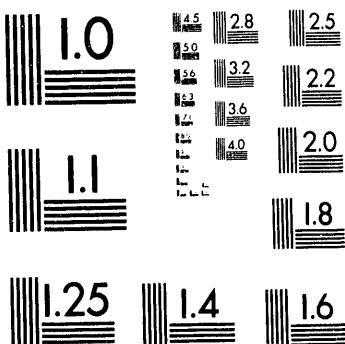


AIM


Association for Information and Image Management

1100 Wayne Avenue, Suite 1100
Silver Spring, Maryland 20910
301/587-8202

Centimeter

Inches

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.

1 of 1

52-93 J2②

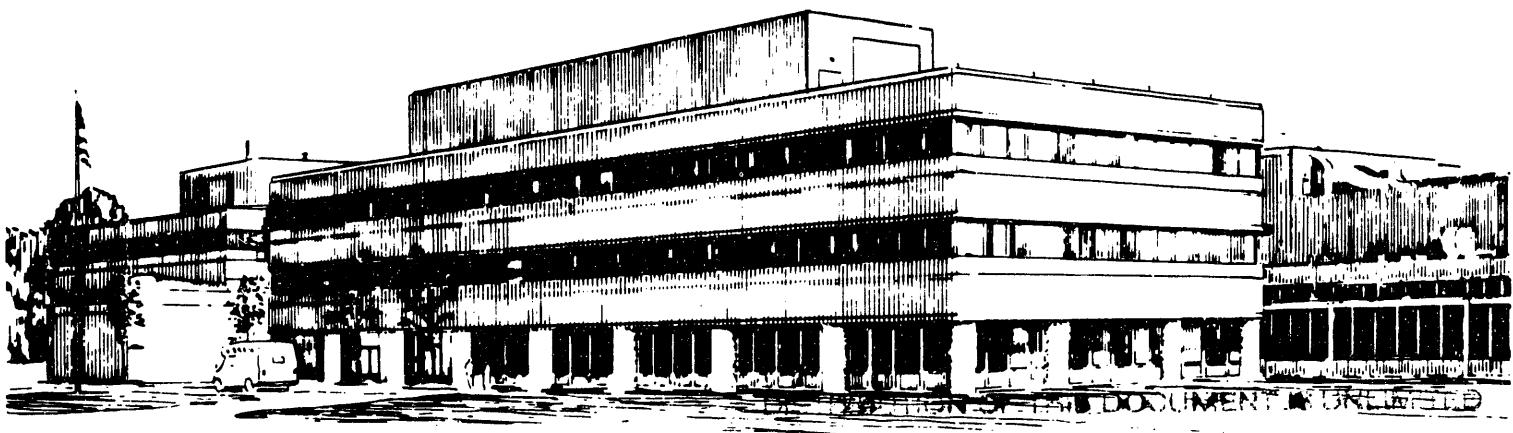
Conf-9304112-18

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76-CHO-3073

PPPL-2910
UC-420,426

PPPL-2910

DETERMINATION OF THE ENERGY OF SUPRATHERMAL ELECTRONS
DURING LOWER HYBRID CURRENT DRIVE ON PBX-M


BY

S. VON GOELER, S. BERNABEI, W. DAVIS, ET AL.

JUNE, 1993

PPPL

PRINCETON
PLASMA PHYSICS
LABORATORY

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial produce, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NOTICE

This report has been reproduced from the best available copy.
Available in paper copy and microfiche.

Number of pages in this report: 7

DOE and DOE contractors can obtain copies of this report from:

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831;
(615) 576-8401.

