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I. - INTRODUCTION

A. The LANDSAT System

In response to an increasing awaréness of our need for information
about the earth's resourées, the science of remote sensing has progressed’
rapidly in the past few years. Generally speaking, remote sensing in-
volves observing objects without coming into physical contact with them.
Information may be transmitted to the oﬁsexver via magnetic, gravita-
tional, or electromagnetic fields. Some types of sensors that are
- used in remote sensing include photographié cameras, television cameras,
radar systems, and multiSpectfal scanners.

Aerial photography haé traditionally been.the most widely used
method of remote sensing, but fhé launching of the earth resources
satellites, LANDSAT-1 in 1972 and LANDSAT-2 in 1975, has introduced
é new dimension to remote sensing. The satellites offer a repetitive,
synoptic view of the egrth that has never before been possible.‘
Examples of some of the areas in which LANDSAT dat# has beén utilized
include: |

crop surveys

mineral and petroleum exploration

forest inventories

water resources monitoring

land use mapping

‘marine studies.

Other applications are discussed in Reeves (1975),



LANbSAT is in a sun-synchronoﬁs,‘near-polar orbit at an altitudé

of s&me 560 miles. The sun-synchronous nature of its orbit means that
it p#sseé over all locations at the same local sun time (9:42 é.m.).
It circles the globe 14 times a day and covers the entire éarth.in 18
days. Since virtually every spot on the earth is covered once each 18
days, data caﬁ potentially be collected 20 times a year for any given
location. | |

The sensor systems on LANDSAT include a return beam vidicon (RBV)
and a multispectral scanner (MSS). The RBV suffered a malfunc;ion
shortly after the launch of.LANDSAI-l, an& consequently? the bulk of
the data collection task ha§ been handled by the MSS. The ﬁSS~functions
basically as follows.

Reflected and emitted electromagnétic radiation (EMR) from a point
on the ground ;s transmitted through the atmosphere and strikes an |
oscillating mirror in the iower partnof the‘scanner. The ﬁirror deflects
the radiatién to a set of optics that separate it into four distinct
;pecffal bands. Radiation in each spectral band strikes a different:
eleétrp-optical detector which transforms the EMR into an electrical
signal that is recorded on magnetic tape and‘later telemetered to
ground receiving staﬁions. The spectral bands, which include two
visible and two nearfinfrared.bands, are:

MSS 4 0.5-0.6 micrometers
MSS 5 0.6-0;7 micrometers
MSS 6 0.7-0.8 micrometers

‘MSS 7 0.8-1.1 micrometers.



Because the responses in all four spectrallbands are detected simul-
taneously; the recorded data is tour-dimensional in nature and 18 often

referred to as multispectral data.:

As the satellite passes over the surface of the earth, the scanner
mirror traces out a scan path‘perpendicular_to the motion of the space-
~ craft, This is depicted in Figure 1. Six iines are scanned aﬁd recorded
simultaneously. At a given'instant of time the scanner views an elément '
in each line which has the nominal dimensions of 80 meters by 80
meters on the earth's surface. There are approximately 3240 such
elements per line. One complete image contains 2340 scan lines and
covers a ground area pf 18Sﬁkilometers on a side. Both photographic

products and digital tapes are produced from the image data.

B. Analysis of LANDSAT Data

ky

One apprbach to éhe ahaiysis.of LANDSAT data has been,go simply
apply the standard techniques of phﬁto intérp;etation to the images in
photographic form. This is and will continue to be an important method
of anaiy;is, but it éuffers éhe following limitations:

1. It is very difficult for a human interpretér tovsimultaneously
deal with data in four dimensions, such asfis generated by LANDSAT;

2. The results of photo interpretation tend to be highly sub-
jective and nonrepéatable since they depend on the skill and experience
of the -analyst;

3. The data throughput rates required to perform large-scale



SCANNER

SCAN MIRROR
(OSCILLATES

- NOMINALLY
12.89°)

6 DETECTORS PER BAND:
24 TOTAL +2 FOR BAND 5
{ERTS B)

SPACECRAFT
TRAVEL

4

Figure 1. Schematic of LANDSAT MSS scan (after NASA, 1972)

surveys in a timely manner make manual interpretation of the data
~impractical for these épplications.'
These reasons, as well as others, have given rise to the development
of techniques to automatically analyze LANDSAT data,

Central to the automatic analysis of multispectral data is the

concept of a spectral signature. The spectral signature of a material

is its relative response in terms of reflected plus emitted EMR as a
function of wavelength. An example of hypothetical spectral signatures
for three materials is given in Figure 2. Here it is evident that the

responses for all three materials are fairly distinct at wavelengths
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Figure 2. Spectral signatures of three common materials (from Landgrebe, 1971)



hl and kz. Plotting the responses in two dimensions as in Figure 3
shows that the materials are easily distinguishable if one observes

their responses at Al'and KZ.
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Figure 3. Spectral responses in the A1A5 plane (after Landgrebe, 1971)

In the.real wofl& things are not so ﬁeat and simple. A given
material, corn, for example, exhibits variation in the amount of EMR it
reflects and emits depending on many factors: maturity, moisture con-
tent, vigor, underlying soil type, variety, and others, Therefore,
when a scanner makes multiple observations of a given material,
the recorded responses can be expected to vary about some mean value
as showm in Figure 4.

Now suppose in addition to the responses displayed in Figure 4
there is another observation u whose true identity is unknown. 1In

order to classify the unknown point, one would like to divide the
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response space into mutually exclusive and exhéustive regions and
assign the unknown point td exactly one class corresponding to the
region into which it falls. In this simple example the spacé may be
partitioned by drawing the perpendicular bisectors of the}lines joining
the means as shown in Figure 5. This effects a classification based
on minimum distance to means. The point u would be assigned to the
Oats class unﬂer this classification rule.

Many procedures exist for carrying out'the task of classification.
It is not intended to attempt a comprehenéive review of such methods
here, but oﬁe method, known as the maximum likelihood, or Bayes,
classifier; merits special attention because qf its widespread use in
remote sensing‘data analysis and its relationShip‘to the techniques

appearing in later chapters.

Let ﬂl, ﬂz,‘..., ﬂh denote disfinct classes of material with a priori
babiliti :.;. . Le e an'n-di i - 9 .
pro bllgtles 97> 99> s 4 txb an’'n dimensional random ob ;% % i,/
. Lk,
servation, and let the class-conditional density functions be denoted , ™ ez, |
. . . , 0464.‘,5( Ve
/,,&,V_Af‘ o
P(x|ni), i=1, ..., m

If C(i|j) is the cost of misclassifying an observation from class j
into class i, assume that
Cili) >0, i#¢3,i,j=1, ..., m
c(ili) =0, i=1, ..., m
A Bayes rule R is one which partitions the observation space into

mutually exclusive and exhaustive regions R,, R,, ..., R such that
1 2 m

the expected cost of misclassification is minimized. Given an



observation x, the expected cost of misclassifying x into ﬂi is

Lx(i) =

c( e, |x).
j J

3
ot

Applying Bayes' formula, this may be written as

m
L (i) = 'f C(ilj)p(XIﬂg)qj/p(X),

j=1

where p(x) is the unconditional probability of'observing x. It is
not hard to show that minimizing L (i) with respect to i is equivalent
to choosing i = k such that

m m -

T Ck|Dpx|m)q, < £ CcU{ipx|m)q., £ =1, ..., m.
. : 1] s J ]

j=1 A . j=1

j#k, j#4 (1.1)
Anderson (1958, page 143) has shown that a procedure that assigns ob-
servation X to region Rk whenever (1.1) holds is a Bayes procedure.

. : ! R

In the special case of equal costs of misclassification,
C(ili) =¢,  i# i,

and equal prior probabilities, condition (l.1) reduces to

m m
X p(Xlﬂj) < z p(X|ﬂj), £=1, ..., m,
j=1 j=1
k. i#
which is equivalent to
p(x]ﬂk) = max p(x,ﬂi) R _ (1.2)
i

the criterion for the maximum likelihood solutionm.
In remote sensing the assumption is usually made that the spectral

response for class i follows a multivariate normal distribution with



10

mean . and covariance matrix Zi. Let n be the dimensionality. If

the prior probabilities are taken to be

qi= 1/m, i 1’ LICIC I m,

and the cost structure is

Ik

c(ilj) = 1, i# ]

c(ili) = o, i=1, ..., m,

then the Bayes rule R reduces to assigning x to class k if (1.2) is
true. Thus, the Bayes rule and the method of maximum likelihood are
equivalent in this casé.

. With the means and covariance matrices as given above, one may

write out the class-conditional probabilities as

plxln) = (™25 M2V B Ry
| (1.3)
Typically, the class means and co&ariance matrices are unknown and must

be estimated from samples by ﬁ& and g;, fespectively. If one substitutes
these estiﬁates for the true parameters in (1.3) and expands (1.2) in

terms of the expressions given in (1.3), one has, after a little wanipula-

tion, that

Ay AN AL A A AL A
- |5 |- (x-W)'g (k- W) 2= Il | - (- B) T (x- Hy)s
i=1, ..., m, . (1.4)
The rule that assigné X to class ﬂk whenever (1.4) is true is called

the maximum likelihood classifier. It is usually applied to each data

point in an image on a point-by-point basis. It has been used extensively
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in remote sensing applications because it is relatively simple to apply,

and it gives excellent accuracy in many instances.

C. The Mixtures Problem

One question that an analyst frequently would like‘to answer is,
"How much of a certain material is present in a specified region on
the ground?" For example, he may want to know how many acres are
planted to each of several crops in a county. If each reSqlution
element viewed-by a scanner were to contain exactly one type of material,
the acreage estimation task would be straightforward: count the number
‘of elements assigned to each crop and multiply'by thg size of a resolu-
tion element. |

Earlier in the chapt%r it was stated tpat the size of a resolution
element viewed by LANDSAT is about 80 meters square, or l.l acres,
Obviously, objects smaller than 80 metersAby 80'méters wili not éompletely
fill the field of view and will be seen as a mixture'of the object and
its background. Even for objects larger than 1.1 acres, a resolution
element that overlaps the bouﬁdary between two large objects will be
viewed as a mixture of the radiation emanating from each 6bject. In
this case the spectral response recorded by'the sensor will not be
characteristic of either object.

Suppose corn and bare soil have the spectral signatures shown in
Figure 6. Then mixtures of 20% bare soil — 80% corn and 50% bafe soil —
50% corn would have signatures‘as shown in Figure 7. A classifierl

trained to recognize corn and bare soil based on the signatures of
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Figure 6 would be apt to classify the mixture; as being from some class
other than corn or bare soil,

To see how resolution elementé containing a mixture of two or more
materials ‘can affect classification accuracy in an agricultural applica-
tion, consider Figure 8. The solid lines delineate '"'fields'" and the
dashed lines delineate ﬁhe'resolution elements seen by a scanner. As-

- suming the size of a resolution element to be 1.1 acres, the fields are
approximately 10 acres in size. If the center field contains a dif-
ferent crop than its neighboring fields, it is evident that mixtures of
crops will be an important factor in classifying the center field. Only
four resolution elements fall entirely wifhin the center field, while
twelve elements overlap other fields., Misclassification of the over-
lapping elements would result in a 55% underestimation of the crop
acreage fqr the center field,

Nalepka and Hyde (1972) have estimated the percentage of square
fields that would be seen as a mixture for various field sizes. They
took the size of a resolution element to be 300 feet square and assumed
that the direction of scanning was;parallel to field bdundaries.

For small fields of 20 acres or so, they determined the mixture
percentage to be around 40%. Even for fields 6f between 60 and 100 acres,
which are large in maﬁy‘areas with mixed agriculture, the probable
mixfure percentage exceeded 20%. To be able to accurately determine
the amount of a crop present in typical agricultural fields, it be-
comes necessary to have some means of dealing with mixtures. One m@st
be able to estimate the proportion of each crop contained in a mixture

v

element. 4 _ ¢.
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Figure 8. Effect of mixed plxels on classification accuracy (from
. Nalepka and Hyde, 1972)

Several approaches have been proposed to account for mixtures in
classifying remotely sensed datat One model, the gg;gl model, will be
‘described here since it forms the basis for the estimation procedures
of the next chapter. Othar approaches will bcAmentioncd briefl% for
comparison, . . |

The.ERIM model as presehted by Horwitz et al. (1971) assumes the
spectral responses of the materials of intercst follow normal distribu-

tions. If there are m classes (materials)-and n spectral channels,

1Envu'onmental Research Institute of Michigan, Ann’ Arbor Michigan.
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the ith class is distributed as n-dimensional normal with mean Ai
and covariance matrix-Mi. The proportion of class i in a given
resolution element is denoted by li.

