be seen from the formulations, predict the maximum dynamic
(inertial) response of the mass points in a typical piping system. In order to
complete the analysis, the pseudo-static component is determined to find the total
response and hence the pipe forces/moments at each point. For the response spec—
trum method the static component of the response is lost during the process of
developing the spectra which defines the maximum response of the system at dif-
ferent frequencies. The only way to include the static effects in this case is

to perform a separate selsmic anchor movement analysis. In the time history meth-
od, this component is calculated directly from the ground displacements by using
the influence coefficient matrix. The total »csponse is then calculated by com-
bining these pseudo-static componentsto the dynamic component. In this paper some
preliminary conclusions regarding the group combination methods and the pseudo-
static component of the responses are discussed.

Theoretical Formulation
The equations of motiom for a three-dimensional piping system subject to
independent support excitation In the general matrix form can be written as:

Mt o) [H]  [op tenl [£] K im][x] [o.

- -—>5 4 — -
: '
00112 Cop:C | |2 _l Bp i |2 Fa

where, a dot over a variable denotes differentiation with respect to time, and
subscripts 'P' and 'B' represent the quantities for the pi;ing points and the
boundary points respectively. The subscripts 'PB' and '3P* denote the coupling
terms between the piping and boundary points and are transpose to one another.
The following are the explanations for the other variables:

———dd= g _

lumped mass matrix of the piping system

the damping matrix

the stiffness matrix

the displacement response of the piping structure
the displacement response of the support points
the Reaction Forces at the support points
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Both equations can be solved directly provided the displacement and the ve-
locirty input histories at the support points are known, and the damping mechanisms
can be modeled in the piping system. In practice, the ground accelerations are
the only ground input known for the purpose of analysis. Alsoc damping in both
the response spectrum method and the time history method is usually introduced aa
modal damping instead of the general damping matrix depicted in the formulation.

It's assumed that the total response of the piping degrees of freedom con-
sists of two individual components. One component, known as the dynamic or in-
ertial component, is due to the inertia forces generated by the mass points in
the piping system and the frequency of excitation of the ground. Thus, it is
explicitly dynamic in nature. The second component, on the other hand, has noth-
ing to do with the piping mass. It 1s caused hy the differential ground motion
between different boundary attachments when the piping system is subject to inde-
pendent support motions. This component does not exist in case all support points
are excited simultaneously with identical excitaction. Since the ground excitation
1s a function of time, this component is also a function of time. It is termed
the pseudo-static component because of 1its characteristic of deforming the piping
system similar to a static ground motion.

Having this in mind, the total response may be expressed as the sum of the
dynamic and pseudo-static component



X=X+ XS (2)
where

X = total response of the piping system

Xp = dynamic or inertial component of the response

Xg = pseudo-static component of the response

In order to find the static component, the dynamic components are set equal to
zero in equation (1). Equation (1) then gives rise to the definition of the
pseudo-static component. It is:

- -1
g = Kp ~ Kpgl (3e)
Kpa¥s * Kg? = Fyg (3b)
where FBS represents the support reactions due to static displacements XS alone.

Now, substituting the value of X in terms of the static and dynamic terms as
in equation (2}, utilizing the relationships given in equation (3) and neglecting
the support damping contributions, the following equaticns are obtained:

My + Sl + KKy = MK TR Y (4a)

Kgp b = Fap (4b)

where FBD is the support reactions due to the dynamic displacement XD alone.

Equation (4a) represents the equilibrium equation for a dynamic or inertial
loading where Z is the input accelerations. Equations (3a) represents the static
equilibrium equations where the ground displacement 'Z' 1s obtained from the in-
put acceleration functions. The solutions to these equations yield the respective
dynamic and pseudo-static components of the total response of the piping system.

