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I. ·INTRODUCTION 

A. The LANDSAT System 

In response to an increasing awareness of our need for information 

about the earth's resources, the science of remote sensing has progressed 

rapidly in the past few years.. Generally speaking, remote sensing in­

volves observing objects without coming into physical contact with them. 

Information may be transmitted to the observer via magnetic, gravita­

tional, or electromagnetic fields. Some types of sensors that are 

used in remote sensing include photographic cameras, television cameras, 

radar systems, and multispectral scanners. 

Aerial· photography has traditionally been the most widely used 

method of remote sensing, but the launchtng of the earth resources 

satellites, LANDSAT-1 in 1972 and LANDSAT-2 in.1975, has introduced 

a new dimension to remote sensing. The satellites offer a repetitive, 

synoptic view of the earth that has never before been possible. 

Examples of some of the areas in which LANDSAT data has been utilized 

include: 

crop surveys 

mineral and petroleum exploration 

forest inventories 

water resources monitoring 

land use mapping 

·marine studies. 

Other applications are discussed in Reeves (1975). 
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LANDSAT is in a sun-synchronous,·near-polar orbit atan altitude 

of some 560 miles. The sun-synchronous nature of its orbit means that 

it passes over all locations at the same local sun time (9:42 a.m.). 

It circles the globe 14 times a day and covers the entire earth.in 18 

days. Since virtually every spot on the earth is covered once each 18 

days, data can potentially be collected 20 times a year for any given 

location. 

The sensor systems on LANDSAT.include a return beam vidicon (RBV) 

and a multispectral scanner (MSS). The RBV suffered a malfunction 

shortly after the launch of LANDSAT-1, and consequently, the bulk of 

the data collection task has been handled by the MSS. The MSS ·functions 

basically as follows. 

Reflected and emitted electromagnetic radiation (EMR) from a point 

on the ground is transmitted through the atmosphere a~d strikes an 

oscillating mirror in the lower part of the scanner. The mirror deflects 

the radiation to a set of optics that separate it into four distinct 

spectral bands. Radiation in each spectral band strikes a different 

electro-optical detector which transforms the EMR into an electrical 

signal that is recorded on magnetic. tape and later telemetered to 

ground receiving stations. The spectral bands, which include two 

visible and two near-infrared bands, are: 

MSS 4 

MSS 5 

MSS 6 

MSS 7 

0.5-0.6 micrometers 

0.6-0.7 micrometers 

0.7-0.8 micrometers 

0.8-1.1 micrometers. 
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Because the responses in all four spectral bands are detected simul-

taneously, the recorded data 1t:I four-dimensional in nature and h often 

referred to as multispectral data. 

As the satellite passes over the surface of the earth, the scanner 

mirror traces out a scan path perpendicular to the motion of the space­

craft. This is depicted in Figure l~ Six lines are scanned and recorded 

simultaneously. At a given instant of time the scanner views an element 

in each line which has the nominal dimensions of 80 meters by 80 

meters on the earth's surface. There are approximately 3240 such 

elements per line. One complete image· contains 2340 scan lines and 

covers a ground area of 185 kilometers on a side. Both photographic 

products and digital tapes are produced from the image data. 

B. Analysis of LANDSAT Data 

One approach to the analysis of LANDSAT data has been.to simply 

apply the standard techniques of photo interpretation to the images in 

photographic form. This is and will continue to be an important method 

of analysis, but it suffers the following limitations: 

1. It is very. difficult for a human interpreter to simultaneously 

deal with data in four dimensions, such as is .generated· by LANDSAT; 

2. The results of photo interpretation tend to be highly sub-

jective and nonrepeatable since they depend on the skill and experience 

of the ·analyst; 

3. The data throughput rates required to perfor~ large-scale 
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Figure 1. Schematic of LANDSAT MSS scan (after NASA, 1972) 

surveys in a timely manner make manual interpretation of the data 

impractical for these applications. 

These reasons, as well as others, have given rise to the development 

of techniques to automatically analyze LANDSAT data. 

Central to the automatic analysis of multispectral data is the 

concept of a spectral signature. The spectral signature of a material 

is its relative response in terms of reflected plus emitted EMR as a 

function of wavelength. An example of hypothetical spectral signatures 

for three materials is given in Figure 2. Here it is evident that the 

responses for all three materials are fairly di!i!tir1ct at wavelengths 
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Figure 2. Spectral signatures of three common materials (from Landgrebe, 1971) 
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"1_ and A
2

• Plotting the responses in two dimensions as in Figure 3 

shows that the materials are easily distinguishable if one observes 

their responses at t..1 and A.2• 

Response, t..2 

•Vegetation 

• Soil 

L--•--W_a_t_e~r--~------------~------------..,...--------~"""'::::~Response, Al· 

Figure 3. Spectral responses in the A1A.2 plane (after Landgrebe, 1971) 

In the real world things are not so neat and simple. A given 

material, corn, for example, exhibits variation in the amount of EMR it 

reflects and emits depending on many factors: maturity, moisture con­

tent, vigor, underlying soil type, variety, and others. Therefore, 

when a scanner makes multiple observations of a given material, 

the recorded responses can be expected to vary about some mean value 

as shown in Figure 4. 

Now suppose in addition to the responses displayed in Figure 4 

there is another observation u whose true identity is unknown. In 

order to classify the unknown point, one would like to divide the 
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Figure 4 •. Spectrai responses showing variation about.the mean (after 
Landgrebe, 1971) 
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Figure 5. Classification by minimum distance to.means (after Landgreb~~ 
1971) 
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response space into mutually exclusive and exhaustive regions and 

assign the unknown point to exactly one class corresponding to the 

region into which it falls. In this simple example the space may be 

partitioned by drawing the perpendicular bisectors of the.lines joining. 

the means as shown in Figure 5. This effects a classification based 

on minimum distance to means. The point u would be assigned to the 

Oats class under this classification rule. 

Many procedures exist for- carrying out the task of classification. 

It is not intended to attempt a comprehensive review of such methods 

here, but one method, known as the maximum likelihood, or Bayes, 

classifier, merits special attention because of its widespread use in 

remote sensing data analysis and its relationship, to the techniques 

appearing i·n later chapters. 

n denote distinct classes of material with ~ priori 
m 

probabiHties q1 , q2 , ••• , ~· Let x be an 1n-dimensional random ob­

servation, and let the class-conditional density functions be denoted 

P(xln.), 
1 

i 1, o••> m~ 

If C(ilj) is the cost of misclassifying an observation from class j 

into class i, assume that 

C(ilj) >o, .i-:/: j, i, j = 1, ... , m 

C(ili) = O, i = 1, ... , m. 

A Bayes rule R is one which partitions the observation space into 

mutually exclusive and exhaustive regions R1 , R2 , ••• ,Rm such that 

the expected cost of misclassification is minimized. Given an 
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observation x, the expected cost of misclassifying x into ll. is 
]. 

m 
L (i) = 

x 
j=l 

L: C(i IJ)p(n. Ix). 
J 

Applying Bayes' formula, this may be written as 

m 
L (i) = L: C(ilj)p(xln.)q./p(x), 

x . 1 J J J= 

where p(x) is the unconditional probability of observing x. It is 

not hard to show that minimizing Lx(i) with respect to i is equivalent 

to choosing i = k such that 

m m 
E C(klj)p(xln.)q. < t c(trj)p(xjn.)q., t = 1, .~., m. 

j=l . J J j=l J J 
j#k, jf:£ (1.1) 

Anderson (1958, page 143) has shown that a procedure that assigns ob-

servation x to region~ when~ver ~1.1) h?lds is a Bayes procedure. 

In the special case of equal costs of misclassification, 

. C(ilj) = C, i r/= j' 

and equal prior probabilities, condition (1.1) reduces to 

m 
)_::: 

.j=l 
jf:k 

p(xln.) 
J 

m 
< L: 

.j=l 
jl:t 

which is equivalent to 

p(xlnk) =max p(xln.) , . ]. 
]. 

t = 1, ... , m, 

the criterion for the maximum likelihood solution. 

(1. 2) 

In remote sensing the assumption is usually made that the spectral 

response for class i follows a multivariate normal distribution with 
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meanµ.. and covariance matrix E .• Let n be the dimensionality. If 
1 1 

the prior probabilities are taken to be 

l/m, i 1, •.• , m, 

and the cost structure is 

C(ijj) .: 1, i I= j 

C(iji) O, i = 1, ... , m, 

then the Bayes rule R reduces to assigning x to class kif (1.2) is 

true. Thus, the Bayes rule and the method of maximum likelihood are 

equivalent in this case. 

With the means and covaria~ce matrices as given above, one may 

write out the class-conditional probabilities as 

p (x I TT.) 
1 

i = 1, ••• , m. 

(1. 3) 

Typically, the class means and covariance matrices are unknown and must 

/\ /\ 
be estimated from samples by µ.. and E., respectively. If one substitutes 

1 1 

these estimates for the true parameters in (1.3) and expands (1.2) in 

terms of the expressions given in (1.3), one has, after a little wanipula-

tion, that 

i = 1, ••. , m. 

A 1\.1 /\ 
(x - µ..) ' E. (x - µ.i) , 

1 1 

(1.4) 

The rule .that assigns x to class TTk whenever (1.4) i.s true is called 

the maximum likelihood classifier. It is usually applied to each data 

point in an image on a point-by-point basis. It has been used extensively 
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in remote sensing applications because it is relatively simple to apply, 

and it gives excellent accuracy in many instances. 

C. The Mixtures Problem 

One question that an analyst frequently would like to answer is, 

"How much of a certain material is present in a specified region on 

the ground?" For example, he may want to know how many acres are 

planted to.each of several crops in a county. If each resolution 

element viewed by a scanner were to contain exactly one type of material, 

the acreage estimation task would be straightforward: count the number 

of elements assigned to each crop and multiply by the size of a resolu­

tion element. 

Earlier in the chapter it was stated that the size of a resolution 

element viewed by LANDSAT is about 80 meters square, or 1.1 acres. 

Obviously, objects smaller than 80 meters by 80 meters will not completely 

fill the field of view and will be seen as a mixture of the object and 

its background. Even for objects larger than 1.1 acres, a resolution 

element that overlaps the boundary between two large objects will be 

viewed as a mixture of the radiation emanating from each object. In 

this case the spectral response ~ecorded by the sensor will not be 

characteristic of either object. 

Suppose corn and bare soil have the spectral signatures shown in 

Figure 6. Then mixtures of 20% bare soil - 80% corn and 50% bare soil 

SO~ corn would have signatures as shown in Figure 7. A classifier 

trained to recognize corn and bare soil based on the signatures of 
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Figure 6. Spectral signatures of bare soil and corn (from Nalepka and Hyde, 1972) 



201, Corn 

j/ 
.. 60 80,, Bare Soll 

't: 
w 
u z ;s 40 
u 
w 
~ 
la. 
w 
D: SOOf; Corn ..... 

SOC,, Bare Soll w 

. 20 

1.0 2.0 

WAVELENGTH C,...m) 

F.igure 7. · Spectral signatures of mixtures of bare soil and corn (from Nalepka and Hyde, 1972) 
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Figure 6 would be apt to classify the mixtures as being from some class 

other than corn or bare soil. 

To see how resolution elements containing a mixture of two or more 

materials ·can affect classification accuracy in an agricultural applica-

tion, consider Figure 8 •. The solid lines delineate "fields" and the 

dashed lines delineate the.resolution elements seen by a scanner. As-

suming the size of a resolution element to be 1.1 acres, the fields are 

approximately 10 acres in size. If the center field contains a dif-

ferent crop than its neighboring fields, it is evident that mixtures of 

crops will be an important factor in classifying the center field. Only 

four resolution elements fall entirely within the center field, while 

twelve elements overlap other fields. Misclassification of the over-

lapping elements would result in a 55% underestimation of the crop 

acreage for the center field. 

Nalepka and Hyde (1972) have estimated the percentage of square 

fields that would be seen as a mixture for various field sizes. They 

took the size of a resolution element to be 300 feet square and assumed 

that the direction of scanning was ·parallel to field boundaries. 

For small fields of 20 acres or so, they determined the mixture 

percentage to be around 40%. Even for fields of between 60 and 100 acres, 

which are large in many areas with mixed agriculture, the probable 

mixture percentage exceeded 20%. To be able to accurately determine 

the amount of a crop present in typical agricultural fields, it be-

comes necessary to have some means of dealing with mixtures. One must 

be able to estimate the proportion of each crop contained in a mixture 
. 

element. ~. 
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Figure 8. Effect of mixed pixels on classifi.cation accuracy (from 
Nalepka and Hyde, 1972)· 

Several approaches have been proposed to account .for mixtures in 

classifying remotely sensed data. 1 One ,1110del, the ERIM model, will be. 

described here since it forms the basis for the ·estimation procedures 
I 

of the next chapter. Other approaches will be mentioned briefly for 

comparison. 

