

MASTER
GJBX-82 '79

AERIAL GAMMA RAY AND MAGNETIC SURVEY
POWDER RIVER II PROJECT

NEWCASTLE, GILLETTE, WYOMING AND SOUTH DAKOTA,
EKALAKA, MONTANA, SOUTH AND NORTH DAKOTA QUADRANGLES.

FINAL REPORT
VOLUME I

Prepared by:

geoMetrics
Sunnyvale, California

April 1979

Work Performed Under
Bendix Field Engineering Corporation
Grand Junction Operations, Grand Junction, Colorado
Subcontract 78-181-L
and
Bendix Contract EY-76-C-13-1664

Prepared for the
Department of Energy
Grand Junction Office
Grand Junction, Colorado 81501

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER STATEMENT

"This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights."

AERIAL GAMMA RAY AND MAGNETIC SURVEY
POWDER RIVER II PROJECT
THE NEWCASTLE AND GILLETTE QUADRANGLES OF WYOMING AND SOUTH DAKOTA;
THE EKALAKA QUADRANGLE OF MONTANA, SOUTH AND NORTH DAKOTA

FINAL REPORT
VOLUME I

Prepared by
geoMetrics, Inc.
Sunnyvale, California
April 1979

Work Performed Under
Bendix Field Engineering Corporation
Grand Junction Operation, Grand Junction, Colorado
Subcontract #78-181-L
and
Bendix Contract EY 76-C-13-1664

Prepared for the
Department of Energy
Grand Junction Office
Grand Junction, Colorado 81501

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

ABSTRACT

During the months of August through September, 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three $1^{\circ} \times 2^{\circ}$ NTMS quadrangle (Newcastle, Gillette and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program.

All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report.

The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin and the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point.

Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation.

A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects.

Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures.

TABLE OF CONTENTS

	<u>Page</u>
I. Introduction	1
II. Summary of Survey Results	4
Regional Geology	4
Interpretation	7
III. Operations	9
Production Summary	9
Data Collection Procedures	9
Operating Parameters/Sampling Procedures	9
Navigation/Flight Path Recovery	12
Infield System Calibration	12
IV. Data Collection System	15
Rotary Wing Aircraft	15
Electronics	17
Fixed Wing Aircraft	22
Electronics	24
V. System Calibration	26
Aircraft and Cosmic Background	26
System Constants	26
Atmospheric Radon Correction	34
Fixed Wing/Rotary Wing Data Normalization	37
VI. Data Processing	38
Data Preparation	38
Field Tape Editing	38
Flight Line Location	38
Radiometric Data Reduction	39
Statistical Analysis	46
Statistical Adequacy Test	46
Hypothesis Testing	48
VII. Data Presentation	50
General	50
Radiometric Profiles	50
Magnetic Profiles	52
Flight Path Maps	52
Anomaly Maps	52
Histograms	53

	<u>Page</u>
Data Listing	53
Data Tapes	54
VIII. Data Interpretation Methods	56
General	56
Methodology	57
IX. Bibliography	59
X. Appendices	
Appendix A - Tape Formats	A1
Appendix B - Production Summary	B1
Appendix C - Microfiche of Data	C1

LIST OF FIGURES - Volume I

	<u>Page</u>
Figure 1 Index Map Showing Survey Area	2
Figure 2 Regional Structure Map	5
Figure 3 Map of Known Uranium Occurrences	6
Figure 4 Diagram of Lama II and S2F Survey Areas	10
Figure 5 Typical Radar Altimeter Statistical Summary Histogram for Single Flight Line	11
Figure 6 Survey Aircraft/Equipment - Rotary Wing System	18
Figure 7 Survey Aircraft/Equipment - Fixed Wing System	19
Figure 8 Airborne Survey System Flow Chart	21
Figure 9 GR-800 Analog Spectrum Plot	23
Figure 10 Multiple Altitude Spectra Schematic	27
Figure 11 Typical Aircraft Background Spectrum Downward Looking Crystal	28
Figure 12 Typical Cosmic Spectrum Downward Looking Crystal	29
Figure 13 Data Processing Flow Diagram	40
Figure 14 Sample Computer Map Unit Histogram	49
Figure 15 Plotter Step Value Labeling Example	51

INTRODUCTION

Under the U.S. Department of Energy's (DoE), National Uranium Resource Evaluation (NURE) Program, geoMetrics, Inc., conducted a high sensitivity airborne radiometric and magnetic survey of the Newcastle, Gillette, and Ekalaka 1:250,000 quadrangles, within the States of Wyoming, Montana, South and North Dakota (see Figure 1). The objectives of the (DoE)/ NURE program, of which this project is a small part, may be summarized as follows:

"To develop and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States..."
(DoE)

As an integral part of the DoE/NURE Program, the National Airborne Radiometric Program is designed to provide cost effective, semiquantitative reconnaissance radio element distribution information to aid in the assessment of regional distribution of uraniferous materials within the United States.

All Airborne data collected during the course of this project were done so utilizing an Aerospatiale SA315B "Lama" helicopter (U.S. Registry No. N49531), herein designated Lama II, and an S2F Grumman Tracker (U.S. Registry No. N9AG). The S2F used 4096 cubic inches of NaI crystal and the Lama used 2304 cubic inches of NaI crystal. Both aircraft utilized high sensitivity proton magnetometers (0.25 gamma).

This final report is organized in two logical sections: (a) Volume I, containing the survey description, specifications, data processing methods, interpretation methods, regional geologic review and regional survey results and (b) one volume, Volume II, for each of the three quadrangles covered by the Powder River II Project Area. Each Volume II contains a detailed geologic summary, interpretation report, statistical anomaly maps, pseudo-contour maps, interpretation map, flight line and geologic base map, individual corrected profiles, computer map unit histograms and statistical tables.

All data processing, statistical analyses, and interpretation were performed at the geoMetrics computer facility, Sunnyvale, California. After processing, the corrected data were statistically evaluated to define those areas which were radiometrically anomalous relative to other areas within each similar computer map unit and displayed as anomaly maps. Anomaly maps and radiometric and magnetic profile data

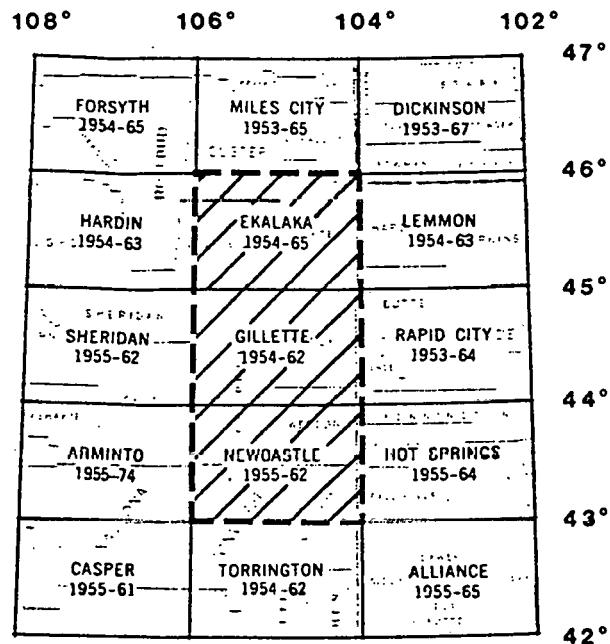


Figure 1. SURVEY AREA

were first evaluated individually and then integrated into a final interpretation map for each NTMS quadrangle.

Corrected profiles of all radiometric variables (total count, potassium, uranium, thorium, uranium/thorium, uranium/potassium, and thorium/potassium ratios), magnetic data, radar altimeter data, barometric altimeter data, air temperature, and airborne bismuth contributions are presented as profiles in Volume II of this report. Single record and averaged data are presented on microfiche at 1.0 second sample intervals, corrected for Compton Scatter, referenced to 400 foot mean terrain clearance, at Standard Temperature and Pressure (STP) and corrected for atmospheric bismuth in Appendix C of Volume I. Digital magnetic tapes are available from geoMetrics containing raw spectral data, single record data, magnetic data, and statistical analysis results.

SUMMARY OF SURVEY RESULTS

REGIONAL GEOLOGY

The area under study lies entirely within the northern Great Plains Province. Portions of five major geologic structures lie with the area's boundaries (Mallory, 1972). Geologic base maps for the quadrangles are from published or open-filed reports from the U.S. Geological Survey. See volume II for a complete bibliography of references used in interpretation.

The Powder River Basin and the Black Hills Uplift are the dominant structures of the area. The structures are approximately parallel, striking NNW through the study area. The Powder River Basin lies to the west of the Black Hills Uplift. It is bounded by portions of the north-east striking Hartville Uplift at its southeast end, and the Miles City Arch to the north. The Ekalaka Syncline, a small structure considered part of the Williston Basin, which plunges to the northwest, is present in the extreme northeast corner of the study area.

The Black Hills Uplift forms the northeastern boundary of the Powder River Basin. It is a broad anticlinal feature which primarily exposes Mesozoic and Paleozoic sedimentary rocks with some minor outcrops of Tertiary and Precambrian rocks (Figure 2).

The Powder River Basin is one of the largest and deepest basins in the northern Great Plains Province. It contains over 17,000 feet of Paleozoic, Mesozoic, and Cenozoic sediments at its deepest point. Eocene and Paleocene sediments are as thick as 6,000 feet in some places. However, very few rocks younger than Oligocene are present in the basin. The Wasatch and Fort Union Formations, which account for nearly all of the Tertiary sequence exposed in the basin, represent extensive fluvial to paludal deposition which occurred in the Powder River Basin as well as other Wyoming basins during the Paleocene and Eocene epochs. Rock units in the basin are flat to gently dipping, but steepen on the limbs of the boundary uplifts.

Topography varies from a low of approximately 3,000 feet above sea level in the flat to rolling plains over the Ekalaka Syncline, to nearly 7,000 feet in the Bear Lodge Mountains of the Black Hills Uplift. The Powder River Basin plain lies at a fairly constant 3,500 to 5,000 feet above sea level.

Economic deposits of oil coal, uranium, and bentonite are found in the Tertiary and/or Cretaceous rocks of the Powder River Basin. Within the Black Hills gold, silver, lead, copper, uranium, manganese

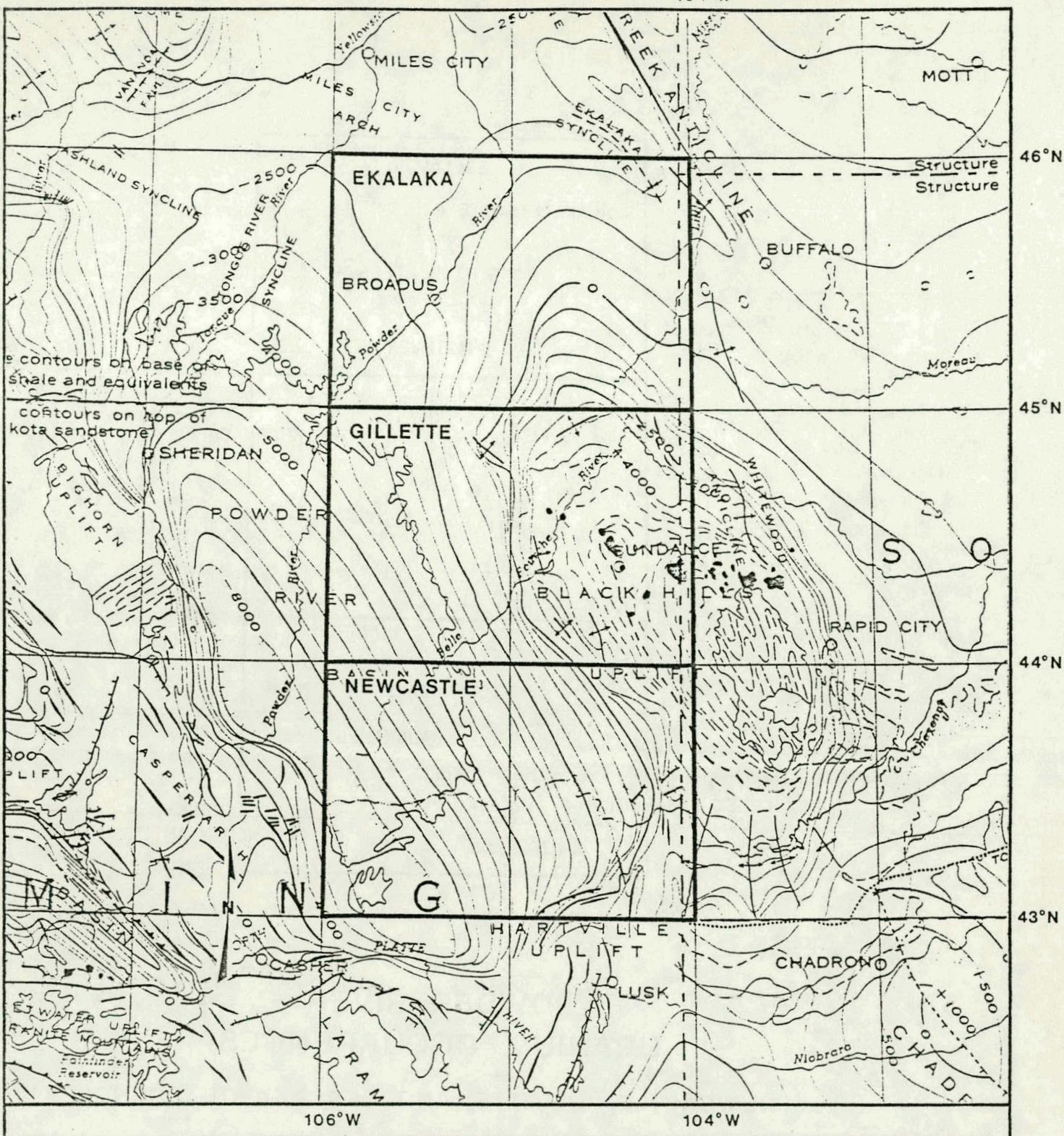


FIGURE 2

TECTONIC STRUCTURE MAP
POWDER RIVER II

After
USGS and AAPG
Tectonic Map of the United States
by
Cohee and others (1962)

Scale 1:2,500,000

25 0 25 50 75 MILES

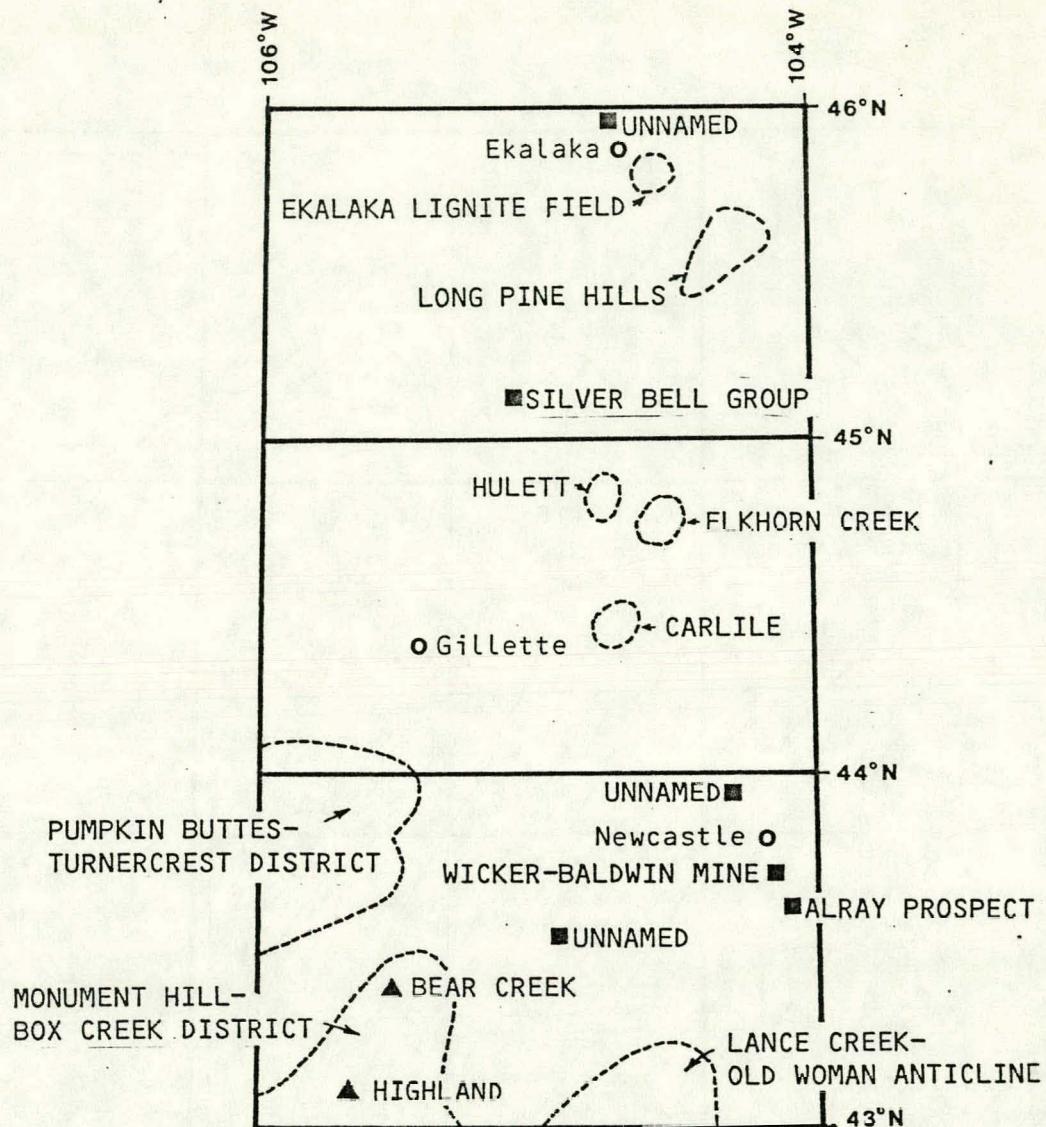


FIGURE 3
**POWDER RIVER
 URANIUM OCCURRENCES**
 (NEWCASTLE, GILLETTE, AND EKALAKA QUADRANGLES)

▲ - ACTIVE URANIUM MINES

■ - URANIUM CLAIMS OR INACTIVE MINES

○ - DISTRICTS AND/OR GROUPS OF NUMEROUS CLAIMS

○ - MAJOR TOWNS

and rare-earth elements have been mined. Deposits of feldspar, nepheline, and gypsum are also present in the Black Hills. Bentonite and uranium have been found in the Ekalaka Syncline and the northwest limb of the Hartville Uplift (U.S.G.S. map MR-42, 1964).

Epigenetic uranium deposits in the southwestern Powder River Basin, such as those in the Monument Hill - Box Creek and the Pumpkin Buttes - Turncrest districts, occur in the arkosic sandstones of the Paleocene upper Fort Union Formation. Claims have been filed on uranium deposits in Mesozoic rocks in the Hartville Uplift area (See Figure 3). Economic uranium deposits occur in Cretaceous sandstones of the Inyan Kara Group and the Hell Creek Formation in the Black Hills area and uranium has occurred in the Carlile, Hulett, and Elkhorn Creek areas in the northwestern portion of the Black Hills Uplift (Schnabel, 1955; Butler and others, 1962; Robinson and Gott, 1958; and Dahl and Hamgaier, 1974).