This report is publicly available from the:

National Technical Information Service
Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
(703) 487-4650

DETERMINATION OF THE ENERGY OF
SUPRATHERMAL ELECTRONS DURING
LOWER HYBRID CURRENT DRIVE ON PBX-M*

BY

S. VON GOELER, S. BERNABEI, W. DAVIS, D. IGNAT, S. JONES,
R. KAITA, G. PETRAVICH, F. RIMINI, P. RONEY, J. STEVENS

ABSTRACT

Suprathermal electrons are diagnosed by a hard X-ray pinhole camera during lower hybrid current drive on PBX-M. The experimental hard X-ray images are compared with simulated images, which result from an integration of the relativistic bremsstrahlung along lines-of-sight through the bean-shaped plasma. Images with centrally peaked and radially hollow radiation profiles are easily distinguished. The energy distribution of the suprathermal electrons is analyzed by comparing images taken with different absorber foils. An effective photon temperature is derived from the experimental images, and a comparison with simulated photon temperatures yields the energy of the suprathermal electrons. The analysis indicates that the energy of the suprathermal electrons in the hollow discharges is in the 50 to 100 keV range in the center of the discharge. There seems to exist a very small higher energy component close to the plasma edge.

*Presented at the Tenth Topical Conference on Radio Frequency Power in Plasmas, on April 1-3, 1993 in Boston, MA.

MASTER
EB

Determination of the Energy of Suprothermal Electrons during Lower Hybrid Current Drive on PBX-M.

S. von Goeler, S. Bernabei, W. Davis, D. Ignat, S. Jones[†], R. Kaita,
G. Petravich^{††}, F. Rimini^{†††}, P. Roney, J. Stevens, A. Post-Zwicker^{††††}.

Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton NJ. 08543

1. Introduction. The Lower Hybrid Current Drive (LHCD) experiment on the PBX-M tokamak attempts to modify and optimize the radial current profile in order to find new tokamak operating regimes with a higher value of beta.^{1,2} The lower hybrid waves interact with the plasma electrons and generate a suprothermal electron tail,³ presumably via Landau damping. In order to elucidate and test the physical mechanism of the wave-plasma interaction, we have installed on PBX-M a hard X-ray Camera^{4,5} that produces images of the hard X-ray bremsstrahlung created in collisions of the suprothermal electrons with plasma ions. The first results from the Hard X-ray Camera were reported at the Innsbruck EPS conference.⁵ In that paper, hard X-ray images from the camera are compared with computer-simulated images from the PBXRAY code. It was shown that the radial the location of the suprothermal electrons can be determined quite accurately. In particular it was found that LHCD with -90° or -105° phasing of the grill at high plasma densities generated a hollow ring of suprothermal electrons, a result that is considered crucial for the effort to modify the current profile. The present paper concentrates on the determination of the energy of the suprothermal electrons. We shall show that the suprothermal electrons in the high density regime have very low energies, (less than 100 keV). This result seems to support the notion that the electrons in the hollow discharges are in a regime where collisional slowing-down dominates acceleration by the electric field, and where low- n_{\parallel} LH waves, that tend to accelerate electrons to high energies, cannot penetrate to the plasma center because of accessibility.

The paper is organized as follows: In Sect. 2 we discuss the absorber foil method for the determination of the electron energy, which is well known for soft X-rays, but, to our knowledge, has not been applied to hard X-ray measurements. Modeling with the PBXRAY code will illustrate its merits - and its subtleties. In Sect. 3 we present results for a PBX-M high density discharge.

2. The Absorber Foil Method for Hard X-rays.

The Hard X-ray Camera has an imaging tube that integrates over photon energies. In order to determine the X-ray energy, we place various absorber foils in front of the pinhole of the camera in between shots, and compare the intensity I_{foil} from a shot with absorber foil #1 to the intensity

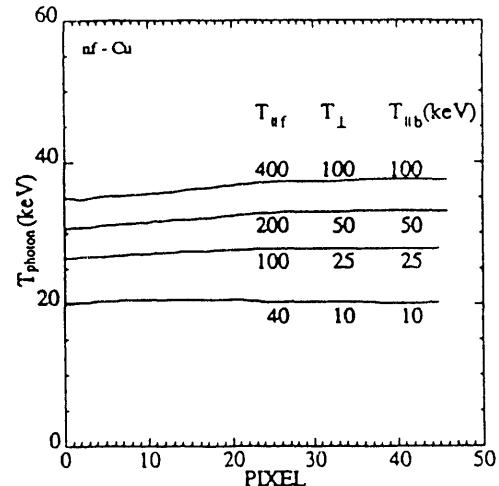


Fig. 1: Horizontal profiles of T_{photon} for different electron tail temperatures.