The ERIM model as presented by Horwitz et al. (1971) assumes the 

spectral responses of the materials of inter~st follow normal distribu­

tions. If there are m classes (materials)· and n spectral channels, 

· 1Environmental Research Institute ·~f Michigan,· Ann").rb~~-; Michigan. 
/ 
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the ith class is distributed as n-dimensional normal with mean A. 
1 

and covariance matrix·M .• The proportion of class i in a given 
1 

resolution element is denoted by A .• 
1 

Assume a resolution element consists of N small cells of equal,.. 

size and let N. be the number of cells containing the ith material. 
i 

With the J0 th of these N. cells, associate a random variable X .. · 
. 1 . 1] 

representing the spectral response of material i from that particular 

cel.l. The situation is shown :i.n Figure 9~ where the cells associated 

with class i are taken for convenience to form a contiguous block. 

Let X .. , j = 1, ••• , N., have mean A~ and covariance matrix~ 
l.J l. 1 1 

for i = 1, ••• , m. Let Y represent the total response for the resolution · 

element. Then 

y = 

N. 
m l. 

~ E 
i=l j=:=l 

X .. , where 
l.J 

m 
E 

i=l 
N. = N. 

1 

If the entire resolution element were to consist of material i, 

the mean of Y would be 

E(Y) = NA:' = A., 
1 l. 

. and its covariance matrix would be 

V(Y) = -~ = M.' 
i 1 

assuming independence between the cells of class i. Since there are 

actually N. cells of material i, the mean of Y is 
1 

AA = E(Y) = 
m 
E 

i=l 
N"A* = 

i i 

m 
I: 

i=l 
A.NA~ 

1 1 

m 
E 

i=l 
A.A •• 

1 1. 
(1.5) 
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Figure 9. Random variables associated with cells of the ith material 
in a resolution element 
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If the random variables associated with cells from different classes 

are assumed to be independent, the covariance matrix is 

MA = V(Y) = 
m 
E N.M:C = 

i=l 1 1 

m 
I: 

i=l 
A.~= 

1 1 

m 
E 

i=l 
A.M. • 

1 1 
(1. 6) 

Thus, the distribution of a given mixture of classes with the associated 

proportions Ai is n-dimensional normal with mean AA and covariance 

matrix MA. 

Given an observation vector y from a mixture distribution, one 

would like to estimate the true class proportions A .• Two methods for 
1 

obtaining such estimates are presented in the next chapter. 

Various researchers have suggested approaches to the mixtures 

problem that .deviate to different degrees from the ERIM approach. 

Detchmendy and Pace (1972) developed a model for mixtures that is 

based on different fundamental assumptions from those of the ERIM model. 

In their forllllllation the spectral signatures of all pure materials are 

considered to exhibit no variation; rather, the variations in observed 

res_ponses are due to variations in the proportions of materials and 

their backgrounds within a resolution element. Thus, the proportions 

rather than the class signature vectors are taken to be ra·ndom variables. 

Salvato (1973) gives the conditions under which the model of Detchmendy 

and Pace is mathematically equivalent to the ERIM model. 

Smedes et al. (1975) used the ERIM model to generate mixture 

signatures from the known signatures of each pure material. The propor-

tions associated with the mixtures were specified beforehand in terms 

of fixed increments. The mixtures corresponding to the generated 

signatures were treated as additional classes besides the pure classes, 
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and a standard maximum likelihood classification was carried out. 

Odell and Basu (1975) have developed several proportion estimators 

based on the theory of mixing distributions. Their methods can be 

utilized to obtain an overall estimate of the proportion of a region 

covered by a given crop. However, they do not produce estimates for 

each individual resolution element, and thus do not specifically deal 

with boundary elements. 

D. Outline of Approach 

In Chapter II two types of proportion estimators are defined. 

the standard estimator and the simplified estimator. Examples are 

presented to illustrate the operation of the two estimation methods 

and to show how they differ. The computational procedures involved in 

implementing each type of estimator are discussed, and flowcharts of 

the programs are provided. An alternative method of computing the 

simplified estimator based upon a closed-form solution of the least 

squares problem with interval constraints is given. The two simpli­

fied estimation methods are demonstrated to be algebraically equivalent. 

It is also shown that the closed-form solution is computationally 

faster than the usual simplified estimation procedure, but its use 

is subject to more stringent requirements. 

, The approach used in testing the accuracy of the standard and 

simplified estimators. is given in Section C of Chapter II. Two 

methods of generating test data are discussed. With one method the 

proportions of .classes in a simulated mixture are fixed in advance. 
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With the other method the proportions are randomly selected for each 

data point. The mean square error criterion used to measure the 

performance of the estimators is defined, and some known theoretical 

results are given. The results from two tests are presented and 

discussed, one test involving a specially structured 2-dimensional 

data set and the other involving LANDSAT-type data with random 

proportions. The times required to compute the standard and simpli­

fied estimates are recorded and tabulated for various numbers of 

classes and spectral bands. 

In Chapter III the concept of data averaging is introduced 

as a technique for obtaining an estimate of the proportions over 

an entire region in less time than with the point-by-point estima­

tion methods of Chapter II. The test involving LANDSAT-type 

data is repeated on the standard.and simplified estimators using 

data averaging, and the results are compared to those of Chapter II. 

Chapter IV examines the assumption of equal class covariance 

matrices and its relationship to proportion estimation. The im­

portance of making the assumption is briefly discussed, and a 

likelihood-ratio test for equal covariances is applied to data 

covariance matrices extracted from actual LANDSAT data. 

In the third section of Chapter IV, two tests are reported 

that investigate the effect of assuming equal covariances when they 

are in fact unequal. The first· test uses a specially constructed 

2-dimensional data set designed to illustrate the effect of trans­

ferring some of the variation from the covariance matrix of .one 
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class to that of another class and of introducing positive and negative 

correlationso The second test involves two data sets of simulated 

LANDSAT data. One is constructed using the covariance matrices ex-

tracted from LANDSAT data as discussed in Chapter IV, Section B, 

and the other is constructed using the average of these matrices as 

the common class covariance matrix. Several proportion estimation 

procedures are applied to each data set, and the results are com-

'pared. 

The assumption that the data is distributed as multivariate normal 

is examined in Chapter V •. Some evidence indicating nonnormality of 

the data is discussed, and the use of normed exponential densities 

is considered as an alternative to the normal model. A general 

r-normed exponential density is defined, and a model based on the 

L
1 

norm is pre.sented in detail. The salient properties of the L1 

norm are dis~ussed and illustrated, including an exampie of how the 

L1 norm can out perform L2 due to the relative insensitivity of the 

L1 norm to outliers in the data. 

The implementation of a classifier based on the Lj_ norm is 

discussed, and it is shown that the L1 classifier is computationally 

more efficient than the corresponding L2 classifier and leads to 

an exact evaluation of the probabilities of misclassification, which 

the L2 classifier does not. Several sets of simulated data are 

constructed to. test the L1 classifier. Some of the data sets con­

tain normally distributed data which has been contaminated by a Cauchy 

or Laplace distr.ibution or the introduction of extreme points. The 



22-23 

results obtained using the L1 classifier are compared to the results 

obtained with the L2 classifier, and the computation times of both are 

measured. 

The final section of Chapter V considers how one might go about 

applying the L1 model .in dealing with the mixtures problem. 
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II. METHODS OF PROPORTION ESTIMATION 

A. Definition of Methods 

1. Standard estimator 

In this section the standard proportion estimator is presented 

as first given by :Horwitz et al. (1971). The model used is the ERIM modef 

described in Chapter I. 

Let n be the number of bands or channels of the scanner and let 

m be the number of classes of material. We assume class i follows an 

n-dimensional multivariate normal distribution with mean Ai and co­

variance matri~ Mi' i = 1, ••• , m. Let Ai be the proportion of 

class i contained in a mixture of materials and define the proportion 

vector A= (A1 , A2 , ••• ,Am)'. 

The mixture associated with A is then distributed as multivariate 

normal with mean 

and covariance matrix 

The mixture density function may be written as 

The log likelihood is then 
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Thus, the constrained maximum likelihood estimate of A will minimize 

subject to the constraints 

m 
E Ai = 1, 

i=l 
A. > 0, i = 1, o • ., m. 

l. -

(2 .1) 

(2.2) 

At this point the simplifying assumption is made that all the 

covariance matrices Mi are equal to a common covariance matrix, say M. 

This reduces the minimization problem to 

subject to constraints (2.2). 

With M positive definite we can perform the Cholesky decomposition 

M = LL', 

where L is lower triangular. Taking 

-1 z = L y 

i = 1, · ••• , m 

the problem becomes· one of finding A that minimizes 

2 
G(A) = II z - BAii 

(2. 3) 

subject to the constraints (2.2). Under the equal covariance assumption 

this is completely equivalent to minimizing (2.1) with respect to A since 



26 

= ( z - B ) ' ( z - B ) = (L -ly - L - l A ) ' (L - ly - L - l A ) 
A. A. A. A. 

and since ln IM I does not depend on_ A., it may be dropped. 

A 
Let the A that minimizes G(A.) be denoted A.. This will subsequently 

be referred to as the standard estimator. 

A simple geometric interpretation can be given to the minimiza-

tion of G(A.)e Let A be the matrix whose columns are the class mean 

vectorse Thus, 

and let A satisfy (2.2). Then the set of all points AA.(= AA) is 

the convex hull of the Ai and is called the signature simplex. 

Similarly, the set of points _BA.(= BA.) is_ called the transformed 

signature simplex. 

Finding the A. that minimizes G(A.) is equivalent to finding the 

point BA on the transformed signature simplex that is closest to the 

transformed data point z. This is depicted in Figure 10 where z is 

projected onto the plane determined by the Bi at Pz and BA is the 

orthogonal projection of Pz onto the transformed signature simplex. 

An important restriction in order that the optimal A. be uniquely 

determined in the above formulation is that the number of classes, m, 

be.less than or equal ton+ 1~ the number of bands plus one. This 

is implicit in the requirement that the signature simplex have positive 

(m - !)-dimensional. volumee 
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Figure 10. Geometric interpretation of standard estimator 

2. Simplified estimator 

In order to reduce the amount of computation required to obtain 

a proportion estimate, a modification of the standard estimator was 

proposed by· Horwitz et al. (1974). The problem is to minimize 

G{>i.) = jjz - BAll 2 

subject to 

1.:>. = 1 
i 

but not requiring 

>. > O i- i = 1, OQO' mo (2.5) 

Minimizing G(A) subject only to constraint (2.4) is equivalent to 

projecting the transformed data vector z onto the hyperplane determined 



28 

by the transformed means Bi, i = 1, ••• , m. lf the projection falls 

within the transformed signature simplex, then constraint (2.5) will 

be satisfied, and the estimate will be the same as in the standard 

case. If the projection falls outside the simplex, however, some of 

the A. will be negative. In this case an estimate is obtained by 
l. 

setting the negative A. to zero and normalizing the remaining 
l. 

components. 

To precisely specify the estimation procedure, some definitions 

ar~ needed. Since the covariance-removing transformation given in 

(2.3) of the previous section is not essential to a basic definition 

of the estimatol;'.,,., the untransformed means Ai and data vector y will 

be used in the subsequent discussion. 

A.proportion vector is a vector A satisfying (2.4) and (2.S)o 

Let SA be the signature simplex.associated with. the mean vectors Aio 

Then SA is the set of all vectors AA where A is a proportion vectoro 

Let LA be the set of all vectors An where n satisfies (2.4) but may 

or may not satisfy (2.S)o Clearly SA is a proper subset of LA. 

+ Let n be the vector obtained by setting all negative components 

of n to zero, and let w be the sum of the positive components of n. 

Then.the normalized vector given by 

'V 1 + n=-n w 

is a proportion vector. 

If Py is the orthogonal· projection of y onto LA' then 

Py = A1} (2.6) 
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for some vector n satisfying (2.4)o Thus An is the point in LA 

closest to Yo As an estimator of A, take 

').ix = "" n. 

'), 

The estimator X is called the simplified estimator. 

'V ')., 
It is evident from the definition of n that AX is in SA' but it 

may not necessarily correspond to the point A~ .determined by the 

standard estimator. In the special case where Py falls in SA' the 

vector n in (2.6) will itself ·be a proportion vector, and 

1'. = n " = Ao 

To see how the standard and simplified estimators may in general 

differ, consider the following example in two dimensions where there 

are three channels and three classes (n = 3 and m = 3). 

Let the mean vectors be given in terms of (x
1

, x
2

) coordinates 

in the LA plane by 

as shown in Figure 11. Let the projection of y onto LA be 

Py= An =C) 
Solving for n yields 

n =(-2~3). 
2/3 
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Al 
-1 Py '\, 

AA. - I -------
A2 A3 

xl 

Figure llo Illustration of difference in ·standard and simplified 
estimators 

The orthogonal projection of Py onto the line A1A3 is 

which gives 

as the value of the standard estimator. 

For the simplified estimator one finds the intersection of the 
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"'(9/5) AA.= 3/5 
which gives 

'11 (3/5) 
x = 0 • 

2/5 

Using the definition of the simplified estimator, one has 

n+ =( ~ \_nd w.= 5/3, 
2/3! 

so that 

'11 "' 1 + X=n=-n . w 
=(3~5)0 

2/5 

It is not hard to see that in some cases the two estimators will 

differ considerably in the results they give. In a later section the 

performance of these estimators will be compared. 