Assume a resolution element consists of N small cells of equal.,
size and let Ni be the number of cells containing the ith material.
With the jth of these Ni cells, associate a random variable Xij'
representing the spectral response of material i from that particular
cell. The situation is shown in Figure 9, wherée the cells associated
with class i are taken for convenience to form a contiguous block.

Let xij’ =1, ..y Ni’ have mean A; and covariance matrix MI
for i =1, ..., m., Let Y represent the total response for the resolution
element. Then

. N
m 1 m
Y= ¥ I X, ,, where ¥ N, =N,
' . . ij , i
i=1l j=1 o i=1
If the entire resolution element were to consist of material i,

the mean of Y woqld bg

o ]

- *=
E(Y) = NAi A1

. and its covariance matrix would be

V() = NM? =M.,

1

assuming independence between the ¢ells of class i. Since there are

actually Ni cells of material i,Athe mean of Y is

™ME

m
A, = E(Y) = I NA* =

: m
* _
A ' A5 ‘ A.NA" = T A.A.. (1.5)
1=1 1 =

1 i
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Figure 9. Random variables associated with cells of the ith material
in a resolution element
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If the random variébles associated with cells from different classes

are assumed to be independent, the covariance matrix is

) m m
- v - * _ —
M, = V(Y) = = NMY = z A N = =AM (1.6)
i=1 - i=1 . i

h ~MB

1

Thus, the distribution of a given mixture of classes with the associated
proportioné Xi is n-dimensional normal withAmean AA and covariance
matrix ﬁk.

Given an observation vector y from a mixture distribution, one
would like to estimate the true claés proportipns Ai. 'Two methods for
obtaining such estimates are presented in the next chapter. |

Various researchers have suggested approaches to the mixtures
problem that deviate to different degrees ffom the ERIM approaéh.
Detchmendy and Pace (1972) developed a model fpr mixtures that is
based on different fundamental assumptions from those of the ERIM}ﬁodel.
In their fdrmulation the spectral signatures of all pure ﬁateriais are
considered to exhiﬁit no variation; rather, thé variations in observed
responses are due to vafiations in the proportions of materials and
their backgrounds within a':esolution element, Thus, the proportions
rather'than the class signature vecto?s are taken to be random variables,
Saivato (1973) gives the conditions uﬁder which the model of Detchmendy
and Pace is mathematically equivalent to the ERIM model.

Smedes et al, (1975) used tﬁe ERIM model to generate mixture
signatures from the known signatures of each pure material. The propor-
tioﬁs a#socia;ed with the mixtures were ;pecified Beforehand in terms
of fixed increments, The mixtures corresponding to the generated

signatures were treated as additiomal classes besides the pure classes,
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and a standard maximum likelihood classification was carried out,

" 0dell and Basu (1975) have developed several proportion estimators
based on the theory of mixing distributions. Their methods can be
utilized to obtain an overall estimaté of the proportion of a region
covered by a given crop. However, they doAnot produce estimates for
each individual resolution element, and thus do not specifically deal

with boundary elements.

D. Outline of Approach

In Chapter.II two types of proportion estimators are defined,

the standard estimator and the simplified estimator. Examples are
presented to iilustrate the operatioﬁ of the two estimation methods
and té show how they differ. The.computational procedures involved in
implemenﬁing each type sf estimator are discuséed, and flowchafté of
- the programs aré provided. An alternative method of computing the
éimﬁlified esfimator based upon a closéd—form solution of the least
squares problem with interval cénstraints is given. The two simpli-
fied estimation methods are demonstrated to be algebraically equivalent.
It is also shown ghat the closed-form solution is computationally
faster than the usdal simplifiea estimationvprocedure, but .its use
is subject to more stringent requirements,

- The épproach used in testing the accuracy of the standard and
simplified estimators is given in Section C of Chapter II. Two
methods of generating test data are discussed. With one method the

proportions of classes in a simulated mixture are fixed in advance.
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With the other method the proportions are randomly selected for each
‘data point, The mean square_error‘criterion used to measure the
performance of the estimators is defined, and some known theoretical
results are given. The results from two tests are presented and
discussed; one test involving a specially structured 2-dimensional
data set and the other involving LANDSAT-type data with random
proportions., The times required to compute the standard and simpli-
fied estimates are recorded and tabu;ated for various numbers of
classes and spectral bands.

In Chapter III the concept of data averaging is introduced
as a technique for obtaining én estimate of the proportions over
an entire regibn in less time than with the point-by-point estima-
tion methods of Chapter II. The test involving LANDSAT-type
data is repeated on the standard and simplified estima;ors using
data averaging, and the results are ﬁompared to those of Chapter II.

Chapter IV examines the assumption pf equal class covafiance
matrices and its relationship to proportion estimation. The im-
portance of making the assumption is briefly discussed, and a
likelihood-ratio test for equal covariances is applied to data
covariance matrices extracted from actual LANDSAT data.

In the third section of Chapter IV, two tests are repofted
that investigate the effect of assuming equal covariances when they
are in fact unequal; The first test uses a specially constructed
2-dimensiona1.data set designed to illustrate the effect of trans-

ferring some of the variation from the covariance matrix of -one
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class to that of another class and of introducing positive and negative
~correlations. The secopd test involves two data sets of simulated
LANDSAT data. One is constructed using the covariance matrices ex-
tracted from LANDSAT data as discussed in Chapter IV, Section B,
and the other is constructed using the average of these matrices as
the common class covariance ma;rix. Several proportion estimation
procedures are applied to each data set, and the results are com-
‘pared.

The assumption that the data is distributed as multivariate normal
is examined in Chapter V. Some evidence indicating nonnormality of
the déta is discussed, and the use of normed exponential denéities
is considered as an alternative to the normal model. A general
r-normed exponential density is defined, and a model based on the
Ll norm is presented in detail. The salient properties of the L1
norm are discussed and illustrated, including an example of how the
Ll'norm can out perform L2 due to the relative insensitivity of the
L, norm to outliers in the data.

1

The implementation of a classifier based on the Lj norm is

discussed, and it is shown that the Ll clagsifier is computationally
more efficient than the corresponding L2 classifier and leads to
an exact evaluation of the probabilities of misclassification, which

the L2 classifier does not. Several sets of simulated data are

constructed to test the L, classifier. Some of the data sets con-

1
- tain normally distributed data which has been contaminated by a Cauchy

or Laplace distribution or the introduction of extreme points. The
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results obtained using the L, classifier are compared to the results

1
obtained with the L, classifier, and the computation times of both are
measured.

The final section of Chapter V considers how one might go about

applying the L1 model in dealing with the mixtures problem.
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II. METHODS OF PROPORTION ESTIMATION

A. Definition of Méthods

1. Standard estimator

In this sectibn thélstandard proportion estimator is presented
as first given by iHoﬁitz et al. (1971). The model used is the ERIM model ‘
described in Chapter I,

Let n be the number of bands or chaﬁnels of the scanner and let
m be the number of classeé of material. We assume class i follows an
n~dimensional multivariafe normal distribution with mean Ai and co-
variance matrig Mi’ i=1, .00y, m. Let Ai be the proportion of
class i contained in a mixture of materials énd define the proportion

\ :

vector A = (A ey km)'.

1> 72°

The mixture associated with A is then distributed as multivariate

normal with mean

The mixture density function may be written as
-1
-n/2 ~-1/2 -1/2(y-A)\)'M -A
The log likelihood is then

L(A) = 1n(f_(y)) == n/2 1n(2m) - 1/2 1n|M, | -l/2(y—.A>\)'M_l(y-A>\).
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Thus, the constraingd'maximum likelihood estimate of A will minimize
F(A) = 1n|M}\I + (y - A)\)'M;\l(y - A)\) | : (2.1)
subject to tﬁe constraints
§ A, =1, A, >0i=1, ¢.u, m. | (2.2)

At this point the simplifying assumption is made that all the

covariance matrices M, are equal to a common covariance matrix, say M.

i

This reduces the minimization problem to -
. P |—1
minimize (y - AA) M (y - AA)
A .

subject to constraints (2.2).

With M positive definite we can perform the Cholesky decomposition
M= LL',

where L is lower triangular. Taking

z = L-ly
_ -1 C . ‘

Bl—L Ai 1—1, ...’m ) (2.3)
_.-1

BA =L Ax

the problem becomes one of finding A that minimizes
12
6V = [z - Ball

subject to the constraints (2.2). Under the equal covariance assumption

this is completely equivalent to minimizing (2.1) with respect to A since
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1
3

-1 - - -
Iz - B)I7 = (2 - B))"(z = B)) = @y -1y @y -1

l'

= - AT LT - A = 7 - AN Ny - A,

and since lnIMI does not depend on A, it may be dropped.

. . A .
Let the A that minimizes G(A) be denoted A. This will subsequently

be referred to as the standard estimator.
A simple geometric interpretation can be given to the minimiza-
tion of G(A). Let A be the matrix whose columns are the class mean

vectors, Thus,

A= (A1A2 Am)

and let A satisfy (2.2). Then the set of all points AA(= AA) is

the convex hull of the A, and is called the signature simplex.

i
Similarly, the set of points_Bk(= BA) is called the transformed

signature simplex.

Finding the A that minimizes G(A) is equivalent to finding the
point BA on the transformed signature simplex that is closest to the
transformed data point z. This is depicted in‘Figure 10 where z is
projected onte the plane determinee by the Bi at Pz and BAAis the
orthogonal projection of Pz onto the transformed signatere simplex.

An important restriction in order that the optimal A be uniquely
determined in the above formulation is that the number of classes, m,
be less than or equal to n + 1, the number of bands plus one. This
is implicit in fhe requirement that the signature simplex have positive

(m - 1)-dimensional volume.
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Figure 10. Geometric interpretation of standard estimator

2. Simplified estimator

In order to reduce the amount of computation required to obtain
a proportion estimate, a modification of the standard estimator was

proposed by Horwitz et al. (1974). The problem is to minimize

2
6 = ||z - B, ||
subject to
ij_: 1 ' A ’ (204)
but not requiring
A, >0 i=1, «ie, m | ' (2.5)

i —

Minimizing G(A) subject only to constraint (2.4) is equivalent to

projecting the transformed data vector z onto the hyperplane detcrmined
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by the transformed means B i=1, .., m. If the projection falls

i?
within the transformed signature'simplex; then constraint (2.5) will
be satisfied, and the estimate will be the same as in.the standard
case, If the pfojecti&n falls outside theAsimplex, however, some of
the Ai will be negative. _In this case an estimate is obtained by
setting the negative Ai to zero and normalizing the remaining
components.

To precisely specify the estimation procedure, some definitions
are needed. Since the covariance-removing transformation given in
(2.3) of the previous section is nof essentiél to a basic definition

of the estimator, .the untransformed means Ai and data vector y will

be used in the subsequent discussion.

A proportion vector is a vector A satisfying (2.4) and (2.5).
Let SA be the signature simplex associated with the mean vectors Aio

Then SA is the set of all vectors AX where A is a proportion vector,.
Let L, be the set of all vectors An where n satisfies (2.4) but may

or may not satisfy (2.5). Clearly S, is a proper subset of L,.

A
Let n+ be the vector obtained by setting all negative components
of n to zero, and let w be the sum of the positive components of n.

Then the normalized vector given by

is a proportion vector.

If Py is the orthogonal projection of y onto LA’ then

Py = A} ' : ‘ (2.6)
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for some vector n satisfying (2.4), Thus An is the point in LA

closest to y, As an estimator of A, take
NN
A=,

Y 4
The estimator A is called the simplified estimator.