[†] Plasma Fusion Center, MIT, Cambridge, MA 02139

^{††} CRIP, Budapest, Hungary

^{†††} JET, Joint Undertaking, Abingdon, Oxfordshire OX14 3EA U.K.

^{††††} Oak Ridge National Laboratory, Oak Ridge, TN 37831

¹ R. Grimm, M. Chance, A. Todd, J. Manickam, M. Okabayashi, et al.: Nucl. Fusion 25, p.805 (1985)

² M. Chance, et al: Phys. Rev. Lett. 51, p.1965 (1983).

³ S. von Goeler, J. Stevens, et al.: Proc 5th Topical APS Conf. Radio Freq. Plasma Heating, Madison, p.96 (1983)

⁴ R. Kaita, S. von Goeler, S. Sesnic, S. Bernabei, E. Fredrickson, et al: Rev. Sci. Instrum. 61, p. 2756 (1990)

⁵ S. von Goeler, N. Asakura, R. Bell, S. Bernabei, T.K. Chu, et al.: Proc. 19th EPS Conf. Contr. Fusion and Plasma Physics, Innsbruck, Vol.II, p.949 (1992).

$I_{\text{foil}2}$ from a shot with foil #2. In analogy with the well-known absorber foil method for soft X-rays, we plot an effective "temperature" of the photon spectrum T_{photon}

$$T_{\text{photon}} = \frac{E_{\text{foil}2} - E_{\text{foil}1}}{\ln(I_{\text{foil}1}) - \ln(I_{\text{foil}2})},$$

where $E_{\text{foil}1}$ and $E_{\text{foil}2}$ are the low energy cut-offs for foil #1 and foil #2. If the spectrum of the emitted bremsstrahlung falls off with energy like an exponential function, then T_{photon} is the negative reciprocal slope of the spectrum in a semilog plot. The absorber foils consist of copper (0.52 mm), molybdenum (0.95 mm), and silver (2.03 mm). Without any absorber foil, the aluminum vacuum window, the aluminum entrance window of the X-ray tube, and the connectic magnetic shielding foil in front of the imaging tube contribute to a low energy cut-off of 45 keV. The cutoff energies with an additional Cu, Mo, or Ag foil are 67 keV, 115 keV, and 176 keV, respectively.

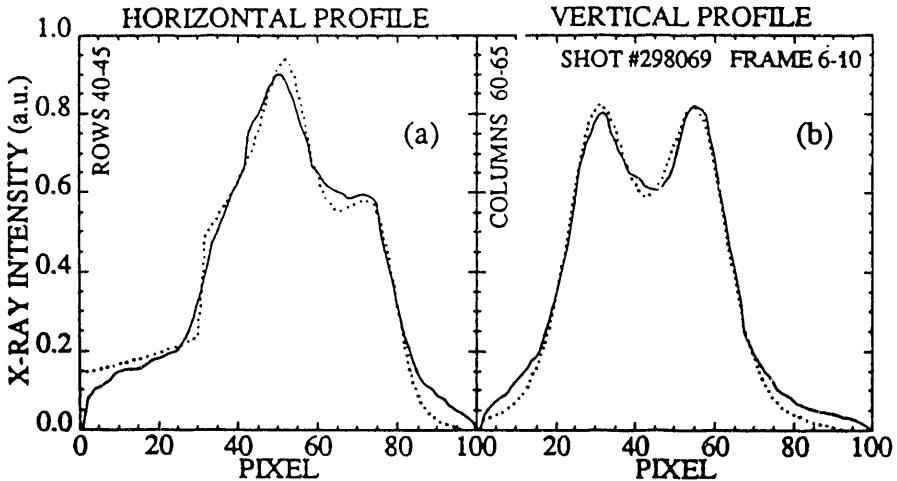


Fig.3: Horizontal (a) and vertical (b) profile for a hollow discharge. Solid curves experiment, dotted curves simulation. Input for simulation is shown in Fig. 6.