B. Computational Procedures 

1. Standard estimator 

It was shown in Section A of this chapter that under the equal 

covariance assumption estimating the proportion vector by the standard 

estimator involves finding the A that will 



subject 

where z 

minimize II z - BA 11
2 

A . 

to 

m 
I: A. 
1 

l. 
l; A.. > o, 

l. -
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i = 1, . o., m, 

and BA are the transformed observation vector and matrix of 

means, respectivelyo With a little manipulation the problem can be re-

expressed as a quadratic programming problem. Since 

the expression to be minimized can be reduced to 

minimize [- 2z'BA. + A.'B'BA]. 
A. 

In the notation of quadratic programming, the problem becomes 

such that 

where 

minifilize [pA + A.'QA.] 
A. 

J'A. = 1 

A.. > O, i = 1, ~ •• , m, 
l. -

p = - 2z 'B 

Q = B'B 

J' = (1, 1, ooo, 1). 
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The program STDEST was written to implement the standard 

estimator. It employs the quadratic programming package QP360 in 

solving for the estimate of Ao QP360 was developed by the Rand 

Corporation and is based on Wolfe's Algorithm, which takes a simplex 

approach to quadratic programming by utilizing the Kuhn-Tucker condi­

tions o A special feature of QP360 is a parametric programming option 

which allows one to vary the linear part·of the objective function. 

QP360 is supported· at Iowa State by the Numerical Analysis Section · 

of the Statistical Laborato·ry. 

The flow diagram of Figure 12 shows the structure of STDESTo 

The essential functions performed by the program are: 

1. read data vectors from the region of interest and estimate 

the proportions of materials associated with each vector; 

2.. save the estimated proportion for mapping the results; 

3. print the overall percentage of the region covered by each 

materiaL 

A few aspects of the program require additional explanation. 

· The user may supply either a single covariance matrix common to 

all classes or a separate covariance matrix for each class. If the 

latter option is chosen, the program will take the average of the 

matrices as the mixture covariance matrix. The ra.tionale for averaging 

the covariance matrices is discussed by Horwitz et al. (1971)0 

Since the original version of QP360 expected the input to be on 

cards, a minor modification was necessary to take the input from disko 

An example of the input file constructed on disk for QP360 is given 

in Figure 13. The statements through the MATRIX command are read from 
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Figure 12. Flowchart for STDEST 
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number of classes, bands 
requested, region coordinates 

identification record on 
input data file 

if separate class covariance 
matrices are supplied, the average 
is computed; a single matrix is 
taken to be the connnon covariance 

do Cholesky decomposition of 
covariance matrix to get linear 
and quadratic parts of objective 
function 

read partial QP360 input 
from cards and put on disk 
(see Figure 13) · 



no 

ead data 

store matrix 
values in QP360 
input file 

calculate 
proportion 
estimate 

increment 
proportion 
totals for 
each class 

roportions and 
ode in prop. file 

end 

Figure 12. Continued 
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place values for linear and 
quadratic factors after MATRIX 
statement 

read input file from disk 
and solve QP problem to 
get estimate 

used for estimate of 
overall proportion 
of each class °in region 

based on value of estimate 
and thresholds read from cards 



BEGIN 
PRMODE 
0022222234 
ROWS 

END 
RHS 

END 
MATRIX 

Xl 
Xl 
Xl 
Xl 
x2· 
X2 
X2 

END 
SET INV 
SOLVE 
EXIT 

EQUAL* 
& LINEAR 

EQUAL* 

EQUAL* 
LINEAR 
Xl 
X2 
£QUAL* 
LINEAR 

.X2 
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1.0 

1.0 
p a 

1 b 
Q1,1 
2Q2,1 
1.0 
Pz 
Qz,2 

a . 
P is the vector of coefficients for the linear part of the 

objective function. 

bQ is the matrix of coefficients for the quadratic part of 
the objective function. 

Figure 13. Sample input to QP360 
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cards during initialization and can be varied from run to run if 

necessary. Since the data in the MATRIX section depend on the value of 

a particular observation, the input file must be rewritten each time 

through the loop. 

In order to invoke QP360 from STDEST, the main routine in 

QP360 was made into a subroutine callable from STDEST. When the optimal 

values for the proportions are calculated in QP360, they are·passed 

back to STDEST via COMMON storage. 

STDEST converts the estimated proportions to the nearest percent 

and stores them in a file in the same format as is used for LANDSAT 

data. Thus, a vector of percentages, one percentage for each class, 

is stored corresponding to each data point in the region of interest. 

This enables the same programs that are used to produce gray-scale 

maps of LANDSAT data to be used: in producing maps of mixture processing 
! ' 

results. 

At the time the propor.tions corresponding to a certain data point 

are stored, a mixture code is calculated and stored to indicate the 

particular mixture represented by the data point. To determine the 

code, the proportions are sorted into descending order and compared 

against a set of cumulative thresholds and a set of minimum thresholds. 

Thus, if there were m classes, there would be m cumulative and.m minimum 

thresholds. 

Proceeding from combinations of one class to combinations of m 

classes, .a data point is taken to be a mixture of k classes (1 .$k <m) 

if the sum of the k largest proportions exceeds the kth cumulative 

threshold, .and each of the k largest proportions exceeds the kth minimum 
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threshold. .The smallest value of k for which both thresholds are 

satisfied is considered to be the number of classes in the mixture, 

and a unique code is assigned corresponding to the particular k 

classes in the mixture. 

The cumultative and minimum thresholds are specified as input 

parameters to the program, and as such reflect a subjective judgment on 

the part of the user. The code assignment procedure is, after all, 

not a statistical classification method, but merely a convenient means 

of labeling the proportion estimation results. 

2. Simplified est!mator 

The heart of the simplified estimator calculation consists of pro-

jecting the transformed data vector z onto the hyperplane determined by 

the transformed means. The problem may be expressed as 

such that 

minimize -
2

1 (z - BA)'(z - BA) 
A 

m 
~ 

i=l 
A. = 1, 

i 

where B = (B1 , B2, ••• , _Bm) is the matrix of transformed means. By 

introducing the Lagrange multiplier 6, the objective function may be 

written 

¢(A~ 6) = ~ (z - BA)'(z - BA)+ 6(I:Ai - l).· 

Applying the Kuhn-Tucker conditions for optima_lity gives 
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~ = B '·BA. - B.' z + bJ = 0 

arid 

~ - "''. - 1 0 oti - ""'/\i = ' 

where J is an m x 1 vector of ones. These equations may be rewritten 

as 

B'BA. + bJ B'z 

I::A.. 1, 
l. 

which in matrix notation.becomes 

(2.7) 

If the augmented B'B matri~ in (2.7) is nonsingular, the solu-

tion for A may be· found from 

The projection z* of z onto the hyperplane of. the B. is thus given by 
l. 

z* = BA.. 

If z* falls outside the transformed signature simplex, some of the A. 
' ' l. 

will be negative. In this ca~e the negative A. are set to zero, and 
l. 

·the resulting vector is normalized so that its components sum to one. 
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The program SMPEST performs the computations indicated above in 

calculating the simplified estimate •. The augmented B'B matrix is 

formed, and its inverse is computed and saved. For each data vector in 

the region of interest, the multiplication indieated in (2.8) is 

carried out to obtain A. Each component of A is tested, any negative 

component is set to zero, and a flag is turned on to indicate the 

presence of one or more negative proportions. Subsequently, the flag 

is examined, and if it is on, A is normalized by dividing by the sum 

of the positive components. The estimated proportions are converted to 

the nearest percent and stored in a file along with a mixture code as 

described in the discussion of STDEST in the previous section. A flow 

chart for SMPEST is presented in Figure 14. 

It was stated earlier that the signature simplex must be non-

degenerate. This assumption is related to nonsingularity of the aug- . 

mented B'B matrix. Nondegeneracy of the (transformed) signature simplex 

means that it has positive (m - 1)-dimensional vol\Jme, or, equivalently, 
. B. 

that the m vectors <-[> are linearly independent. 

Augmenting the B. vectors with ones causes dependency to be con-
. 1. . . 

sidered in mixture space. Vector B., j = 1, 2, ••• , m, is in the mixture 
J 

space defined.by the vectors B1 , ... , ... ' B if 
m 

m m 
:E A..B. ,;;; B. , and I: A, = 1. 

i=l 1. 1. J i=l 1. 

i:l=j i:f j 

The situatien for three classes and two channels is illustrated in 

Figure 15. Here the signature simplex formed by B1 , B
2 

and B3 is 

degen~rate sine~ it does not have positive 2-dimensional volume.· Since 



read data 
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PARMCK 
check input 
parameters 

read class 
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set-up for 
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calculation 

PRFILE 
initialize file 
for proportion 
estimates 

Figure 14. Flowchart for SMPEST 
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number of classes, bands 
requested, region coordinates 

identification record on 
input data file 

if separate.class covariance 
matrices are supplied, the average 
is computed; a single matrix is 
taken to be the connnon covariance 

perform Cholesky decomposition of 
covariance matrix and transform 
means 

. ' 



no 

read data 

SMCALC 
calculate 
proportion 
estimate 

increment 
proportion 
to.tals for 
each class 

PRFILE 
store estimated 
pr~portions and 
code in prop. file 

Figure 14. Contfnued 
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multiply transformed data vector 
by inverse of transformed means 
matrix to solve for estimate 

used for estimate of overall 
proportion of each class in region 

based on value of estimate 
and thresholds read from cards 
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30 

20 

10 

10 20 30 

Figure 15. Degenerate and nondegenerate sigriature simplexe's 

the vectors are dependent, and ~3 is in the mixture space defined by B1 

and B
2• That the augmented vectors are dependent is clear from 

On the other hand, the signature simplex formed by B1 , B
2 

and 

B4 has positive 2-dimensional volume. The vectors are dependent in 

E2 since 

but 
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1+&.J.1 
5 ,5 r ' 

and the linear combination of B1 and B
2 

that yields B4 is unique, 

so B4 is not in the mixture space of B1 and B2• Thus, the augmented 

vectors (~/), (~l) and (~t) are linearly independent. 

Now consider the augmented B'B matrices for this example. For 

Bl' B2 and B
3 

the B matrix is 

~o 20 ::} 20 15 

and the augmented B'B matrix 

500 500 500 1 

500 625 750 1 

500 750 1000 1 

1 1 1 0 

is singular since two times row.2 minus row 1 equals row 3. 

In the case of B1 , B2 and B4 , the B matrix is 

and the augmented B'B matrix 

500 500 900 1 

00 625 1050 1 

00 1050 . 1800 1 

1 1 1 0 
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is nonsingular since its determinant is - 40.,000. Note that since B1 , 

B2 and B
4 

are dependent in E2, B'B is singular (three times row 1 plus 

six times row 2 equals five times row 3) even though the augmented 

B'B matrix is nonsingular. 

Whenever the number of classes, m, exceeds the number of channels, 

n, the B. will be linearly dependent since m vectors in .an n-dimensional 
. ]. 

space cannot be independent when m > n. The B'B matrix will always 

be singular in tbis case. 

If, however, there are no more classes than channels, the B'B 

matrix will be nonsingular as long as the B. are independent. If 
]. 

'this is the case, the simplified estimator may be computed by a closed-

form solution to the least squares problem 

such that 

minimize (z - BA.) 1 (z - BA.) 
A. 

where J is an m x 1 vector of ones. 

Klemm and Sposito (1977) have shown that for a least squares 

(2.9) 

problem over an interval constraint, a closed-form solution exists. 

For.the problem stated in (2.9), the solution is 

where ~ is the unrestricted least squares estimator, viz. 
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Clearly, the solution requires that the B'B matrix be nonsingular. 

It can be shown that A* is equivalent to the estimator of A 

defined by (2.8) when B'B is nonsingular. Let 

= B • -n 

Applying the formula for the inverse of a matrix by bordering (Faddeeva, 

1959, p. 105), yields 

where 

B-l u u'B-l 
B-1 + ---""n_-l;;;;....:;n"'-"1"-1 .,;;.;u'--=l 
-n-1 Q( 

n 

-1 
- B u -n-1 n 

Q(. 
n 

---------------------r~--------- , 
u'B-l I 
rrn-1 

Q( 
n 

0t = b - u'B-l u 
n · nn· n-n-1 n • · 

I 0( 
n 

Substituting in terms of Band J, we find 

(B'B)-1 _ (B'B)-lJJ' (B'B)-l : (B'B)-lJ 

J' (B'B)-lJ I J' (B'B)-lJ 
-----------~a-------------~--i-------------

J' (B'B)-l 

J' (B'B)-l J 

-1 Using B to solve for A by carrying out the multiplication indicated 
-:n 

in (2.8) gives 
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(B'B)-lJJ'(B'B)-lB'z 
+ 

J' (B'B)-lJ 

(B'B)-lJ 

J' (B'B)-lJ 

= ~ + (B'B)-lJ(l - J'~) 
J' (B'B)-l J 

= "A*. 

(B'B)-lJ 

J' (B'B)-lJ 

Therefore, the closed-form solution yields the same estimate as the· 

usual method for computing the simplified estimate in the case where 

B'B is nonsingular. 

Since the closed-form solution is in.effect taking advantage of 

the fact that the last row and column of the augmented B'B matrix are 

simply ones with a zero as the last element, the amount of calculation 

involved should be less than1 fdr a simplified estimation procedure 
, I 

which inverts the augmented B'B matrix without any shortcuts. To 

check ~hether the closed-form method is actually faster, two versions 

of SMPEST were compiled. The fir.st used the usual estimation procedure, 

and the second utilized the closed-form solution. Both programs were 

run with the same data sets, and the time spent in calculating the 

estimates was recorded. To avoid a singular B'B matrix, all data 

sets consisted of data with as many bands as there were classes of 

material. Table 1 shows the.results of the runs. 