N n
It is evident from the definition of n that AX is in SA’ but it
may not necessarily correspond to the point Aﬁ.determined by the

standard estimator. In the special case where Py falls in S,, the

A

vector n in (2.6) will itself be a proportion vector, and
n A
'}\=n=}\°

To see how the standard and simplified estimators may in geﬁeral
differ, consider the following example in two dimensidns where there
are three chanpels and three classes (n = 3 and m = 3).

Let the mean vectors be given in terﬁs of (xl, x2) coordinates

Plane by

in the LA
1 0 3
A, = A = A. =
1 1 2 0. 3 0]

as shown in Figure 11. Let the projection of y onto LA be

3
Py = A‘n =
1
Solving for n yields
1
n = -2/3 .

2/3
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2
Ay
4 ‘ n —7 Py
AN _ -
— /
-~ 7 /
- A
- 3 i ' X
1 1 1
A2 A3

Figure 11, Illustration of difference in standard and simplified
estimators

The orthogonal projection of Py onto the line A1A3 is

A 13/5
AA =
1/5
which gives
1/5
A .
A=l O
4/5

as the value of the standard estimator.
For the siﬁplified estimator one finds the intersection of the

lines AzPy and AlA3 to be
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9/5
AX =
3/5
which gives
3/5
X< o }

2/5

Using the definition of the simplified estimator, one has

1
ﬁ+ =l 0 nd w.= 5/3,
2/3
so that
3/5
Yoo l_ + -
A=n-= el 0 o
2/5

It is not ‘hard to see that in some cases the two estimators will
differ considerably in the results they give. In a later section the

performance of these estimators will be compared.

B. Computational Procedures

1, Standard estimator
It was shown in Section A of this chapter that under the equal
covariance assumption estimating the proportion vector by the standard -

estimator involves finding the A that will
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minimize||z - BAHZ
subject to
m
i Ai = 1; Ai-z o, i=1, ..., m,

where z and BA are the transformed observation vector and matrix of
means, respectively. With a little manipulation the problem can be re-

expressed as a quadratic programming problem. Since
|z =By)|“= (z = B,)'(z = By) = 2'z = 22"BA + A'B'B],
the expression to be minimized can be reduced to
minimize [~ 2z'BA + A'B'BA].
A

In the notation of quadratic programming, the problemAbecomes

minimize [pA + A'QA]
A

such that

I =1

Xi >20,i=1, ¢o0, m,
where |

p=- 2z'B

Q =B'B
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The program STDEST was written to implement the standard
estimator, It employs.the quadratic programming package QP360 in
solving for the estimate of A, QP360 was developed by the Rand
Corporation and is based on Wolfe's Algorithm, which takes a simplex
approach to qﬁadratic programming by utilizing the Kuhn-Tucker condi-
tions. A special feature of QP360 is a parametric programming option
which allows one to vary the linear pért‘of the objective function.
QP360 is supported at Iowa State by the Numerical Analysis Section
of the Statistical Laboratory.

The flow diagram of Figure 12 shows the structure of STDEST,

The essential-functions‘perforﬁed by the program are:

1. read data vectors from the region of interest and estimate
‘the proportions of materials associated with each vector;

2. save the estimated proportion for mapping ﬁhe results;

i .

3. - print the OVeralllpercentage of the region covered by each
matefiala | |
A few aspects of the program require additional‘explanafion.

' The user may supply either a single covariance matrix common to
all classes or a separate covariance matrix for each class.» If the
latter option is choéen, the program will take the average of the
matrices as the mixture covariance matrix. The rationale for averaging
the.covgriance matriceé is discussed by Horwitz et al. (1971)°

Since the original version of QP360 expected the input to be on
cards, a minor modification was necessary to take the inﬁut from disk.
Ap exaﬁple of the input file constructed on disk for QP360 is given

in Figure 13. The statements through the MATRIX command are read from
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get estimate '

used for estimate of
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of each class in region

based on-value of estimate
and thresholds read from cards
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BEGIN
PRMODE -
0022222234
ROWS
EQUAL*
& LINEAR
END
RHS
EQUAL* 1.0
END
MATRIX
X1 EQUAL% 1.0
X1 LINEAR Pla
X1 X1 Q1P
X1 X2 22,1
X2 EQUAL* 1.0
X2 LINEAR P,
X2 X2 Q2,2
END
SETINV
SOLVE
EXIT

8p is the vector of coefficients for the linear part of the
objective function. '

bQ is the matrix of coefficients for the quadratic part of
the objective function. '

Figure 13. Sample ihput to QP360
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cards during initialization and can be varied from run to run if
necessary. Since the data in the MATRIX section depend on the value of
a particular observation, the input file must be rewritten each time
through the loop.

In order to invoke QP360 from STDEST, the main routine in
QP360 was made into a subroutine callable from STDEST. When the optimal
values for the proportions are calculated in QP360, they are passed
back to STDEST via COMMON storage.

STDEST'converts the estimated proportibns to the nearest percent
and_store; them in a file in the same format as is used for LANDSAT
data. Thus, a vector of percentages, one percentage for each class,
is stored corresponding to each data point in the region of interest,
This enables the same programs that are used to produce gray-scale
maps of LANDSAT data to be used;in producing maps of mixture processing
results, | | |

At the time the proportions corresponding to a éertain data point
are stored, a mixture code is calculated and stored to indic&te the
particular mixture represented by the data point. To determine the
code, the proportions are sorted into descending order and compared
against a set of cumulatiye_thresholds and a set of minimuﬁ thresholds.
Thus, if there were m classes, there would be m cumulative and m minimum
thresholds.

Proceeding from combinations of one class to combinations of m
classes, -a data point is taken to be a mixture of k classes (1 <k <m)
~if the sum of the k largest proportions excéeds the kth cumulative

threshold, and each of the k largest proportions exceeds the kth minimum
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threshold. AThe shéllest valﬁe qf k for which both thresholds are
satisfied is qonsidered to be the number of classes in the mixture,
and a unique code is assigned corresponding to the particular k
classes in the ﬁixture,

The cumultative and minimum thresholds are specified as inpﬁt
parameters to the program, and as such reflect a subjective judgment on
the part of the usef. The code assignment pfécedure is, after all,
not a statistical classification method, but merely a convenient means

of labeling the proportion estimation results.,

2. Simplified estimator
| The hearf of the simplified estimator calculation consists of pro-
jecting the transformed data vector z onto the:hyperplane_determined by
the transformed means. The problem may be expressed as
miniéize % (z - BA)'(z - BA)

such that

where B = (B,, B ...s B ) is the matrix of transformed means. By
1 S m

2’

introducing the Lagrange multiplier 4, the objective function may be

written
(A, N =% (z - BA)'(z - BA) + O(ZA; - 1)."

Applying the Kuhn-Tucker conditions for optimality gives
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é%:B"BA.-B"Z+AJ=0

and

where J is an m X 1 vector of ones. These equations may be rewritten

as

B'BA + AJ = B'z

Zli =1,

which in matrix notation becomes

B'B| J X] B'z

e I N N LT ‘ (2:7)
J! ': 0 AJ 1 ‘

I1f the augmented B'B matrix'in (2;7) is nonsingular,lthe’solu-

tion for A may be found from

rx s, Jipz

SO [ S RN I | (2.8)
L@ v 1

|
The projection z* of z onto the hyperplane of the Bi is thus given by
z* = B,

If z* falls outside the transformed signature simplex, some of the Ai
will be negative. In this case the negative Ai are ‘set. to zero, and

‘the resulting vector is normalized so that its components sum to one.
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The program SMPEST performs the computations indicated above in
calculéting the simplified estimate. -The augmented B'B matrix is
Aformed,»and its inverse is computed and saved. For each data vector in
the region of interest, the multiplipation indigated in (2.8) is
carried out to obtain A, Each component of‘l is tested, any negative
component is set to zero, and a flag is turned on to indicate the
presence of one or more négati#e proportions. Subsequently, the flag
is examined, and if it is on, A is normalized by dividing ﬁy the sum
of the positive componenté.' The estimated proporfions are converted to
the nearest percent and stored ih a file along with a mixture code as
described in the discussibnbof STDEST in the prévious section, A'flow
chart for SMPEST is presented in Figure 14,

‘4 It was stated earlier that the signature simplex must be non-
degenerate., This assumption is related to nonsingplarity of the aug-.
mented B'B matrix. Nondegeneracy of the (transformed) signature simplex
means that it has positive (m - 1)-dimensional volume, or, equivalently,

B A
that the m vectors (j%) are linearly independent.

Augmenting the Bi vectors yith ones causes dependency to be con-

sidered in mixture space. Vector Bj, j= 1? 2, ++ey m , is in the mixture

space defined by the vectors Bl’ ey Bjal’ Bj+1’ ...,‘Bm if

m m
£ MB,.=B, ,and T ) =1,
‘_ b j=1
i#] i#]
The situation for three classes and two channels is illustrated in

Figure 15. Here the signature simplex formed by Bl’ B2 and B3 is

degenerate since it does not have positive 2-dimensional volume. Since
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proportion of each class in region.

based on value of estimate
and thresholds read from cards
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30 4
20 +
10 4+
i i i
Ll | LE
10 20 30

Figure 15. Degenerate and nondegenerate signature simplexes

- By + 2B, = 33 ,

the vectors are dependent, and 33 is in the mixture space defined by B
and B,.

1
9 That the augménted vectors are dependent is clear from
B1 B2 B3
-l == ]+ 2 --J={ --}.
1 1 1

On the other hand, the signature simplex formed by Bl’ B2 and
B4 has positive 2-dimensional volume.

The vectors are dependent in
E2 since

but
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and the linear combination of B1 and B2 that yields B4 is unique,

s0 B4 is not in the mixture space of B1 and B2. Thus, the augmented

B1 B2 B4
vectors T AT and T | are linearly independent.

Now consider the augmented B'B matrices for this example. For

B, and B, the B matrix is

B)s By 3
10 20 30
o b ]
20 15 10

and the augmented B'B matrix

500 500 500 1)
500 625 750 1
500 ‘750 1000 1 |

1 1 1 -0 . ;

is singular since two times row 2 minus row 1 equals row 3,

In the case of B B, and Ba, the B matrix is

1’ 72
10 20 30
20 15 30

and the augmented B'B matrix

=

500 500 900
500 625 1050 1

900 1050 1800 1

1o

1 1 1
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is nonsingular éince its determinant is - 40,000, No;e that since Bl’
32 and B4 are dependent in E2, ﬁ'B is singular (three times row 1 plus
six times row 2 equals five times row 3) even though the augmented
B'B ﬁatrix is nonsingular,

Whenever the number of classes, m, exceeds the number of chanﬁels,
n, the Bi will be linearly dependent since m vectors in an n-dimenéional
space cannot be independent when m > n., The B'B matfix will always
. be singular in this case.

1f, however, there are no more'classes than channels, the B'B
matrix will be nonsingular as long as the Bi are independent. If
‘this is the case, the simplified estimator may be computed by a closed-
form solution to the least squares problem

 min§mize (z - BA)'(z - BA) . _ (2.9

such that
1<J3'A <1,

where J is an m x 1 vector of ones.
Klemm and Sposito (1977) have shown that for a least squares
problem over an interval constraint, a closed-form solution exists,

For the problem stated in (2,9), the solution is
A - -
w= e @Byl - ahyresyls,
where<ﬁ is the unrestricted least squares estimator, viz,

§= (B‘B)-lB'z.
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Clearly, the solution requires that the B'B matrix be nonsingular.
It can be shown that A* is equivalent to the estimator of A

defined by (2.8) when B'B is nonsingular. Let

Applying the formula for the inverse of a matrix by bordering (Faddeeva,

1959, p. 105), yields

“tlu u'B-1 I - B-1 u
-1 ~n-1 -1 “n-1n
B ", + — |

: -1 o o.