an image]. In the computation that lead to Fig.1, the electron tail distribution function was assumed to be a Gaussian characterized by three parameters, the parallel forward temperature $T_{\parallel f}$, the perpendicular temperature T_{\perp} , and the parallel backward temperature $T_{\parallel b}$. For each of the four curves, the tail temperature was the same on all flux surfaces; the density of suprathermal electrons, though, changed. For the four cases shown in Fig. 1, the temperatures varied by a factor of 10; however, the ratio of the three temperatures $T_{\parallel f}$, T_{\perp} , and $T_{\parallel b}$ was kept the same. It is remarkable how little the photon temperature changes across the image in Fig. 1, although the angle between the sight-line and the magnetic field varies significantly from the left side of the image to the right side. The photon temperature increases with increasing energy of the suprathermal electrons, however, the increase amounts only to a factor 2, and

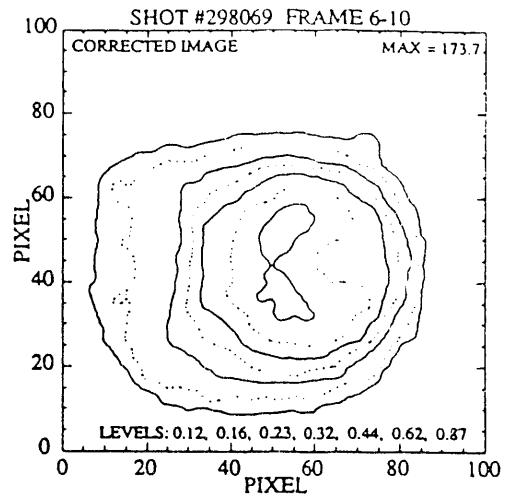


Fig. 2: Contour plot of a hollow discharge.

The quantity T_{photon} is only indirectly related to the energy (or temperature) of the suprathermal electrons. We now want to use the PBXRAY code to establish such a relationship. Simulated horizontal profiles of photon temperature T_{photon} are shown in Fig. 1 for four different hot-electron velocity distributions. ["Horizontal profile" is our nomenclature for a horizontal slice through the center of

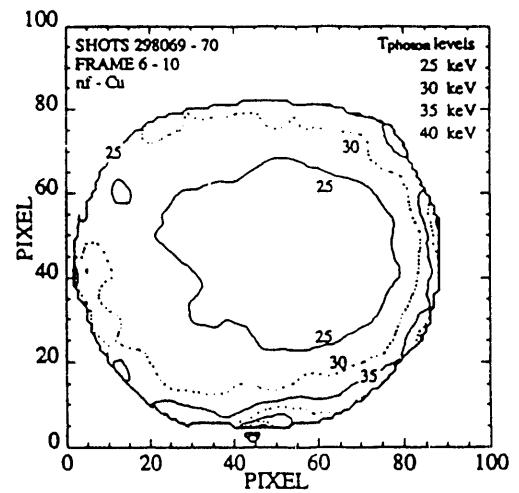


Fig. 4: Contour plot of the photon temperature in a hollow discharge.

the values for the photon temperature are considerably smaller than the values for the temperature of the suprathermal electrons. As a consequence, we believe that the photon temperature can be directly related in an approximate but simple fashion to the energy of the suprathermal electrons. However, a warning should be posted: The number of suprathermal electrons depends strongly on plasma density, and small changes in density may cause large variation in hard X-ray intensity. Therefore, the photon temperature can be measured only for plasma shots that are identical.