INTERPRETATION

Newcastle

Interpretation of the radiometric data resulted in tabulation of 83 statistical uranium anomalies for this quadrangle. Most anomalies are in the eastern-central portion of the map within the Tertiary Fort Union and Wasatch Formations. However, several lie in the Monument Hill - Box Creek and Pumpkin Buttes - Turncrest uranium districts in the southwest and northwest.

Residual magnetics clearly reflect the great depth to crystalline Precambrian basement in the Basin. The Basin/Uplift boundary is not readily observed in the magnetic data.

Gillette

A total of 109 groups of sample responses in the uranium window constitute "anomalies" as defined in Section VII. The anomalies are most frequently found in the Inyan-Kara Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features.

Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly define the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the

Black Hills Uplift are relatively well expressed.

Ekalaka

A total of 176 groups of sample responses in the uranium window constitute "anomalies" as defined in Volume I. These anomalies are found most frequently in the Fort Union Formation, but several Cretaceous units have a large number of anomalies associated with their mapped locations. Few of these anomalies occur over known uranium claims or areas where material other than uranium is mined. Most of the anomalies probably relate to natural geologic features.

Magnetic data apparently illustrate relative depths to the Precambrian basement rocks and clearly define the position of the Miles City Arch.

OPERATIONS

PRODUCTION SUMMARY-POWDER RIVER II

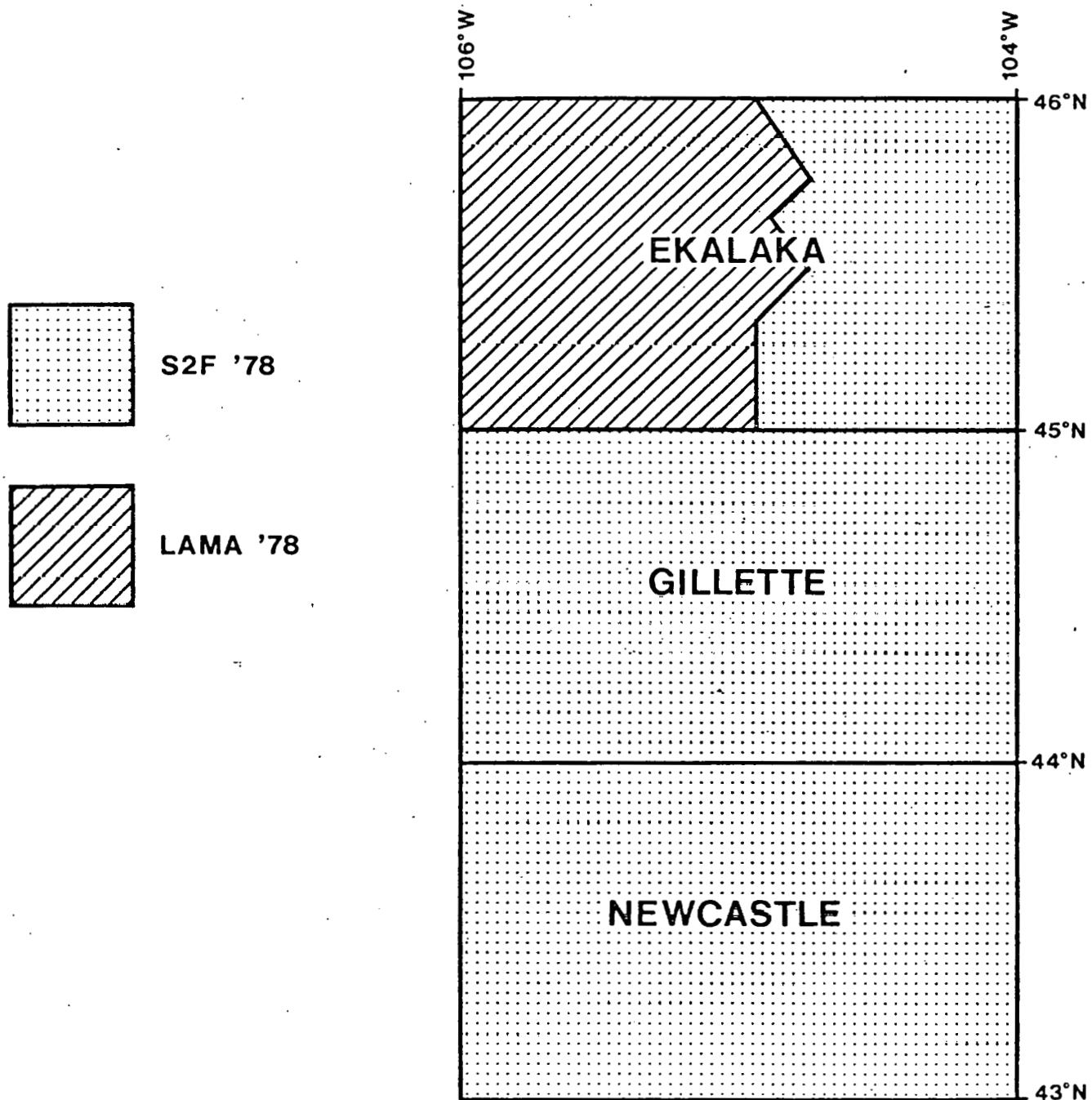
For the three NTMS Quadrangles comprising the "Powder River II" Project a total of 9010 line miles, excluding reflights and overlaps, were flown by the Tracker and the helicopter. The production summary presented below and the detailed daily production in Appendix B describes the total project. This project was flown simultaneously with the Powder River Research and Development project and, therefore, several flights collected data from both areas.

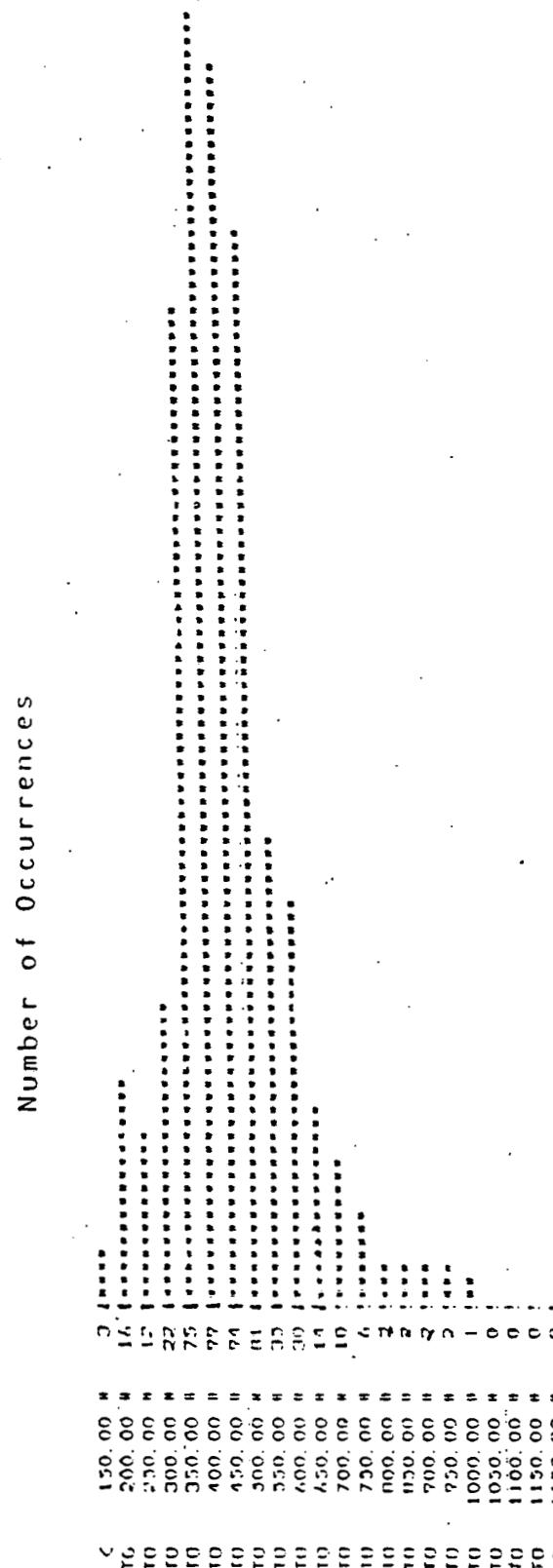
Data collection within this project was initiated by the S2F on August 11, 1978 at Gillette, Wyoming. Lama II began survey operations on August 23, 1978 from Broadus, Montana. The S2F completed its portion of the project on September 10, and Lama II finished the survey on September 9, 1978 (see Figure 4).

Throughout the course of the overall project, the average ground speed maintained by the helicopter was 69 mph. The Tracker's speed ranged from 130 to 140 mph.

Overall, in excess of 95% of the data collected were within the specification limits (a sample altitude statistical distribution is shown in Figure 5).

DATA COLLECTION PROCEDURES


Operating Parameters/Sampling Procedures


This survey was conducted using data collection parameters summarized below:

1. Data sampling was performed by a time-based system using 1.0 second sample intervals. All sensor data with analog output were digitally sampled at each scan based upon the clock timing rate of 1.0 seconds. The data so collected are the instantaneous values of the altimeter, temperature, pressure, and magnetometer parameters determined at the time of the data scan, but represent a count time of 1.0 seconds for the gamma ray spectrometer data.
2. The helicopter's objective ground speed was 70 mph and the Tracker's was 135 mph. Neither one of the objective speeds was exceeded unless dictated by safety.

FIGURE 4

POWDER RIVER PROJECT
NEWCASTLE, GILLETTE, AND EKALAKA QUADRANGLE
1978

THE MINIMUM RADAR ALTITUDE IS 147.500 FEET

THE MAXIMUM RADAR ALTITUDE IS 975.000 FEET

THE AVERAGE RADAR ALTITUDE IS 424.336 FEET

THE STANDARD DEVIATION IS 123.4900 FEET

Figure 5. Typical Radar Altimeter Statistical Summary Histogram for Single Flight Line.

3. For Lama II, the downward looking crystal volume was 2,048 cubic inches providing an objective V/V (crystal volume in cubic inches divided by ground speed in miles per hour) of 29.3 at 70 m.p.h. The S2F used 3584 cubic inches of downward looking crystal yielding the objective V/V ratio of 26.5.
4. The upward looking crystal volume was 256 cubic inches for Lama II and 512 cubic inches from the S2F.

Navigation/Flight Path Recovery

Profiles were flown east-west at 3 miles (4.8 kilometers) spacing in the Newcastle, Gillette, and Ekalaka quadrangles. North-south tie lines were flown at 12 miles (19.2 kilometers) spacing in all these quadrangles.

Navigation was accomplished using a combination of visual and doppler navigation techniques in the fixed wing and visual in the rotary wing aircraft. Flight lines were drawn on 1:250,000 scale NTMS quadrangle sheets for the S2F and on 1:24,000 quadrangles for the Lama. The pilot/navigator utilized these maps to provide visual navigation features. Flight lines were generally started and ended visually for both the Lama and the S2F. While doppler was used to fly a straight line between end points in the S2F, visual methods were continued for the Lama.

Simultaneously, a 35 mm tracking camera was used to record actual flight position. This camera's fiducial numbering system was directly synchronized to the digital recording system such that a one-to-one correlation between position and data could be made. Upon completion of a data collection flight, the 35 mm film was processed and actual flight path positions located on the appropriate scale map sheets. At the boundaries of the fixed wing/rotary wing areas, in Ekalaka, flight lines were flown by both the S2F and the Lama with overlaps of 1 mile over the best available terrain (see Figure 4).

Infield System Calibration

Due to the complex nature of both the systems and the required data interpretation, much emphasis was placed on infield calibration of each data collection system. The objective of this calibration was to ensure continuous high quality of the data collected. The daily calibration procedures used are set forth in the following summary check list:

A. Pre Flight

1. Use cesium sources (same positioning on crystals every day), peak each Photomultiplier tube/crystal using the digital split-window detector of the GR-800.
2. Run full cesium spectrum on analog recorder for both down and up looking crystals. Calculate the cesium resolution (see sample in Figure 8). Run spectrum out past the K40 peak on down crystals for centering evaluation of K40 peak.
3. Use thorium sources (same position every day) check upper end of spectrum in both up and down crystals - using the digital split window of the GR-800.
4. Run full thorium spectrum of down crystals on analog recorder. Check for centering of K40 and Th peaks in spectrum.

B. During Flight

1. Run test line at survey altitude (400 ft), for approximately five miles, prior to production data collection (record both analog and digital).
2. Prior to production data collection, the above data are evaluated to ensure $\pm 20\%$ limits on total count compared to first test flight from that base of operations.
3. During production data collection, monitor radon analog data for unusual increases. Visually correlate these with temperature and barometric pressure.
4. Upon completion of production data collection, refly test line at survey altitude (400 ft). Record both analog and digital.

C. Post Flight

1. Verify test line total count within $\pm 20\%$ of first test line at that base of operations.
2. Using cesium sources (same position as pre-flight), run full cesium spectrum for both down and up crystals (allow it to record through the K40 peak in the down crystals).

3. Calculate the resolution of down and up crystal pack.
4. Determine shift, if any, in K40 peak position.

DATA COLLECTION SYSTEM

ROTARY WING AIRCRAFT

The helicopter used for the survey is an Aerospatiale SA315B LAMA, Registry No. N49531 (Code System No. 06). The SA315B LAMA was originally designed and built by Societe Nationale Industrielle Aerospatial of France to meet the requirements of the Indian Armed Forces for a medium-sized helicopter capable of working in the Himalayas. In that the craft was initially designed to haul heavy payloads in rugged mountainous terrain, its overall performance and safety features make it ideal for low level, rotary-wing airborne geophysical survey work. There is virtually no other medium-sized rotary-wing aircraft which can carry the adequate payload at the necessary constant low airspeeds and tight terrain clearances and still maintain a wide envelope of safety, all while operating economically. Performance data for the SA315B LAMA (both general and in its present geophysical survey configuration) are given below:

Type: Turbine-driven general purpose helicopter.

Rotor System: Three-blade main and antitorque rotors. All metal main rotor blades of constant chord are on articulated hinges with hydraulic drag-hinge dampers.

Rotor Drive: Main rotor driven through planetary gearbox with free-wheel for autorotation. Take-off drive for tail rotor at lower end of main gearbox from where a torque shaft runs to a small gearbox which supports the tail rotor and houses the pitch-change mechanism. Cyclic and collective pitch controls are powered.

Fuselage: Glazed cabin has light metal frame. Center and rear of fuselage have a triangulated steel-tube framework.

Landing Gear: Skid type with removable wheels for ground maneuvering. Pneumatic floats for normal operation from water and emergency flotation gear (inflatable in the air) are available.

Power Plant: One 870 shp Turbomeca Artouste IIIB turboshaft engine derated to 550 shp. Fuel tank in fuselage center-section with capacity of 151.3 U. S. gallons (useable) (573 litres).

Accommodation: Glazed cabin seats pilot and passenger side by side in front and three passengers behind. Provision for external sling for loads of up to 2,204 lbs. (1,000 kg). Can be equipped for rescue

(hoist capacity 265 lb.; 120 kg), liaison, observation, training, agricultural, photographic, ambulance and other duties. As an ambulance, can accommodate two stretchers and a medical attendant internally.

Dimensions, External:	Main rotor diameter	36 ft., 1-3/4 in.
	Tail rotor diameter	6 ft., 3-1/4 in.
	Main rotor blade chord (constant)	13-4/5 in.
	Length overall, both rotors turning	42 ft., 4-3/4 in.
	Length of fuselage	33 ft., 8 in.
	Height overall	10 ft., 1-3/4 in.
	Skid track	7 ft., 9-3/4 in.

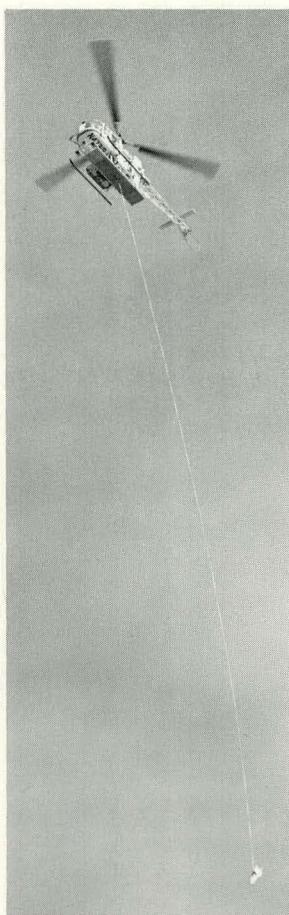
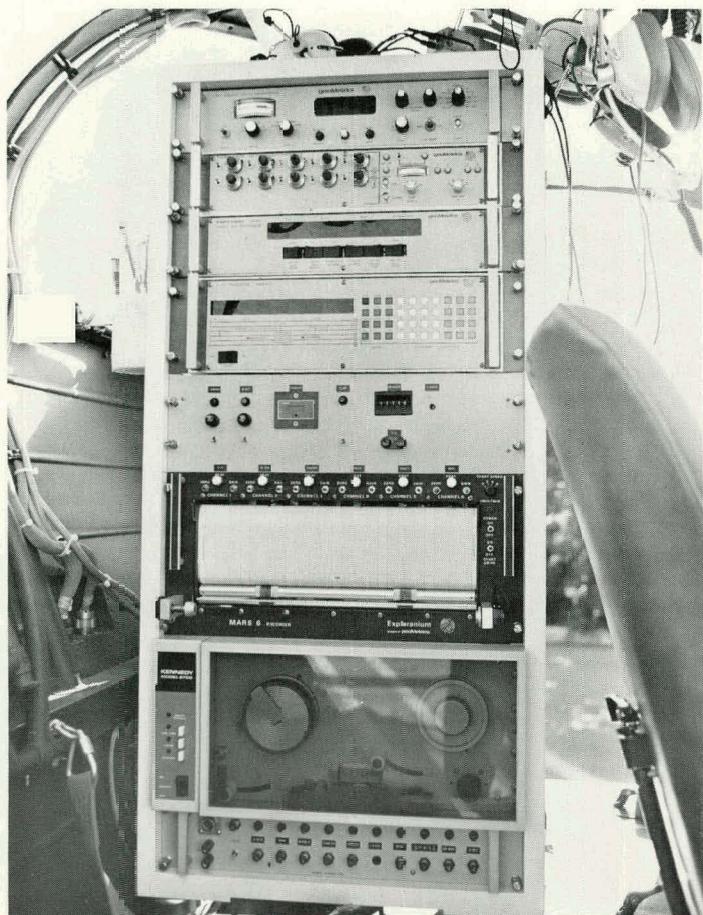
Performance (Sea Level Standard Conditions)

	Internal		External		
	Average	Maximum	Average	Maximum	
At Gross Weight	1b	3,310	4,300	4,200	5,070
Empty Weight	1b	2,216	2,216	2,216	2,216
Useful Load	1b	1,094	2,084	1,984	2,854
Sling Load (max)	1b				2,500
Cruise Speed	mph	118	118	55-75	55-75
Top Speed, Vne	mph	130	130	-	-
Useable Fuel US	gal	146	146	46	46
Service Ceiling	ft	(23,000)*	17,710	18,370	10,800
HIGE Ceiling	ft	(23,000)*	16,730	17,600	9,220
HOGE Ceiling	ft	(23,000)*	15,170	16,100	5,000
Rate of Climb S1	fpm	1,580	1,080	1,120	730
Max. Range, SL	mi	308	308	31**	31**

(*) Maximum certified altitude - 23,000 ft.