-1 | n
i R it prosmeem-n- ,

2,
w'p! I
_ _orm-1 | 1
i n “n
where
@ =b _-uBlty .
n nn nn-1n
Substituting in terms of B and J, we find
e - - ' - —
-1 (B'BY Yygreryt @'3)" Ly
(B'B) - 1 | )

o J'(B'B) J | J'(B'B) "J
R e Nl L .
2h ,

@Bt ' 1
-1 b= 7 -1
J'(B'B) "J , J'(B'B)"J ]

Using g;l to solve for A by carrying out the multiplication indicated

in (2.8) gives
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(B'B)’lJJ'(B'B)'lB'z + (B'B)-IJ
J'(B'B)-lJ ‘ J'(B'B)'lJ

>
i

(B'B)-lB'z -

Q } (B'B)'IJJ'Q + AjB'B)-lJ
J'(B'B)-IJ J'(B'B)-IJ

A, a3y tia - 1d
J'(B'B)-IJ

A* .

Therefore, the closed-form solution yields the same estimate as the
usual method for compufing the simplified estimate in the case where
B'B is nonsingular.

Since the closed-form solutidn is in effect taking advantage of
the fact that the last row and colgmn of the augmented B'B matrix are
simply ones with a zero as the last element, the amount of calculation
involved should be less tha& fqr a simplified'estimation procedure
which inverts the augmented B'ﬁ matrix without any shortcuts. To
check whether the closed-form method is actually faster, two versions
of SMPEST were compiled. The first used the usual estimation}procedure,
and the second utilized the closed-form solution. Both programs were
run with the same data sets, and the time spent in calculating the
‘estimates was recorded, To avoid a singular B'B matrix, all data
sets consisted of data with as many bands as there were classes of
material, Table 1 shows the results of the runs,

It can be seen from Table 1 that for two classes the usual
solution requires oneJthird more time to calculate estimates than
the closed-form method, The difference be;omes less for three and

tour c¢lasses, but the closed-form method maintains an advantage. The
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Table 1, Comparison of time to calculate estimates for usual and
closed-form methods of simplified estimation

Data set Time in secondsa
Classes Points Usual Closed form
2 100 0.032 0.024
2 100 0.034 0.025
3 100 0.043 0.042
4 100 0.060. 0.053

311 timings were taken on an IBM 360/65.

implication is that if one knew a priori that the number of classes
appearing within a single resolution element would never exceed
the number of data channels, the closed-form method would be a

desirable alternative to the usual simplified procedure.

C. Testing the Estimators

1. Generation of Lgé; data

To test and evaluate the different methods of proportioﬁ estimation,
it was necessary to acquire a set of mixture data for which the true
proportions were known, Since it is not possible to determine the‘
precise bositioh;of the field of view of the scanner with respect to a
fixed location on thg ground, such as the boundary between two fields,
one canﬁot determine the true proportions in a mixture when using
actual Satellite data, For this reason simulated mixture data was

used for testing.
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The subroutine MIXGEN was written to generate random observations
from a mixture distriﬁution which is n-dimensional normal with mean
AX and covariance matrix M,. The program utilizes a random number
generator from the IMSL1 and produces random vectors by the'following
process,

Step 1. Perform a Cholesky decomposition on MA to get the matrix

L such that

- L ]
M)\—LL.

Step 2. Generate n independent univariate random variates X

such that
X, v N(O, 1), i=1, ..., n.

.o Xﬁ)' v Nn(O, I).

Then X = (XlX n

2
Step 3.  Form X* = LX. Then’
*
X% 4N (0, My).
Step 4. Take Y = X# + Ay.

Then Y Nn(AA’ MA).‘

Given a proportion vector A and the meah,vectors Ai and covariance
matrices Mi’ i=1, ..., my MIXGEN forms the mixture mean according to
Equation (I.Sf and, depending on a program option,léither uses (1.6)
to compute the mixture covariance or takes the average of the Mi
as the mixture covariance. The specified number of random observa-

‘tions are then generated and stored in a file along with the true

lInternational Mathematical Statistical Libraries, Inc.
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pfoportion ﬁector A associated with each observation.

To direct the construction of a file of simulated data, the
program SIMDAT was written. . SIMDAT reads se&erai parameteré that
describe how the déta file is to be built and calls MIXGEN to create
the random observations. Two basic modes of operation are possiblé.

In one case fixed proportions are used to generate the data, and in the
other caée the proportions are randomly chosen.

In the case of fixed proportions, the user specifies the proportion
of each class in a migture and the number of observations té be generated
for that mixture. Several mixtures may be designated as belonging to
the same group of mixtures, and the group may be generated repeatedly
to produce data in a pattern that resémbles physical fields of different
materials,

In tthcase'of random‘proportions,_the user suﬁplies certain
probabilities, and the program randomly chooses classes and assigns
proportions in accordance with the given probabilities., For the pur-
pose of comparing results, the method of randomly generating the
data was taken to be that used by Horwitz et ai. (1974).

In considering the generation of ﬁixtures‘consisting of classes
of interest £o the user, called user classgs, and classes of material
that are either unknown or of no interest fo the'user, called alien
classes, it becomes necessary to extend the basic mixture model, Let
£ be the proportioﬁ of alien material in a pixel, and let the number of
user and alien classes be u and v, respectively. Then the mean and

covariance matrix of a mixture of user and alien materials are given by
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u v
A=Q-8 T MA+E DA AL

i=1 i=1

.y . (2.10)
My = (1-8 I AM +g T Aufthri-i

i=1 i=1

Generation of the random data proceeds through the following
series of steps:

1. Select at random the proport;oﬁ of alien material.

2.  Randomly choose the number of user and the number of alien
classeé. |

3. From the set of all user and alien materials piék a random
subset of user materials an& a random subset of alien materials according
to the number of classes specified in step 2.

4, Randomly generate the proportions associated with each user
class and each alien class.

5. Form the mixture mean and covariance matrix based on (2.10).

6. Generate a single random observation from the multivariate
normal distribution with mean Ah and cova?iance matrig‘MA, and store
it along with the proportions from steps 1 and 4.

7. Repeat steps 1-6 until the required pumber of observations
have been generated.

The proportion of alien material is selected according to the

distribution
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0, . x < 0;
1 - e-Yx
F(x) =a+ (1 - a - B) ——— , 0 <x<1; (2.11)
1 - e-Y :
.1, . X__>__1.

Here o is the probability that a pixel contains only user material,
P(§£ = 0); B is the probability of.only alien material, P(E = 1); and
Y is an additional parameﬁer, which must be different from O.

A random number from a uniform [O, 1]'distributiqn is generated
as the value of.F(x). If F(x) < a, then the value of é is taken to
be 0. If F(x) 21 - B, then £ ié assigned the value 1. In all
other cases « <1F(k) <1l - B, and the middle equality of (2.115'13
solved for x to yield tﬁe proportion of aiien material.

The probabilities of choosing various numbers of user and alien
classes are based on a:conéideration of the physical configuration
of fields in the scene Beingbviewed. Let 7 be the ratio of the
length of the edge of a reéolution.element on the ground to ﬁhe
length .of the side of a "typical" field. Assuming r to be less than 1,

the probabilifjes pi of various numbers of classes are determined from

) 2
p].(T) = (1 - T)
PZ(T) = 27 - 2.572
_ .2

93(1') =T

y 2
94(7) = 0.57
pi(m) = 0.251%,°
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where 5 has been taken to be the maximum number of user or alien classes
expected to be present in a single pixel. A different value of T may
be used for alien classes than is used for ﬁser classes if desired.
SIMDAT will automatically normalize the probabilities if they do not
already sum to 1,

- To randomly choose the number of classes, é uniform [O, 1] random

number, x, is generated. If x < Pp,, the number of classes is taken to

1°
be 1; if N < x 5291 f pz, the ﬁumber of classes is two, etc.

Once the numbers of user and alien classes are selected, subsets
of classes of each.typé must be picked at random. If i user (alien)
classes are to bé éhosen, and tﬁe tpta1~numbér of user (alien) classes
is m, then the number of subsets, S, to choose from is given by S = (T),
where (-) indicates the combinatorial operator. A random integer k
between 1 and S is generated to designate a particular subset., The
value of k is then used to determine a set of integers indicating the
user (alien) classes included in the subset. These are saved in a
vector for later reference.

Finally, the proportions associated with ;he u user and v alien
classes selected are detérmined by generating u + v uniform [0, 1]
random numbers. The first u numbers are ﬁormalized to sum to 1 and
taken as the user class proportions., Similarly, the last v numbers
are normalized to become the alien class proportions. All are stored

in a proportion vector along with & for calculating the mixture mean

and covariance matrix.



2. Performance criterion

Suppose that scanner responses have been recorded from N resolution
elements in the region depicted in Figure 16, Associated with the ith
resolution element is a response vector s and a vector of true propor-

tions ki. The overall true proportion vector for the entire region is

Yo2%9

YoMy

Figure L6, Layout of data for hypothetical region

Let the standard proportion estimator used to estimate Ai be
A . -
denoted bytki. An estimate of the overall proportion A may be ob-
. A '
tained by computing estimates Ai for each resolution element and

taking their overall average to yield
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ﬁ is known as the point-by-point standard estimator, and it gives':

an estimate of the proportion of the region covered by each class of
material.
The basis chosen for evaluating the accuracy of a proportion

A
estimator is its mean square error. For the standard estimator A ,

the mean square error is
MSE(§) - g||}- x)2,

where E denotes the expectétion operator, and IL H represents the

Euclidean norm. The bias associated with the estimator &i is
bi = E(&i) - Ai ,
and the average bias over the entire region is
N .
b=lzb'..
N . i
i=1

Horwitz et al. (1974) have showﬁ that
= A =02
IB1* < msey <2+ I51)%,

which suggests that for larée regions, the mean squaré‘e;ror of the
estimator should approach the squared norm of the average bias. Unless
b goes to zero as N goes to infinity, the mean square error will not
tend to zero with ihc;easing N.

In the special case where the true proportions are equal thrﬁughout’

the region one has



It follows that each of the ﬁi are identically distributed random

variables. One also has that
A=A b =b.
It is not hard to show that
Y e

When N = 1, that is, when the region is just a single resolution

element, this>reduces to
_ 2 2
Blld - all2 = eI}, - af2,

which implies that, in this case, the mean square error of A may be
estimated by estimating the mean square error of Qi’ the estimator
associated with an individual resolution elemenf.

For the simplified estimator, the development conce:ning mean
square error is cbmpletely analogous ﬁo that presented for the

standard estimator. Let li denote the simplified estimator for li.

Then

X;
1

>
]

2 |1
NM=

i

is the point-by-point simplified estimator for the overall proportion

A. Its mean square error is

MSE(T)_ “E|X- %)%,
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which has been shown to obey the bounds

5112 <use® <2+ B,

where
. N
'E:-I%.z 5
i=1 *
and
bi = E(Ai) - Ai, i=1, ..., N,

Also, in the case of equal proportions throughout the region one has
~, 1 ~ N-1 .~ 2.
MSE(R) = § MSE(X)) + ~— 1

where

3. Results

In order to obtain some idea of how much time the standard and
simplified methods take to compute proportion estimates, a timing
routine was inserted into the STDEST and SMPEST programs, The timing
routine measured actual elapsed CPU time and was positioned in the
programs so as to measure only the time spent in the subroutines that
calculate the estimates for each data point. Thus, differences in the
time spent in iniﬁialization routines and in writing the estimates to
disk were excluded from the results. The version of SMPEST used in
this study~and in the other investigations to be reported in this

sectionAemployed the usual, rather than the closed-form; method of
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simplified estimation. Table‘Z shows the results of the timing study.

It is evident from the table that the simplified method was approximately
three orders of magnitude faster in most cases, but the advantage of

the simplified method decreased with increasing numbers of classes.

Table 2. Proportion estimation times for standard and simplified
methods , '

‘ ' ' . . a
Data set Time in seconds
~Classes Points : Standard Simplified

2 100 44,05 "~ 0.032
2 100 39.96 0.034
3 100 , 41.58 0.038
3 100 46,18 0.043
4 100 ' 48,53 0.060

2a11 timings were done on an IBM 360/65.