3. High Density Discharges. In this section we want to discuss the analysis of three nearly identical discharges with a hollow hard X-ray radiation profile, PBX-M shots #298069 - 71. The plasma current for these shots was about $I_p = 190$ kA and the plasma density $n_e = 1.6 \times 10^{13} \text{ cm}^{-3}$. LHCD with -90° phasing and 185 kW of power took place from time 250 ms to time 650 ms. Simultaneously, neutral beams were injected with 2.2 MW power. As soon as the RF started, hard X-ray images were observed. The hard X-ray intensity rose quickly for 50 ms and then settled into an approximately stationary state. The hard X-ray vertical profile was very hollow initially and remained hollow, albeit somewhat flatter, for the rest of the LHCD period. A contour plot of an X-ray image from the early stage is shown Fig. 2; it is an average of 5 frames from time 270 to 295 ms of shot #298069. The figure exhibits the characteristic crescent-like shape that is typical for "hollow" discharges on PBX-M. Figure 3a and 3b show the vertical and horizontal profiles from this image (solid curves). The experimental data are overlaid with computer simulations from the PBXRAY code (dotted curves). The velocity distribution and radial profile of

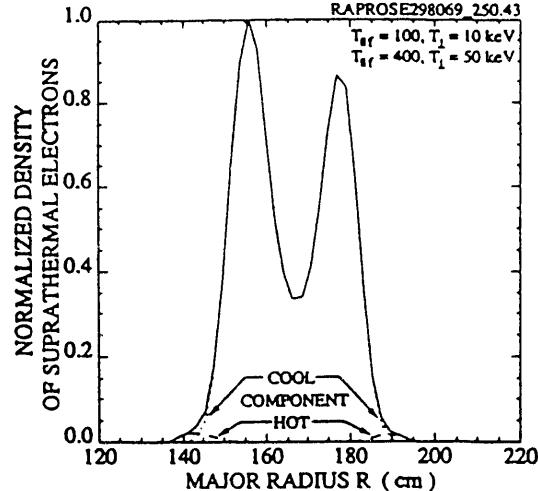


Fig. 6: Density of suprathermal electrons.

the hot electrons that went into the simulations, will be discussed below. A comparison of these results with the data shown at the Innsbruck Conference (Ref. 5), shows that there exists now a much better agreement between simulations and experiment. The improvement is mostly due to the fact that we have completed a calibration of the Hard X-ray Camera. In particular the right "shoulder" of the horizontal profile in Fig. 3a has now the correct height.

For shot #298070 and shot #298071, the copper (Cu) foil and the molybdenum (Mo) foil, respectively, were placed in front of the pinhole of the X-ray Camera. In Fig. 4, we show a contour plot of the photon temperature that was determined from the no-foil shot (nf) and the copper foil shot (Cu) during the time interval 270 - 295 ms. The photon temperature is 25 keV in the central region of the discharge, and rises towards the outside to about 40 keV on the large major radius side. Near the edge, the X-ray intensity becomes very small, and the measurement was truncated when the signal became smaller than 3 bits. The photon temperature from the nf - Mo

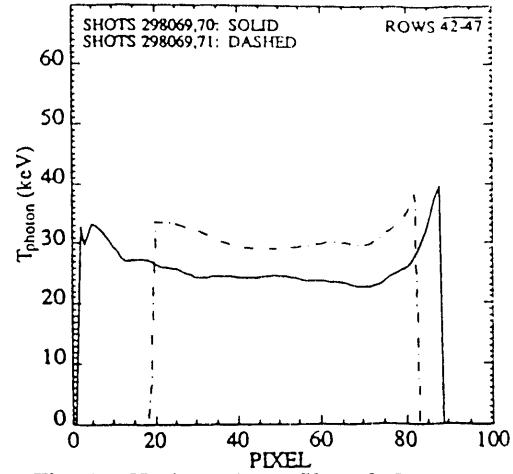


Fig. 5: Horizontal profile of T_{photon} .