** Mission radius - includes: 10 minutes fuel reserve
3 minutes SL Hover
Return with no load

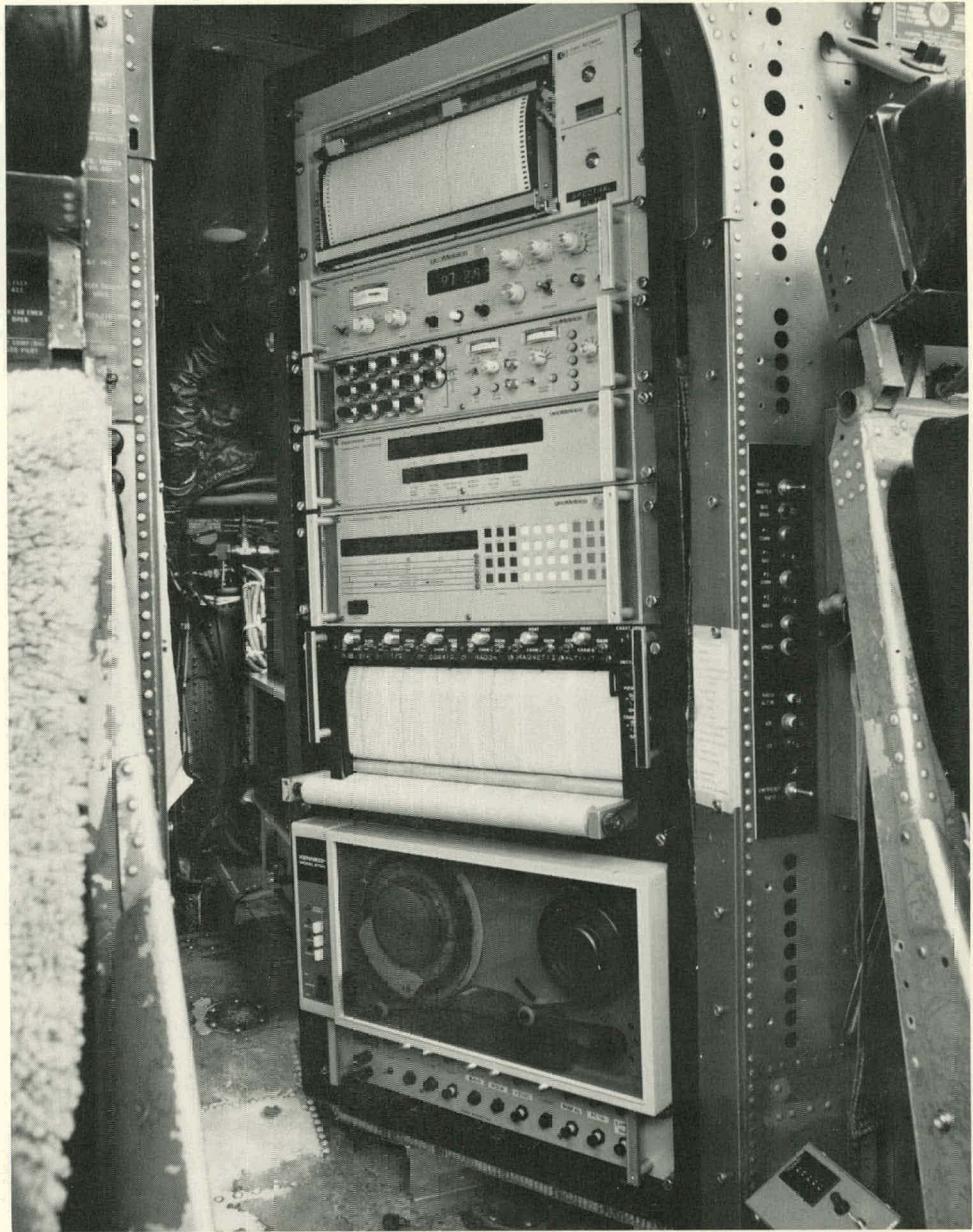
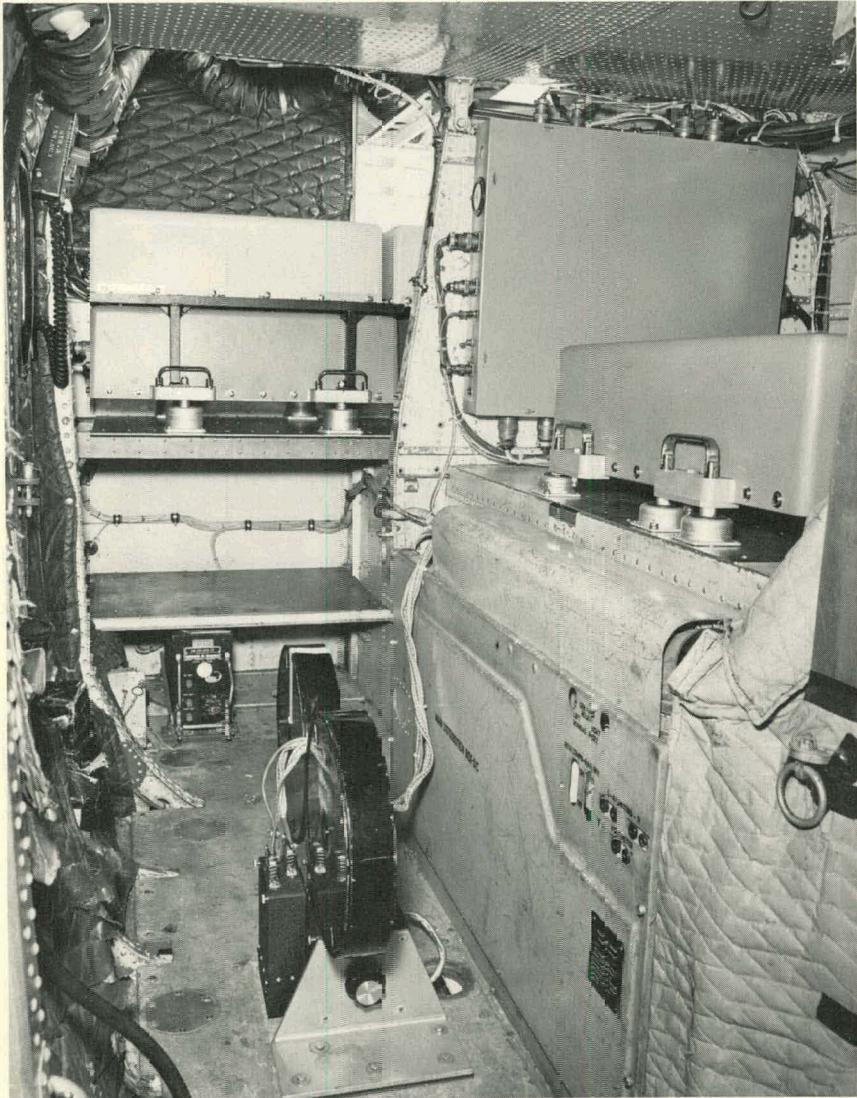
Present geophysical Configuration



Lama Weight Empty	2,193 lbs.
Maximum Fuel	900 lbs.
Geophysical Electronics	850 lbs.

Pilot	165 lbs.
Navigator	<u>175 lbs.</u>
Total	4,458 lbs.

Electronics

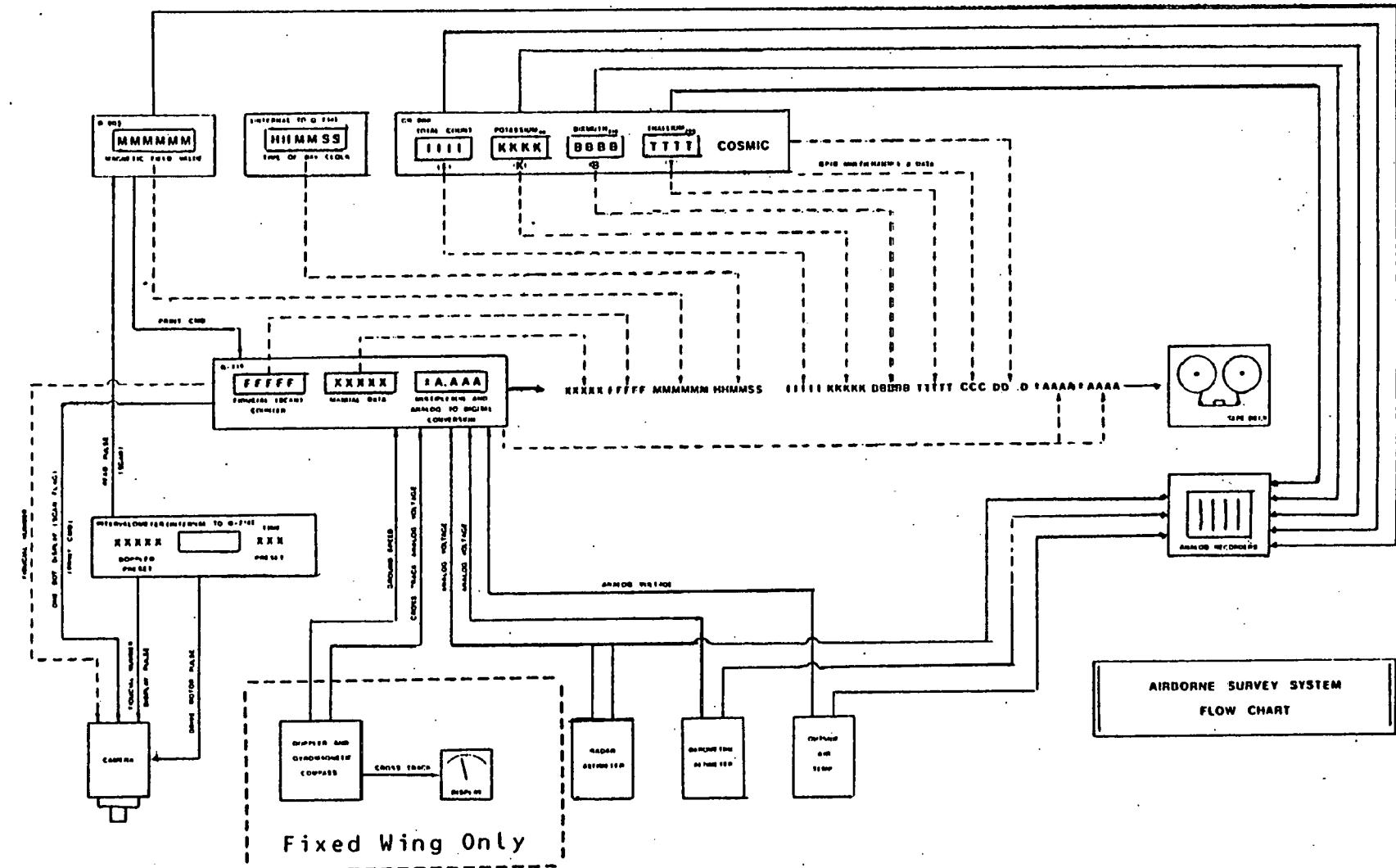
The major components of the airborne data collection system are summarized below (shown pictorially in Figure 6 and schematically in Figure 8):



1. Gamma Ray Spectrometer, geoMetrics GR-800, utilizing a dual 256 channel capability to provide spectral data in the 0.4 to 3.0 MeV range for both the downward looking and the upward looking crystal packages and coverage in the 3.0 to 6.0 MeV range for cosmic background.
2. Crystal Detector, geoMetrics Model NaI-100/CS, consisting of 2048 cubic inches in the downward looking configuration and 256 cubic inches appropriately shielded in an upward looking configuration.
3. geoMetrics Digital Data Acquisition System, Model G-714 with "read-after-write" data verification which records the following on magnetic tape:
 - a. 512 channels of gamma ray spectrometer data
 - b. Total magnetic intensity
 - c. Fiducial number from data system/camera
 - d. Manually inserted information, i.e. date, survey area, and flight line number
 - e. Altitude from radar altimeter and barometric altimeter (by analog-to-digital conversion)
 - f. Time in days, hours, minutes and seconds
 - g. Outside air temperature
4. Magnetometer, geoMetrics Airborne Model G-803, capable of 0.125 gamma sensitivity, but operated at 0.25 gamma sensitivity
5. Radar Altimeter, Sperry Model AA200, with recording output and display and minimum altitude range of 0 to 2,500 feet

HELICOPTER GEOPHYSICAL SURVEY SYSTEM
(Aerospatiale SA 315B Lama)

Ideally suited to contour flying, this exploration platform is employed on a Mid-west E. R. D. A. survey along the front range of the Rocky Mountains in central Colorado. [Far left]: A single shock-mounted instrument rack includes GeoMetrics Model G-803 Proton Magnetometer (top of rack), Model GR-900-2 Detector Interface console, Model GR-800D Multichannel Gamma Ray Spectrometer and G-714 Digital Data Acquisition System. A specially designed Intervalometer console is located above the Exploranium MARS-6 six-channel Analog Recorder and the Kennedy Model 9700 Magnetic Tape Deck. A fused Power Distribution Panel is shown at the bottom of the rack. Operator's seat is folded up to the left of the instrument rack. [Left]: Magnetometer "bird" sensor is towed from a 100 ft. nylon sleeved signal cable. [Bottom left]: The Lama was outfitted at GeoMetrics manufacturing facilities in Sunnyvale, California. [Below]: A center platform, held secure by the cargo hook, contains both a Model DET-1024 and DET-1024/256 R exSquare™ detector for a total volume of 2,048 cu. in. downward-looking and 256 cu. in. upward-looking. A Bonzer altimeter and Automax flight-path recovery camera are also included on the center platform. The entire instrumentation system, including detectors and hardware weighs approximately 700 lbs. (318 kg) installed.

Figure 6



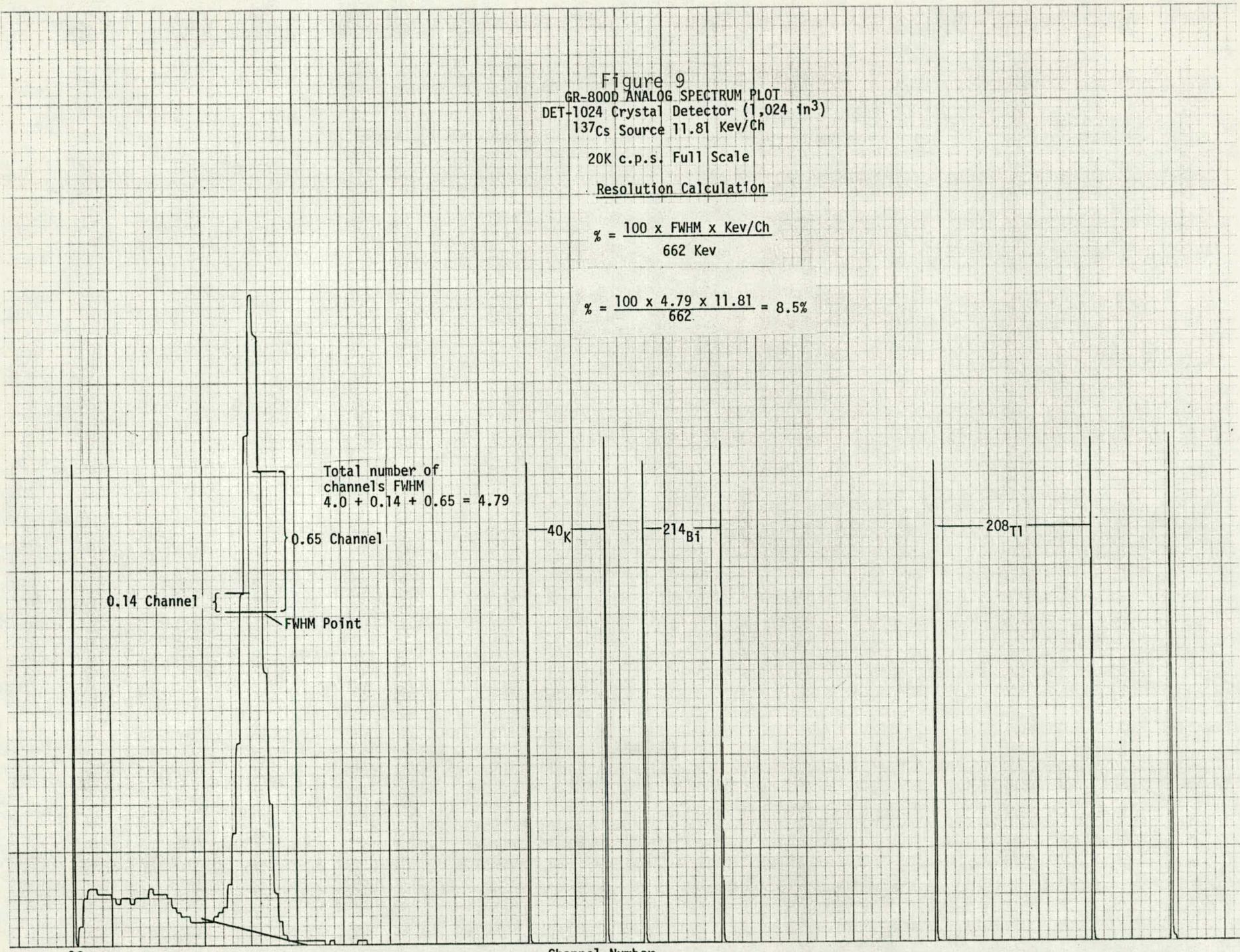
Left: Grumman S2F Survey Aircraft. Upper right: Geophysical instruments: G-803 Magnetometer, GR-800 Spectrometer, G-714 Data System & Recorders. Upper left: NaI exSquareTM Crystal detectors—3,072 cu.in. (50.4 l) down, 512 cu.in. (8.4 l) up. Camera: Automax G2.

Figure 7

6. Rosemont Barometric Altimeter with recording output and display
7. Recording Thermometer for monitoring outside air temperature
8. Tracking Camera. Automax 35 mm framing camera with wide angle lens to provide flight path recovery data
9. Analog Recorder geoMetrics (MARS 6) to record the following data:
 - a. Bi214 using a window about the 1.76 MeV peak from the downward looking system.
 - b. Bi air background using a window about the 1.76 MeV peak from the upward looking system.
 - c. Magnetometer
 - d. Radar Altitude
 - e. Total count for downward looking system (0.4 to 3.0 MeV)
 - f. Outside air temperature
 - g. Event and time markers
10. HP 7155 single channel analog recorder. During pre and post flight calibrations this recorder is used to plot a full analog spectra for both the down and up crystal systems via the GR-800. Thus, a hard copy record of the data used for resolution, drift, checks, etc., are available at all times. This approach provides instant verification of system parameters (refer to Figure 8).