It mﬁst be pointed out that neither program was specifically
optimized to minimize the computation time, In the case of STDEST the
use of the powerful, general-purpose quadraﬁic programming package‘
QP360 resulted in longer execution times because more computing was
being performed than was strictly necessary to solve the particular
quadratic programming pfoblem. One would expect that a quadratic
programming routine specifically tailored to the probleﬁ would execute
in substantially less time, This was in fact the case in the study
reported in Horwitz et al. (1974), but such a program to compﬁte the
standard estimator was not written for the present investigation because
the primary purpose was to examine the accuracy of proportion estimation

methods rather than to compare the speed of optimized implementations.
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F&r the first phase in cdmparing the accuracy_of the standard and
simplified estimators, a special data sef was designed to illustrate
some of the differences in the way the two estimators perform. The
~ data was 2-diménsional, and three classes of user material and three of
alien material were present, The arrangemént of user and alien class
means is shown in Figure 17, where the u's indicate'user means, and the
A's indicate alien means. All class covariance matriceé were taken to

be the diagOnal matrix diag (20 20).

40 L ‘ . oA
30

204

104 -

Figure 17. Class means of 2~dimensional test data

Three combinations of user classes were used iﬁ constructing
mixtures: 50% class 1 - 50% class 3; 25% class 1 - 75% class 3, 100%
class 3, For each combination of user classes, five mixtures were
.generated correspornding.to different.proportions of alien material.
In Figure 18 the locations of the means of the three combinations of

user classes are indicated by the letters a, b, and c¢. The numerals
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40 4-

10 T

Figute 18. Location of mixture means for 2-dimensional test data

1-9 indicate the locations of the means of the mixtures formed when
10%, 50%, or 100% of each alien material is combined with the user

~ classes, For'example, b5 designates the mixture consisting of'50%

alien class 2 and 50% user material, where the user material is the
combination 25% class 1 -.75% class 3.

For each of the fifteen mixtures, 100 data pointé were generated.
Thinking of the set of data points for each mixture as a separate -
"region,'" it must be noted that the true proportions associated with
each’poiht were not random, Rather, they were fixed and remained
constant throughout the region. This was then an instance of the special
case discussed in Section II.C.2. where all the Ai and \ are equal to
the common true proportion Vectorvl.

To estimate the mean square error of the standard estimator as-

A
sociated with an individual data point, Ellki - Allz, the quantity
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N m
T Lo & a2
i=1 =1 Y 3
was ‘calculated, where N is the number of points in the region, and j is
summed over the classes, Similarly,
1 N

m ~
3 2 T (A, -21)
N1 41 8

2

was calculated as an estimate of the mean square error of tﬁe simplified
estimator. Thus, -the mean square error being estimated was not that of
the estimator § (or §3 formed by averaging the proportion estimates
over the region, but rather the mean square error of ﬁi(ig), the
estimator of the.proportion vector associated with an individual data
point,

The results of estimating the propar tions for the fifteen mixtures
by using the standard and simplified estimatoré ére given in Table 3,
By choosing a well-structured pattern of class means and fixing the
propdrtions, it was possible to‘build biases into the data in favor of
one estimafor over the other in certain cases. In all these cases
except b4, the favoréd estimator showed ailower mean square error.
Sometimes the differences were considerable as in case a6 wﬁen the mean
square errér for the standard estimator was ‘eight times that for the
simplified estimator and in case c9 when the error for the simplified
estimator was clecven timee that for the standard estimator.

Two other observations afe iﬁteresting to note concerning the
results, First, in cases al-a3, there was a decided increase in the
advantage enjoyed by the simplified estimator. It appears that the

simplified method tended to compensate for variations in the randomly



Table 3. Estimated proportions and mean squafe errors of standard and simplified estimators for
2-dimensional test data

- Estimated proportions . ' Mean square error
Mixture : . Standard . : Simplified Standard Simplified Std/smp
al 0.473 0.076 0.451 0.470 0.077 0.453 0.0945 - 0,0845 1.118
a2 0.454 0o . 0.546 0.475 0 0.525 0.0269 0.0155 1.735
a3 0.499 0 10.501 0.500 0. 0.500 0.0471- 0.0057 8.263
ab(+)2 0.252 0 0.748 0.414 - O 0.586 0.1715 0.0213 .8.025
a9(+) 0.086 0 0.914 0.343 0 0.657 0.3645 0.0561 6.497
b4(-)b 0.229 0.058 0.713 .0.268 0.059 0.673 0.0800 0.0712 1.124
b5(-) 0.250 0 0.750 0.364 0 0.636 0.0392 0.0395 0.992
b6 (-) 0.276 0 0.724 0.423 0 0.577 - 0.0457 0.0645 0.709

. b3 0.501 0 0.499 0.501 0 0.499 . 0.1713 0.1314 1.304
b9 (+) 0.069 0 0.931 0.328 0 0.672 0.0808 0.0205 3.941
c7(-) 0.053 0.031 0.916 0.100 0.057 0.843 0.0443 0.0821 0.536
c8(-) .0.073 0 0.927 0.253 0 0.747 0.0337 0.1441. 0.234
c9(-) 0.056 0 0.944  0.324 0 0.676 0.0191 ~0.2163 0.088
c3 . 0.478 0 -0.522 . 0.493 0 0.507 0.5054 0.4916 1,028
c6(-) "0.249 0 0.751 0.411 0 0.589 0.1704 0.3446 0.494
Average : _ A , 0.1263 0.1193

a(+) — Built-in bias toward simplified estimator.

b(-) — Built-in bias toward standard estimator.

9
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generated data points by always projecting toward the same point u,
to find fhe pointvon tﬁe sign;ture simplex closest to the data point.

Secondly, in every case except those biased foward the standard
estimator,‘the simplified estimator performed better. The overall mean
square error for all.fifteeg mixtures was also somewhat less for the
simplifiéd estimator, It was not anticipated that the overall set of
data would favor one estimator more than ghe other, but the éimplified
estimator clearly showed an advantage. |

In the second phase of testing, a data file was created to simulatel
éctual LANDSAT data. The classeé used and theif means and covariances
were extracted from LANDSAT data in the course of an earlier study.
Table‘alpresents these statistics for each of the classes. Two
materials, water and concrete, were taken to be alien classes, and the
other five classes were designated as user classes. It is noteworthy
that the signatures for the alien materials are quite dissimilar frém
those of the user materials; hence, one would expect the presence of
a large amount of alien material in a mixture to significantly distort
the response values for'points aséociated with the mixture,

Program SIMDAT was used with randomly chosen proportions to generate
a file of 2000 data points consisting of five lines with 400 points
per line. The,pérameters»used in randogly generating the observations

were as follows:

Y. = 1.0 parameter of distribution function df (3
o = 0,80 probability of only user material
B = 0.05 probability of only alien material

i

-1/7 ratio of side of resolution element to field edge.
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Table 4, Class statistics for.simulated LANDSAT dgta

Class Mean ‘ Covariance matrix
Forest ' 27.99 1.99 1.32 1.24 0.0
16.88 1.32 2.22 0.82 - 0.37
61.22 1.24 0.82 13.47 7.16
37.02 0.0 - 0.37 7.16 6.25
Urban 1 37.60 9.30 11.84  4.88 0.08
30.25 11.84 19.01 6.79 - 0.34
53.15 | 4.88 6.79 17.72 8.94
27.58 0.08 - 0.34 8.9 6.71
Urban 2 38, 38 5.57 6.56 1.52 - 0.64
31.88 6.56 10.43 2.43 - 0.80
43,20 1.52 2.43 12.82 6.77
20,40 - 0.64 - 0,80 6.77 5.06
Agriculture 33.11 2.79 . 2.59 1.71 0.41
23,22 2.59 4,41 0.66 - 0.63
61.49 - 1.71 0.66 15.52 9.11
34,56 0.41 - 0.63 9.11 7.40
. Bare soil 47.56 19.89 . 29.82 16.51 C 4,34
52.07 29,82 55.20 28.34 7.02
61.19 16.51 28,34 31.47 12.57
28.04 4.34 7.02 12.57 7.29
Concrete 64.52 18.58 22.59 10.14 2,89
67.19 22,59 33.18 14.71 . 4.69
67.73 10.14 14.71 11.29 3.83
29.79 2.89 4,69 3.83  3.28
Watex 31,50 3.65 2.47 2.13 0.74
20,37 2.47 3.72 - 2.87 1.41
18.71 2.13 2,87 13.84 7.55

6.22 0.74 ‘ 1.41 . 7.55 5.20

Some characteristics of the data as it was actually generated are
shown in Table 5.
This test was designed to investigate how the efficiency of the

standard and simplified estimators compared for various sized regionms.
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Table 5, Summary of simulated LANDSAT data

Average proportion of alien material 0.1165

Average user class proportions

Forest : , 0.2027
Urban 1 : 0.1924
Urban 2 i - 0.1938
Agriculture ‘ . 0.2111
Bare soil _ ' 0.2000
Average alien class proportions . . , :
Concrete A . 0.4774

Water . : 0.5225

Number of points with various numbers of user
and alien classes present

All user : , 1609 o
" All alien : 102

1 user . . 1436~

2 user 492

3 user o S : ‘ 42

4 user _ : _ 25

5 user : 7

1 alien . 1519,

2

alien : 481

Thﬁs, the mean square error of the pdint-by-point standar& estﬁmator,‘
MSE(&), and the mean square error of the point-by-point simplified
estimator, MSE(?B, were the criteria of interest. |

Regions of size 1,'10; 50, 200, and 300 were selected in the
following manner. Let N be the‘number of points per region. An
initial regioﬁ was selected by randomly picking a starting point befween
1 and 401-N aﬁd taking N consecutive ﬁoints from line 1. A second
region was similariy selected from line 2 by picking a random starting
point and taking N points. Five regions, one from each line, were
,se}ected in all for each different region size. For every rggion

selected, STDEST and SMPEST were run to obtain the estimates % and i:
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For both estimators an overall estimate of mean square error was
derived by averaging the mean square errors over the.five independent
regions for each size of region.

Figﬁre 19 displays the results . of the test, and Table 6 presents
the numerical values, It is evident that the mean square e;ror'drops
rapidly with increasing reglon size. and seems to approach a limiting
value of about 0.04 in both cases. The theory'discussed in the previous
section indicates that this limiting value is the squared norm of the

average bias over a region.

Table 6, Mean square error of standard and simplified estlmators for
simulated LANDSAT data

Number of points in region

) 10 50 200 300
Standard 0.6038 0.0866 0.0363 0.0392  0.0376
Simplified . 0.8843 - 0.1334 ~ 0.0572 0.0384 0.0398

¥t is difficult to know how much weight to attribute to the results
presented in Table 3 because of the artificial nature of the data set.
One conclusion that seems to be clear, however, is that the geometric
relationship of alien signatures to user signatures in tﬁe plane of the
signaturé simplex can have a strong biasing effect on the results.
This was especially evident 'in cases a6 and a9, which favored the
simplified estimator, and cases c8 and c9, which favored the standérd

estimator. Since in some cases this bias gives a decided advantage to



Figure 19. Mean square error versus region size for standard and simplified estimators
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theAsimplified estimator,:it is certainly possible that the simplified
estimator can outperform the standard estimator under the right condi-
tions.

A second important point about the siﬁplified estimator is the
compensating effgct of projecting toward a fixed point as noted in the

previous éection. It appears that this reduces the variance component
of the mean sﬁuare error, which helps to explain why the simplified
estimator performs as well as it does when it clearly has a larger

bias than the standard gstimator. This is illustrated quite well in
case b5 of Table 3 where the proportion estimates of the simplified -
estimator are decidedly inferior (the standard proportion estimates

are exactly correct in this case), yet the mean Square.errors are nearly
identical. 1In choosing between the two estimators, the relative im-
portance of the two components of mean square error, variance and
squared bias, should probably be considered.