Dynamic Response
Equation (4a) governs the dynamic or inertial response of the system subject

to support excitation while equation (4b) is used to calculate the support forces
due to pipe mass point inertia loadings. The solution of equation (4a) follows
the normal practice. The equation set is diagonalized by operating with the
modal matrix for undamped force vibrations using only a reduced number of funda-
mental frequencies of the system. The resulting decoupled equations are then
solved separately. The decoupled normal equations are expressed in the form:

. . 2 T -1 =

q + [26w]q + (0']lq = @ MK, TRypZ (5)
The above matrix equation can be rewritten in terms of modal equations as:
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The subscript 'i' denotes the modes, 'j' denotes the support excitation direction
(i.e., X, Y or 2) and superscript 'k' represents the support point (or group).
Thus,

qik) = {th mode response due to jth directional excitation of the kth sup-
] port point (or group)

$ = modal matrix of the piping system, all supports fixed

Ei'mi = ith modal critical damping and the frequency of the system

i‘k) = jth directional excitation of the kth support point (or group)

h]
L(k) = ith modal participation factor of the jth excitation of the kth sup-
1j port point (or group)

EN °1 M U(k), n = 1, N = number of global equations (i.e., d.o.f.)
n n oj
in the system



l‘(l oy e ¥ // e
- qﬂ

The terms Ut(l:) (=](P_1 K.;I;)) are obtained for the kth support point (or group) in

three global directions (J = 1, 2, 3) for each degrees of freedom of the system.

(k)

Using the convolution integral in solving equation (6), the response <:11__1

can be obtained from:

-Eiwi (t-t) SIN 1—51 mi(t—'r)] dt 7

From here, both approaches (response spectrum and time history) follow separate
paths to obtain the maximum response of the system,

Response Spectrum Method
This method yields the maximum response of the system without providing the

time dependence of the componencs of the response. Having obtained all the modal
maximum values (qi ) , the maximum responses of all the piping degrees of free-
dom (i.e., xn) arejog%,a‘ined. Other relevant quantities such as forces, moments
and stresses are then evaluated for each mode due to each excitation direction at
each support point (or group). Each of these guantities represents the maximum
value which can be obtained at any time durins the response time span of the
system.

The group contributions are combined first before any modal or directional
combinations. Three methods of combination were considered. These include alge-
braic, abscluta and the SRSS methods. Once the group responses are obtained by
one of the above methods, the other combinations are carried out as per usual
practice.

It should be noted that the time phase among the various support groups,
excitation directions and modal responses are lost during the solutions process.
It, therefore, becomes necessary to make assumptions concerning the time phase
and group relationships in order to select the proper combination procedure.
Also, as mentioned earlier, the pseudo-static component of the total response
cannot be obtained unless the ground displacement is known at each time point.
With the spectrum method this is not possible.

Time History Method
This procedure involves integration of all the modal equations in equation

(7) using ¢ @ Wilson-~8 method, an unconditionally stable step-by-step integration
scheme. 'rve integration is carried out at the same time steps for all nodes.
Once the modsl time histories are obtained, the piping responses are calculated
at each time point. Other relevant quantities are also evaluated using these
same response histories. The support reactiuvns are obtained from equation (4b).

In order to calculate the pseudo-static fesponse of the system, the equation
given in (3) is solved. Since the term "K, l(g (+U)" 1is already determined,
the static response is obtained by multiplying Eis term, the influence coeffi-
cients between the support point motions and the piping degrees of freedom, with
the ground displacement time histories.

Having completed calculations for all the groups, the contributions from
each group is added at each time point. The final s-lution inclvdes the dynamic,
static and total response componencs.

Code Implementation
The formulations described in the above section were implemented into the

existing BNL finite element computer code “PSAFE2'. The updated code has the
capability to solve for the response of a piping system by both the response
spectrua method as well as the time history method with independent support exci-
tation. All the suppoct points <ith identical input excitations, both in magni-
tude and phase, form a single 'support group'. The cede calculates the responses



due to the ground excitation of each support group while maintaining the other
supports fixed. In this procedure the responses due to all the support points
within a support group are combined by the algebraic sum method according to Lin
and Loceff [7]. After all the group contributions are calculated, individual
group responses are combined using either of three methods available to the user.
These are algebraiec, absolute and SRSS methods. This is true for the response
spectrum approach where the phasing between groups is lost during the process of
calculation. However, for time history responses all group contributions are
added algebraically at each time point.