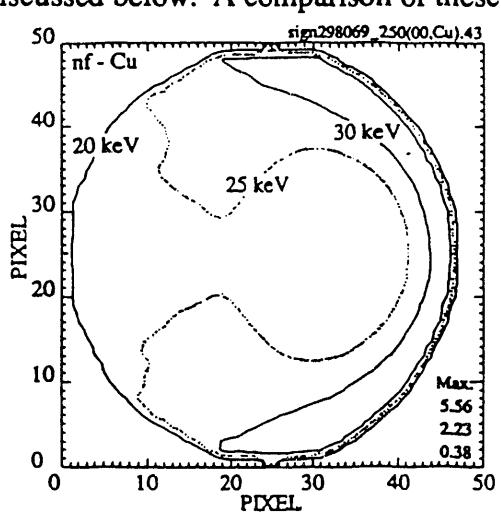


Fig. 7: Simulation of the photon temperature

shots looks very much like Fig. 4. The hard X-ray intensity is much weaker for the Mo shot, however, and the measurement has to be truncated further inside. In Fig. 5, we show horizontal profiles of the photon temperature for the nf- Cu case and the nf-Mo case. The nf-Mo case gives slightly higher photon temperatures. The fact that the photon temperature rises towards the large major radius side means that we cannot simulate the discharge with only one distribution function, in other words, the distribution function changes as a function of radius.

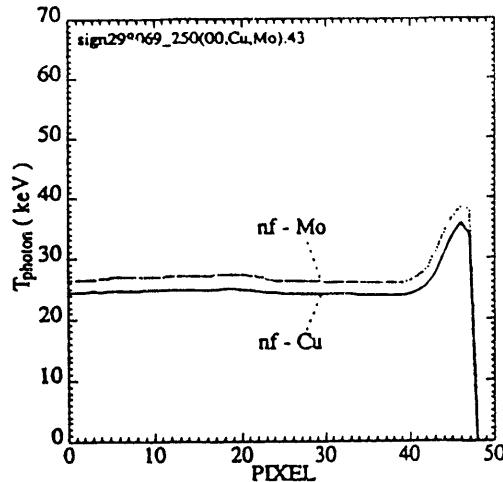


Fig. 8: Simulated horizontal profile of the photon temperature

simulations nicely reproduce the rise of the photon temperature on the right (large major radius) side of the image (Fig. 4 or Fig. 5). However up to now, we have no explanation for the small increase of the photon temperature on the left side of the image.

The analysis can now be done not only for one frame, but for a whole shot. In Fig. 9, we show the photon temperature in the central plasma region as a function of time for the nf-Cu case and the nf-Mo case. At time $t=400$ ms the photon temperature for the nf-Cu case seems to drop suddenly, whereas the nf-Mo temperature stays unchanged. At the time of the drop the plasma density for shot #298070 (the Cu shot) starts to deviate by 5% from the density for the other two shots. Therefore, we think that the drop is not a real change of the photon temperature, but reflects the sensitivity of the absorber foil method to density variations.

The fact that the photon temperature - and consequently the energy of the suprathermal electrons - is so low for the hollow discharge on PBX-M represents a significant new finding. As we mentioned in the introduction, these results depart from our former PLT measurements and from data of other machines. Of course the experimental techniques used on the earlier machines were also different. We plan to repeat the experiment using pulse-height-analysis techniques during the next PBX-M run.

Acknowledgments: The support of Drs. M. Okabayashi and N. Sauthoff and many helpful discussions with members of the PBX-M team are gratefully acknowledged. We also want to thank J. Gorman, R. Such, S. Hosein, and D. Ciotti for the technical assistance in installing and maintaining the foil drive on PBX-M. This work has been supported under Department of Energy contract No DE-AC02-76-CHO-3073.