FIGURE 8

FIXED WING AIRCRAFT


The fixed wing aircraft was a Grumman G-89, S2F Tracker, serial number 3, U.S. Registration N9AG, System code No. 04 (see Figure 7). This aircraft was originally designed and built by Grumman Aircraft Corporation for the U.S. Navy as a highly stable platform for carrying electronic instrumentation in search of submarines from carrier bases and/or short landing fields. Since it was designed for magnetic surveillance, it is a "magnetically clean" aircraft and thus ideal for collecting magnetic data. Overall, the aircraft's performance and safety features make it ideal for low level, fixed-wing airborne geophysical survey work. There is virtually no other fixed-wing aircraft which can carry the adequate payload at the necessary constant low airspeeds and tight terrain clearances and still maintain a wide envelope of safety. Performance data for the S2F in its present geophysical survey configuration are given below:

Aircraft empty		15,123 lbs
Electronic equipment		1,600 lbs
Main fuel usable		3,108 lbs
Auxiliary fuel usable		900 lbs
Pilot		175 lbs
Electronic operator		175 lbs
<hr/>		
Maximum gross weight for geophysical survey operation		21,081.1bs
Maximum allowable aircraft gross weight		24,500 lbs
Minimum control speed	85 KIAS at	24,500 lbs
Safe single engine speed	100 KIAS at	24,500 lbs
Single engine rate of climb at	120 KIAS 550 FPM at	23,000 lbs
Single engine rate of climb at	100 KIAS 390 FPM at	23,000 lbs
Rate of climb (two engines)	2,000 FPM at	5,000 ft
120 KIAS at 23,000 lbs.	1,200 FPM at	10,000 ft
(KIAS = Knots Indicated Air Speed)		

Figure 9
 GR-800D ANALOG SPECTRUM PLOT
 DET-1024 Crystal Detector ($1,024 \text{ in}^3$)
 ^{137}Cs Source 11.81 Kev/Ch
 20K c.p.s. Full Scale
Resolution Calculation

$$\% = \frac{100 \times \text{FWHM} \times \text{Kev/Ch}}{662 \text{ Kev}}$$

$$\% = \frac{100 \times 4.79 \times 11.81}{662} = 8.5\%$$

Cruise Configuration Stalling Speed at Gross Weight 21,000 lbs
0° Bank - 80 KIAS 45° Bank - 96 KIAS

Usable Fuel 518 U.S. Gallons 3180 lbs Mains
 150 U.S. Gallons 900 lbs Auxiliary

400 lbs per hour at 1000 feet altitude and 120 KIAS at 23,000 lbs.
gross weight duration 10 hours plus, due to burn off and lower
gross gross weight.

Electronics

The major components of the airborne data collection system are summarized below (shown pictorially in Figure 7 and schematically in Figure 8):

1. Gamma Ray Spectrometer, geoMetrics GR-800, utilizing a dual 256 channel capability to provide spectral data in the 0.4 to 3.0 MeV range for both the downward looking and the upward looking crystal packages and coverage in the 3.0 to 6.0 MeV range for cosmic background.
2. Crystal Detector, geoMetrics model NaI-1000/CS consisting of 3584 cubic inches in the downward looking configuration and 512 cubic inches appropriately shielded in an upward looking configuration.
3. A geoMetrics Digital Data Acquisition System, model G-714 with "read-after-write" data verification, recording the following on magnetic tape:
 - a. 512 channels of gamma ray spectrometer data
 - b. Total magnetic intensity
 - c. Fiducial number from data system/camera
 - d. Manually inserted information, i.e., data, survey area, and flight line number
 - e. Altitude from radar and barometric altimeters (by analog-to-digital conversion)
 - f. Time in days, hours, minutes, and seconds

- g. Outside air temperature
- 4. Magnetometer, geoMetrics Airborne model G-803, capable of 0.125 gamma sensitivity, but operated at 0.25 gamma sensitivity.
- 5. Radar Altimeter, Bonzer with a linear recording output, displaying an altitude range of 0 to 2500 feet.
- 6. Rosemont Barometric Altimeter with recording output and display.
- 7. Recording Thermometer for monitoring outside air temperature.
- 8. Tracking Camera, Automax 35 mm framing camera with wide angle lens to provide flight path recovery data.
- 9. Analog Recorder geoMetrics MARS 6 to record the following data:
 - a. Bi₂₁₄ using a window about the 1.76 MeV peak from the downward looking system
 - b. Bi air background using a window about the 1.76 MeV peak from upward looking system
 - c. Magnetometer
 - d. Total count for downward looking system (0.4 to 3.0 MeV)
 - e. Event and time markers
- 10. HP 7128, two channel analog recorder to record the following data:
 - a. Outside air temperature
 - b. Barometric altimeter
 - c. Event and time markets
 - d. During system calibrations, this recorder is used to plot full analog spectra for both the down and up crystal systems via the GR-800. Thus, a hard copy record of the data used for resolutions, drift, and other checks is available at all times (refer to Figure 9). This approach provides instant verification of system parameters.

SYSTEM CALIBRATION

AIRCRAFT AND COSMIC BACKGROUND

Full spectral data are collected at five (5) altitudes over water (Lama: 14,000 feet, Tracker 15,000 feet; 12,000 feet; 10,000 feet; 8,000 feet and 6,000 feet) in an area where the existence of no airborne Bi214 can be assured (off shore over the Pacific Ocean). This results in separate spectra as shown schematically in Figure 10. We define $S(12,000)$ to be the spectra at 12,000 feet from 0.4 MeV to 3.0 MeV with $S(8,000)$ the same spectra at a lower altitude (8,000) and $C(h)$ the total count between 3.0 and 6.0 MeV at respective altitudes. Since the aircraft background is constant, the difference between any two altitudes separated sufficiently - typically, 2,000 feet - yields the cosmic spectral curve shape as shown schematically in Figure 10. Thus

$$\text{and } S(12,000) - S(8,000) = \Delta S$$

$$\Sigma C_{12}(h_i) - \Sigma C_8(h_i) = \Delta C$$

This cosmic spectral curve is scaled back to 12,000 feet as follows:

$$\frac{C_{12}(h_i) \times \Delta S}{\Delta C} = C(12,000) \text{ the Cosmic Spectrum (Shape and magnitude at 12,000 feet)}$$

the aircraft background is derived as follows:

$$S(12,000) - C(12,000) = A/C \text{ Background}$$

Since data were collected at five altitudes, this procedure was repeated for each combination of altitudes and results averaged. Typical aircraft and cosmic spectra are shown in Figure 11 and 12 respectively.

SYSTEM CONSTANTS

System constants were determined by occupation of the DoE Walker Field Test Pads. The five test pads contained varying concentrations of K, U, and T as presented by BFEC:

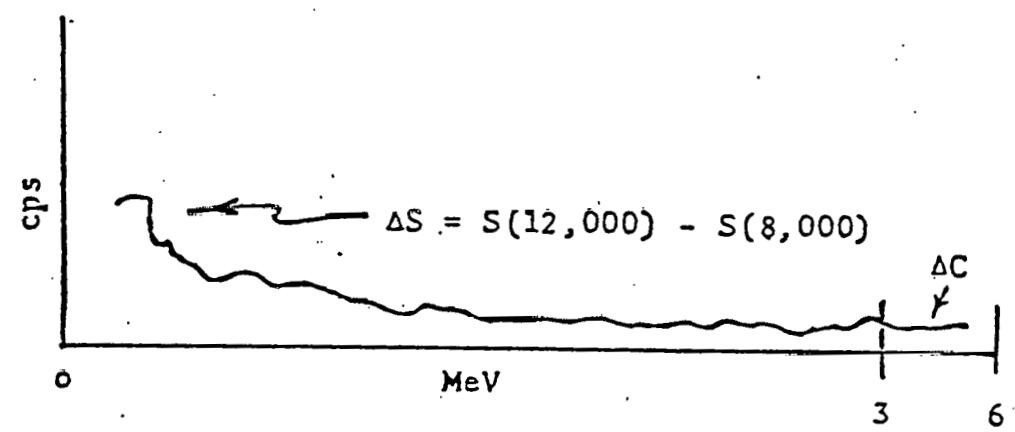
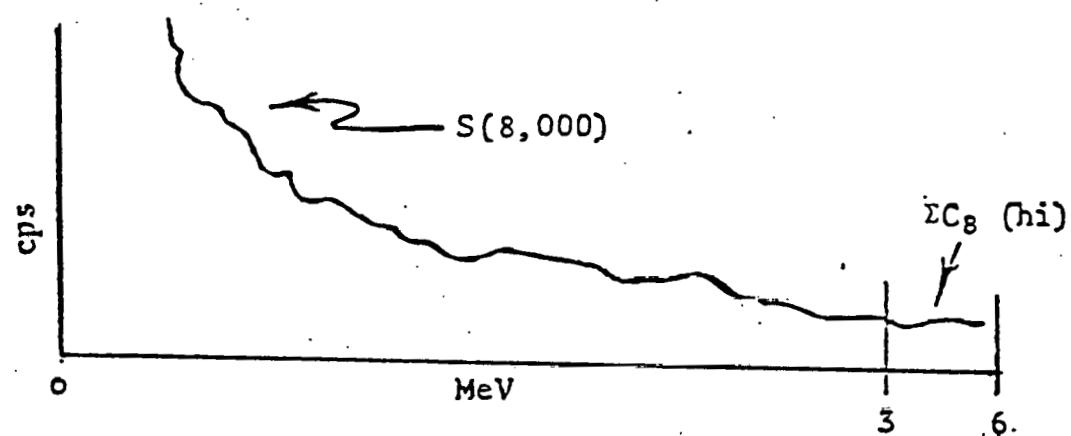
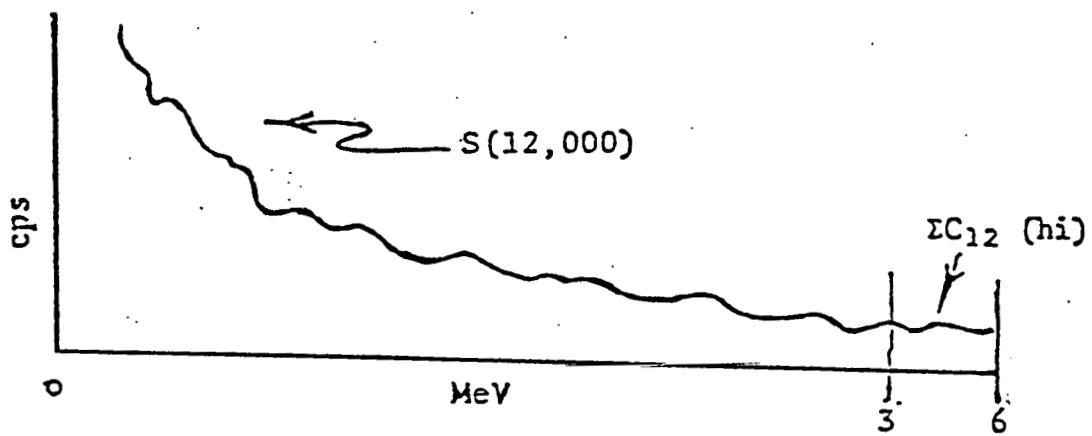




Figure 10 - Multiple altitude spectra schematic

DERIVED AIRCRAFT BACKGROUND SPECTRUM FROM PACIFIC OCEAN DATA
DOWNWARD-LOOKING CRYSTAL SPECTRUM FOR LINE AC BGD, DATED 072577

TC (0-6 MEV) 184.07 TC (0-3.0 MEV) 141.17 COSMIC (3-6 MEV) 0.00
U (1.16 MEV) 9.91 K (1.46 MEV) -4.54 U (1.76 MEV) 4.36 T (2.62 MEV) 4.29

CH 0 (0.000 MEV) 0.000 CPS *

CH 1 (0.012 MEV) 0.000 CPS *

CH 2 (0.024 MEV) 0.000 CPS *

CH 3 (0.035 MEV) 0.000 CPS *

CH 4 (0.047 MEV) 0.000 CPS *

CH 5 (0.059 MEV) 0.000 CPS *

CH 6 (0.071 MEV) 0.000 CPS *

CH 7 (0.083 MEV) 0.000 CPS *

CH 8 (0.095 MEV) 0.000 CPS *

CH 9 (0.106 MEV) 0.000 CPS *

CH 10 (0.118 MEV) 0.000 CPS *

CH 11 (0.130 MEV) 0.000 CPS *

CH 12 (0.142 MEV) 0.000 CPS *

CH 13 (0.154 MEV) 0.000 CPS *

CH 14 (0.165 MEV) 0.000 CPS *

CH 15 (0.177 MEV) 0.000 CPS *

CH 16 (0.189 MEV) 0.000 CPS *

CH 17 (0.201 MEV) 0.000 CPS *

CH 18 (0.213 MEV) -0.025 CPS *

CH 19 (0.225 MEV) -0.020 CPS *

CH 20 (0.236 MEV) 0.000 CPS *

CH 21 (0.248 MEV) 1.401 CPS *****

CH 22 (0.260 MEV) 3.280 CPS *****

CH 23 (0.272 MEV) 4.280 CPS *****

CH 24 (0.284 MEV) 4.334 CPS *****

CH 25 (0.295 MEV) 3.748 CPS *****

CH 26 (0.307 MEV) 3.897 CPS *****

CH 27 (0.319 MEV) 3.119 CPS *****

CH 28 (0.331 MEV) 4.236 CPS *****

CH 29 (0.343 MEV) 3.433 CPS *****

CH 30 (0.355 MEV) 2.998 CPS *****

CH 31 (0.367 MEV) 2.699 CPS *****

CH 32 (0.378 MEV) 2.659 CPS *****

CH 33 (0.390 MEV) 2.182 CPS *****

CH 34 (0.402 MEV) 2.021 CPS *****

CH 35 (0.414 MEV) 2.121 CPS *****

CH 36 (0.426 MEV) 2.114 CPS *****

CH 37 (0.437 MEV) 1.976 CPS *****

CH 38 (0.449 MEV) 2.292 CPS *****

CH 39 (0.461 MEV) 2.188 CPS *****

CH 40 (0.473 MEV) 2.063 CPS *****

CH 41 (0.485 MEV) 2.063 CPS *****

CH 42 (0.496 MEV) 2.165 CPS *****

CH 43 (0.508 MEV) 2.158 CPS *****

CH 44 (0.520 MEV) 2.267 CPS *****

CH 45 (0.532 MEV) 2.150 CPS *****

CH 46 (0.544 MEV) 2.597 CPS *****

CH 47 (0.556 MEV) 2.447 CPS *****

CH 48 (0.567 MEV) 2.540 CPS *****

CH 49 (0.579 MEV) 2.025 CPS *****

CH 50 (0.590 MEV) 2.768 CPS *****

CH 51 (0.603 MEV) 2.481 CPS *****

CH 52 (0.615 MEV) 2.372 CPS *****

CH 53 (0.628 MEV) 1.865 CPS *****

CH 54 (0.640 MEV) 1.979 CPS *****

CH 55 (0.650 MEV) 1.661 CPS *****

CH 56 (0.662 MEV) 1.481 CPS *****

CH 57 (0.674 MEV) 1.474 CPS *****

CH 58 (0.686 MEV) 1.471 CPS *****

CH 59 (0.697 MEV) 1.431 CPS *****

CH 60 (0.709 MEV) 1.476 CPS *****

CH 61 (0.721 MEV) 1.453 CPS *****

CH 62 (0.733 MEV) 1.467 CPS *****

CH 63 (0.745 MEV) 1.531 CPS *****

CH 64 (0.756 MEV) 1.497 CPS *****

CH 65 (0.768 MEV) 1.548 CPS *****

CH 66 (0.780 MEV) 1.421 CPS *****

CH 67 (0.792 MEV) 1.281 CPS *****

CH 68 (0.804 MEV) 1.345 CPS *****

CH 69 (0.816 MEV) 1.246 CPS *****

CH 70 (0.827 MEV) 1.242 CPS *****

CH 71 (0.839 MEV) 1.161 CPS *****

CH 72 (0.851 MEV) 1.201 CPS *****

CH 73 (0.863 MEV) 1.231 CPS *****

CH 74 (0.875 MEV) 1.421 CPS *****

CH 75 (0.887 MEV) 1.452 CPS *****

CH 76 (0.899 MEV) 1.543 CPS *****

CH 77 (0.910 MEV) 1.441 CPS *****

CH 78 (0.922 MEV) 1.364 CPS *****

CH 79 (0.934 MEV) 1.281 CPS *****

CH 80 (0.946 MEV) 1.159 CPS *****

CH 81 (0.958 MEV) 1.146 CPS *****

CH 82 (0.969 MEV) 0.985 CPS *****

CH 83 (0.981 MEV) 0.961 CPS *****

CH 84 (0.993 MEV) 0.941 CPS *****

CH 85 (1.005 MEV) 0.919 CPS *****

CH 86 (1.017 MEV) 0.904 CPS *****

CH 87 (1.028 MEV) 0.816 CPS ***

CH 88 (1.040 MEV) 0.853 CPS ****

CH 89 (1.052 MEV) 0.901 CPS ****

CH 90 (1.064 MEV) 0.827 CPS ***

CH 91 (1.076 MEV) 0.867 CPS ***

CH 92 (1.087 MEV) 0.967 CPS ***

CH 93 (1.099 MEV) 0.851 CPS ***

CH 94 (1.111 MEV) 0.905 CPS ***

CH 95 (1.123 MEV) 0.905 CPS ***

CH 96 (1.135 MEV) 0.861 CPS ***

CH 97 (1.147 MEV) 0.800 CPS ***

CH 98 (1.158 MEV) 0.727 CPS ***

CH 99 (1.170 MEV) 0.747 CPS ***

CH 100 (1.182 MEV) 0.607 CPS ***

CH 101 (1.194 MEV) 0.663 CPS ***

CH 102 (1.206 MEV) 0.657 CPS ***

CH 103 (1.217 MEV) 0.633 CPS ***

CH 104 (1.229 MEV) 0.624 CPS ***

CH 105 (1.241 MEV) 0.571 CPS ***

CH 106 (1.253 MEV) 0.475 CPS ***

CH 107 (1.265 MEV) 0.601 CPS ***

CH 108 (1.277 MEV) 0.661 CPS ***

CH 109 (1.289 MEV) 0.619 CPS ***

CH 110 (1.300 MEV) 0.606 CPS ***

CH 111 (1.312 MEV) 0.636 CPS ***

CH 112 (1.324 MEV) 0.652 CPS ***

CH 113 (1.337 MEV) 0.644 CPS ***

CH 114 (1.347 MEV) 0.567 CPS ***

CH 115 (1.359 MEV) 0.591 CPS ***

CH 116 (1.371 MEV) 0.787 CPS ***

CH 117 (1.383 MEV) 0.834 CPS ***

CH 118 (1.395 MEV) 0.984 CPS ***

CH 119 (1.407 MEV) 1.012 CPS ***

CH 120 (1.418 MEV) 1.024 CPS ***

CH 121 (1.430 MEV) 1.081 CPS ***

CH 122 (1.442 MEV) 1.210 CPS ***

CH 123 (1.454 MEV) 1.210 CPS ***

CH 124 (1.466 MEV) 1.267 CPS ***

CH 125 (1.477 MEV) 0.995 CPS ***

CH 126 (1.489 MEV) 0.967 CPS ***

CH 127 (1.501 MEV) 0.624 CPS ***

CH 128 (1.513 MEV) 0.635 CPS ***

CH 129 (1.525 MEV) 0.612 CPS ***

CH 130 (1.537 MEV) 0.488 CPS ***

CH 131 (1.548 MEV) 0.409 CPS ***

CH 132 (1.559 MEV) 0.369 CPS ***

CH 133 (1.571 MEV) 0.438 CPS ***

CH 134 (1.584 MEV) 0.310 CPS ***

CH 135 (1.596 MEV) 0.259 CPS ***

DERIVED COSMIC SPECTRUM FROM PACIFIC OCEAN DATA

DOWNWARD-LOOKING CRYSTAL SPECTRUM FOR LINE COSMIC, DATED 072577

TC (0-6 MEV) 5275.09 TC (0.4-3.6 MEV) 3245.27 COSMIC (3-6 MEV) 1000.00

U (1.12 MEV) 165.91 K (1.46 MEV) 181.83 U (1.76 MEV) 157.56 T (2.62 MEV) 213.66

COSMIC SPECTRUM
ROTARY WING AIRCRAFT
DOWNWARD LOOKING CRYSTAL
2048 CUBIC INCHES

DATE: 25 JULY 1977

Figure 12

<u>PAD</u>	<u>K</u>	<u>U</u>	<u>T</u>
Matrix	1.45%	2.19 ppm	6.26 ppm
K	5.14%	5.09 ppm	8.48 ppm
U	2.03%	30.29 ppm	9.19 ppm
T	2.01%	5.14 ppm	45.33 ppm
Mixed	4.11%	20.39 ppm	17.52 ppm

Since the measurements were taken over a relatively short time period (4 hours), it was assumed that the matrix pad measurements contain not only the effects of the matrix pad itself, but also aircraft background (which is a constant), cosmic background (constant over the time period of interest), and all other local background (e.g. BiAir, etc.) effects. Thus, by subtracting the matrix pad count rates from the count rates in the four pads, we have eliminated aircraft and cosmic background and BiAir effects for the four pads. The pad concentrations are then modified in a similar fashion by the subtraction of the matrix pad concentrations. Thus, the count rate data, after subtracting out the matrix pad count rate data can be related directly to the effects of the differential concentrations in the four pads (K, U, T and mixed). The differential concentrations in the pads are given in the table below.