The results of the second phase of testing when simulated LANDSAT
data was used seem to conform well to what one would expect from intui-
tion and a consideration of the theory. 1In Figure 19 both estimators'
fean square errors followia'rather smooth descent to a similar, if not
a common limiting va;ué. For regions of size 50 the mean square error
of the simplified estimator is 58% greater than that of the standard
estimator, and fof regions of 100vpoints or larger, the difference
becomes negligible.

it is difficult to judge thé relative merits of the estiﬁators
because any such evaluation must take cost into account, and the .

implementation of the standard estimator used for this study did not
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lead to reasonable cost figures, The timing results of Table 2 suggést
that with the standard estimator one would be paying a 1000-fold
pénalty in execution time for a 58% gain in efficiency with regions

of 50 points using the implementatioﬁs of the present study. If the
timings of the optimized implementations reported by Horwitz et al,
(1974) are used instead, one has a 50% cost increase for a 58% ef-
ficiency gain in using the standard estimator with regions of sizé 50.
For very small regions the additional cost of the standard estimator
may well be worth the higher efficiency, but for large regions of 106
points or more, it seems likely that the slight increase in efficiency
of the standard estimator would not be worth the added cost in most
cases, There would be some region size in between where the efficiency
advantage of the standard estimator would ‘be just offset by the extra
'cémputing time required. The precise region size would depend on the

relative costs of estimation inaccuracy and computer time.
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III. PROPORTION ESTIMATION WITH AVERAGING

A. Data Averaging Procedure

Consider again the region shown in Figure 16, An alternate way

to estimate the overall proportion A is to first average the N response

vectors to obtain

™M=

Y5 o

=2, |

y:
i=1

and then compute the standard estimator based on the single data

vector»;. "This estimator may be denoted by A and is referred to as

the standard estimator with data averaging as opposed to the point-by-
point standard estimator defined in Section II.C.2,

Data averaging is applicaﬁle in situations where one wants to know
jthe proportion of an entire area covered by each of several differentA
materials. For instance, one might wish to know the total amount of
oats planted in a certain section of a county in Iowa. There is a
danger in averaging over too large an area, since the mixtﬁre theory
employe& in tHe estimation process allows for at most n + 1 materials
to be included in a mixture, where n is the number of scanner
channgls.

Data avefaging is not applicable in the case where one needs to
estimate the proportions of mate;ials associated with individual resolu-
tion elements, as would be the case if one were mapbing the boundary
of a'lake.

Results concerning the mean square error of the standard estimator

with data averaging have been produced similar to those mentioned
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earlier for the point-by-point estimator. Horwitert al. (1974) show

that
: A A g
MSE(X) = E||A - X|[? 55—7 ,

where T is the maximum trace of the covariance matrices Mi’ 1<i<m,
and P is a constant independent of N. This implies that the mean
square error always goes to zero as,N becomes large when data averaging

is performed.

The simplified estimator with data averaging is defined as the
simplified estimator for A based on the average data vector ;. Let
this estimator be denoted by A, The following bound has been estab-

lished for the mean square error of 2.

usE()) = E|X - X||? < 2T,

where m is the number of classes, and B and T are as defined above.
Again 1t can be observed that in the case of data averaging, the mean

square of the estimator goes to zero .as N goes to infinity.

B. Estimation Results under Averaging

To study the effect of data averaging on proportion estimation,
the programs STDEST and SMPEST were modified to include an option which
allows for bypassing the computation of proportion estimates until a11 
data points in a region have been réad and aﬁeraged together, The
.calculation.of proportion estimates. and mean .square errer: estimates:.

‘s carried out as if the entire region consisted of a single;
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average data point,

-The data file of simulation LANDSAT data discussed in Section
II.C.3 was processed exactly as before except that data averaging was .
performed. The results are tabulated in TaBle 7 and presented in

graphic form in Figure 20,

Table 7. Mean square errors for proportion estimation with data

averaging
Number of points in region
1 10 50 200 300
Standard, - ave. 0.6038 0.2100 0.1419 0.1036 0.1097

Simplified, ave. 0.8843 ° 0.1987 0.1170 °~ 0.1127 0.1376

The general shape of the plot in Figure 20 is similar to that
obtained without averaging, but it does not follow as nice and
;egular a path. The theory predicts decreasing mean square error with
increasing‘region size, but the results exhibi; a tendency for the de-
_creaée in mean square error to tail off at the larger regionms.

It is hypothesized that this phenomenon is due to the influence
of alien material, which was spectrally quite distinct from the user
classes. As more points are included in the region, the true proportion
vector will tend toward the vector with all proportions equal, since
user classes were selected with equgl probability in generating the
data. This vector of équal proportions is associated with the point at

the center of the signature simplex, but the influence of alien material

tends to draw the average data point outside the simplex, resulting in



Figure 20. Mean square error versus region size for standard and simplified estimators with data
averaging : :
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large estimation errors.

For instance, with regions of 300 points, the.mean square error
when the average data'point.happened to fall within the simplex was
1/6 to 1/8 of thg mean square error incurred when the averageAdata
point was forced outside the.simplex due to the influence of alién
material. This can be seen in Table 8 where the average data point
fell within the simplex for region 5 and outside it in the other
cases; Unfortunately, time did not allow retesting the estimators with
the inclusion of an alien object test in the programs which would ignore
alien points}in the data averaging procedure to attempt to verify the
present conjecture. It does seem, however, that an alien object test
should be included in any operational program émploying data averaging.

The combined results for the standard and simplified estimators

RIS oo

with and,withqutmdgtaAaveréginégafe.ai3p£;yedﬁin_Figur;M2ii.chéor;ing
to the,theory? there shohld be a point where the curves for estimation
with data averaging drdp below the corresponding curves for egtimation
without data averaging. Because of the slighf distufbance in fhe tails
of the data averaging curves, it is not possible to predict from the
results where the crossovér point would occur, It appears that it
might be necessary to take very large regions in order to observe the

crossover,



Table 8. Effect of alien material on mean square errors under data averaging with regions of 300

points
Standard . ’ . Sinplified
Region MSE : Proportions MSE : Proportions
1 0.1025‘ 0.10 0.40 0.0 0.34 0.16 0.1254 0.07 0.40 0.0 0.38 0.15
2 - 0.1305 0.07 0.43 '0.0 0.32 0.17 0.1728 0,02 0.44 0.0 0.39 0.15
3 0.1804 0,03 0.38 0.,0- 0.42 0.17 0.2159 0.0 0.39 0.0 0.45 0.15
4 - 0,1116 0.04 0.42 0.0 °~ 0.37 0.17 0.1506 0.0 0.42 0.0 0.43 0.14
5 0.0234 0.09 0.28 0.20 0.25 0.17 0.0235 0.09 0.24 0.20 0.25 0.17

0.1097 ' -0.1376

LL



Figure 21. Mean square error versus region size for standard and simplified estimators with and
without data averaging o . :
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IV. EQUAL COVARIANCE ASSUMPTION

A, Importance of Equal Covariances

To understand why the assumption of equal class covariance matrices
is crucial in calculating proportion estimates, one needs to review
the proportion estimation procedure. The mixture model assumes that

observations are taken from a multivariate normal distribution with

mean
m
= I
A= B MAy
i=1
and.covariance matrix
m

The maximum likelihood’ procedure for estimating A leads to minimizing
. -1 -
FA) = 1a[My [+ (v - )", (v - &), (4.1)

subject to the added constraints
m ,
T A =1, >0,i=1, ..., m,
3 ]- l
i=1

which are imposed to insure that the estimate is a proportion vector.,

Equation (4.1)'expands into
F(A) = 1n|x1M1 + M, + AmMmlA
-1
- ' -
+ (y - AA) (AlM1 + ... + AmMm) (y ‘ ARr),

where A is the matrix of mean vectors. In the general case without

equal covariances, the expression for F(A) does not lend itself to any
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convenient simplification. . No practical computational method has beén
found to minimize F(A) with réspect to A in this general case,

In the special case where Mi =‘M, i=1, ..., m, the first term
of (4.1) becomes a constant and may be dropped, and the second term

reduces‘td
(v - AN '™ Ly - an).

Under the transformation (2.3) the problem becomes the quadratic
programming problem
m

Z such'that £ A, =1, A, >0,
j=1 1 1=

minimize G(A) = ||z - B, ||

i=1, ..., m,

whose solution yields the standard proportion estimate. Thus,
under the present mixtures model, the equal covariance assumption

is necessary to be able to employ a feasible computational procedure.

B. A Test for Equal Covariances

Since the equal covariance assumption is so vital to obtaining
proportion estimates, and since iﬁs validity has sometimes been suspect,
it was decided to subject the assumption to a statistical test using |
actual LANDSAT data. The LANDSAT frame chosen was taken on August 26,
1973 over central Iowa. A l2-section site in the scene was Selectéd
as the study area. It is an agricultural area of predominantly row
crops with ﬁo urban centers or forest cover and a negligible amount

of surface water.
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Four crop types were chosen as the classes of interést: corn,
soybeans, oats, and alfalfa, Using ground truth information, fields
of each crop were selected from the 12-section-site. An attempt
was made to pick fields for each ¢rop that were well-scattered through;
out the scene, and field center pixels.were used as much as possible,
Line -and column coordinates in the LANDSAT data were determined for
each field withAthe help of a low-altitude aerial photo of the scene,
A computer program was then used to read the data values associated
with each field and compute the sample means and covariance matrices.
These statistics along with thé sample sizes are given in Table 9,

The null hypothesis to be tested was that the covariance matrices

for all four ciasses were equal., That is, the hypothesis
H: Z =% =ZX =212
was tested against the alternative hypothesis -

N , < . - .
Hy: Ei # ;j 1<i#j<é4.

The test used (Morrisonm, 1967, p. 152) requires‘that the populétions Se
normally dist;ibutéd and uses a generalized iikeiihood-ratio criterion,

Let m and n be the numbgr of classes and the number of dimensions,
respectively. Let Si denote the sample covariance matrix fér class i,
and let Ni denote thevsampie size for class if Then

(N, - 1Y) Si

(75
I
™~ B

i=1 ©®

z (N;-1)
. 1

i=1

is the pooled sample covariance matrix. Let
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Table 9. Means and covariance matrices extracted from LANDSAT data
for four crops

. Data
Class points Mean Covariance matrix
Corn . 167 23.0 0.77 1 0.23 - 0.85  0.57
- 14,7 0.23 0.70 0. 24 0.05
38.9 0.85 0.24  13.25 7.29
23.4 0.57 0.05 7.29 5.23
Soybeans 159 23.5 1.07  0.15 1.07 0.22
13.9 0.15 0.50 0.08 - 0.23
65.1 1.07 0.08 10.42 2.55
41.1 0.22 - 0.23 2.55 2.46
Oats 127 26,2 1.57 1.44 0.70 - 0.42
‘ ‘ 19.8 1.44 4,72 - 7.70 - 6.08
40.4 0.70 - 7.70 47.35 °29.87
21.6 - 0.42 - 6.08 29,87 20,44
‘Alfalfa 85 26,4 4,44 7,11 - 2,50 - 3.13
' 18.2 7.11 ' 15.89 - 9,81 - 8.61
49.8° - 2.50. - 9.8l 35.30 22.26
28.3 - 3.13 - 8.61 22,26 16.42
m m .
M= £ (N -1) 1a|S| - £ (N, - 1) In|s|
i=1 , =1 *
and
) ‘ 2 , m - . :
cloy.2+3n-1 % L. 1 y.
6+ Dm-D o, ™ - D m
= £ (N, - 1)
: 17
i=1

The test statistic Mc! is approximately distributed as chi-squared

' with n(n + 1)(m - 1)/2 degrees of freedom for large (> 20) éamples.-
A small pfogram was written to calculate the test statistic, and

it was applied to thé four sample covariance matrices extracte& from

LANDSAT data, The value of the test statistic came out to be 729.3

H .

with 30 degrees of freedom, which was highly significant at the smallest
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q.levél (0.005) :given in.the table used for the test. Thus; the

~ hypothesis of equal covariance matrices was firmly rejected.

Lobking at the matrices in Table 9, it is evident that the

- variances associated with oat and alfalfa fields are much larger than
those of ;orn aﬁd soybeans,. This is probably due in part.fo the fact
that the oat and alfalfavfields tend to be smaller énd'more irregular
in shape, making it more difficult'to obtain pixels that are uncon-

- taminated by othei materials. Since the corn And soybean fields did

~not incur this difficulty, it was decided td apply the test to only
these classes to see if the large variances for oats énd alfalfa

were the cause of rejecting Ho. This time the null hypothesis

HO: 21 ={Z§

was tested against

’HA:"Zi_# 22.