It can be seen from Table 1 that.for two classes the usual 

solution requires one-.third more time to calculate estimates than 

the closed-form method. The difference becomes less for three and 

four classes, but the closed-form method maintains an advantage. The 
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Table 1. Comparison of time to calculate estimates for usual and 
closed-form methods of simplified estimation 

Data set Time in a seconds· 
Classes Points Usual Closed form 

2 100 0.032 0.024 
2 100 0.034 0.025 
3 100 0.043 0.042 
4 100 0.060. 0.053 

aAll timings were taken on an IBM 360/65. 

implication is that if one knew~ priori that the number of classes 

appearing within a single resolution element would never exceed 

the number of data channels, 'the closed-form method would be a 

desirable alternative to the usual simplified procedure. 

c. Testing the Estimators 

l. Generation of ~ data 

To test and evaluate the different methods of proportion estimation, 

it was necessary to acquire a set of mixture data for which the true 

proportions were known. Since it is not possible to determine the 

precise position of the field of view of the scanner with respect to a 

fixed location on the ground, such as the boundary between two fields, 

one cannot determine the true proportions in a mixture when using 

actual satellite data. For this reason simulated mixture data was 

used for testing. 

r: 
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The subroutine MIXGEN was written to generate random observations 

from a mixture distribution which is n-dimensional normal with mean 

AA and covariance matrix MA. The program utilizes a random number 

generator from the IMSL1 and produces random vectors by the following 

process. 

Step 1. Perform a Cholesky decomposition on MA to get the matrix 

L such that 

MA= LL'. 

Step 2. Generate n independent univariate random variates x. 
l. 

such that 

Then 

Then 

X. ~ N(O, 1), i 
l. 

1, ••• , n. 

X = (X
1
x2 ... X .)' ~ N (0, I). 

n n n 

Step 3. Form X* = LX. Then 

Step 4. Take Y = X* +AA. 

Given a proportion vector A and the mean.vectors A. and covariance 
l. 

matrices M., i = 1, ••• , m, MIXGEN forms the mixture mean according to 
l. 

Equation (1. 5); and, depending on a program option, either uses (1. 6) 

to compute the mixture covariance or takes the average of the M. 
l. 

as the mixture covariance. The specified number of random observa-

tions are then generated and stored in a file along with the true 

lrnternational Mathematical Statisticai Libraries, Inc. 
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proportion vector A associated with each observation. 

To direct the construction of a file of simulated data, the 

program SIMDAT was written. SIMDAT reads several parameters that 

describe how the data file is to be built and calls MIXGEN to create 

the random observations. Two basic modes of operation are possible. 

In one case fixed proportions are used to generate the data, and in the 

other case the proportions are randomly chosen. 

In the case of fixed proportions, the user specifies the proportion 

of each class in a mixture and the number of observations to be generated 

for that mixture. Several mixtures may be designated as belonging to 

the same group of mixtures, and the group may be generated repeatedly 

to produce data in a pattern that res·enibles physical fields of different 

materials. 

In the case of random proportions, .the user supplies certain 

probabilities, and the program randomly chooses classes and assigns 

proportions in accordance with the given probabilities. For the pur­

pose of comparing results, the method of randomly generating the 

data was taken to be that used by Horwitz et al. (1974). 

In.considering the generation of mixtures consisting of classes 

of interest to the user, called~ classes, and classes of material 

that are either unknown or of no interest to the user, called alien 

classes, it becomes necessary to extend the basic mixture model. Let 

~ be the proportion of alien material in a pixel, and let the number of 

user and alien classes be u and v, respectively. Then the mean and 

covariance matrix of a mixture of user and alien materials are given by 
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u v 
A-A = (1 - .~) L: A.A. + ~ L: A .A . 

i=l l. l. i=l u+i. u+i. 

u v (2.10) 

MA. = (1 - ~) L: A.M. + ~ L: A .M . 
i=l l. l. i=l u+l. u+l. 

Generation of the random data proceeds through the following 

series of steps: 

1. Select at random the proportion of alien material. 

2. Randomly choose the number of user and the number of alien 

classes. 

3. From the set of all user and alien materials pick a random 

subset of user materials and a random subset of alien materials according 

to the number of classes specified in step 2. 

4. Randomly generate the proportions associated with each user 

class and each alien class. 

5. Form the mixture mean and covariance matrix based on (2.10). 

6. Generate a single random observation from the multivariate 

normal distribution with mean AA and covariance matri~ MA, and store 

it along with the proportions from steps 1 and 4. 

7. Repeat steps 1-6 until the required number of observations 

have been gener~ted. 

The proportion of alien material is selected according to the 

distribution 
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o, x < O; 

1 -
-Yx 

F(x) a+ (1 - a - ~) 
e 

, osx<l; (2.11) 
-Y 1 - e 

1, x? 1. 

Here a is the probability that a pixel contains only user material, 

P(s = O); ~is the probability of.only alien material, P(s = l); and 

y is an additional parameter, which must be different from O. 

A random number from a uniform [O, lf distribution is generated 

as the value of F(x). If F(x) ~a, then the value of s is taken to 

be O. If F(x) ? 1 - ~' then s is assigned the value 1. In all 

other cases a< F(x) < 1 - ~' and the middle equality of (2.11) is 

solved for x to yield the proportion of alien material. 

The probabilities of choosing various numbers of user and alien 

classes are based on a consideration of .the physical configuration 

of fields in the scene being viewed. Let ,. be the ratio of the 

length of the edge of a resolution.element on the ground to the 

length .of the side of a "typical" field. Assuming ,. to be less than 1, 

the probabilitjP.s P. of various numbers of classes are determined from 
1. . 

P'.3( T) 

P
4 

( T) 

PS ( T) 

2 
= 2T - 2.5,-

'1"2 

2 
= o. 5,. 

2 . 
= 0. 2.5 T ; 
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where 5 has been taken to be the maximum number of user or alien classes 

expected to .be present in a single pixel. A different value of T may 

be used for alien classes than is used for user classes if desired. 

SIMDAT will automadcally normalize the probabilities if they do not 

already sum to 1. 

To randomly choose the number of classes, a uniform [O, l] random 

number, x, is generated. If x $ P1; the number of classes is taken to 

be l; if pl < x ~ P
1 

+ p
2

,. the number of classes is two, etc. 

Once the numbers of .user and alien classes are selected, subsets 

of classes of each type must be picked at random. If i user (alien) 

classes are to be chosen, and the total number of user (alien) classes 

is m, m then the number of subsets, S, to choose from is given by S = (i), 

where (·) indicates the combinatorial operator. A random integer k 

between 1 and S is generated to designate a particular subset. The 

value of k is then used to determine a set of integers indicating the 

user (alien) classes included in the subset. These are saved in a 

vector for later reference. 

Finally, the proportions associated with the u user and v alien 

classes selected are determined by generating u + v uniform [O, l] 

random numbers. The first u numbers are normalized to sum to 1 and 

taken as the user class proportions. Similarly, the last v numbers 

are normalized to become the alien class proportions. All are stored 

in a proportion vector along with s for calculating the mixture mean 

and covariance matrix. 
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2. Performance criterion 

Suppose that scanner responses have been recorded from N resolution 

elements in the region depicted in Figure 16. Associated with the ith 

resolution element is a response vector y. and a vector of true propor­
l. 

tions A .• The overall true proportion vector for the entire region is 
l. 

1 N 
X = N ~ 

i=l 
>... 

l. 

yl,Al y2,A2 

. Yi'\ 

yN,\ 

Figure 16. Layout of data' for hypothetical region 

Let the standard proportion estimator used to.estimate >..i be 

A. 
denoted by X .• An estimate of the overall proportion A may be ob­

i A . 
tained by computing estimates A. for each resolution element and 

l. 

taking their overall average to yield 

.... 
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I is known as the point-by-point standard estimator, and it gives 

an estimate of the proportion of the region covered by each class of 

material. 

The basis chosen for evaluating the accuracy of a proportion 

A 
estimator is its mean square error. For the standard estimator A , 

the mean square error is 

where E denotes the expectation operator, and II· JI represents the 

Euclidean norm. The bias associated with the estimator t is 
l. 

b. = E(t) - A. 
l. l. l. 

and the average bias over the entire region is 

1 
N 

b = L: b. 
N i=l l. 

Horwitz et al. (1974) have shown that 

which suggests that for large regions, th.e mean square error of the 

estimator should approach the squared norm of the average bias. Unless 

b goes to zero as N goes to infinity, the mean square error will not 

tend to zero with increasing N. 

In the special case where the true proportions are equal throughout 

the region one has 
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A..·- A.; b. = b, i = 1, •.• , N. 
l. l. 

It follows that each of the ~- are identically distributed random 
l. 

variables. One also has that 

A. = A.; b = b. 

It is not hard to show that 

When N = 1, that is, when the region is just a single resolution 

element~ this reduces to 

1. 
which implies that, in this case, the mean square error of A. may be 

estimated by estimating the mean square error of~., the estimator 
l. 

associated with an individual resolution element. 

For the simplified estimator, the development concerning mean 

square error is completely analogous to that presented for the 

standard estimator. Lett. denote the simplified estimator for A. •• 
l. L 

Then 

N 
- 1 ,..., 
A.=-~ A.. 

N i=l i. 

is the point-by-point simplified estimator for the overall proportion 

A.. Its mean square error is 
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which has been shown to obey the bounds 

where 

and 

- -b. E(A..) - A.., i = 1, ••• , N. 
l. l. l. 

Also, in the case of equal proportions throughout the region one has 

where 

3. Results 

A.. , i 
l. 

1, ••• , N. 

In order to obtain some idea of how much time the standard and 

simplified methods take to compute proportion estimates, a timing. 

routine was inserted into the STDEST and SMPEST programs. The timing 

routine measured actual elapsed CPU time and was positioned in the 

programs so as to measure only the time spent in the subroutines that 

calculate the estimates for each data point. Thus, differences in the 

time spent in initialization routines and in writing the estimates to 

disk were excluded from the results. The version of SMPEST used. in 

this study and in the other investigations to be reported in this 

section employed the usual, rather than the closed-form, method of 
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simplified estimation. Table 2 shows the results of the timing study. 

It is evident from the table that the simplified method was approximately 

three orders of magnitude faster in most cases, but the advantage of 

the simplified method decreased with increasing numbers of classes. 

Table 2. Proportion estimation times for standard and simplified 
methods 

Data set a Time in seconds 
Classes Points Standard Simplified 

2 
2 
3 
3 
4 

100 
100 
100 
100 
100 

44.05 
39.96 
4L58 
46.18 
48.53 

aAll timings were done on an IBM 360/65. 

0.032 
0.034. 
0.038 
0.043 
0.060 

It must be pointed out that neither program was specifically 

optimized to minimize the computation time. In the case of STDEST the 

use of the powerful, general-purpose quadratic programming package 

QP360 resulted in longer execution times because inore computing was 

being ·performed than was strictly necessary to solve the particular 

quadratic programminp problem. One would expect that a quadratic 

programming routine specifically tailored to the problem would. execute 

in substantially less time. This was in fact the case in the study 

reported in Horwitz et al. (1974), but such a program to cc;>mpute the 

standard estimator was not written for the present investigation because 

the primary purpose was to examine the accuracy of proportion estimation 

methods rather than to compare the speed of optimized implementations. 
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For the first phase in comparing the accuracy of the standard and 

simplified estimators, a special data set was designed to illustrate 

some of the differences in the way the two estimators perform. The 

data was 2-dimensional, and three classes of user material.and three of 

alien material were present. The arrangement of user and alien class 

means is shown in Figure 17, where the u's indicate user means, and the 

A's indicate alien means. All class covariance matrices were taken to 

be the diagonal matrix diag (20 20). 

40 .Al 

•A 
2 

30 ul 
.A3 

20 

10 u2 u3 

10 20 30 40 50 

Figure 17. Class means of 2-dimensional test data 

Three combinations of user classes were used in constructing 

mixtures: 50% class 1 - 50% class 3, 25% class 1 - 75% class 3, 100% 

class 3. For each combination of user classes, five mixtures were 

, generated corresponding to di.ffer.ent .pro.portions of alien material. 

In Figure 18 the locations of the means of the three combinations of 

user classes are indicated by the letters a, b, and c. The numerals 
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40 

30· 

20 

10 
c 

10 20 30 40 50 

Figu~e 18. Location of mixture means for 2-dimensional test data 

1-9 indicate the locations of the means ot the mixtures formed when 

10%, 50%, or 100% of each alien material is combined with the user 

classes. For example, b5 designates the mixt~re consisting of 50% 

alien class 2 and 50% user material, where the user material is the 

combination 25% class 1 - 75% class 3. 

For each of the fifteen mixtures, 100 data points were generated. 

Thinking of the set of data points for each mixture as a separate 

"region, 11 it must be noted that the true propo.rtions associated with 

each point were not random. Rather, they were. fixed and remained 

constant throughout the region. This was then an instance of the special 

case discussed in Section II.C. 2. where all the A.. and A. are equal to 
1 

the connnon true proportion vector A.. 