<u>PAD</u>	<u>K</u>	<u>U</u>	<u>T</u>
K-Matrix	3.7%	2.9 ppm	2.2 ppm
U-Matrix	0.6%	28.5 ppm	2.9 ppm
T-Matrix	0.6%	3.0 ppm	39.0 ppm
Mixed-Matrix	2.7%	18.8 ppm	11.3 ppm

Considering the above, we now define a functional relationship using these data, which will provide a method of determining the calibration constants for the spectrometer system. These calibration constants are the sensitivities, in count rate per unit elemental concentrations, and the interactions which occur between the elemental channels in the system (Compton scatter coefficients, etc.).

Keeping in mind that we are dealing with the count rates corresponding to the concentrations presented in the last table, we define the following:

KC = uncorrected system count rate for the K channel

UC = uncorrected system count rate for the U channel

TC = uncorrected system count rate for the T channel

K = the percent differential concentration of potassium

U = ppm differential concentration of uranium

T = ppm differential concentration of thorium

We also define the following:

ξ_{kk} = sensitivity of KC to concentrations of K

ξ_{ku} = sensitivity of KC to concentrations of U

ξ_{kt} = sensitivity of KC to concentrations of T

ξ_{uk} = sensitivity of UC to concentrations of K

ξ_{uu} = sensitivity of UC to concentrations of U

ξ_{ut} = sensitivity of UC to concentrations of T

ξ_{tk} = sensitivity of TC to concentrations of K

ξ_{tu} = sensitivity of TC to concentrations of U

ξ_{tt} = sensitivity of TC to concentrations of T

We must now solve for the above nine variables to define the system's overall sensitivity. On the basis of an ideal situation, one would anticipate that some of these variables should be equal to 0. This is not totally the case, since we are dealing with a system which has less than infinite resolving power (i.e. the energies are smeared to some extent). Thus, energy peaks within a spectrum of a given element are Gaussian shaped rather than a pure line spectrum. Additionally, we are dealing with finite spectral windows, multiple peaked spectra, and pulse pileup; all tend to couple each window's response to the other.

Using the foregoing, we can write nine equations, one set for each of the three (K, U and T) pads.

<u>K pad</u>	$KC = \xi_{kk}K + \xi_{ku}U + \xi_{kt}T$
	$UC = \xi_{uk}K + \xi_{uu}U + \xi_{ut}T$
	$TC = \xi_{tk}K + \xi_{tu}U + \xi_{tt}T$
<u>U pad</u>	$KC = \xi_{kk}K + \xi_{ku}U + \xi_{kt}T$
	$UC = \xi_{uk}K + \xi_{uu}U + \xi_{ut}T$
	$TC = \xi_{tk}K + \xi_{ku}U + \xi_{tt}T$
<u>T pad</u>	$KC = \xi_{kk}K + \xi_{ku}U + \xi_{kt}T$
	$UC = \xi_{uk}K + \xi_{uu}U + \xi_{ut}T$
	$TC = \xi_{tk}K + \xi_{tu}U + \xi_{tt}T$

Separating these equations into consistent groups we get

$$\begin{aligned}
 (K \text{ pad}) \quad KC &= \xi_{kk}K_k + \xi_{ku}U_k + \xi_{kt}T_k \\
 (U \text{ pad}) \quad KC &= \xi_{kk}K_u + \xi_{ku}U_u + \xi_{kt}T_u \\
 (T \text{ pad}) \quad KC &= \xi_{kk}K_t + \xi_{ku}U_t + \xi_{kt}T_t
 \end{aligned}$$

Where K_k = concentration of K in K pad, K_u = concentration of K in U pad, and K_t = concentration of K in the T pad.

The equations can be expressed in matrix form

$$\begin{bmatrix} KC_k \\ KC_u \\ KC_t \end{bmatrix} = \begin{bmatrix} K_k & U_k & T_k \\ K_u & U_u & T_u \\ K_t & U_t & T_t \end{bmatrix} \begin{bmatrix} \xi_{kk} \\ \xi_{ku} \\ \xi_{kt} \end{bmatrix}$$

Where the K, u and t subscripts represent the K, U and T pads.

In a similar manner we can write the other two matrix equations for UC and TC respectively.

$$\begin{bmatrix} UC_k \\ UC_u \\ UC_t \end{bmatrix} = \begin{bmatrix} K_k & U_k & T_k \\ K_u & U_u & T_u \\ K_t & U_t & T_t \end{bmatrix} \begin{bmatrix} \xi_{uk} \\ \xi_{uu} \\ \xi_{ut} \end{bmatrix}$$

$$\begin{bmatrix} TC_k \\ TC_u \\ TC_t \end{bmatrix} = \begin{bmatrix} K_k & U_k & T_k \\ K_u & U_u & T_u \\ K_t & U_t & T_t \end{bmatrix} \cdot \begin{bmatrix} \xi_{tk} \\ \xi_{tu} \\ \xi_{tt} \end{bmatrix}$$

In matrix form, these equations can be expressed in the general form of

$$\bar{A} = \bar{B} \cdot \bar{\xi} \quad \text{or} \quad \bar{\xi} = \bar{B}^{-1} \cdot \bar{A}$$

Where \bar{A} is the count rate matrix, \bar{B} is the matrix of the known concentrations matrix, and $\bar{\xi}$ the sensitivity matrix. We now have a functional relationship from which to derive all the sensitivity coefficients.

In order to calculate the concentrations in the unknown pad, we rewrite the

equation as $\bar{B} = \bar{A} \cdot \bar{\xi}^{-1}$ and define $\bar{\xi}^{-1} = \bar{\Delta}$. Expanding this we have:

$$\begin{bmatrix} K_m \\ U_m \\ T_m \end{bmatrix} = \begin{bmatrix} \Delta_{kk} & \Delta_{ku} & \Delta_{kt} \\ \Delta_{uk} & \Delta_{uu} & \Delta_{ut} \\ \Delta_{tk} & \Delta_{tu} & \Delta_{tt} \end{bmatrix} \cdot \begin{bmatrix} KC_m \\ UC_m \\ TC_m \end{bmatrix}$$

Where the subscript m refers to the mixed pad. Expanding this in algebraic form we obtain the following set of equations:

$$K_m = \Delta_{kk} (KC_m + \frac{\Delta_{ku}}{\Delta_{kk}} UC_m + \frac{\Delta_{kt}}{\Delta_{kk}} TC_m)$$

$$U_m = \Delta_{uu} (UC_m + \frac{\Delta_{ut}}{\Delta_{kk}} TC_m + \frac{\Delta_{uk}}{\Delta_{uu}} KC_m)$$

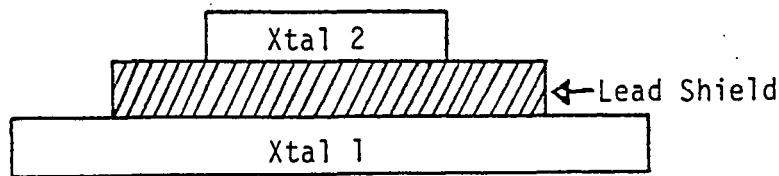
$$T_m = \Delta_{tt} (TC_m + \frac{\Delta_{tu}}{\Delta_{tt}} UC_m + \frac{\Delta_{tk}}{\Delta_{tt}} KC_m)$$

where all count rates are observed values minus the matrix pad. The terms in parenthesis in the above 3 equations are the "corrected stripped count rates" for the system. (These stripping coefficients are defined in terms of the S_{ij} in order to eliminate confusion with α , β , γ and which are sometimes defined slightly differently.)

The results are defined as follows:

$$S_{ku} = \frac{\Delta_{ku}}{\Delta_{kk}} \quad (\text{effect of uranium on potassium})$$

$$S_{kt} = \frac{\Delta_{kt}}{\Delta_{kk}} \quad (\text{effect of thorium on potassium})$$


$$S_{ut} = \frac{\Delta_{ut}}{\Delta_{uu}} \quad (\text{effect of thorium on uranium})$$

$$S_{uk} = \frac{\Delta_{uk}}{\Delta_{uu}} \quad (\text{effect of potassium on uranium})$$

$$S_{tu} = \frac{\Delta_{tu}}{\Delta_{tt}} \quad (\text{effect of uranium on thorium})$$

ATMOSPHERIC RADON CORRECTION

Consider the crystal configuration shown below:

Let 1 and 2 designate the down and up crystal respectively. The down crystal sees radiation rates of I_1 composed of the air signal I_a and the ground signal I_g plus aircraft and cosmic background,

$$\text{Therefore } I_1 = I_g + I_a + A_1 + C_1$$

Similarly, the up crystal sees the air signal and ground signal (both somewhat attenuated) plus an aircraft and cosmic background.

$$\text{Therefore } I_2 = \ell I_g + m I_a + A_2 + C_2$$

Where m is the response to the air signal and ℓ is the % of the

ground signal getting through to the up detector.

Using the test pad data, the factor λ can be determined. Consider the two previous equations. When we subtract the matrix pad data from the K, U, and T pad data, we have essentially set A_1 , A_2 , C_1 , and C_2 and I_a equal to zero.

Therefore $I_1 = I_g$

$$I_2 = \lambda I_g$$

$$\lambda = \frac{I_2}{I_1}$$

Instead of using the count rates we can use the resultant sensitivities $1/\Delta_{uu}$ to determine λ for the elemental channel U.

$$\lambda_u = \frac{1/\Delta_{uu} \text{ (up)}}{1/\Delta_{uu} \text{ (down)}}$$

It should be noted that due to "shine around" (since the shielding is not an infinite plane, the upward looking crystal responds to the surrounding terrain) on the test pads, as altitude increases, λ should decrease, thus $\lambda = f(h)$.

Only the factor m remains to be determined. This unfortunately cannot be determined from test pad data. It can however be determined by flying over water (e.g. use of the Lake Mead over-water data).

Consider the equations for I_1 and I_2 again

$$I_1 = I_g + I_a + A_1 + C_1$$

$$I_2 = \lambda I_g + m I_a + A_2 + C_2$$

Over water $I_g = 0$

We have A_1 , A_2 , C_1 , and C_2 defined.

Removing the aircraft and cosmic background from the over water data and we are left with

$$I_1 = I_a$$

$$I_2 = mI_a$$

Since m is the shielding factor response to the air signal, we should have an air signal to "shield". Thus m is best determined if there is radon present.

Both up and down counting rates are corrected for aircraft and cosmic background and so we can solve the following two equations for I_a .

$$I_1 = I_g + I_a$$

$$I_2 = \ell I_g + mI_a$$

$$mI_a = I_2 - \ell I_g$$

but $I_g = I_1 - I_a$

then $I_a (m - \ell) = I_2 - \ell I_1$

or $I_a = \frac{I_2 - \ell I_1}{m - \ell} = Bi\ Air$

and I_a is then the Bi Air contribution from the surrounding air. This is then subtracted from the down looking U count resulting in corrected data.

FIXED WING/ROTARY WING DATA NORMALIZATION

As required in the Powder River II Project, the rotary wing data were normalized to the fixed wing data to provide continuity within NTMS data sets. Normalization was accomplished by multiplying the rotary wing reduced averaged record K, U, T, and total count values by an appropriate constant derived from data obtained on the Walker Field Calibration Pads, Lake Mead Dynamic Test Range, and flight line overlaps/intersections within the project area.

To obtain the normalization constant the following technique was implemented:

1. The fixed wing/rotary wing ratio of K, U, T, and total count cps for the Walker Field Calibration Pads were calculated and tabulated.
2. The fixed wing/rotary wing ratio of K, U, T, and total count cps for quasi-coincident fixed wing/rotary wing samples (spatially within 50 + feet) were calculated for all four flights at each of the eight altitudes flown over the land portion of the Lake Mead Dynamic Test Range. Tabulation of these results included the plotting of histograms, scatter plots and associated statistical parameters.
3. Flight line overlaps/intersections occurring within each of the NTMS sheets were subjected to the same procedure as in 2 above.

From results of the above, the proper normalization constant was selected and input to the processing scheme. In the case of all three (3) quadrangles involved in the Powder River II Project a multiplicative factor of 1.3 was applied to the rotary wing average record data (K, U, T, and total count) to normalize it to the fixed wing data.

DATA PROCESSING

DATA PREPARATION

The following sections summarize the techniques used for reduction and processing of the airborne data.

Field Tape Verification and Edit

The field data tapes containing the airborne data are read into the computer to verify the recording and data quality. Data recovery is essentially 100% from the field tapes. During this phase, statistics are generated summarizing the altitude (radar and barometric), ground speed and air temperature for each flight line. Simultaneously, the spectral peaks are evaluated for shifts using a centroid calculation and the particular window's peak channel. The data are also checked for correct scan lengths and proper justification of data fields within each scan and live time calculations are made. During this process, the desired window data fields are extracted from each spectrum and rewritten as a reformatted copy tape.

The reformatted tape data are then edited, checked and corrected. The data for each flight line are then read (with aborted or unnecessary flight line data edited out) and each data variable is checked for consistency, data spikes, gradients, etc. Every correction suggested by the computer is evaluated by the data processing personnel prior to actual correction. Upon completion of the phase, the data on the output tape are "clean" and ready for subsequent correction of the radiometrics and tieing of the magnetics.

Flight Line Location

A single frame 35 mm camera is used for obtaining position recovery information. The photo locations are spotted or transferred to a suitable base map and are digitized. The fiducial numbers of the spotted points along each line are entered during the digitizing process. A computer program is used to check the consistency of these data using calculated intersections from tie line to tie line and from traverse to traverse. This program allows easy detection of entry errors as well as potential flight path recovery errors.

A computer program then calculates the map location for each intersection and the beginning and end of each line based on the fiducial numbers and the control line/tie grid. A computer plot is made of these locations to check against the field plot and correct editing

information. These flight lines are then overlain on the geologic base map and each map unit is digitized such that each sample falls within a single unit. This resulting location information is then merged with the geophyscial data using the fiducial numbers as common reference.

RADIOMETRIC DATA REDUCTION

Reduction of these data was carried out utilizing system calibration constants as derived from high altitude over water flights, Lake Mead Dynamic Test Range, and the Walker Field Test Pads. The data reduction sequence used may be summarized as follows: (see Figure 13 for Flow Diagram)

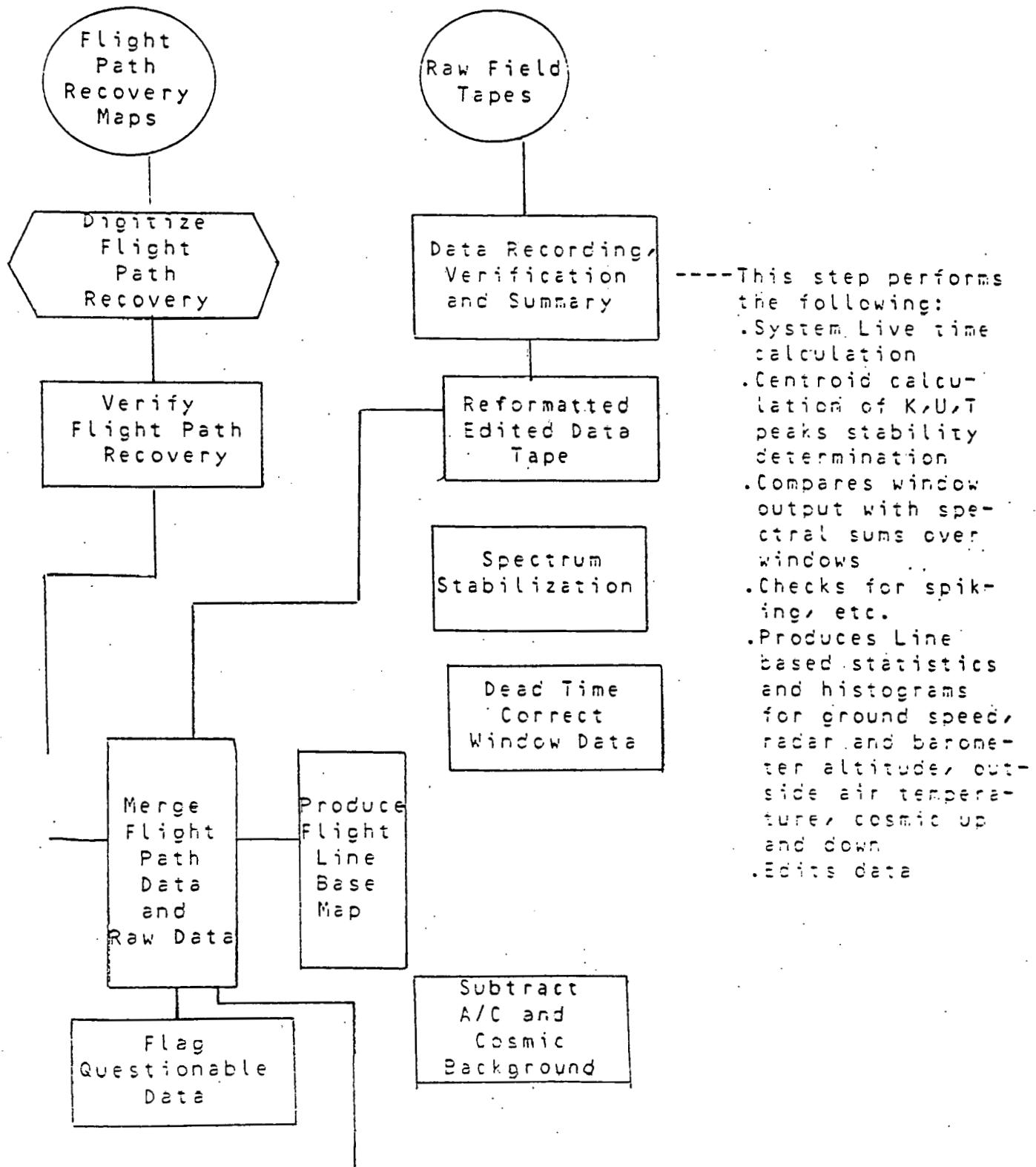
1. Spectrum stabilization
2. Dead time correction
3. Aircraft and Cosmic background correction
4. Compton stripping
5. Radon correction
6. Altitude correction
7. Data plots
8. Statistical analysis