Tﬁeﬁtest statistic was MC"1 = 81.1 with 10 degrees of freedom,
which Qas gignificantlat’the 0.005 lével, so the equal covariance
hypothesis was again rejected; It would appear that even for similar
types of material (in this case, two agricultural crops) sampled froml
relatively large,vhomogeneous areas, the class covarianée matrices are

in fact statistically dissimilar.
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C. Effect of Unequal Covariances

The results of the previous séction probably come as no surprise
to anyone who has worked much with LANDSAT data. In actuality covariance
matrices for different classes are simply not equal., The key question
then becomes whether or not it makes any difference that the covariances
are unequal when one computes proportion estimates as though the matrices
were all equal to the average covariance matrix,

In the first phase of examining this queétion, an artificial data
set was constructed similar to the one described in Section II.C.3.
There were three user classes, three alien classes, and two bands as
depicted in Figure 22. The combinations of user classes employed were:
80% user class 1 - 20% user class 3,‘50% user class 1 - 50% user class 3,
and 20% user class 1- 80% user class 3, For each combination of user
classes, four different mixtures were created by adding: no alien
material, 50% alien class 1, 50% alien class 2, and 50% alien class 3.
The small letters in Figure 22 indicate the locations .of the means of
the various combinations of user clgsses, and the Ui and Ai indicate
the 1ocati6ns of the means of the user and alien classes, respectively.
A certain mixture will be denoted by the gmall letter for the user
combination and the number of the alien class. Fof'example, a3 denotes
the combination of 80% user class 1 - 20% user class 3 in a 50-50
mixture with alien class 3.

Five data files were generated based on the classes shown in
Figure 22. For the first data file all the covariance matrices, user

and alien, were taken to be the diagonal matrix diag (40 40).
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Figure 22, Arrangemeht of user and alien class means for unequal
covariance test data

Program SIMDAT then generated 30 random observations from each of the

twelve mixtures defined by the different combinations of user and alien

classes., Thus, all the data in file 1 was generated using equél

covariaﬁce matrices,

The other files were constructed similarly to file 1 except that
in these cases the userbcévariance matrices were taken to be unequal
(Table 10), Since the proportiqn associated with user class 2 was O
in every case, its covariance ﬁatrix remained the same throughout, as
did those of the alien classes. To get a rough idea of how dissimilar
the user covafiance matrices were, the chi-squared statistic for testing
equal covariances was calculated as though a hypothetical sample of 50
observations from each ﬁser class had been drawn and yielded sample
covariance matrices equal to those in Table 10, The values of the test

statistic associated with each of the last four files indicate that
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Table 10. Test statistic for equal covariances test using covariance
matrices associated with files of artificial data

File ' 4 Covariance matrices M.C-1

1 40 0 40 0 40 ro) 0
0.40/) . 0 40 ' 0 40

2 25° 0y . 40 0 55 o) ~ 14.56%
0 25 0 40 {0 55

3 (5 o\ 40 © 75 0\ . 139,39%
0 5] 0 40 0 .75 ~

4 40 0 ' 40 o) 40 30 30,41%%
0 40 0 40 30 40 -

5 (40 o) 140 0 40 -30 30.41%%
0 40 : 0 40 -30 40

*Significant at .025 level.

**Significant at .01 level,

the covarignce matrices used to generate these files were statistically
dissimilar in terms'of'this hypothetical test.

Each data file was processed by STDEST an& SMPEST, énd estimates
of the mean square error were obtained. The results are recorded in
Table 11, For the most part the results are as expected. For files
2 and 3 the errors are smaller than for file 1 in the fop third of the
table where a larger proportion is associated with user class 1, which
has tﬂu smaller variances, and the errors are larger in the bottom'
third of the table where the covariance matrix of user class 3 is
weighted more heavily. |

The results for files'a.énd 5 are somewhat more interesting. For

user class 3 there was a large positive correlation between the -bands



Table 11. Mean square errors with files of equal and uneqﬁallcovariance matrices using fixed

' proportions :
. Standard estimator Simplified estimator

“Case File: 1 2 3 4 5 1 2 - 3 4 5
a 0.1660 0.1459 0.0983 0.1635 0.1823 '0.1869 0.1619 0.1077 0.1970 0.1913
-al 0.0503 0,0468 0.0394 0.0471 0.0550 0.0587 0.0563 0.0547 0.,0570 0.0596
a2. 0.1475 0.1361 0.1209 0.1404 0.1551 0.1263 0.1221 0.1174 0.1254 0.1292
- a3 0.2603 0.2456 0.2418 0.2528 0.2689 0.1955 0.1922 0.1929 0.1935 0.1985
b 0.1541 0.1541 0.1541 0.1385 0.1558 0.1421 0.1421 0.1421 0.1279 0.1441
bl 0.1011 0.1011 0.1011 0.0948 0.1062 0.0323 0.0323 0.0323 0.0301 0.0340
b2 0.0573 0.0573 0.0573 0.0508 0.0686 0.0237 0.0237 0.0237 0.0243 0.0265
b3 0.1290 0.1290 0.1290 0.1193 0.1429 0.0396 .0.0396 0.0396 0.0345 0.0468
c 0.1584 0.1822 0.2190 0.1497 0.1358 0.1736 0.1997 0.2337 0.1844 0,1374
cl 0.3475 0.3591 0,3765 0.3019 0.3790  0.2293 0.2324 0.2385 0.2204 0.2355
c2 0.0611 0.0668 0,0736 0.0549 0.0706 0.0842 0.0848 0.0891 0.0847 0.0872
c3- . 0.0697 0.0738 0.0821 0.0520 0.0827 0.0550 0.0579 0.0629 0.0465 0.0594

Average 0.1419 0,1415 0.1411 0.1305 .0.1502 0.1123 0.1121 0.1112 0.1105 0.1125

88
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inlfile 4 and a large negative correlation in file 5., For the
standard estimator the errors for file 4 are consistently gmaller than
for file 1, presumably Becaﬁse more of the vafiatipn in the dat# occurs
perpendicular to thé ﬁlU3 line than parallel té it., Just the opposite
“happens with file 5, where the errors are larger than those of file 1
except in case c., 1In case ¢ the estimated probortion of class 2 is
lower for file 5 than for file 1, which may account for the lower mean
square error, |

For the simplified estimator the results are not quite so consistent.
In most cases the errors associatéd with file 4 are lower than.for the
equal covariance case, but in a few instances they are slightly higher.
Apparently, fhe simplified estimator receives»less bénefit from the
large positive correlation than the standard estimator. For file 5.
thg errors:are.again consistently higher than for file 1 except in
‘case c. : ' o . " |

Fér the second phase of testing the effeét of unequal covariance
matrices, the means and covariance matrices extracted from LANDSAT
data and presented in Table 9 were used to coﬁstruct two simulated
data filgs. The first filg was constructed taking the average of the
four covariance matrices as the common covariance matrix for each
~class. The second file was constructed using the different covariance
matrices associated with each of the classes.. Each file contéined 300
points, and was generated by SIMDAT with fandom proportions using the
parameters: Y = 1.0, @ = 1.0, B = 0.0, and T = 1/7.

Both data sets were processed by'STDEST and SMPEST with and without

data averaging. To examine the effect of region size, regions of 10 and
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100 points were used. Overall mean square error estimates were obtained
by averaging over five regions when the region size was 10 and over
three regions when the region size was 100. The results.are presented

in Table 12 and plotted in Figures 23 and 24.

Table 12. Effect of unequal covariances on mean square errors of standard
and simplified estimators using .simulated LANDSAT data

Data averaging' - No averaging

Region Equal Unequal Unequal Equal Unegual Unegqual
Estimator size equal . equal
Standard 10 0.1004 0.1191 1.19 0.0352 0.0288 0.82

100 0.0451 0.0404. 0.90 0.0100 0.0125. 1.25

Simplified 10 - 0.1506 0.1526 1.0l  0.0576 0.0479  0.83
100  0.0451 0.0404  0.90  0.0123 0.0095 . 0.77

No clear patterns-seem to show up in the results. In some cases
the error is laréer wiph unequal covariance hatrices than with equal
ones, and iﬁ otherlcasés‘it is smalle:. This inconsistency‘happens
both with and without‘data averaging, for thestan&afdand for the
simplified estimator, and for small regions and large ones. If one looks
at the regions, .it is evident that thetrandom variation between
regions of the.same teét case is much greater than differences befween
corresponding equal and unequal covariance cases, If there is any
effect due to,unequ#l covariances, it does not appear to be significant
. enough to show through the sampling error.

On the bacie of the resnlts of the uneqpal covariance tests, it
appears that the proportion estimation procedure is fairly robust with
regard to the.equal covariance assumption. If one estimates proportions

as though all the covariance matrices were equal to a common average



Figure 23, Effect of unequal covariances w1th 81mu1ated 'LANDSAT data
: using standard estimator

Figure 24, Effect of unequal covariances with simulated LANDSAT data
using simplified estimator
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matrix, it does not seem to matter ﬁuch if the actual data came from
normal distributions with unequal covariancé'matrices.

The feéults of the-fir;t phase of tests using fixed proportions
show that a high degree of interband correlation can have an effect on'
the accuracy of the estimates, depending on the geometry of the signature
simplex. However, if one merely redistributes‘the.variation by in-
creasing the variances associated with one claés and decreasing the
variances of another class, the.errors seem to'éverage out, so that
overall there is no net effect.

The only conclusion that can be drawn from the tests using simulated
LANDSAT data with random propdrtions is that eQen when the covariance
matrices are significantly different, thé accuracy of the proportion

estimates does not appear to be measurably affected.
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V. USE OF L1 NORM IN CLASSIFICATION

A, Motivation for Using L1 Norm

1. Normalitv assumption

Throughout all of the dévelopments of the previous chapters, the
assumption was made fhat.the spectral responses for each type of
" material were normally distributed. The probéble reasons that this
asgumption is usually made include tradition, and mathematical tracta-
bility. By taking the élasses to follow normal distributions, one can
completely specify the density function for'each class by estimating
only the firsg- and second-order moments from training data. Also,
normality leads to a reasonable form for the likelihood function, ﬁhich
can be evaluated By straightforward'computation.

If one examines in detail multiépectral data actually takén from
natugaléscgnes,‘one will most likely observe various départures from
strict normaliﬁy, such as outliers or pronounced peakednéss or flat-
neés,in histograms of the &ata. Figure 15 is a histogram of the
responses obtained by LANDSAT over a soybean field in central Iowa.
The symmetry of the distribution ic apparent; but the peakedness at
the center suggests possible nonnormality. Histograms for other
fields in the same LANDSAT image were found to exhibit a variéty of
shapes, but thg general shape shown in Figure 25 is typical of many of
the histograms ..

Some researchers have subjected the normality assumption to
statistical examination. Crane et al. (1972) uséd data f;oﬁ airborne

multispectral scanners flown over two different agricultural sites,
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Figure 25. Histogram of LANDSAT.data from soybean field
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They-aﬁplied a chi-squared goodness-of-fit tést for normality on the
data from each of 54 fields; where each fieia Céntained but one crop,
and boundary'pixels were excluded. They looked at both the original
spectral chgnnéls and cﬁannels transformed by a principal componeﬁts
transformation.

It waé.fqund that none of the fields examined tested to be multi-
.variate normal at the 1% significance ievel. All Héd at least one non-
normal spectral cﬁannel. Ove;all, 65% of the untransformed chapnels
tested nonnormal. Their conclusion &as thaf_multispeétral data of the
type they studied was definitely nonnormal in cﬁafagter.

GivenAthat the normal model does not trdly feflect fhe real data,
two questions arise:

Can another ﬁodel be uséd instead of the normal model?

If s0, how doeé'a.classifier based on this alternate model perform
compéred to'élleast sduares classifier?

The remaindef of the chapter considers these two questions in more

detail.