To estimate the mean square error of the standard estimator as­

sociated with an individual data point, Ellt - t..11 2 , the quantity 
1 
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; ~ ~ (t. - A.) 
2 

i=l j=l 13 J 

~as ·calculated, where N is the number of points in the region, and j is 

sunnned over the classes. Similarly, 

1 N m 2 
N ~ ~ ('t .. - A.) 

i=l j=l 13 J 

was calculated as an estimate of the mean square error of the simplified 

estimator. Thus, the mean square error being estimated was .not that of 

the estimator I <or r) formed by averaging the proportion estimates 

over the region, but rather the mean square error of~.(!.), the 
1 1 

estimator of the proportion vector associated with an individual data 

point. 

The results of estimating the proper tions for the fifteen mixtures. 

by using the standard and simplified estimators are given in Table 3. 

By choosing a well-structured pattern of class means and fixing the 

proportions, it was possible to build biases into the data in favor of 

one estimator over the other in certain cases. In all these cases 

except b4, the favored estimator showed a lower mean square error. 

Sometimes the differences were considerable as ·in case a6 when the mean 

square error for the standard estimator was eight times that for the 

simplified estimator and in case c9 when the error for the simplified 

estimator woo eleven times that for the standard estimator. 

Two other observations are interesting to note concerning the 

results. First, in cases al-a3, there was a decided increase in the 

advantage enjoyed by the simplified estimator. It appears that the 

simplified method tended to c~p~n~ate fQ~ va~~at~ons in the randomly 



Table 3. Estimated proportions and mean square errors of standard and simplified estimators for 
2-dimensional test data 

Estimated Ero2ortions Mean sguare error 
Mixture . Standard Simplified Standard Simplified Std/smp 

al 0.473 0.076 0.451 0.470 0.077 0.453 0.0945 0.0845 1.118 
a2 0.454 0 0.546 0.475 0 0.525 0.0269 0.0155 1. 735 
a3 0.499 0 0.501 0.500 o. 0.500 0.0471 0.0057 8. 263 
a6(+)a o. 252 0 0.748 0.414 0 0.586 0.1715 0.0213 .8.025 
a9(+) 0.086 0 0.914 0.343 0 0.657 0.3645 0.0561 6.497 

b4(-)b 0.229 0.058 o. 713 0.268 0.059 0.673 0.0800 0.0712 ·1.124 
b5(-) 0.250 0 0.750 0.364 0 0.636 0.0392 0.0395 0.992 
b6(-) 0.276 0 o. 724 0.423 0 o.577 0.0457 0.0645 0.709 
b3 0.501 0 0.499 0.501 0 0.499 . 0.1713 0.1314 1.304 
b9(+) 0.069 0 0.931 0.328 0 0.672 0.0808 0.0205 3.941 °' N 

c7(-) 0.053 0.031 0.916 0.100 0.057 0.843 0.0443 0.0821 0.536 
c8(-) .0.073 0 0.927 o. 253 0 o. 747 0.0337 0.1441· 0.234 
c9(-) 0.056 0 0.944 0.324 0 0.676 0.0191 0.2163 0.088 
c3 0.478 0 0.522 0.493 O· 0.507 0.5054 0.4916 · l.028 
c6(-) . 0. 249 0 0.751 0.411 0 0.589 0.1704 0.3446 0.494 

Average 0.1263 0.1193 

a(+) - Built-in bias toward simplified estimator. 

b(-) - Built-in bias toward standard estimator. 
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generated data points by always projecting toward the same point u 2 

to find the point on the signature simplex closest to the data point. 

Secondly, in every case except those biased toward the standard 

estimator, the simplified estimator performed better. The overall mean 

square error for all fifteen mixtures was also somewhat less for th~ 

simplified estimator. It was not anticipated that the overall set of 

data would favor one estimator more than the other, but the simplified 

estimator clearly showed an advantage. 

In the second phase of testing, a data file was created to simulate 

actual LANDSAT data. The classes used and their means and covariances 

were 'extracted from LANDSAT data in the course of an earli~r study. 

Table 4 presents these statistics for each of the classes. Two 

materials, wa~er and concrete, were taken to be alien classes, and the 

other five classes were designated as user classes. It is noteworthy 

that the signatures for the alien materials are quite dissimilar from 

those of the user materials; hence, one would expect the presence of 

a large amount of alien material in a mixture to significantly distort 

the response values for points associated with the mixture. 

Program SIMDAT was used with randomly chosen proportions to generate 

a file of 2000 data points consisting of five lines with 400 points 

per line. The parameters used in randomly generating the observations 

were as follows: 

y. 1.0 parameter of distribution function of s 
Qt = 0.80 probability of only user material 

~ = o.os probability of only alien material 

Tl!:. 1/7 ratio of side of resolution element to field edge. 
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Table 4. Class statistics for simulated LANDSAT data 

Class Mean Covariance matrix 

Forest 27.99 L99 1. 32 1.24. o.o 
16_.88 1.32 2.22 0.82 - 0.37 
61. 22 1.24 0.82 13.47 7 .'16 
37.02 o.o 0.37 7 .16 6. 25 

Urban 1 37.60 9.30 11.84 4.88 0.08 
30. 25 11.84 19.01 6.79 - 0.34 
53.15 4.88 -6. 79 17. 72 8.94 
27.58 0.08 - 0.34 8.94 6. 71 

Urban 2 38. 38 5.57 6.56 1.52 - 0.64 
31.88 6.56 10.43 2.43 - 0.80 
_43. 20 1.52 2.43 12.82 6.77 
20.40 - 0.64 - 0.80 6.77 5.06 

Agriculture ~3.11 2.79 2.59 1. 71 0.41 
23.22 2.59 4.41 0.66 - 0.63 
61.49 1. 71 0.66 15.52 9.11 
34.56 0.41 - 0.63 9.11 7.40 

·Bare soil 47.56 19-. 89 . 29.82 16.51 4.34 
52.07 29.82 55.20 28.34 7.02 
61.19 16.51 28.34 31.47 12.57 
28.04 4.34 7.02 12.57 7.29 

Concrete ~4.52 18.58 22.59 10.14 2.89 
67.19 22.59 33.18 14. 71 4.69 
67.73 10.14 14.71 11.29 3.83 
29. 79 2.89 4.69 3.83 3.28 

Water 31.50 3.65 2.47 2.13 0.74 
20.37 2.47 3.72 2.87 1.41 
18. 71 2.13 2.87 13.84 7.55 
6.22 0.74 1.41 7.55 5.20 

Some characteristics of the data as it was actually generated are 

shown in Table 5. 

This.test was designed to investigate how the efficiency of the 

standard and simplified estimators compared for various sized regions. 
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Table 5. SUI1UI1ary of simulated LANDSAT data 

Average proportion of alien material 

Average use! class proportions 
Forest 
Urban 1 
Urban 2 
Agriculture 
Bare soil 

Average alien class proportions . 
Concrete 
Water 

Number of points with various numbers of user 
and alien classes present 

All user 
All alien 
1 user 
2 user 
3 user 
4 user 
5 user 
1 alien 
2 alien 

O. ll65 

0.2027 
0.1924' 
0.1938 
o. 2lll 
o. 2000 

0.4774 
0.5225 

1609 
102 

1434 ___ -
492 

42 
25 
7 

1519 
481 

Thus, the mean square error of the point-by-point standard estimator, 

MSE(~), and the mean square error of the point-by-point simplified 

estimator, MSE(~), were the criteria of interest. 

Regions of size 1, 10, 50, 200, and 300 were selected in the 

following manner. Let N be the number of points per region. An 

initial region was selected by randomly picking a starting point between 

1 and 401-N and taking N consecutive points from line l~ A second 

region was similarly selected from line· 2 by picking a random starting 

point and taking N points. Five regions, one from each line, were 

_selected in all for each different region size. For every region 

selected, ~TDEST and SMPEST were run to obtain the estimates I and r. 



66 

For both estimators an overall estimate of mean square error was 

derived by averaging the mean square errors over the five independent 

regions for each size of region. 

Figure 19 displays the results.of the test, and Table 6 presents 

the numerical values. It is evident that the mean square error drops 

rapidly with increasing region size.and seems to approach a limiting 

value of about 0.04 in both cases. ·The theory discussed in the previous 

section indicates that this limiting value is the squared norm of the 

average bias over a region. 

Table 6. Mean square errqr of standard and simplified estimators for 
simulated LANDSAr data 

Number of EOints in region 
1 10 50 200 300 

Standard 0.6038 o·.0866 0.0363 0.0392 0.0376 

Simplified 0~8843 0.1334 0.0572 0.0384 0.0398 

4. Discussion 

Tt i.s difficult to know how much weight to attribute to the results 

presented in Table 3 because of the artificial nature of the data set. 

One conclusion that seems to be clear, however, is that the geometric 

relationship of alien signatures to user signatures in the plane of the 

signature simplex can have a strong biasing effect on the results. 

This was especially evident in cases a6 and a9, which favored the 

simplified estimator, and cases c8 and c9, which favored the standard 

estimator. Since in some cases this bias gives a decided advantage to 



Figure 19. Mean square error versus region size for standarq arid simplified estimators 
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the simplified estimator, .it is certainly possible that the simplified 

estimator can outperform the standard estimator under the right condi-

tions. 

A second important point about the simplified estimator is the 

compensating effect of projecting toward a fixed point as noted in the 

·previous section. It appears that this reduces the variance component 

of the mean square error, which helps to explain why the simplified 

estimator performs as well as it does when it clearly has a larger 

bias than the standard estimator. This is illustrated quite weli in 

case b5 of Table 3 where the proportion estimates of the simplified 

estimator are decidedly inferior (the standard proportion estimates 

are e:X.actly correct· in this case), yet the mean square errors are nearly 

identical. In choosing between the two estimators, the relative im-

por~ance of the two components of mean s.quare error, variance and 

squared bias, should probably be considered. 

The results of the second phase of testing when simulated LANDSAT 

data was used seem to conform well to what one would expect from intui-

tion and a consideratio·p. of the theory. In Figure 19 both estimators' 
I 

mean square errors follow· a ·rather smooth descent to a similar, if not: 

a connnon-limiting value. For regions of·· size 50 ·the mean square error · 

of the simplified estimator is 58% greater than that of the standard 

estimator, and for regions of 100 points or larger, the difference 

becomes negligible. 

It is difficult to judge the relative merits of the estimators 

because any such evaluation must take cost into account, and the 

implementation·of the standard estimator used for this study did not 
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lead to reasonable cost figures. The timing results of Table 2 suggest 

that with the standard estimator one would be paying a 1000-fold 

penalty in execution time for a 58% gain in efficiency with regions 

of 50 points using the implementations of the present study. If the 

timings of the optimized implementations reported by Horwitz et al. 

(1974) are used instead, one has a 50% cost increase for a 58% ef­

ficiency gain in using the standard estimator with regions of size 50. 

For very small regions the additional cost of the standard estimator 

may well be worth the higher efficiency, but for large regions of 100 

points or more, it seems likely that the slight increase in efficiency 

of the standard estimator would not be worth. the added cost in most 

cases. There would be some region size in between where the efficiency 

advantage of the standard estimator would be just offset by the extra 

computing time required. The precise region size would depend on the 

relative costs of estimation inaccuracy and computer time. 
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III. PROPORTION ESTIMATION WITH AVERAGING 

A. Data Averaging Procedure 

Consider again the region shown in Figure 16. An alternate way 

to estimate the overall proportion "X is to first average the N response 

vectors to obtain 

1 N 
y = N ~ Yi ' 

i=l 

and then compute the standard estimator based on the single data 
A 

vector y. "This estimator may be denoted by A and is referred to as 

the standard estimator with data averaging as opposed to the point-by-

point standard estimator defined in Section II.C.2. 

Data averaging is applicable in situations where one wants to know 

the proportion of an entire area covered by each of several different 

materials. For instance, one might wish to know the total amount of 

oats planted in a certain section of a county in Iowa. There is a 

danger in averaging over too large an area, since the mixture theory 

employed in the estimation process allows for at most n + 1 materials 

to be included in a mixture, where n is the number of scanner 

channels. 

Data averaging is not applicable in the case where one needs to 

estimate the proportions of materials associated with individual resolu-

tion elements, as would be the case if one were mapping the boundary 

of a lake. 

Results concerning the mean square error o~ the standard· estimator 

with data averaging have been produced similar to those mentioned 
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earlier for the point-by-point estimator. Horwitz et al. (1974) show 

that 

" MSE(X) 

where Tis the maximum trace of the covariance matrices Mi' 1 $ i :5m, 

and ~ is a constant independent of N. This implies that the mean 

square error always goes to zero as N becomes large when data averaging 

is performed. 

The simplified estimator with data averaging is defined as the 

simplified estimator for A. based on the· average data vector y. Let 
,.._, 

this estimator.be denoted by X. The following bound has been estab-

lished for the mean square error of A. •. 

where m is the number of classes, and ~ and T are as defined above. 

Again it can be observed that in the case of data averaging, the mean 

square of the estimator goes to zero as N goes to infinity. 

B. Estimation Results under Averaging 

To study the effect of data averaging on proportion estimation, 

the programs STDEST and SMPEST were modified to include an option which 

allows for bypassing the computation of proportion estimates until all 

data points in a region have been read and averaged together. The 

.calculation. of proportion. es.~ima.tes and mean .,square ·error·· estima.t~s-;~~ 

-rs .. carriea·-out as-I£-··the-entire regfon-consfsted ·of" ·a ·single 1 
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average data point. 