We have attempted to model the discharge with two distribution functions. The radial profile factors of the two distributions are shown Fig. 6. In the plasma center a "cool" component ($T_{\parallel f} = 100$ keV, $T_{\perp} = 10$ keV, $T_{\parallel b} = 10$ keV) dominates. At the plasma edge there seems to exist a small hot component ($T_{\parallel f} = 400$ keV, $T_{\perp} = 50$ keV, $T_{\parallel b} = 50$ keV), which may be produced by electron runaway. The maximum density of the hot component is only 2 percent of the maximum density of the cool component. Therefore, the hot component makes only a small contribution to plasma current and energy. These distribution functions were also used to compute the two curves of the simulated hard X-ray intensity in Fig. 3a and 3b. In Fig. 7, we show a contour plot of the modeled photon temperature for the nf - Cu case, and, in Fig. 8, the horizontal profiles of the simulated photon temperature for the nf-Cu and the nf- Mo case. The

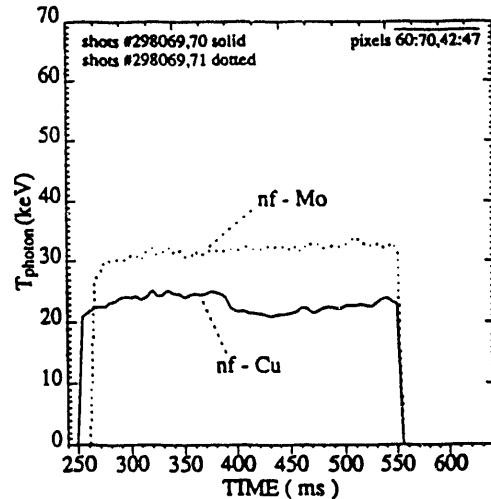


Fig. 9: Photon temperature vs. time.