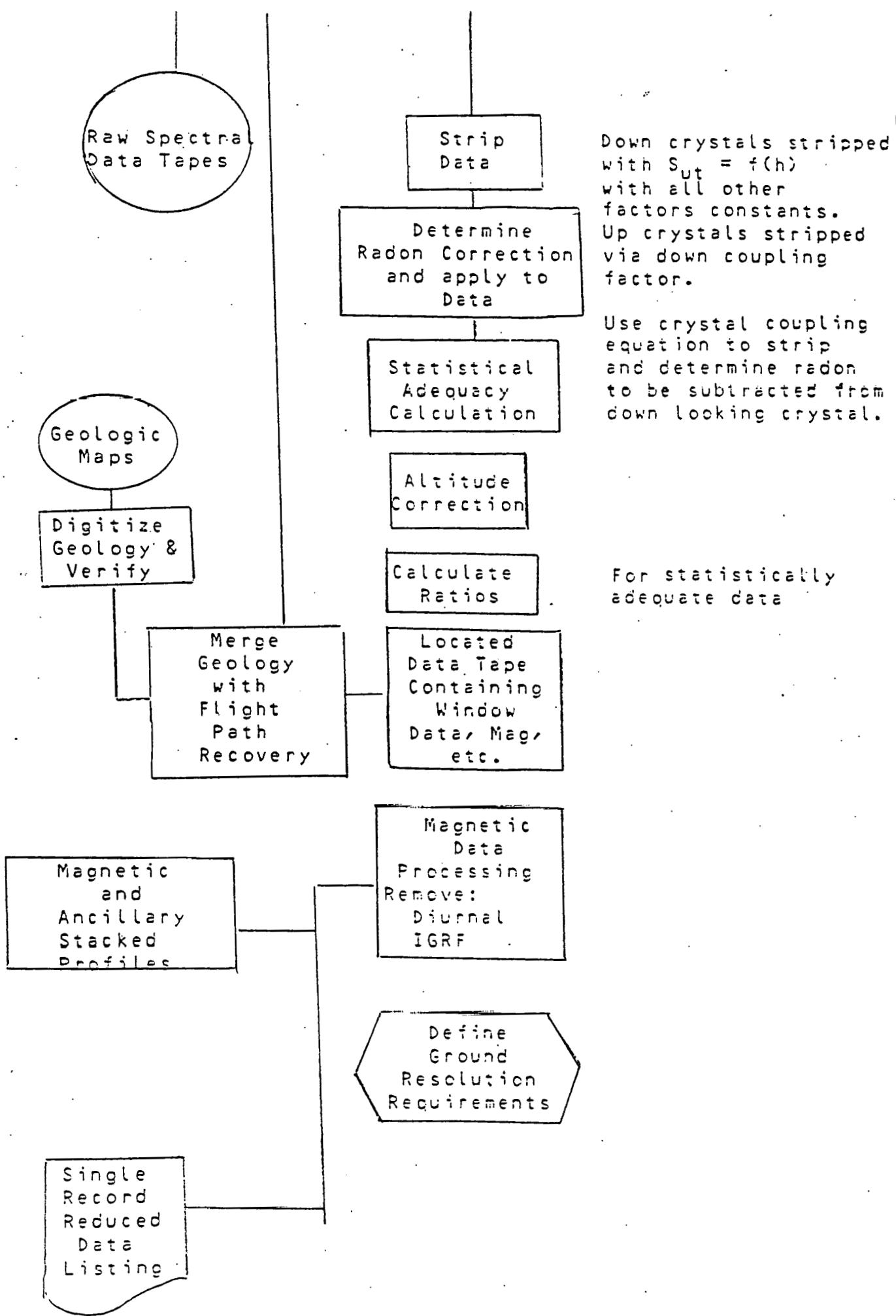
Processing of the data was performed using the window energies given below:

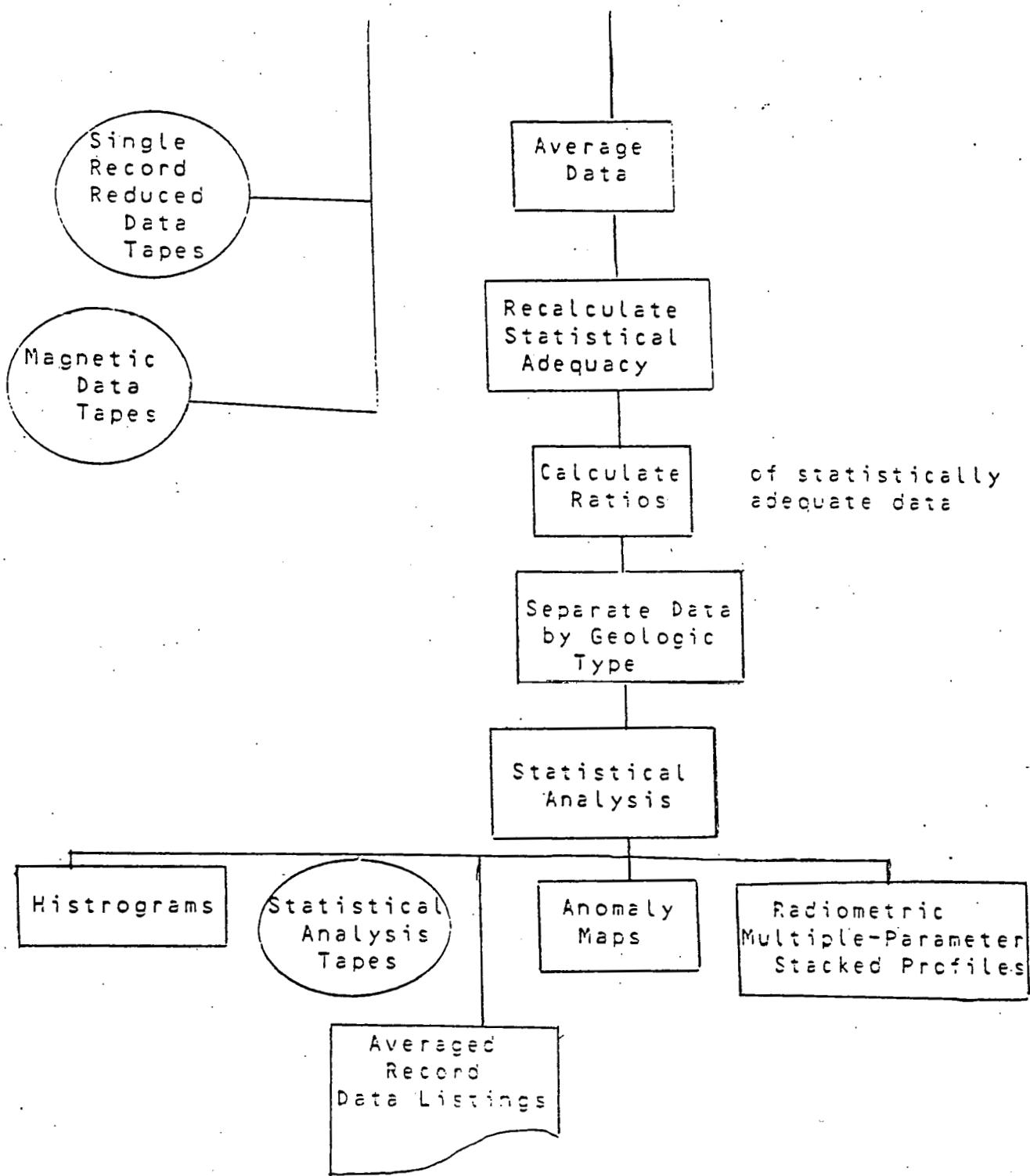
Total count - 0.4 to 3.0 MeV

K - 1.37 to 1.57 MeV

U - 1.66 to 1.87 MeV (downward and upward looking system)


T - 2.41 to 2.81 MeV


Cosmic - 3 to 6 MeV (downward and upward looking system)


Aircraft and Cosmic background for both Lama and the Tracker over these windows described above are summarized below:

DATA PROCESSING FLOW DIAGRAM

Figure 13

		<u>S2F</u>	<u>LAMA II</u>		
		Aircraft	Cosmic*	Aircraft	Cosmic*
TC	(cps)	212.04	3.115	102.30	3.316
K	(cps)	22.83	0.177	16.54	0.1772
U _{dn}	(cps)	8.90	0.145	3.59	0.151
U _{up}	(cps)	1.75	0.152	0.49	0.162
T	(cps)	7.76	0.189	2.56	0.2006

*Cosmic background values are in cps per 1.0 cps in the 3-6 MeV window.

Compton corrections to the down data were made using the following constants:

<u>S_{ij}</u>	<u>S2F</u>	<u>LAMA II</u>
S _{ku}	0.8613	0.8258
S _{kt}	0.1588	0.1686
S _{ut}	0.2986	0.2621
S _{uk}	0.0	0.0
S _{tu}	0.05312	0.07267
S _{tk}	0.0	0.0

The ij subscripts represent the influence of the jth window on the ith window.

All parameters except for S_{ut} are considered constants. S_{ut} was considered an altitude dependent parameter utilizing the following expression (after Grasty, 1975).

$$S_{ut} = S_{uto} + 0.0076h, \text{ where } h \text{ is the altitude in hundreds of feet.}$$

Altitude attenuation coefficients used are defined as follows:

ALTITUDE ATTENUATION COEFFICIENTS

		S2F	LAMA II
μ_{TC}	(per foot)	.0022065	.001663
μ_K	(per foot)	.003001	.002479
μ_U	(per foot)	.002710	.002260
μ_T	(per foot)	.002274	.001876

All radiometric data presented in the strip charts have been normalized to 400 feet mean terrain clearance at STP using the expression

$$\exp - \mu_i \left[\frac{273.15}{760} \times \frac{P}{T} \right] \left[h - 400 \right]$$

where h is the height in feet, μ_i is the appropriate altitude attenuation coefficient, P is in mm of Hg, and T is in degrees Kelvin. In cases where the altitude exceeds 1,000 feet, the correction coefficients were limited to the 1,000 foot value.

Bi Air calculations are made using the following expressions:

$$BiAir = \frac{U_{up} - \ell (R_{us} + \frac{C'uk}{C'uu} R_{ks} + \frac{C'ut}{C'uu} R_{ts})}{m - \ell}$$

Where U_{up} = count rate from upward detectors

ℓ = crystal coupling constant

m = crystal geometric factor

$C'uk$, $C'ut$, $C'uu$, = stripping coefficients relating down data to up data

R_{us} = stripped uranium count rate - down system

R_{ks} = stripped potassium count rate - down system

R_{ts} = stripped thorium count rate - down system

The numerical values for the constant λ , m , C'_{uk} , and C'_{uu} are given below:

	S2F	LAMA II
λ	0.0488	0.0556
m	0.189	0.195
C'_{uk}	0.0	0.0
C'_{uu}	0.03586	0.05782
C'_{ut}	0.01687	0.01765
μ_λ	-.000233	-.000018
μ_m	-.000034	-.000011

μ_λ & μ_m are altitude dependent as follows:

$$\lambda = \lambda - \mu_\lambda \times h, \text{ where } h \text{ is in feet}$$

$$m = m - \mu_m \times h, \text{ where } h \text{ is in feet}$$

These Bi Air data are filtered and the filtered results are then removed on a point by point basis from the corrected uranium window data.

MAGNETIC DATA REDUCTION

The magnetic data reduction processes are: correction for diurnal variation, tieing to a common magnetic datum, and subtraction of the regional magnetic field as defined by the International Geomagnetic Reference Field (IGRF). During data acquisition, the magnetic field is monitored by a ground-based diurnal magnetometer that samples every four seconds at a sensitivity of one-quarter gamma. These data are recorded on magnetic tape along with the time for synchronization with the airborne data.

The diurnal data are edited to keep only those readings taken during flight time and then remove spikes and man-made magnetic events. After editing, these data are displayed in profile form to ensure that all corrections necessary have been made. Next, the data are synchronized in time with the airborne data, interpolated, and subtracted from the airborne magnetic data.

The diurnally corrected magnetic data are then processed by a tieing program that compares the magnetic differences at intersections of flight lines and tie lines. This program calculates individual magnetic field biases for each flight tie line based on tie line intersections. This allows miss-ties to be minimized throughout the survey. These biases usually represent, after diurnal correction, systematic magnetic changes caused by such things as heading error, changes in location of the ground-based magnetometer, or changes in the airborne equipment. The biases are manually evaluated and selectively applied.

STATISTICAL ANALYSIS

The results of the radiometric data reduction phase are single record samples (1.0 second interval). These data are then evaluated for statistical adequacy prior to altitude correction to ensure they are significant within the context of the anticipated errors in count statistics. These data are then averaged and input to the statistical Hypothesis Testing procedures.

Statistical Adequacy Test

The statistical adequacy test is made to determine whether the corrected data sample is sufficiently greater than the "noise" to represent the "signal" of interest.

We can define three separate criteria for detection thresholds (ref. Currie, Analytical Chemistry, Volume 40, No. 3, March 1968) of which only one is directly applicable to our case; this is the

"critical level". This is the level at which the decision is made that a signal is "detected". We thus define this critical level as that level at which the data are statistically adequate.

Setting the actual levels in counts per second, "a priori" for each elemental window is difficult at best since the full effect of all parameters affecting the counts is not known to a sufficient degree of certainty. If the corrections to the data are a significant portion of the count rate, most of the error (exclusive of systematic errors due to electronics, etc.) in the corrected data can be ascribed to random errors within the applied corrections. The corrections are basically the results of counting radioactive decay products (gamma rays) and are therefore assumed to follow the classical Poisson distribution. The following assumptions concerning these corrections are:

1. In the best case, the error in each correction is additive.
2. The sum of these corrections also follows a Poisson distribution.
3. The uncertainty in the correction itself, is equal to the square root of the correction applied.
4. This uncertainty is directly reflected in the corrected single record count rate.

With these assumptions in mind, the criterion for determining the statistical adequacy of a given data sample may be defined as follows:

"If a corrected single record data sample exceeds 1.5 times the square root of the summed correction applied to that data sample, then that data sample is statistically adequate."

Since any calculation using statistically inadequate data (such as ratios) is also inadequate, the adequacy of each element of the single sample record data is tested prior to the calculation. This is done during the course of the processing by retaining all corrections applied to each data sample and determining its adequacy as explained above.

Not only are the results of this statistical adequacy test used to insure that calculated ratios will be meaningful but they are also utilized to determine the optimum interval over which the data

should be averaged (e.g. 5 seconds or 7 seconds, etc.) to improve the overall data statistical adequacy. In the case of this project, the resulting averaging sample interval was 7 seconds. This resulted in 99% or better of the uranium data to be statistically adequate, exclusive of those data which were outside of altitude specifications (the overall altitude specification was maintained at the 95% level) and excluding the known water saturated map units and water bodies

Hypothesis Testing

For this processing it is assumed that correlations between radiometric variables and computer map units can be described by normal (Gaussian) and/or log-normal distributions. The averaged data are treated in a standardized manner, described below.

Each sample with its six variables (K, U, T, and three ratios) is grouped by its corresponding computer map unit. Statistically inadequate data and samples with out-of-specification radar altitudes are excluded from the testing. A modified Chi-Square testing scheme is utilized to evaluate the following two hypotheses:

1. The count rate distribution for a specified computer map unit can be best represented by a normal distribution.

or

2. The count rate distribution for a specified computer map unit can be best represented by a log-normal distribution.

No Chi-Square tests were performed on units having less than 20 statistically adequate samples. In addition to the Chi-Square Test, all units are plotted as histograms and compared with the results of the hypothesis testing to clarify any ambiguities. For some units the best estimate of central tendency for a particular variable was the unit median and not the arithmetic mean. The lower mode was used as the measure of central tendency for polymodal distributions.

Each radiometric parameter for a given geologic formation is then classified as either a normal or log-normal distribution. The measure of central tendency and dispersion for each of these distributions are then utilized as a basis for determining which data are anomalous within a given unit. A sample of such a histogram is presented in Figure 14.

MAP UNIT : QA TOTAL NUMBER
OF SAMPLES 2195

NORMAL

URANIUM

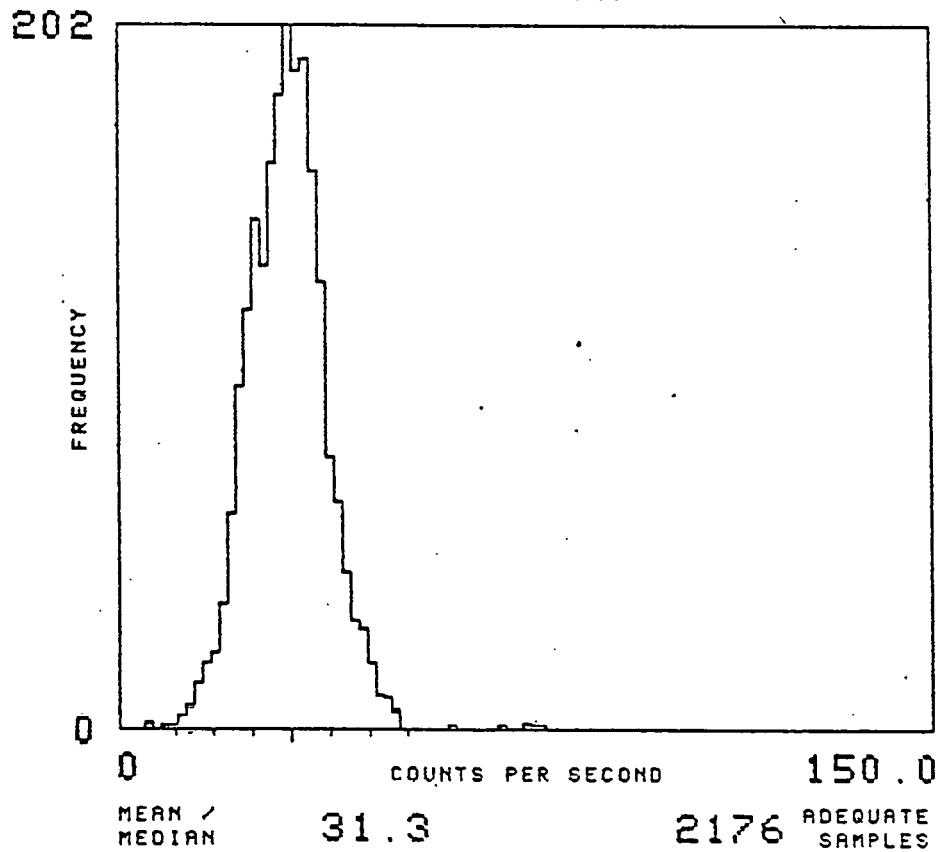


Figure 14. Sample Computer Map Unit Histogram

DATA PRESENTATION

GENERAL

The majority of the actual presented data are contained in Volume II. These include the uranium anomaly/interpretation maps and pseudo-contour maps of potassium, uranium, thorium, and magnetic data and are integrated as part of the text in the interpretation section. In addition to these data, Volume II contains data presented in the form of radiometric profiles, flight path recovery maps, statistical anomaly maps, and histograms. Microfiche data are contained in Appendix C of this volume. Data tapes are available separately.