The data file of simulation LANDSAT data discussed in Section 

II.C.3 was processed exactly as before except that data averaging was 

performed. The results are tabulated in Table 7 and presented in 

graphic form in Figure 20 • 

. Table 7. Mean square._e~rors for proportion estimation with data 
averaging 

Number of points in region 
l 10 50 200 

Standard, · ave. 0.6038 0.2100 0.1419 0.1036 

Simplified, ave. 0.8843 0.1987 0.1170 0.1127 

300 

0.1097 

0.1376 

The general shape of the plot in Figure 20 is similar to that 

obtained without averaging, but it does not follow as nice and 

regular a path. The theory predicts decreasing mean square error with 

increasing region size, but the results exhibit a tendency for the de-

crease in mean square error to tail off at the larger regions. 

It is hypothesized that this phenomenon is due to the influence 

of alien material, which was spectrally quite distinct from the user 

classes. As more points are included in the region, the true proportion 

vector will tend toward the vector with all proportions equal, since 

user classes were selected with equal probability in generating the 

data. This vector of equal proportions is associated with the point at 

the center of the signature simplex, but the influence of alien material 

tends to draw the average data point outside the simplex, resulting in 



Figure 20. Mean square error versus region size. for standard and simplified estimators with data 
averaging 
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large estimation errors. 

For instance, with regions of 300 points, the mean square error 

when the average data point happened to fall within the simplex was 

1/6 to 1/8 of the mean square error incurred when the average data 

point was forced outside the simplex due to the influence of alien 

material. This can be seen in Table 8 where the average data point 

fell within the simplex for region 5 and outside it in the other 

cases. Unfortunately, time did not allow retesting the estimators with 

the inclusion of an alien object test in the programs which would ignore 

alien points in the data averaging procedure to attempt to verify the 

present conjecture. It does seem, however, that an alien object test 

should be included in any operational program employing data averaging. 

The combined results ·for the standard and simplified estimators 

with and withoat ... ~.ta averag.ing<t.are. disp~yec!lsin Figure 21. According 

to the theory, there should be a point where the curves for estimation 

with data averaging drop below the corresponding curves for estimation 

without data averaging. Because of the slight disturbance in the tails 

of the data averaging curves, it is not possible to predict from the 

results where the crossover point would occur. It appears that .it 

might be necessary to take very large regions in order to .observe the 

crossover. 



Table 8. Effect of alien material on mean square errors under data averaging with regions of 300 
points 

Standard Sinl!lified 
Region MSE Proportions MSE Proportions 

1 0.1025 0.10 0.40 0.0 0.34 0.16 0.1254 0.07 0.40 o.o 0.38 0.15 

2 0.1305 0.07 0.43 o.o 0.32 0.17 0.1728 0.02 0.44 o.o 0.39 0.15 

3 0.1804 0.03 0.38 o.o. 0.42 0.17 0.2159 o.o 0.39 o.o 0.45 0.15 

4 0.1116 0.04 0.42 o.o 0.37 0.17 0.1506 o.o 0.42 0.0 0.43 0.14 

5 0.0234 0.09 o. 28 o. 20 0.25 0.17 0.0235 0.09 0.24 0.20 o. 25 0.17 
..., 

0.1097 0.1376 ..., 



I 

Figure 21. ·Mean square error versus region size for standard and simplified estimators with and 
without data averaging 
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IV. EQUAL COVARIANCE ASSUMPTION 

A. Importance of Equal Covariances 

To understand why the assumption of equal.class covariance matrices 

is crucial in calculating proportion estimates, one needs to review 

the proportion estimation procedure. The mixture· model assumes that 

observations are taken from a multivariate normal distribution with 

mean 

m 
E 

i=l 
'>..A. 
. l. l. 

and covariance matrix 

M = 
A. 

m 
E 

i=l 
'>..M. • 

l. l. 

The maximum likelihood· procedure for estimating A. leads to minimizing 

subject to the added constraints 

m 
E 

i=l 
A.. = 1, A.. ? O, i = 1, 

l l. 

(4.1) 

••• , m, 

which are imposed to insure that the estimate is a proportion vector. 

Equation (4.1) expands into 

F(A.) AM I mm 

where A.is the matrix of mean vectors. In the general case ~ithout 

equal covariances, the expression for F(')..) does not lend itself to any 
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convenient simplification~ . No practical computational method has been 

found to minimize F(A) with respect to A in this general case. 

In the special case where M. = M, i = 1, ••• , m, the first term 
l. 

of (4.1) becomes a constant and may be dropped, and the second term 

reduces to 

-1 
(y - AA) 'M (y - AA). 

Under the transformation (2.3) the problem becomes the quadrat~c 

progrannning problem 

minimize G( ;\) 
/.. 

2 . m 
IJz - BA.II such that L: 

i=l 

i=l, ••• ,m, 

/... = 1, /... > O, 
l. l. -

whose solution yields the standard proportion estimate. Thus, 

under the present mixtures model, the equal covariance assumption 

is necessary to be able to employ a feasible computational procedure. 

B. A Test for Equal Covariances 

Since the equal covarianc.e. assumption is so vital to obtaining 

proportion estimate·s, and since its validity has sometimes been suspect, 

it was decided to subject the assumption to a statistical test using 

actual LANDSAT data. The LANDSAT frame chosen. was ta~en on August 26, 

1973 over central Iowa. A 12-section site in the scene was selected 

as the· study area. It is an agricultural area of predominantly row 

crops with no urban centers or forest cover and a negligible amount 

of surface water. 
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Four crop types were chosen as the classes of interest: corn, . 

soybeans, oats, and alfalfa. Using ground ~ruth information, fields 

of each crop were selected from the 12-section site. An attempt 

was made to pick fields for each crop that were well-scattered through~ 

out the scene, and· field center pixels .. were used as much as possible. 

Line.and column coordinates in the LANDSAT data were determined for 

each field with the help of a low-altitude aerial photo of the scene. 

A computer program was then used to read the data values associated 

with each field and compute the sample means and covariance matrices. 

These statistics along with the sample sizes are given in Table 9. 

The null hypothesis to be tested was that the covariance matrices 

for all four classes were equal. That is, the hypothesis 

was tested 'against the alternative hypothesis 

~- "' L:. 1 J 1 ~ i "' j $ 4. 

The test used (Morrison, 1967, p. 152) requires that the populations be 

normally distributed and uses a generalized likelihood-ratio criterion. 

Let m and n be the number of classes and the number of dimensions, 

respectively. Let S. denote the sample covariance matrix for class i, 
1 

and let N. denote the sample size for class i. Then 
1 

m (N. - l)S. 
s L: 

1 1 
= 

i=l m 
~ (N ;:· - 1) 

i=l 
1· 

is the pooled sample covariance matrix. Let 



Table 9. 

Class 

Corn . 

Soybeans 

Oats 

Alfalfa 

and 
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Means and covariance matrices extracted from LANDSAT 
for four crops 

Data 
points Mean Covariance matrix 

167 23.0 o. 77 0.23 . 0.85 
14.7 0.23 0.70 o. 24 
38.9 0.85 o. 24 13. 25 
23.4 0.57 0.05 7.29 

159 23.5 1.07 0.15 1.07 
13.9 0.15 0.50 0.08 
65.1 1.07 0.08 10.42 
41.1 0.22 - 0.23 2.55 

127 26. 2 1.57 1.44 o. 70 
19.8 1.44 4.72 - 7.70 
40.4 0.70 - 7.70 47.35 
21.6 0.42 6.08 29.87 

85 . 26.4 4.44 7.11 - 2.50 
18.2 . 7.11 15.89 - 9.81 
49.8. - 2.50. - 9.81 35.30 
28.3 - 3.13 - 8.61 22.26 

m 
. M = I:: 

i=l 
(N. - 1) ln IS I -

]. 

m 
I:: 

i=l 
(N. - 1) ln IS. I 

]. l. 

e;-1 2n 2 
3n - 1 m· 1 1 1 + ( L:: - - 6(n + l)(m M 1) (N. 1) - m i=l ]. r: (Ni -

i=l 

data 

0.57 
0.05 
7.29 
5.23 

0.22 
- 0.23 

2.55 
2.46 

- 0.42 
- 6.08 
-"29.87 
20,4'4 

- 3.13 
- 8.61 

22 .. 26 
16.42 

) . 
1) 

The test statistic MC-l is approximately distributed as chi-squared 

with n(n + l)(m -. 1)/2 degrees of freedom for large (> 20) samples. 

A small program was written to. calculate the test statistic, and 

it was applied to the four sample covariance matrices extracted from 

LANDSAT data.. The value of the test statistic· came out to be 729. 3 
; 

with 30 degrees.of freedom, which was highly significant at the smallest 
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a level (0.005) given in the table used for the test. Thus, the 

hypothesis of. equal covarianc·e matrices was firmly rejected. 

Looking at the matrices in Table 9, it is evident that the 

. variances .associated with oat and alfalfa fields are much larger than 

those of corn and soybeans. This is probably due in part to the fact 

that the oat and alfalfa fields tend to be smaller and. more irregular 

in shape, making it more difficult to obtain pixels that are uncon-

. taminated by other materials. Since the corn and soybean fields did 

not incur this difficulty, it was decided to apply the test to only 

these classes to see if the large variances for oats and alfalfa 

were the cause of rejecting H • This time the null hypothesis 
0 

was tested against 

The test statistic was MC-l = 81.1 with 10 degrees of freedom, 

which was significant at the 0.005 level, so the equal covariance 

hypothesis was again rejected. It would appear that even for similar 

types of material (in this case, two agricultural crops) sampled from 

relatively large, homogeneous areas, the class covariance matrices are 

in fact statistically dissimilar. 

) 
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C. Effect of Unequal Covariances 

The results of the previous section probably come as no surprise 

to anyone who ·has worked much with LANDSAT data. In actuality covariance 

matrices for different classes .are simply not equal. The key question 

then becomes whether or not it makes any difference that the covariances 

are unequal when one computes proportion estimates as though the matrices 

were all equal to the average covariance matrix. 

In the first phase of examining this question, an artificial data 

set was constructed similar to the one described in Section II.C.3. 

There were three user classes, three. alien classes, and two bands as 

depicted in Figure 22. The combinations of user classes employed were: 

80% user class 1 - 20% user class 3, 50% user class 1 - 50% user class 3, 

and 20% user class 1 - 80% user ciass 3. For each combination of user 

classes, four different mixtures were created by adding: no alien 

material, 50% alien class 1, 50% alien class 2, and 50% alien class 3. 

The small letters in Figure 22 indicate the locations of the means of 

the various combinations of user classes, and the U. and A. indicate 
. 1 1 

the locations of the means of the user and alien classes, respectively. 

A certain mixture will be denoted by the small letter for the user 

combination and the number of the alien class. For. example, a3 denotes 

the combination of 80% user class 1 - 20% user class 3 in a 50-50 

mixture with alien class 3. 

Five data files were generated based on the classes show in 

Figure 22. For the first data file all the covariance matrices, user 

and alien, were taken to be the diagonal matrix diag (40 40). 
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Figure 22. Arrangement of user and alien class means for unequal 
covariance test data 

Program SIMDAT then generated 30 random observations from each of the 

twelve mixtures defined by the different combinations of user and alien 

classes. Thus·, all the data in file 1 was generated using equal 

covariance matrices. 

The other files were· constructed similarly to file 1 except that 

in these cases the user covariance matrices were. taken to be unequal 

(Table 10). Since the proportion associated with user class 2 was 0 

in every case, its covariance matrix remained the same throughout, as 

did those of the alien classes. To get a rough idea of how dissimilar 

the user covariance matrices were, the chi-squared statistic for testing 

equal covariances was calculated as though a hypothetical sample of 50 

observations from each user class had been drawn and yielded sample 

covariance matrices equal to those in Table 10. The values of the test 

statistic associated with each of the last four files indicate that 
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Table 10. Test statistic for equal covariances test using covariance 
matrices associated with files of artificial data 

File Covariance matrices MC-l 

1 (40 0) (40 0) (4g ·o ) 0 
0.40 0 40 ·40 

2 ( 25. 0) (40 0) (5~ 5~) 14.56* 
0 25 0 40 

3 (~ ~) (40 0) ( 7~ . ?~ ) 
139.39** 

0 40 

4 (40 0) { 40 o} ( 40 ~Q) 30.41** 
0 40 0 40 30 40 

5 (40 0) (40 0) ( 40 -30) 30.41** 
0 40 0 40 -30. 40 

*Significant at .Q25 leve~ •. 

**Significant at .01 level. 

the covaria
1
nce matrices used to generate these files were statistically 

dissimilar in terms of this hypothetical test. 

Each da~a file was processed by STDEST and SMPEST, and estimates 

.of the mean squa.re error were obtained. The results are recorded in 

Table 11. For the most part the results are as expecred. For files 

2 ?nd 3 the errors are smaller than for file 1 in the top third of the 

table where a larger proportion is associated with user class 1, which 

has the smaller variances,_ l'lnd the errors are larger in the bottom 

third of the table where the covariance matrix of user class 3 is 

~eighted more heavily. 