EXTERNAL DISTRIBUTION IN ADDITION TO UC-420

Dr. F. Paoloni, Univ. of Wollongong, AUSTRALIA
Prof. M.H. Brennan, Univ. of Sydney, AUSTRALIA
Plasma Research Lab., Australian Nat. Univ., AUSTRALIA
Prof. I.R. Jones, Flinders Univ, AUSTRALIA
Prof. F. Cap, Inst. for Theoretical Physics, AUSTRIA
Prof. M. Heindler, Institut für Theoretische Physik, AUSTRIA
Prof. M. Goossens, Astronomisch Instituut, BELGIUM
Ecole Royale Militaire, Lab. de Phys. Plasmas, BELGIUM
Commission-Européenne, DG XII-Fusion Prog., BELGIUM
Prof. R. Bouquét, Rijksuniversiteit Gent, BELGIUM
Dr. P.H. Sakanaka, Instituto Fisica, BRAZIL
Instituto Nacional De Pesquisas Espaciais-INPE, BRAZIL
Documents Office, Atomic Energy of Canada Ltd., CANADA
Dr. M.P. Bachynski, MPB Technologies, Inc., CANADA
Dr. H.M. Skarsgard, Univ. of Saskatchewan, CANADA
Prof. J. Teichmann, Univ. of Montreal, CANADA
Prof. S.R. Sreenivasan, Univ. of Calgary, CANADA
Prof. T.W. Johnston, INRS-Energie, CANADA
Dr. R. Bolton, Centre canadien de fusion magnétique, CANADA
Dr. C.R. James, Univ. of Alberta, CANADA
Dr. P. Lukáč, Komenského Universzita, CZECHO-SLOVAKIA
The Librarian, Culham Laboratory, ENGLAND
Library, R61, Rutherford Appleton Laboratory, ENGLAND
Mrs. S.A. Hutchinson, JET Library, ENGLAND
Dr. S.C. Sharma, Univ. of South Pacific, FIJI ISLANDS
P. Mäkinen, Univ. of Helsinki, FINLAND
Prof. M.N. Bussac, Ecole Polytechnique, FRANCE
C. Mouttet, Lab. de Physique des Milieux Ionisés, FRANCE
J. Radet, CEN/CADARACHE - Bat 506, FRANCE
Prof. E. Economou, Univ. of Crete, GREECE
Ms. C. Rinni, Univ. of Ioannina, GREECE
Dr. T. Mui, Academy Bibliographic Ser., HONG KONG
Preprint Library, Hungarian Academy of Sci., HUNGARY
Dr. B. DasGupta, Saha Inst. of Nuclear Physics, INDIA
Dr. P. Kaw, Inst. for Plasma Research, INDIA
Dr. P. Rosenau, Israel Inst. of Technology, ISRAEL
Librarian, International Center for Theo. Physics, ITALY
Miss C. De Palo, Associazione EURATOM-ENEA, ITALY
Dr. G. Grosso, Istituto di Fisica del Plasma, ITALY
Prof. G. Rostangni, Istituto Gas Ionizzati Del Cnr, ITALY
Dr. H. Yamato, Toshiba Res & Devol Center, JAPAN
Prof. I. Kawakami, Hiroshima Univ., JAPAN
Prof. K. Nishikawa, Hiroshima Univ., JAPAN
Director, Japan Atomic Energy Research Inst., JAPAN
Prof. S. Itoh, Kyushu Univ., JAPAN
Research Info. Ctr., National Inst. for Fusion Science, JAPAN
Prof. S. Tanaka, Kyoto Univ., JAPAN
Library, Kyoto Univ., JAPAN
Prof. N. Inoue, Univ. of Tokyo, JAPAN
Secretary, Plasma Section, Electrotechnical Lab., JAPAN
S. Mori, Technical Advisor, JAERI, JAPAN
Dr. O. Mitarai, Kumamoto Inst. of Technology, JAPAN
J. Hyeon-Sook, Korea Atomic Energy Research Inst., KOREA
D.I. Choi, The Korea Adv. Inst. of Sci. & Tech., KOREA
Prof. B.S. Liley, Univ. of Waikato, NEW ZEALAND
Inst. of Physics, Chinese Acad Sci PEOPLE'S REP. OF CHINA
Library, Inst. of Plasma Physics, PEOPLE'S REP. OF CHINA
Tsinghua Univ. Library, PEOPLE'S REPUBLIC OF CHINA
Z. Li, S.W. Inst Physics, PEOPLE'S REPUBLIC OF CHINA
Prof. J.A.C. Cabral, Instituto Superior Técnico, PORTUGAL
Dr. O. Petrus, AL I CUZA Univ., ROMANIA
Dr. J. Villiers, Fusion Studies, AEC, S. AFRICA
Prof. M.A. Hellberg, Univ. of Natal, S. AFRICA
Prof. D.E. Kim, Pohang Inst. of Sci. & Tech., SO. KOREA
Prof. C.I.E.M.A.T, Fusion Division Library, SPAIN
Dr. L. Stenflo, Univ. of UMEA, SWEDEN
Library, Royal Inst. of Technology, SWEDEN
Prof. H. Wilhelmsson, Chalmers Univ. of Tech., SWEDEN
Centre Phys. Des Plasmas, Ecole Polytech, SWITZERLAND
Bibliotheek, Inst. Voor Plasma-Physica, THE NETHERLANDS
Asst. Prof. Dr. S. Cakir, Middle East Tech. Univ., TURKEY
Dr. V.A. Glukhikh, Sci. Res. Inst. Electrophys. Apparatus, USSR
Dr. D.D. Ryutov, Siberian Branch of Academy of Sci., USSR
Dr. G.A. Eliseev, I.V. Kurchatov Inst., USSR
Librarian, The Ukr.SSR Academy of Sciences, USSR
Dr. L.M. Kovrizhnykh, Inst. of General Physics, USSR
Kernforschungsanlage GmbH, Zentralbibliothek, W. GERMANY
Bibliothek, Inst. Für Plasmaforschung, W. GERMANY
Prof. K. Schindler, Ruhr-Universität Bochum, W. GERMANY
Dr. F. Wagner, (ASDEX), Max-Planck-Institut, W. GERMANY
Librarian, Max-Planck-Institut, W. GERMANY
Prof. R.K. Janev, Inst. of Physics, YUGOSLAVIA

**DATE
FILMED**

8 / 19 / 93

END