RADIOMETRIC PROFILES

Stacked profiles were prepared from the averaged data for each traverse and tie line. These stacked profiles, plotted at a linear scale of 1:250,000, contain the following parameters: corrected Total Count, corrected Potassium, corrected Uranium, corrected Thorium, U/TH, U/K, and TH/K ratios, Bi Air, radar altimeter, and magnetometer data. Each of the stacked profile sheets contains a plot of the flight path superimposed on a geologic strip map. Included along these profiles are the fiducial numbers which correspond to flight path position as displayed on the flight path recovery maps. Each of the stacked profiles represents the data contained on the specific flight line within the boundaries of the specified NTMS Quadrangle sheet.

Radiometric traces on the stacked profiles contain an indicator showing those data which are statistically inadequate. These statistically inadequate data are marked by a small vertical tick at the sample location. The altitude profile has been limited in display to 1,000 feet. A dashed line at the 700 foot level is presented to show those data which do not meet the altitude specifications. The vertical scale of each variable remains constant on all stacked profiles. When overranging occurs, the trace is stepped and the step labeled showing the actual value. A pictorial representation of such a stepping profile is shown in Figure 15. At the end of each stacked profile, a statistical summary of the minimum value, maximum value, mean, and standard deviation for that variable is presented.

Contained in Volume II of this report are an equivalent set of stacked profiles for each quadrangle, photographically reduced to an approximate scale of 1:500,000.

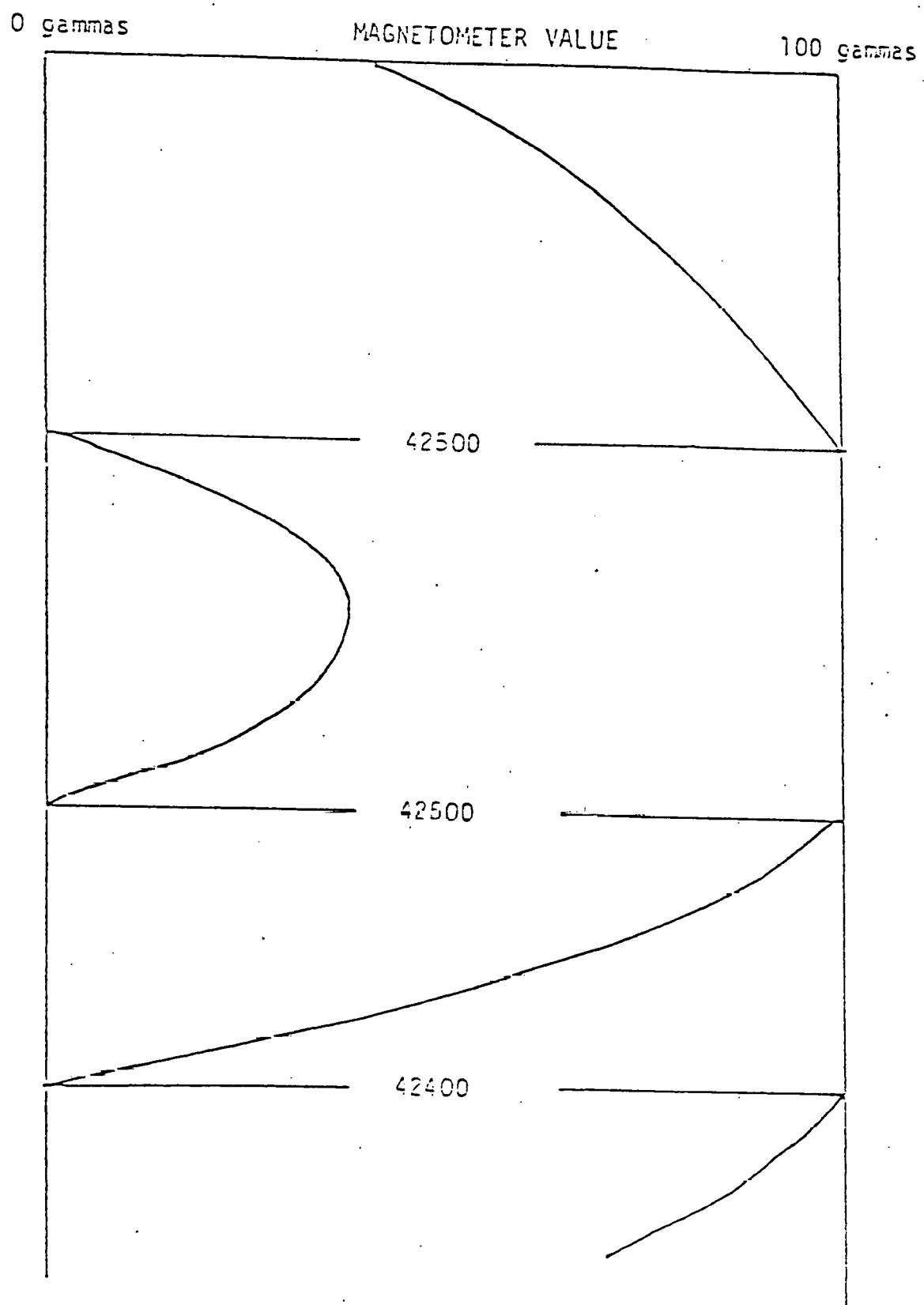


Figure 15 Plotter Step Value Labeling

MAGNETIC PROFILES

A set of profiles containing the magnetic data (corrected, with IGRF removed), barometric altimeter data, radar altimeter data, diurnal monitor data, and temperature data are available at a linear scale of 1:250,000. Each of the stacked profiles contains a plot of the flight path superimposed on the geology over which the aircraft flew. Reduced scale, 1:500,000 copies of these are presented in Volume II of this report.

FLIGHT PATH MAPS

For each of the NTMS quadrangle sheets covered by this survey, a flight path position map is available at a scale of 1:250,000. The actual flight path has been superimposed on the geologic quadrangle maps. Flight lines and tie lines are annotated along with fiducial numbers of located positions. Reduced scale, 1:500,000, copies of these can be found in Volume II of this report.

ANOMALY MAPS

Gamma ray anomaly maps have been prepared for each NTMS quadrangle included in this survey. The six anomaly maps generated represent the following parameters: potassium, uranium, thorium, and U/TH, U/K and TH/K ratios. The data contained in each map represent only those data which are considered statistically adequate. This automatically excludes all data collected over water or data which falls outside of altitude specifications (i.e. altitude greater than 700 and less than 200 feet). The symbolism of each of the six maps is identical. The center of each circle represents the central averaged sample since the data had been averaged over a 7 second interval. The small boxes adjacent to each of the circles represents one standard deviation from the mean for that specific data sample. In order to determine whether the data shown are represented by positive or negative standard deviations, consider each map with north pointing away from the viewer. For east/west lines (traverse lines) positive standard deviations lie above or to the north of the traverse line with negative standard deviation below or to the south. On the north/south lines (tie lines) positive standard deviations are to the left of the viewer or to the west, with negative standard deviations to the right or to the east.

These maps were generated at a scale of 1:250,000 for each NTMS sheet. In addition, these anomaly maps are presented in Volume II of this report at a reduced scale of approximately 1:500,000.

HISTOGRAMS

Computer generated histograms, showing the count rate distribution for each of the six gamma ray parameters measured and calculated as a function of computer map unit are presented in Volume II of this report. Information contained on these histograms includes the distribution, the standard deviation as calculated about the mean, and the total number of samples from which the distribution was derived.

DATA LISTINGS

Single record reduced and averaged record (statistical analysis) data listings have been prepared on microfiche. The microfiche are contained in Volume I of this report as Appendix C. Each of the single record and averaged record data listings are presented for the data contained in a single quadrangle. The data contained in the single record data listings are summarized below:

1. Fiducial number
2. System/Quality (SAKUT) - The first digit identifies the system used to collect the sample. The remaining digits define the results of statistical adequacy testing for altitude, potassium, uranium, and thorium. A value of 0 indicates that the data are statistically adequate. A value of 1 indicates that the data are statistically inadequate. All data collected in excess of 700 feet and less than 200 feet are considered statistically inadequate.
3. Time - time presented in hours, minutes , and seconds
4. Altitude - altitude presented in feet above terrain
5. LAT/LONG - Latitude and Longitude presented in terms of decimal degrees
6. Magnetic field expressed in residual gammas
7. Geology - code representing geologic units
8. K, U, T - count rate of corrected K, U, T data
9. U/TH, U/K, TH/K - calculated ratios of the three parameters

10. Total count - corrected total count data (0.4 to 3.0 MeV)
11. COS - downward looking cosmic count rate in the 3-6 MeV channel
12. Uair - atmospheric Bi-214 count rate
13. Temperature - outside air temperature in degrees centigrade
14. Press - barometric pressure in inches of mercury

The averaged record (statistical analysis) data listings are summarized below:

1. Fiducial number
2. System/Quality (SAKUT) - The first digit identifies the system used to collect the sample. The remaining digits define the results of statistical adequacy testing for altitude, potassium, uranium, and thorium. A value of 0 indicated that the data are statistically adequate. A value of 1 indicates that the data are statistically inadequate. All data collected in excess of 700 feet and less than 200 feet are considered statistically inadequate.
3. LAT/LONG - Latitude and longitude presented in terms of decimal degrees
4. Magnetic field expressed in residual gammas
5. Geology - code representing geologic formations
6. K, U, T - count rate of corrected K, U, T data and the number of (\pm) standard deviations from the mean
7. U/TH, U/K, Th/K - calculated ratios of the three parameters, and the number of (\pm) standard deviations from the mean
8. Total count - corrected total count data (0.4 to 3.0 MeV)
9. COS - downward looking cosmic count rate in the 3-6 MeV channel
10. Uair - atmospheric Bi-214 count rate

DATA TAPES

Data tape files have been generated for each of the 1:250,000 NTMS quadrangle sheets. The tapes are IBM compatible and recorded on

9 track EBCDIC at 800 bpi. Four separate sets of data tapes are presented: raw spectral data tapes; single record reduced data tapes; statistical analysis tapes; and magnetic data tapes. Detailed descriptions of the data tape formats are presented in Appendix A.

DATA INTERPRETATION METHODS

GENERAL

The stated objective of the NURE Program is evaluation of the uranium potential of the United States. In support of this goal, high sensitivity airborne radiometric and magnetic surveys have been implemented to obtain reconnaissance information pertaining to regional distribution of uraniferous materials. Within this context, data interpretation has been oriented toward regional detection and description of anomalously high concentrations of uranium.

By far the most significant natural sources of gamma radiation in the geologic environment are the radioactive decay series of potassium 40 (K40), thorium 232 (Th232) and uranium 238 (U238)-of which 0.7% is uranium 235. Potassium 40 is the largest contributor to natural radioactivity, accounting for nearly 98%, as it is the most abundant gamma ray emitter-.012% of all potassium in nature. (Refer to GSA Memoir 97 for abundances of uranium, thorium, and potassium.)

Potassium 40 is directly identified by the airborne spectrometer from a single clear peak at 1.46 mev (million electron volts) in its gamma ray spectrum. However, thorium 232 and uranium 238 do not have any clear, distinct peaks at sufficiently high energies to allow direct detection from airborne systems. Instead, daughter products which do have distinct peaks are measured as representing the abundance of the parent element. For thorium 232, the daughter nuclide thallium 208 (Tl208) has a distinct peak at 2.62 mev while uranium 238 has a daughter, bismuth 214 (Bi214) possessing a clear peak at 1.76 mev. (See Figure 8 for a composite decay series spectrum.) Consequently the fundamental assumption implicit to airborne uranium and thorium measurements is that the measured daughter products are in radioactive equilibrium - the number of atoms of disintegrating daughter nuclides are equal to the number being formed. (See Adams and Gasparini, 1970.)

An airborne gamma ray measurement is the sum of photons counted during a specified time interval from a multitude of gamma ray sources which include the three geologic emitters that are being sought plus other interfering sources. These others include, but are not limited to; higher energy cosmic rays, aircraft and instruments, contributions from overlapping decay series and airborne radon 222. (See Burson, 1974 and McSharry, 1973 for a more complete discussion of airborne radiometric measurements, and Radiometric Data Reduction in this volume for a complete description of data correction procedures.)

When correlating ground data (geochemical geological, etc.) with the corrected data derived from raw airborne measurements, the interpreter must remember what an individual airborne gamma ray sample physically measures. First, the terrestrial component of the gamma radiation measured by the airborne detector emanated primary from the upper 18 inches of material of the earth's surface (Gregory and Horwood, 1963). The airborne measurement cannot "see" any deeper into the underlying rock material and is essentially a measurement of the soil's or exposed (weathered) rock's radioactivity. Secondly, since each airborne sample is an accumulation of gamma rays measured on a moving platform over a fixed period of time, the individual sample represents a large areal extent of surficial material. For this survey with specifications of 400 feet mean terrain clearance and an average ground speed of 70 miles per hour, a one second sample corresponds to an oval approximately 700 feet long by 600 feet wide (assuming an infinite, uniformly distributed source). Accordingly, averaged samples represent tremendous volumes of surficial materials.

METHODOLOGY

As described previously, the gamma ray data were located by computer map units, histograms were produced and statistical analysis performed. The basic unit for interpretation then is the averaged sample and its attendant deviations about a particular map unit's mean. Minimum requirements in the subsequent interpretation discussions of each quadrangle for a valid uranium anomaly are defined as follows:

1. Two (2) consecutive averaged U samples lying two or more standard deviations above the mean; or, three (3) consecutive averaged U samples, two of which are one (1) or more standard deviations and the third of which is two (2) or more standard deviations above the mean.
2. Two (2) consecutive averaged U/T ratios which are one (1) or more standard deviations above the mean.
3. Each U/T ratio defined in (2) must have a corresponding thorium value lying at least greater than minus one (-1) standard deviation below the mean. If the thorium sample is less than one standard deviation below the mean, the U/T ratio is considered questionable.

Statistical anomalies which meet the above criteria can result from several factors or circumstances including: (1) true concentration of uraniferous minerals, (2) differential surface cover (soils and/or vegetation) within a lithologic unit, (3) local weather condi-

tions such as rain and snow, (4) extreme facies variation within a mapped unit, and (5) differential weathering of rocks within mapped units. Obviously an averaged sample which lies on the boundary between two map units is not truly reflecting either one, but is rather an average of both. Thus for two markedly different units, such a sample would be anomalous relative to one of the units and not be a true indication of radioactive differences within the unit.

The potassium, thorium, uranium, and residual magnetic data were plotted as separate pseudo-contour maps and overlain on the geologic base map and statistical anomaly maps. Regional trends of each variable and average counting rates could thus be easily and quickly determined and compared with the associated geological, magnetic, and statistical trends. Only the long wavelengths within each variable would show any line-to-line continuity on the pseudo-contour maps and thus, only regional trends will appear.

Each quadrangle's stacked profiles were also overlain on the corresponding geologic and anomaly maps to further delineate trends and to allow a more detailed analysis of individual anomalies. Since the interpretation was concentrated on detection of anomalous uranium, subtle trends present in the potassium and thorium channels and ratios were only examined in a cursory manner. Even during such a brief examination of the profiles it was evident that the spectrometer system was highly sensitive to changes in surface materials, even in areas of low counting rates such as glacial drift. Thus radiometrics have a real potential for performing general surficial mapping "geochemical analysis" on a geologic unit (or soils) basis in addition to merely radioactive mineral "anomaly hunting".

Mean values of percent potassium (%K), equivalent uranium (eU), and equivalent thorium (eT) incorporated into the text are based on the radiometric system's sensitivity as defined by calibrations on the DoE's Lake Mead Dynamic Test Range. Normalized equivalent sensitivities at 400 feet altitude are:

<u>Radioelement</u>	<u>Equivalent Percent / PPm</u>	<u>Counts/Second</u>
K	1% K	90.3
U	1 ppm eU	10.0
T	1 ppm eT	6.4

The anomaly tables included with each quadrangle's interpretation discussion list only the uranium anomaly map samples comprising the anomaly. (See Table 2 in Volume II for an example.)

BIBLIOGRAPHY

Adams, J. A. S., and Gasparini, P., 1970, Gamma-Ray Spectrometry of Rocks; Elsevier Publishing Co.

Burson, Zolin G., 1974, Airborne Surveys of Terrestrial Gamma Radiation in Environmental Research; IEEE Trans. Nucl. Sci., NS-21, No. 1, p. 558-571.

Butler, A. P., Jr., Finch, W. I., and Twenhofel, W. S., 1962, Epi-genetic Uranium Deposits in the United States; U. S. Geol. Survey Mineral Resources Map MR-21 (with text), scale 1:3,000,000.

Clark, S. P. Jr., Peterman, Z. E., and Heier, K. S., 1966, Abundances of Uranium, Thorium, and Potassium in Handbook of Physical Constants; Geol. Soc. of Am. Memoirs, 97, p. 521-540.

Cohee, G. V., 1962, Tectonic Map of the United States; U.S. Geol. Survey and Amer. Assoc. of Pet. Geol., special map (12,500,000).

Currie, L. A., 1968, Limits for Qualitative Detection and Quantitative Determination; Analytical Chemistry, Vol. 40, No. 3, p. 586-593.

Dahl, A. R., and Hagmaier, J. L., 1974, Genesis and characteristics of the Southern Powder River Basin Uranium Deposits, Wyoming, U.S.A.; Proceedings International Atomic Energy Agency Symposium, May 1974, p. 201-218.

Grasty, R. L., Uranium Measurement by Airborne Gamma-Ray Spectrometry; Geophysics, Vol. 40, No. 3, June 1975, p. 503-519.

Gregory, A. F., and Horwood, J. L., 1963, A Spectrometric Study of the Attenuation in Air of Gamma Rays from Mineral Resources; U.S. Atomic Energy Commission Report CEX-60-3, Washington, D.C.

Mallory, W. W. ed., 1972, Geologic Atlas of the Rocky Mountain Region; Rocky Mountain Association of Geologists, Hirshfeld Press, Denver.

McSharry, P. J. and Emerson, D. W., The Collection and Processing of Gamma Ray Spectrometer Data; 2nd International Conference on Geophysics of the Earth and Oceans, Sydney, Australia, January 1973.