The results for files '4 and 5 are somewhat more interesting. For 

user class 3 .there was a.large positive correlation between the-bands 



Table 11. Mean square errors with files of equal and unequal covariance matrices using fixed 
proportions 

Standard estimator Sim2lified estimator 
··case File: 1 2 3 4 5 1 2 3 4 5 

a 0.1660 0.1459 0.0983 0.1635 0.1823 .· 0.1869 0.1619 0.1077 0.1970 0.1913 
·al 0.0503 0.0468 0.0394 0.0471 0.0550 0.0587 0.0563 0.0547 0.0570 0.0596 
a2 0.1475 0.1361 0.1209 0.1404 0.1551 0.1263 0.1221 0.1174 0.1254 o.1z92· 

· a3 0.2603 0.2456 0.2418 o. 2528 0.2689 0.1955 0.1922 0.1929 0.1935 0.1985 

b 0.1541 0.1541 0.1541 0.1385 0.1558 0.1421 0.1421 0.1421 0.1279 0.1441 
bl 0.1011 0.1011 0.1011 0.0948 0.1062 0.0323 0.0323 0.0323 0.0301 0.0340 
b2 0.0573 0.0573 0.0573 0.0508 0.0686 0.0237 0.0237 0.0237 0.0243 0.0265 

_b3 0.1290 0.1290 0.1290 0.1193 0.1429 0.0396 0.0396 0.0396 0.0345 0.0468 

c 0.1584 0.1822 0.2190 0.1497 0.1358 0.1736 0.1997 0.2337 0.1844 0.1374 00 
00 

cl 0.3475 0.3591 0.3765 0.3019 o. 3790. 0.2293 0.2324 0.2385 0.2204 0.2355 
c2 0.0611 0.0668 0.0736 0.0549 0.0706 0.0842 0.0848 0.0891 0.0847 0.0872 
c3 · 0.0697 0.0738 0.0821 0.0520 0.0827 0.0550 0.0579 0.0629 0.0465 0.0594 

Average 0.1419 0.1415 0.1411 0.1305 . 0.1502 0.1123 0.1121 0.1112 0.1105 0.1125 
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in file 4 and a large negative correlation in file 5. For the 

standard estimator the errors for file 4 are consistently smaller than 

for file 1, presumably because more of the variation in the data occurs 

perpendicular to the u1u
3 

line than parallel to it. Just the opposite 

. happens with file 5, where. the errors are larger than those of file 1 

except in case c. In case c the estimated proportion of class 2 is 

lower for file 5 than for file 1, which may account for the lower mean 

square error. 

For the simplified estimator the results are not quite so consistent. 

In most cases the errors associated with file 4 are lower than for the 

equal covariance case, but in a few instances they are slightly higher. 

Apparently, the simplified estimator receives less benefit from the 

large posit.ive correlation than the standard estimator. For file 5. 

the errors .are again consistently higher than for file 1 except in 

case c. 

For the second phase of testing the effect of unequal covariance 

matrices, the means and covariance matrices extracted from LANDSAT 

data and presented in.Table 9 were used to construct two simulated 

data files. The first file was constructed taking the average of the 

four covariance matrices as the conunon covariance matrix for each 

class. The second file was constructed using the different covariance 

matrices associated with each of the classes. Each file contained 300 

points, and was.generated by SIMDAT with random proportions using the 

parameters: y = 1.0, a= 1.0, ~ • 0.0, and T = 1/7. 

Both data sets were processed by STDEST and SMPEST with and without 

data averaging. To examine the effect of region size, regions of 10 and 
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100 points were used. Overall mean square error estimates were obtained 

by averaging over five regions when the region size was 10 and over 

three regions when the regfon size was 100. The .. res.u;lts-..are presented 

in Table 12 and. plotted in Figures 23 and 24. 

Table 12. Effect of unequal covariances on mean square errors of standard 
and simplified estimators.using.simulated LANDSAT data 

Data averaging No averaging 
Region Equal Unequal Unegual Equal Unequal Unegual 

Estimator size equal equal 

Standard 10 0.1004 0.1191 1.19 0.0352 0.0288 0.82 
100 0.045'i 0.0404. 0.90 0.0100 0.0125 1. 25 

Simplified 10 0.1506 0.1526 1.01 0.0576 0.0479 0.83 
100 0.0451 0.0404 0.90 0.0123 0.0095 0.77 

No clear patterns seem to show up in the results. In some cases 

the error is larger with unequal covariance matrices than with equal 

ones, and in other cases it is smaller. This inconsistency happens 

both with and without data averaging, for the standard and £.or the 

simplifi,ed estimator, and for small regions and large ones. If° one looks 

at the regions, .it is evident that the random variation between 

regions of the same test case is much greater than differences between 

corresponding equal and unequal covariance cases. If there is any 

effect due to.unequal covariances, it does not appear to be significant 

enough to show through the sampling error. 

011 the baois of the reimlts of the unequal c·ovariance tests, it 

appears that the proportion estimation procedure is fairly robust with 

regard to the equal covariance assumption. If one estimates proportions 

ao though all the covariance matrices were e'qual to a connnon average 



Figure 23. Effect of unequal covariances. with simulated.LANDSAT data · 
using standard estimator 

Figure 24. Effect of unequal covariances with simulated LANDSAT data 
using simplified estimator 
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matrix, it does not seem to matter much if the actual data came from 

normal distributions with unequal covariance matrices. 

The results of the first phase of tests using fixed proportions 

show that a high degree of interband correlation can have an effect on· 

the accuracy of the estimates, depending on the geometry of the signature 

simplex. However, if one merely redistributes the variation by in­

creasing the variances associated with one class and decreasing the 

variances of another class, the errors seem to.average out, so that 

overall there is no net effect. 

The only conclusion that can be drawn from the tests using simulated 

LANDSAT data with random proportions is that even when the covariance 

matrices-are f;ignificantly different, the accuracy of the proportion 

estimates does not appear to be measurably affected. 
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V. USE OF L
1 

NORM IN CLASSIFICATION 

A. Motivatio.n for Using L
1 

Norm 

1. ·Normality· assumption 

Throughout all of the developments of the previous chapters, the 

assumption was made that the spectral responses for each type of 

material were normally distributed. The probable reasons that this 

assumption is usually made include tradition, and mathematical tracta­

bility. By taking the classes to follow normal distributions, one can 

completely specify the density function for each class by estimating 

only the first- and second-order moments. from training data. Also, 

normality leads to a reasonable form for the likelihood function, which 

can be evaluated by straightforward computation. 

If one examines in detail multispectral data actually taken from 

natural ;scenes, one will most likely observe various departures from 

strict normality, such as outliers or pronounced peakedness or flat­

ness in histograms of the data. Figure 15 is a histogram of the 

responses obtained by LANDSAT over a soybean field in central Iowa. 

The symmt:!try uf the distribution ic apparent, but th~ pP.ak.edness at 

the center suggests possible nonnormality. Histograms for other 

fields in the same LANDSAT image were found to exhibit a variety of 

shapes, but the general shape shown in Figure 25 is typical of many of 

the histog:ram.s •. 

Some researchers have subjected the normality assumption to 

statistical examination. Crane et.al. (1972) used data from airborne 

multispectral scanner_s flown over two different agricultural sites. 
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Figure 25. Histogram of LANDSAT data from soybean field 
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They applied a chi-squared goodness-of-fit test for normality on the 

data from each of 54 fields; where· each field contained but one crop, 

and boundary pixels were excluded. They looked at both the original 

spectral channels and channels transformed by a principal components 

transformation. 

It was. found that: none of the fields examined tested to be multi-

.variate normal at the 1% significance level. All had at least one non-

normal spectral channel. Overall, 65% of the untransformed channels 

tested nonnormal. Their conclusion was that multispectral data of the 

type they studied was definitely nonnormal in character. 

Given that the nbrmal model does not truly reflect the real data, 

two questions arise: 

Can another m9del be used instead of the normal model? 

If so, how does a classifier based on this alternate model perform 

comp~red to a least squares classifier? 

The remainder of the chapter considers these two questions in more 

detail. 

2. Ba11is for 1.1sine T.1 ~ 

In Chapt~r I the Dayes discriminant procedure was shown to be 

the procedure that assigns an unknown observation x to class k if 

m 
~ 

i=l 
i#k 

m 
q.p(xln.) C (kji) S ~ 

1 1 i=l 
i~j 

1, ..• , m. 

Also, if the costs ·of misclassification are equal, and the prior 

probabilities are equal, the procedure reduces to choosing class 

k such that 



97 

which yields the maximum likelihood solution. 

Under the assumption that the classes are normally distributed 

with means µ.. and covariance matrices E., the likelihood function 
. 1 1 

is 

1 -1 
1 --2 (x-µ..)'E. (x-µ..) 

p ( x I TT. ) = e 1 .1 1 

1 (Zrr)n/2 It. fl/2 
. . ·1 

aml 

i=l, ... ,m. 

Finding the maximum likelihood solution involves evaluating m· quadratic 

forms of the type 

. -1 
Q =. (x - µ.)' E (x - µ.}. 

If· E is positive definite, it may be decomposed as 

~ = LL', 

where L is lower triangular, and the observation vectors may be trans-

formed by 

-1 
y = L (x - µ.). 

Then the quadratic form reduces to 

Q = y'y = 
m 2 
E· y 

i i=l 
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Let the L 
p 

norm of a vector be defined as 

Then 

n 
2: 

i=l 

and it follows that 

Thus, Q is simply the squared Euclidean, or L2, norm of the vector y. 

There is no essential reason why norms other than the Euclidean norm 

cannot be considered in connection with the.classification problem. 

Choices for p besides p = 2 lead to estimation procedures having 

different (and, in some cases, superior) properties than procedures 

based on the L2 norm. In this chapter attention will be focused on 

the L1 norm as an aiternative to least squares. 

One of the problems that often arises in assuming that the 

errors in one's data are normally distributed is the presence of 

extreme data points, or outliers. If the errors were truly normal, 

there would almost never be any outliers, yet outliers can and do 

occur in real data. It has been shown that the presence of extreme 

points iµ the data can 'seriously degrade the performance of an 

QStim~.tor l:\RsPc'I on. thP. I.2 norm. 

On the other hand, the. L1 norm is much less sensitive to out­

liers in the data. The L1 norm, when used to select the point whose 

distance from the collection of points in a data set is a minimum, 
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will pick the median of the data points. It ignores how far an extreme 

point is from the center of the data and considers only on which side 

of the center .it falls. 

Consider two simple examples in one dimension. Let the data 

points be represented by x., i = 1, ••• , 4. The problem is to find 
l. 

the point p such that the \ly 11 is minimized, where y. = x. ~ p. 
. l. l. 

Let the location of the L2 estimate and the Ll estimate be designated 

by i'*" and "I" respectively. The sample data points and the two 

estimates are depicted below. 

As a second example suppose another point, x5 , is added to the 

data set. The revised set of points and the new L
1 

and L2 estimates 

now become as shown. 

t * 

It is evident that the addition of the extreme point x5 has af[~cL~u the 

L
2 

estimate much more drastically than it has affected the L1 estimate. 

Had x5 been placed even farther to the right, the L2 estimate would 

have shifted more in that direction, while the L1 estimate.would have 

remained at x3• 

To see how the L1 and L2 norms could give rise to different results 

in a classification situation, consider the following example with two 

classes and three bands. For simplicity assume the covariance matrices 
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are both equal to the identity matrix and let the means be 

Now suppose the response vector 

x =(::) 
was observed, where the response in band 1 was not recorded properly 

for some reason. The goal is to classify the observation x into 

either class 1 or 2 depending on which class is "closest" to x. 

Using the L2 norm one finds 

\\x 
. 2 
~ 11 2 = (x - µ.1)' (x ~) 

Using the L1 norm one has 

llx ·- fJ. 11 "' . 1 1 

llx - µ. II = 2 1 

·3 
L 

j=l 

3 
L: 

j=l 

lxj µ.1j I = 60 

Ix. - µ.2 .1= so. 
J J 

1200 

Thus, by taking the L2 norm as the measure of distance, one would 

classify x into class 1, but using the L1 norm would result in x 

being classified into class 2. It can be seen that the anomalous 

response in band 1 caused x to be closer to ~ in terms of the L
2
. 
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measure, but the L
1 

norm was not affected as much by 'the one extreme 

value in the response. This of course does not mean that the L1 norm 

will always result in a better classification than the L
2 

norm, but 

it does illustrate t.hat the L 1 norm is less sensitive to extreme points 

in the data. 

·As an alternative to the normal model and L2 norm, Chhikara and 

Odell (1973b) proposed what they termed normed exponential density 

functions. The generai form of an r-normed exponential density function 

is 

where 

f(r)(y) 

K = · (2 
r 

-c llY llr 
Ke r 

r 

a> 

f r 
e-cu du)-n 

0 

Here n is the dimension of y,and c is a positive constant determined 

such that E(yy') = I. The density function corresponding .to the L1 

norm is. 

(5.1) 

. w~ich is the multivariate analog of the double exponential density. 

Now consider how the L1 model can be utilized in the discriminant 

problem. Let µ.. be the mean and L:. the covariance matrix f.or class i, 
i . i 

i=l, ... ,m. Assume ·each E. is positive definite and may thus be 
i . 

factored as 
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L:. - S. S! 
l. l. l. 

and the let the observation vector x be transformed according to 

-1 
y = S. (x - µ..). 

l. l. 