Results and Conclusions

A typical piping system shown in Figure 1 was considered for this study.
The analyses performed were selected to further verify the code against the con-
ventional methods rather than to evaltate the independent support motion method.
However, from the results some preliminary ccnclusions on the different methods
of seismic analysis of piping systems can be made.

Figures 2 and 3 show the two time histories [8] used in the study correspond-
ing to two floors of a building. These were obtained from a finite element analy-
sis including soil structure interaction effects of the HFBR reactor facilities
at BNL. Figures 4 and 5 are the response spectra for a particular damping value
obtained from the time histories as per U.S. NRC Regulatory Guide 1.60. Figure 4
corresponds to the time history shown in Figure 2 and represents the input at the
upper level of the piping system. Figures 3 and 5 correspond to the input at the
lower level. The envelope spectrum, in this case, is identical to the upper lev~-
el floor response spectrum, Figure 4.

The piping system was analysed using the independent suppert motion time
history method, the independent support motion response spectrum method, and the
conventional uniform support motion response spectrum method with the envelope
spectrum. In the indepern’.=t support motion response spectrum analyses all three
combination methods (i.e., algebraic, absolute and 3RSS) between the groups were
used. In all the response spectrum analyses the modal and directiunal combina-
tions are performed as recommended in the U.S. NRC Regulatory Guide 1.92 without
considering clustering. The damping value is maintained constant in all analy-
ses. Also, in all cases the input excitation is limited to the X-direction only.
The Y- ’rection component is assumed to be equal to 2/3 of the X—direction input.

The irdependent support motion time history method yields three solutions,
namely, c¢ynamic (i.e., inertia effect), psuedo-static effects combined (i.e.,
static) and the total response (i.e., dynamic and pseudo-static effects combined
at each time point). The independent support motion response spectrum runs, om
the other hand, yield only the dynamic (or inertial) component of the response at
each point of the piping system. The static component is lost since the input is
a spectrum. Three separate runs were made corresponding to the three group com-
bination methods and a separate analysis was made using the conventional response
spectrum method subjected to a uniform excitation corresponding to the upper level
input spectrum.

It should be evident that the best results for the piping sytem will be
those developed with the independent support motion time history analysis. This
i1s because only this method accounts for the pseudo-static component and the in-
ertia component at each time point. In order to compare all the other results
with this, a stztic contribution should be added to all the response spectrum re-
sults. No separate static analysis was carried out in this study appropriate to
the response spectrum runs. The results obtained from the time history analysis
should represent the lower bound for the static component as compared to the
values that would result if other available techniques are applied to the piping
system. That is, other seismic anchor movement analysis methods should yield
static components of higher value than the time history results where phase is
taken into iccount at each time step. In this study the time history staric re-
sults are added to each spectrum results and the resultants should vepresent low-
er bounds for the spectrum methods. The results for all five cases are plotted
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in Figures 6, 7 and B for each component of the local moments at each point of
the piping system.

As expected, the spectrum of results are bounded by two analyses for most
points in the piping system. The independent time history results represent the
lower bound whereas the independent support motion response spectrum analysis
with group combination by the absolute sum method plus the static component rep-
reseats the upper bound of tha sclution. It should be emphasized that the static
component becomes a significant component for a system with independent support
excitation. This is not true for the envelope spectrum analysis which consequen-
tially does not yield the most conservative total response of the system. If the
static component is ignored, the envelope spectrum result typically envelopes the
other spectrum results.

A1l the pseudo-static components attain a maxima at the same time that the
ground displacement component achieves its maximum value. This occurs because
the static calculations are performed using a set of influence coefficients de-
rived from & static analysisg of the complete system subjected to a particu’ar
group's movements. In addition, the piping system considered in the study has
only two support groups in which case the out of phage mode between the groups
will always yield the worst static responses. Thus, thi. analysis at each time
point is not necessarily required ¢:cept for the time history analysis where the
dynamic component 1is added to the st.atic at each time point to provide accurate
results.

In conclusion, it is noted that excitations from different building struc-
tures, in which case the frequency content In each excitation will be different,
are expected to yield important conclusions. An additional effort on the para-
metric studies of various piping systems is underway to help the industry to de-
fine their criteria for designing systems under this kind of loading conditions.
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