Robinson, C. S., and Gott, G. B., 1958, Uranium Deposits of the Black Hills, South Dakota and Wyoming; Wyoming Geol. Assoc. Guidebook, 1958 - Powder River Basin, p. 241-244.

Schnabel, R. W., 1955, The Uranium Deposits of the United States; U. S. Geol. Survey Mineral Resource Appraisals Map MR-2, scale 1:5,000,000.

United States Geological Survey - Branch of Mineral Classification, Conservation Division, 1964, Reported Occurrences of Selected Minerals in Wyoming; U. S. Geol. Survey Mineral Investigations Resource Map MR-42, scale 1:

APPENDIX A
TAPE FORMATS
NEWCASTLE AND GILLETTE QUADRANGLES
WYOMING AND SOUTH DAKOTA
EKALAKA QUADRANGLE
MONTANA, SOUTH AND NORTH DAKOTA

Appendix A

SINGLE RECORD REDUCED DATA TAPE

REFERENCE: PARAGRAPHS 4.7.2 AND 6.1.5, BFEC 1200-B

The SINGLE RECORD REDUCED DATA TAPE is unlabeled nine track, 800 BPI, NRZI. All data recorded as EBCDIC characters. Each tape contains but one file of header, data, and trailer records for no more than one NTMS quadrangle. The maximum record length is 5472 characters.

The tape is organized such that each flight line of data is preceded by a header record and followed by a trailer record. If a flight line is not complete on a given physical tape, no trailer record follows its last data record on the first tape, nor does a header record precede its first data record on the second tape.

Header Record

The header record is 144 characters long with six defined data fields. These fields are:

1. Type of tape. A 32-character field with the text "SINGLE RECORD REDUCED DATA" left justified.
2. Project identification. A 32-character field with, for example, the text "NTMS NL 16-1,2 RAWLINS" left justified. With the exception of special projects, such as the Lake Mead Dynamic Test Range, all project identification fields begin with "NTMS" followed by the sheet number. Additional information may be abbreviated.
3. Subcontractor name. A 10-character field with the text "GEO-METRICS."
4. System identification. A 6-character field with the aircraft registration number right justified.
5. Flight line number. A 6-character field with the flight line number right justified.
6. Date flown. A 6-character field with the date, expressed as YYJJJ, right justified. YY are the last two digits of the calendar year and JJJ is the Julian date. When reflights re-

quire the insertion of the data from multiple days' flying, the date used is that of the original flight.

The remaining 52 characters of the header record are blank filled. A length of 144 characters was chosen to allow for future expansion and because 144 is divisible by the number of characters per word of many popular computers.

Data Record

Each data record may contain up to 38 data scans (logical records), with each scan 144 characters long. Therefore, the minimum physical length of a data record is 144 characters and the maximum physical length is 5472 characters.

The data scan has eighteen defined data fields.

1. Record identification number	F10.2	1- 10
2. Latitude in degrees	F10.4	11- 20
3. Longitude in degrees	F10.4	21- 30
4. Residual magnetic field in gammas	F15.2	31- 45
5. Terrain clearance in feet	F 5.0	46- 50
6. Surface geologic map unit	A 8	51- 58
7. System/Quality flag code (SAKUT)	A 6	59- 64
8. Cosmic count rate, in cps	F 8.1	65- 72
9. Atmospheric Bi-214 count rate, in cps	F 8.1	73- 80
10. Gross count rate (0.4-3.0 MeV), in cps	F 9.1	81- 89
11. Thorium (TL-208) count rate, in cps	F 9.1	90- 98
12. Uranium (Bi-214) count rate, in cps	F 9.1	99-107
13. Potassium (K-40) count rate, in cps	F 9.1	108-116
14. Uranium/Thorium count rate ratio	F 6.3	117-122
15. Uranium/Potassium count rate ratio	F 6.3	123-128
16. Thorium/Potassium count rate ratio	F 6.3	129-134
17. Outside air temperature, in degrees C	F 5.1	135-139
18. Barometric pressure, in inches of mercury	F 5.2	140-144

Trailer Record

A trailer record follows the last data record for each flight line. This record is always 5472 characters long, all of which are the digit nine.

STATISTICAL ANALYSIS TAPE

REFERENCE: PARAGRAPHS 4.7.3 AND 6.1.5, BFEC 1200-B

The STATISTICAL ANALYSIS TAPE is unlabeled nine track, 800 BPI, NRZI. All data recorded as EBCDIC characters. The maximum record length is 5472 characters. Each tape contains but one file of data for no more than one NTMS Quadrangle.

For each NTMS Quadrangle, the first record(s) on the tape contain summary information for all the geologic map units within the quadrangle. This summary information is followed by averaged record data for each survey flight line.

The tape is organized such that the summary geologic information and each flight line of data are preceded by a header record and followed by a trailer record. If a flight line is not complete on a given physical tape, no trailer record follows its last data record on the first tape, nor does a header record precede its first data record on the second tape.

Header Record

The header record is 144 characters long with four defined fields for the summary geologic information and six defined fields for the averaged record data. The fields in common are:

1. Type of tape. A 32-character field with the text "STATISTICAL ANALYSIS" left justified.
2. Project identification. A 32-character field with, for example, the text "NTMS NL 16-1,2 RAWLINS" left justified. All project identification fields begin with "NTMS" followed by the sheet number. Additional information may be abbreviated.
3. Subcontractor name. A 10-character field with the text "GEO-METRICS."
4. System identification. A 6-character field with the aircraft registration number right justified.

The additional fields for the averaged record data are:

5. Flight line number. A 6-character field with the flight line number right justified.
6. Date flown. A 6-character field with the date, expressed as YYJJJ, right justified. YY are the last two digits of the calendar year and JJJ is the Julian date. When reflights require the insertion of data from multiple days' flying, the date used is that of the original flight.

Undefined fields of the header record are blank filled. A length of 144 is divisible by the number of characters per word of many popular computers.

Trailer Record

A trailer record follows the last data record for the summary geologic information and the averaged record data for each flight line. This record is always 5472 characters long, all of which are the digit nine.

Summary Geologic Information Record

Each summary geologic Information Record may contain up to 38 geologic map units (logical records), with each logical record 144 characters long. Therefore, the minimum physical length of the summary geologic information record is 144 characters and maximum physical length is 5472 characters.

The summary geologic information logical record has nineteen defined data fields.

1. Geologic map unit	A10,2X	1- 12
2. Potassium distribution	A 2	13- 14
3. Potassium measure of central tendency	F10.4	15- 24
4. Potassium standard deviation	F10.4	25- 34
5. Uranium distribution type	A 2	35- 36
6. Uranium measure of central tendency	F10.4	37- 46
7. Uranium standard deviation	F10.4	47- 56
8. Thorium distribution type	A 2	57- 58
9. Thorium measure of central tendency	F10.4	59- 68
10. Thorium standard deviation	F10.4	69- 78
11. Uranium/Thorium distribution type	A 2	79- 80
12. Uranium/Thorium measure of central tendency	F10.4	81- 90
13. Uranium/Thorium standard deviation	F10.4	91-100
14. Uranium/Thorium distribution type	A 2	101-102
15. Uranium/Potassium measure of central tendency	F10.4	103-112

16. Uranium/Potassium standard deviation	F10.4	113-122
17. Thorium/Potassium distribution type	A 2	123-124
18. Thorium/Potassium measure of central tendency	F10.4	125-134
19. Thorium/Potassium standard deviation	F10.4	135-144

Data Record

Each record of averaged record data may contain up to 38 data scans (logical records), with each scan 144 characters long. Therefore, the minimum physical length of a data record is 144 characters and the maximum physical length is 5472 characters.

The data scan has the following defined data fields:

1. Record identification number	F10.2	1- 10
2. Latitude in degrees	F10.4	11- 20
3. Longitude in degrees	F10.4	21- 30
4. Residual magnetic field in gammas	F15.2	31- 45
5. Surface geologic map unit	5X,^8	46- 58
6. System/Quality flag code (SAKUT)	A 6	59- 64
7. Gross count rate (0.4-3.0 MeV), in cps	F 7.1	65- 71
8. Atmospheric Bi-214 count rate, in cps	F 7.1	72- 78
9. Thorium (Tl-2080 count rate, in cps	F 7.1	79- 85

MAGNETIC DATA TAPE

REFERENCE: PARAGRAPHS 4.7.4 AND 6.1.5, BFEC 1200-B

The MAGNETIC DATA TAPE is unlabeled nine track, 800 BPI, NRZI. All data are recorded as EBCDIC characters. Each tape contains but one file of header, data, and trailer records for no more than one NTMS quadrangle. The maximum record length is 4800 characters.

The tape is organized such that each flight line of data is preceded by a header record and followed by a trailer record. If a flight line is not complete on a given physical tape, no trailer record follows its last data record on the first tape, nor does a header record precede its first data record on the second tape.

Header Record

The header record is 120 characters long with defined data fields. These fields are:

1. Type of tape. A 32-character field with the text "MAGNETIC DATA" left justified.
2. Project identification. A 32-character field with, for example, the text "NTMS NL 16-1,2 RAWLINS" left justified. All project identification fields begin with "NTMS" followed by the sheet number. Additional information may be abbreviated.
3. Subcontractor name. A 10-character field with the text "GEO-METRICS."
4. System identification. A 6-character field with the aircraft registration number right justified.
5. Flight line number. A 6-character field with the flight line number right justified.
6. Date flown. A 6-character field with the date, expressed as YYJJJ, right justified, YY are the last two digits of the calendar year and JJJ is the Julian date. When reflights require the insertion of data from multiple days' flying, the date used is that of the original flight.

The remaining 28 characters of the header record are blank filled. A length of 120 characters was chosen to allow for future expansion and because 120 is divisible by the number of characters per word of many popular computers.

Data Record

Each data record may contain up to 40 data scans (logical records), with each scan 120 characters long. Therefore, the minimum physical length of a data record is 120 characters and the maximum physical length is 4800 characters.

The data scan has eleven defined data fields.

1. Record identification number	F10.2	1- 10
2. Latitude in degrees	F10.4	11- 20
3. Longitude in degrees	F10.4	21- 30
4. Time in day (hour, minutes, seconds)	3I2	31- 36
5. Terrain clearance in feet	F 9.0	37- 45
6. Barometric pressure in inches of mercury	F 5.2	46- 50
7. Surface geologic map unit	A10	51- 60
8. Total magnetic field in gammas	F10.2	61- 70
9. Residual magnetic field in gammas	F10.2	71- 80
10. System identification code	I 2	81- 82
11. Optional data	28X	83-110
12. Base station magnetic field in gammas	F10.2	111-120

Trailer Record

A trailer record follows the last data record for each flight line. This record is always 4800 characters long, all of which are the digit nine.

RAW SPECTRAL DATA TAPE

REFERENCE: PARAGRAPHS 4.7.1 AND 6.1.5, BFEC 1200-B

The RAW SPECTRAL DATA is unlabeled nine track, 800 BPI, NRZI. All data are recorded as EBCDIC characters. Each tape contains but one file of header, data, and trailer records for no more than one NTMS quadrangle. The maximum record length is 5472 characters.

The tape is organized such that each flight line of data is preceded by a header record and followed by trailer record. If a flight line is not complete on a given physical tape, no trailer record follows its last data record on the first tape, nor does a header record precede its first data record on the second tape.

Header Record

The header record is 144 characters long with seven defined data fields. These fields are:

1. Type of tape. A 32-character field with the text "RAW SPECTRAL DATA" left justified.
2. Project identification. A 32-character field with, for example, the text "NTMS NL 16-1,2 RAWLINS" left justified. With the exception of special projects, such as the Walker Field Test Pads and Lake Mead Dynamic Test Range, all project identification fields begin with "NTMS" followed by the sheet number. Additional information may be abbreviated.
3. Subcontractor name. A 10-character field with the text "GEO-METRICS."
4. System identification. A 6-character field with the aircraft registration number right justified.
5. Flight line number. A 6-character field with the flight line number right justified.
6. Data flown. A 6-character field with the date, expressed as YYJJJ, right justified. YY are the last two digits of the calendar year and JJJ is the Julian date.

7. Sample period. A 6-character field describing the spectrometer accumulation time. Examples are: 1.0 SEC, 0.5 SEC, etc.

The remaining 46 characters of the header record are blank filled. A length of 144 characters was chosen to allow to future expansion and because 144 is divisible by the number of characters per word of many popular computers.

Data Record

Each data record may contain up to four data scans (logical records), with each scan 1368 characters long. Therefore, the minimum physical length of a data record is 1368 characters and the maximum physical length is 5472 characters.

The data scan has fifteen defined data fields.

1. Record identification	F10.2	1-	10
2. Latitude in degrees	F10.4	11-	20
3. Longitude in degrees	F10.4	21-	30
4. Time of day (HHMMSS)	312	31-	36
5. Total magnetic field in gammas	F 9.2	37-	45
6. Terrain clearance in feet	F 5.0	46-	50
7. Barometric pressure in inches mercury	F 5.2	51-	55
8. Outside temperature in degreec C	F 5.1	56-	60
9. Quality flag code (altitude)	I 4	61-	64
10. Raw count data - 4 detector	255I3	65-	829
11. Live time - 4 detector-in seconds	F10.5	830-	839
12. Raw count date - 2 detector	255I2	840-	1349
13. Live time - 2 detector-in seconds	F10.5	1350-	1359
14. Cosmic - 4 detector	I 5	1360-	1364
15. Cosmic - 2 detector	I 4	1365-	1368

If a scan is not within the recovered path locations, the latitude and longitude, data fields 2 and 3, set to 0.0000.

The quality flag code, data field 9, is made equal to 0000 if the radar altimeter is within specifications and equal to 1000 if the radar altimeter is not within specifications.

The raw count data, fields 10 and 12, are presented for channels 0 through 254, corresponding to energies from 0 to 3 MeV for both the downward looking (4) and upward looking (2) detector arrays. The accumulation periods for the 4 and 2 detectors are identical, so each scan has data for both detectors. The counts in each channel are observed, with no corrections for ADC dead time nor conversion to counts per second. Energy per channel is 11.82 KeV. Since the

spectrometer does not respond to energies below 200 KeV, the counts in channels 0 through 17 (varies with system) will always be zero.

The live times, data field 11 and 13, are calculated by subtracting the product of the gross counts (0 to 6 MeV) and ADC dead time (8 sec) from the actual accumulation period for the data scan. This procedure is valid because the successive approximation ADC used has a fixed conversion time of 8 sec regardless of pulse amplitude.

The cosmic counts, data fields 14 and 15, are observed with no corrections for ADC dead time nor conversion to counts per second.

The data scan logical record length of 1368 characters was chosen to allow recording of all spectrometer channels for both 4 and 2 detectors with little chance of individual channel overflow given accumulation times of approximately one second. If overflow does occur, the overflow value is represented modulo 1000 (4 detector) or modulo 100 (2 detector) with leading zeros not suppressed. The specific value of 1368 characters was chosen because it is divisible by the number of characters per word of many popular computers.

Trailer Record

Trailer record follows the last data record for each flight line. This record is always 5472 characters long, all of which are the digit nine.

APPENDIX B
PRODUCTION SUMMARY
NEWCASTLE AND GILLETTE QUADRANGLES
WYOMING AND SOUTH DAKOTA
EKALAKA QUADRANGLE
MONTANA, SOUTH AND NORTH DAKOTA

APPENDIX B

DAILY PRODUCTION SUMMARY - AUGUST 1978

POWDER RIVER II PROJECT

S2F TRACKER N9AG

Date

08-08-78	Move to Gillette, Wyoming for Powder River Survey
08-09-78	Move to Gillette, Wyoming for Powder River Survey
08-10-78	Survey preparations
08-11-78	538 miles, Ekalaka Quadrangle
08-12-78	538 miles, Ekalaka Quadrangle
08-13-78	545 miles, Ekalaka Quadrangle
08-14-78	Weather, down day
08-15-78	494 miles, Gillette Quadrangle
08-16-78	Weather, down day
08-17-78	Weather, down day
08-18-78	Weather, down day
08-19-78	598 miles
08-20-78	598 miles
08-21-78	478 miles
08-22-78	268 miles*, Newcastle Quadrangle
08-23-78	568 miles*, Newcastle/Gillette Quadrangle
08-24-78	594 miles*
08-25-78	Weather, day down

Date

08-27-78 Weather, down day

08-31-78 707 miles*

Total number of miles flown during August 1978: 5,926

* Flights containing line miles applicable to the Research and Development portion of Powder River

DAILY PRODUCTION SUMMARY - SEPTEMBER 1978

POWDER RIVER II PROJECT

S2F TRACKER N9AG

<u>Date</u>	<u>Newcastle Quadrangle</u>
09-01-78	254 miles* from Gillette, Wyoming
09-02-78	Move to Casper, Wyoming
09-03-78	651 miles*
09-04-78	Nil production, equipment and A/C maintenance
09-07-78	656 miles*
09-08-78	Nil production, weather, 1 day
09-09-78	460 miles*
09-10-78	270 miles*
09-11-78	Nil production, weather, 1 day
09-12-78	Nil production, weather, 1 day
09-13-78	Nil production, weather, 1 day
09-14-78	Flight aborted due to equipment malfunction
09-15-78	Equipment unserviceable
09-16-78	Equipment unserviceable
09-17-78	Equipment unserviceable
09-18-78	Equipment unserviceable
09-19-78	Equipment unserviceable
09-20-78	Equipment unserviceable

Date

09-21-78	Equipment unserviceable
09-22-78	Equipment unserviceable
09-23-78	Equipment unserviceable
09-29-78	Ferry to Tulsa
09-30-78	Tulsa

Total number of miles flown during September 1978: 2,291

* Flights containing line miles applicable to the Research and Development portion of Powder River

DAILY PRODUCTION SUMMARY - AUGUST 1978

POWDER RIVER II PROJECT

LAMA HELICOPTER N49531

<u>Date</u>	<u>Ekalaka Quadrangle</u>
08-09-78	A/C and part of crew arrived Sundance, Wyoming
08-10-78	Remainder of crew arrived and base set up
08-11-78	Test flying
08-23-78	Move to Broadus, Montana
08-24-78	68 miles
08-25-78	244 miles
08-26-78	Nil production, fuel truck broke down
08-27-78	Nil production, rain, 1 day
08-28-78	162 miles
08-29-78	386 miles
08-30-78	349 miles
08-31-78	286 miles

Total number of miles flown during August 1978: 1,495

DAILY PRODUCTION SUMMARY - SEPTEMBER 1978

POWDER RIVER II PROJECT

LAMA HELICOPTER N49531

<u>Date</u>	<u>Ekalaka Quadrangle</u>
09-01-78	186 miles, from Broadus
09-02-78	137 miles -
09-03-78	114 miles
09-04-78	Move to Hardin
09-05-78	Nil production, equipment unserviceable
09-06-78	Nil production, equipment unserviceable
09-07-78	Nil production, high radon count, weather, 1 day

Total number of miles flown during September 1978: 437

APPENDIX C
MICROFICHE OF DATA
NEWCASTLE AND GILLETTE QUADRANGLES
WYOMING AND SOUTH DAKOTA
EKALAKA QUADRANGLE
MONTANA, SOUTH AND NORTH DAKOTA