The inverse transformation is 

and tho Jagobian of thQ invers~ tr~n~fn:nn~tinn is ls~ 1 j. Makini the 
l. 

y ~ x transformation in (5.1) and changing notation slightly, the· 

density function for class i may be written 

p(xjn.) 
l. 

i=l, ••• ,m, 

where S~~k) is the kth row of s~ 1 • 
For simplicity assume equal prior probabilities and equal costs 

of misclassification. Then the Bayes procedure chooses class j if 

(5. 2) 

Writing out the-density functions, (5.2) becomes 

n 
-,fl L: 

2-n/2js:l le k=l 
J 

> 

Simplifying and taking logarithms of both sides yields 
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Thus the Bayes· discriminant region for class j is 

n {x: -1 n I -l . I >-1-
Is. I 

R. = L: Is. (k) <x - µ.) I - L: S. ( ) (x - µ..) ln tJ J k=l 1 1 k=l J k J J'i 
i = 1, ... ' m}, j = 1, • • • ' m. (5.3) 

One of the advantages of the L
1 

norm in classification is that 

the boundaries between discriminant regions defined by (5.3) are piece­

wise linear (in x). This makes evaluation of the probability of 

misclassifying an observation from TI. into TI. a problem in integrating 
1 J 

over linear planes since the probability is given by 

· p(j It) = 5 p(xirr1)dx, j = 1, •.• , m, j I i. 

R. 
J 

An exact evaluation of the probabilities of misclassification is thus 

possible under the L1 norm. In the case of the t 2 norm, the evaluation 

of the probabilities of misclassification involves the integration of 

multivariate normal density functions over quadratic regions, pro-

hibiting an exact evaluation of the probabilities. 

Another advantage of L1 is its computational efficiency. With 

the L2 norm one must compute the quadratic forms 

(x - µ..) ' L:~ 1 
(x - µ.;) , i 

l. 1 .. 
1, •.. , m, 

corresponding to each of the m classes in order to classify the observa-

tion x •. The computation in the case of the L1 norm involves evaiuating 
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L: 

k=l 
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I -1 I . si(k)(x - µ.i) , 1. = 1, ••• , m. 

To compare the amount of computation required for each norm, as-

sume an image is to be classified by a Bayes discriminant procedure 

and let 

n = number of spectral bands 

m = number of classes 

r = number of rows in the image 

c = number of columns in the image. 

Chhikara and Odell (1973b) have calculated the number of orderings, o, 

multiplications, M, and additions, A, necessary to carry out the 

computations indicated above for each of the two norms. For L1 they 

found 

M
1 

; mrc(n2 + n)/2 

2 A1 = mrc(n + 3n - 2)/2, 

and for L
2 

they got 

2 
M

2 
• mrc(n + 3n)/2 

A
2 

= mrc(n
2 + 3n - 2)/2. 

The co~putational savings in using L1 arises in the number of multiplica-

tions required. 
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As an example, let n = 4, m = 10, r = 100, and c = 100. Then 

the number of orderings, multiplications, and additions would be 

5 Mi = 14 x 10 • 

It is seen that, in this case, L1 offers a savings of 5:7 in terms of 

the number of multiplications necessary to classify the image, or 

400,000 fewer multiplications. 

B. Implementation and Testing of L1 Classifier 

to implement a classifier using the L
1 

norm, a previously 

written program for maximum likelihood classification based on least 

squares, CLSSFY, was modified to employ a discriminant function based 

on the L
1 

norm. Using the notation of the previous section, the 

discriminant function to be maximized under L2 was 

and under L
1 

the discriminant function is 

n 
· I -1 1 ~ l -i I D. = ln S. - "' ~ E Si. (k) (x - µ.. ) • 

l. l. k=l l. ' 

Other asp~cts of the program were essentially unchanged by the switch 

to the L1 norm. 
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CLSSFY reads the means and covariance matrices of the classes 

and the coordinates of the region to be classified. For each point 

in the region, the value of D. is computed corresponding to each 
1.. 

class and the class k is determined such that 

Dk> D. 
- 1. 

i = 1, ..• , m. 

The class index k and the value of Dk of the discriminant function 

are stored on disk for subsequent mapping or tabulation of the classifica-

tion results. 

In comparing the results obtained under L1 with those obtained 

under L2, it was necessary to select a criterion for comparison. Since 

the program SIMDAT has the capability of generating data sets for which 

the exact proportions of all classes are known for each data point, a 

mean square error criterion based on the errors in the estimated 

proportions of each class in a region was chosen. Program CLSSFY 

classifies each data point into exactly one class. Therefore, the 

"estimated proportio11s" f;or a data point are always 1.0 for the class 

selected and 0.0 for all other classes. Using such vectors of estimated 

proportions for each point, the mean square error for the estimated 

proportions of classes in a region may be estimated by the method 

discussed in Chapter II. Other criteria could certainly be used to 

evaluate classification accuracy. The number of points correctly 

classified, assuming each point's true identity consists of only one 

class, divided by the total number of points in the region is commonly 

used, but the mean square error criterion seems to correspond more 

closely with the methods used in previous chapters. 
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Several data sets were constructed in order to evaluate the ac-

curacy_ of classification with the 1 1 norm. A 2-dimensional data set 

was constructed specifically to show how the 11 norm can give dif-

ferent results than the 1 2 norm in the presence of outliers. The 

geometric arrangement of the means is depicted in Figure 26, where the 

U. are the user class means, and Z represents the data point that 
l. 

would result if some recording error were to cause the value of the 

response in band 2 to not be recorded for an observation from class 2. 

Data file A was generated to' consist of points from classes 1 and 2, 

a mixture of classes 1 and 2, and some ·points in the vicinity of Z. 

Table 13 contains the results of running the 1
1 

and 1
2 

classifiers on 

this data set as well as the data sets discussed below. 

Two data sets were constructed with three user classes and two 

bands. The class means.were: 

The covariance matrix for each class was taken to be the diagonal 

matrix diag (~O ~U). Instead ot generating the data from a 

multivariate normal distribution, the data for each file were taken 

from a contaminated normal distribution. 

For data file Bl the normal data werecontaminated by introducing 

a certain percentage (20%) of_ extreme points at random into the data. 

The extreme points were formed by setting the response in one of the 

bands to 100. 
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Figure 26. Arrangement of class means and extreme point used in data 
file A for testing L1 classifier 

Table 13. Comparison of mean square errors and processing times for 
L1 and L2 classifiers 

Mean square error Processing 
Total ~*102} . time ~sec} 

File points Ll L2 Ll L2 

A 100 0.07 2.84 0.05 0.05 

Bl 400 0.5025 0.5309 o. 27 0.31 

B2 400 0.7828 0.7504 0.27 0.40 

Cl 300 1.040 1.189 0.52 o. 59 

C2 300 1.009 1.018 0.48 0.48 

Dl 300 1.67 1. 76 0.59 0.66 

D2 300 0.76 0.73 0.59 0.64 
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The second file based on these three classes and two bands, B2, 

was generated as multivariate normal data contaminated by a Cauchy 

distribution. Instead of generating n univariate N(O, 1) variates and 

constructing a N ( µ., L:) observation as described in Chapter II,· the 
n . 

univariate deviates were generated from a Cauchy distribution. A 

relatively high contamination rate of 50% resulted in marginal distr.ibu-

tions with a sharp peak at the mean. 

Two data sets were generated similar to ones discussed in earlier 

chapters except that a contamination £actor was .introduced in producing 

the observations. One data file, Cl, contained observations from the 

user and alien- classes listed in Table 4. The dataweregenerated with 

random mixtures. of classes as before, but deviates from a Laplace 

distribution were used to contaminate the data. The second data set, 

C2, was based on the classe.s presented in Table 9. No alien material 

was present in this case, and mix_tures of the user classes were randomly 

generated. The datawerecontaminated by introducing 10% extreme points. 

The final two files listed in Table 13, Dl and D2, were generated 

using the same file parameters as for Cl and C2, respectively, except 

that no contamination was used. These last two tiles .were included to 

see if the L1 classifier would perform any worse than the L2 classifier 

on truly normal data. 

C. Results 

The results in Table 13 are encouraging, but not as conclusive as 

one might wish for. The mean square errors for file A should be taken 
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as indicating the potential improvement that can be realized with the 

L1 classifier since the data was constructed specifically to illustrate 

how L1 can do better with extreme points in the data. 

Files Bl and B2 present ambiguous results. The differences are 

small in both cases, probably because there was a great deal of overlap 

in the discriminant regions defined by the two clas·sifiers. 

Files Cl and C2 both favored the L1 classifier, although the 

difference was ver~ slight for file C2, where the contamination rate 

was only 10%. Since these data sets both consisted of LANDSAT-type 

data, .one with alien material and the .other without, these results 

are perhaps the most encouraging ones as far as the use of L1 is con­

cerned. 

The results for files Dl and D2 indicate that there does not ap­

pear to be ntuch penalty for using the L1 classifier when the data are 

really normal. In fact, file Dl demonstrates that i 1 can actually 

do better in some cases. 

The timing results seem to be as one would expect from a considera­

tion of the computations involved. On the average the L1 classifier 

required 10% less computing time, which could be highly significant 

where extremely.large volumes of.data are involved, as can be the 

case in processing multispectral data. 

While the results presented in Table 13 are merely a preliminary 

investigation, they do seem to indicate that the L1 norm merits further 

attention. It would be helpful to have a clearer understanding of the 

·kinds of perturbations in the data that L1 can handle better than L2• 

Also, the fact that Lhe Li norm iE Eimply one norm from the general 
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class of L norms suggests that there may be other norms worth examining 
p 

in this context. 

D. Application to Mixtures 

In Section A of this chapter it was shown how a normed exponential 

model based on the L1 norm could be utilized in classifying observa­

tions of multispectral data. An avenue for further research would be 

to consider how one might approach the mixtures problem given a normed 

exponential model for the data. In this section the groundwork for 

such an approach is presented, and some suggestions are made for 

continuing the. development~ 

The mixtures model to be presented here parallels the presentation 

given in Chapter I except that the L1-normed exponential density .is 

taken as the model for the data. Suppose there are m classes of material 

and n spectral channels. Assume a resolution element consists of N 

cells, with N. cells containing material i. Let X .. be the random 
. i iJ 

variable associated with the response of the jth cell containing material 

i, and assume X .. and X.k' 1:::; j ~ k:::; N~, are independent for all 
. l.J i ... 

i = 1, ... , m. Let ~~ and ~ denote the mean and covariance matrix of 
i i 

X .. , and assume 
iJ 

--* = L-. 
i 

function of X .. is 
iJ 

s*s*' i i . Then under the L1 model, the density 

n 
-J2 l: 

k=l e (5.4) 

Let Y. be the random variable associated with the total response 
i 

obtained from the cells of class i, i = 1, ••• , m. Then 



and 

N. 
l. 

Y. = . E X .. 
l. j=l l.J 

E(Y.) = N.µ.:C , 
l. l. l. 

V(Y.) = N. ~ • 
l. l. l. 
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If the entire resolution element contained only material from class i, 

then one would have 

E(Y.) 
l. 

and 

V(Y.) = N~ _ E. 
l. l. .l. 

Let Y denote the random variable representing the observed response 

from the entire resolution element, and let A. be the proportion of the 
. . l. 

resolution element containing material i. If the random variables 

for cells from different classes are assumed to be independent, 

then 

N. m m l. 
y = E Y. E E X •• 

i=l l. i=l j=l l.J 

m m m 
E(Y) E * E A. Nµ.~ I: A.µ. = N. µ.. = . 

i=l l. l. i=l l. l. i=l l. l. 

and 

m m m 
V(Y) = E N.i: = E A.N~ = E A.E. 

i=l l. l. i=l l. l. i=l 
l. l. 
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Y is a iinear combination of multivariate· random variables each having 

an L
1

-normed exponential distribution. It remains to be determined 

what the density function is for Y. 

Thus, a starting point for further investigation would be to refer 

to results from multivariate distribution theory to establish the 

density function g(y; µ., E, A.) for Y. Once one has the distribution of 

Y, the problem becomes one of estimating A given an observation on Y. 

For a maximum likelihood solution, one would have to solve 

such that 

maximize g(y; µ., E, A.) 
A. 

m 
E 

i=l 
A. = 1 and A. > O, i = 1, ••• , m. 

1 1 -

It is quite possible that certain simplifying assumptions would be 

necessary to obtain a solution with a feasible amount of effort. 

The following questions are given to suggest points to be pur­

sued in considering the application of th~ L1 ~odel to mixtures. 

1. What is the distribution of Y, the random variable as-

sociated with the m.ixture? 

2. If g(Y) is known, can a computationally efficient algorithm 

be found to obtain estimates of the A..? 
1 

3. How good are the estimates of A.? 

4. How do the p~operties of the L1 norm affect the values of 

the estimates, especially when alien material is present? 

It is felt that alternatives to the normal model and least squares, 

such as those.presented above based on the L1 norm, should be given 
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further consideration in view of the potential computational simplifica­

tions and the nonnormal nature of much nrultispectral data. However, 

more should be learned about these alternatives to accurately and 

completely assess the tradeoffs involved in using them in lieu of 

normality and the L2 norm. 
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