2.  Basis for using T norm

In Chapter I the Bayes discriminant‘procedure was shown to be

the procedure that assigns an unknown observation x to class k if

1’ s e ey m,

m : : ] m K
Z qup(x|m) € (k]i) £ L qpx|m) € (§l1), ]
i=1 - i=1

i#k i#j
Also, if the costs of misclassification are equal, and the prior

probabilities are equal, the procedure reduces to choosing class

k such that
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p(xlnk) ZP(x‘nj), j = 1, esey MMy,

which yields the maximum likelihood solution.
Under the assumption that the classes are normally distributed

with means My and covariance matrices Ei, the likelihood function

is
( | ) 1 -% (X- p'i)' z;_l(x-p‘i)
P X T, = - ' e
and '
1n(P(xlﬂi)) s % 1n(2m) T % 1n|2i1 - % (x - Pi);igl(x - pi),

i=1, ..., m,

Finding the maximum likelihood solution involves evaluating m- quadratic

forms of the type
Q= (x - W' E - W,

1f % is poéipive definite, it méy be decomposed as
£= 1L,

where L is lower triangular, and the observation vectors may be trans-

formed by .
-1 :
y =L "(x-p.
Then the quadratic form reduces to
o2

Q=y'y= Ty, .
i=1



98

Let the Lp norm of a vector be defined as

n .
(= lyilp)llp .

by {1, = Z
Then
IR = T Iy, P,
Py 0

and it follows that

Thué, Q is simply fhe squared Euclidean, or L2, norm of the vector y.
There is no essential reason why norms other than the Euclidean norm
cannot be considered in connection with the classification probiem.
Choices for p besides p = 2 lead to estimation procedures having
different (and, in‘some cases, superior) properties than procedures
based on the L, norm. In this chapter attention will be focused on

the L, norm as an alterndtive to least squares.

1
One of the problems that often arises in éssuming that the
errors in qne‘s data ére normally distributed is tﬁe presence of
extreme data points, or outliers, If the errors were truly normal,
there would almost never be any out1iers, yet outlieré can and do
occur in real'data. It has been shown that the presence'of extreme
points in the data can seriously degrade the performance of an
estimator based on the L2 norm. |

-On the other hénd, the,Ll norm is muqh less sensi;ibe to out-

liers in the data. The L; norm, when used to select the point whose

distance from the collection of points in a data set is a minimum,
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will pick the median of the data points, it ignores how far an extreme
point is from the center of the data and considers only on which side
of tﬁe center it falls. |

Consider two simple examples in one dimension. Let the data»
points be represented by X i=1, ..., 4. The problem is to find

the point p such that the Hyll is minimized, where Y; =¥

i~ P

Let the location of the L, estimate and the L, estimate be designated

2 1
by "*" and " |" respectively. The sample data points and the two

estimates are depicted below.

As a second example suppose another point, x., is added to the

5
data set., The revised set of points and the new L1 and L2 estimates
now become as shown.
. . .« * .
X
* *2 *3 *4 5

It is evident that the addition of the extreme point x. has affeclLed the

5

L2 estimate mﬁch more drastically than it has affected the L1 estimate.
Had Xg been placed even farther to the right, the L2 estimate would
have shifted more in that direction, while fhe L1 gstimate,would have
remained at Xq.

To see ho& the L1 and L2 norms could give rise‘to different results

in a classification situation, consider the following example with two

classes and three bands. For simplicity assume the covariance matrices
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are both equal to the identity matrix and let the means be

20 - /40
50 35

Now suppose the response vector

0
" x =| 30

30

was observed, where the response in band 1 was not recorded properly
for some reason. The goal is to classify the observation x into

either class 1 or 2 depending on which class is "closest" to x.

Using the L, florm one finds
- w112 = G - 1) "k - w) = 1200
Ky llp 1 Ky
I = w2 = (x - n )'(x - ) = 1650
T gl T Xy 2) = 090
Using the Ll,norm one has

. : "3
.A HX :_ P'l Hl = 2 Ixj = pfljl = 60

™MW

e = wylly = B lxg =y 1= so.

j=1

Thus, by taking the L, norm as the measure of distance, one would

2
classify‘x into class 1, but using the L1 norm would result in x

being'classified into class 2, It can be seen that the anomalous

respdnse in band 1 caused x to be closer to By in terms of the L2
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measure, but the L, norm was not affected as much by the one extreme

1

value in the response. This of course does not mean thaE the Llfnbrm
"will always ;esultviﬁ a better classification than the L2 nofm, but

it does illusﬁrate that the L; norm is less sensitive to extreme points
in the data,

“As an alternative to the normal model and L2 norm, Chhikara and
0Odell (1973b) proposed what thei termed norﬁed exponential density
functions. The general form of an r-normed exponential density function
is

l (r) 'CHY ”i
- £ (y) = Kre )

where
@
r.
K_ = (2 f R T
0

Here n is the dimension of y,and ¢ is a positive constant determined
such that E(yy') = I. The density function corresponding to the L1
norm is
: n
k=1

Do - —me - e<y <o, NCRY

. which is the multiva;iate analog of the double exponential dénsity.
Now consider how the Ll‘model.can be utilized in the discriminant

problem. Let My be»thg mean and Zﬁ the covariance matrix for class i,

i=1, ..., m. Assume each ;i is positive definite and may thus be

factored as
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T, =8.8',
kR 11

and the let the observation vector x be transformed according to
-1
=8, (x - p,).
y .1( by
The inverse transformation is
x=8;y+ u

and tho Jaeobian of the inverse transfarmatinn is IS;II. Making the
y = X transformation in (5.1) and changing notation slightly, the -

density function for class i may be written

. n _1
-2 kz Isi(k) (x-1) |

:/;+e =1 » i=1, ..., m,
2 lsil

p(x|m) =

where STl is the kth row of Sfl.
i(k) ‘ i

For simplicity assume equal prior probabilities and equal costs

of misclassification. Then the Bayes procedure chooses class j if
p(xlﬂj) ?P(Xlﬂi)s i=1, ..., m, ‘ (5.2)

Writing out the. density functions, (5.2) becomes

- |
I |sTh (xen) |
n

o,
Y=

S e 17

-n/2 .~1
ISf le
Simplifying and taking logarithms of both sides yields

2
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T IsL ¢ - 2 Isth ¢ y | L
. X - M) - . X - K >——1n
e = B A "7z 18l
Thus the Bayes discriminant region for class j is
n n
-1 -1 . 1
R, = (x: S, -w)|=- Z |8, - M) 2
I e 185 ey = 1) | Z 155 (0 & “‘J)'-ﬁ

i=1, ..., m}, j=1, ..., m,

— In

(5.3)

One of the advantages of the L., norm in classification is that

1

the boundaries between discriminant regions defined by (5.3) are piece-

wise linear (in x). This makes evaluation of the probability of

misclassifying an observation from m into ﬂj a problem in integrating

over linear planes since the probability is given by

p(i i) = §p(x|ﬂi)dx, j=1, veu,m, j# i

R,
J

An exact evaluation of the probabilities of misclassification is thus

possible under the L1 norm. In the case of the L2 norm, the evaluation

of the probabilities of misclassification involves the integration of

multivariate normal density functions over quadratic regions, pro-

hibiting an exact evaluation of the probabilities,

Another advantage of L1 is its computational efficiency.

the L, norm one must compute the quadratic forms

2

L -1 .
(x - pi)'2£ (x. - ui), i=1, ..., m,

With

corresponding to each of the m classes in order to classify the observa-

tion x. The computation in the case of the L1 norm involves evaluating
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e . |
kja ‘Si(k)(x - ui)l, i=1, ..., m.

To compare the amount of computation required for each norm, as-
sume an image is to be classified by a Bayes discriminant précedure
and let

n = number of spectral bands
m = number of classes
r = number of rows in the image
¢ = number of columns in the image.
Chhikara and Odell (1973b) have calculated the number of orderings, O,

multiplications, M, and additions, A, necessary to carry out the

computations indicated above for each of the two norms. For L1 they

found
O1 = mrc
2
M1 = mre(n” + n)/2
2
Al = mre(n” + 3n - 2)/2,
and fqr L2 they got
0, = mre
2 ...
M2 = mrc(n” -+ 3n)/2
2
AZ = mrc(n” + 3n - 2)/2,

The computational savings in using L1 arises in the number of multiplica-

tions required,
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As an example, let n =4, m = 10, r = 100, and ¢ = 100. Then

the number of orderings, multiplications, and additions would be

5
0, = 0, = 10
A, = A =13 x 10°
174 -
6
M, = 10

It is seen that, in this case, L1 offers a savings of 5:7 in terms of
the number of multiplications necessary to classify the image, or

400,000 fewer multiplicationms.

B. Implementation and Testing of L1 Classifier

" To implement a classifier using the L, norm, a'previoﬁsly
written program for maximum likelihood classification based on least
squares, CLSSFY, was modified to employ a discriminant function based
on the L1 norm, Using the notation of the pre?ious'section, the

discriminant function to be maximized under L2 was

1 Lo uy'slen .

Dy o= -5 InfZ | - 2 (- v EN(x - n),
and under Ll the discriminant function is
el S | ‘

k=1
Other aspects of the program were essentially unchanged by the switch

to the Ll norm,
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CLSSFY reads the means and covariance matrices of the classes
and the coordinates of the region to be classified., For each point
in the region, the value of Di is computed corresponding to each

class and the class k is determined such that
D, >D, ,i=1, ..., m.

The class index k and the value of Dk of the discriminant function
are stored on disk for subsequent mapping or tabulation of the classifica-
tion results, |

In comparing the resul;s_obtained under L1 with those obtaiped
under L2, it Vgs necessary to select a criterion for comparison. Since
the program SIMDAT has the capability of generating data sets for which
the exact proportions of all classes are known for each data point, a
mean square error critefion based on the errors in the estimated
proportions of each class in a region was chosen. Program CLSSFY
classifiés éach daté point into exactly one class. Therefore, the
"estimated proportions' for a data ﬁoint are always 1.0 for the class
selected and 0.0 for all other classes. Using such vectors of estimated
| proportions for each point, the mean square error for the estimated
proport;ons of classes in a region may be estimated by the method
discussed iﬂ Chapter II; Other criteria could certainly be used to
evaluaté classification accuracy. The number of points correctly
classified, assuming each foint's true identity consists of only one
class, divided by the total number of points in the region ié commonly
used, but the mean square error criterion seems to correspond more

closely with the methods used in previous chapters,
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Several &Ata sets were constructed in order to evaluate the ac-
curacy‘of classificatioﬁ with the Ll norm. A 2-dimensional data set
was constructed specifically to show how the L; norm can give dif-
ferent results.than thg L2 norm in the preéence of outliers. The
geometric arrangement of the means is depicted in Figure 26, where.the
Ui are the user class means, gnd Z represents the data point that
would result if‘some recording error were to cause the value of the
response in band 2 to not be recorded for an observation from class 2,
Data file A was generated to consist of poinfs from classes 1 and 2,
a mixture of classes 1 and 2, and some points iﬁ the vicinity of Z;
Table 13 ¢ontains the reéults of runningAthele‘and L2 classifiers on
this data set as well as the data sets discussed below. |

‘Two data sets were constructed with three user classes and two
bands. The class ﬁeans,werg;

10 | . [30 ‘ 30
A, = 1, A, = , and A, = .
10 o 10 20
The covariancg'matrix fér each class was taken to be the diagonal
matrix diag (50 5U). Instead ot generating the data from a
multivariate normal distributioﬁ, the data for each filewere taken
from a contaminated normal distribution.

For data file Bl the normal dgta werecontaminated by introducing
a certain percentage (20%) of extreme points at random into the data.
The extreme ppints were formed by setting the résponée in §ne of the

bands to 100,
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Figure 26, Arrangement of class means and extreme point used in data
file A for testing L1 classifier
Table 13. Comparlson of mean square errors and proce551ng times for
and L cla351f1ers
Mean square error Processing
Total (*102) time (sec)
File points L1 L2 L1 L2
A 100 0.07 2,84 0.05 0.05
Bl 400 ‘0.5025 0.5309 0.27 0.31
B2 400 0.7828 0.7504 0.27 0.40
c1 300 11,040 1.189 - 0.52 0.59
c2 300 1.009 1.018 0.48 0,48
D1 300 1.67 1.76 0.59 ~0.66
300 0.76 0,73 0.59 0.64

D2
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The second file based.on these tﬁree classes and two bands, B2,
was generated as multivériate normal data contaminated by a Cauchy
distribﬁtion. 'Iﬁsteéd of generating n univa?iate N(0O, 1) variates and
constructing.a Nn(p, b)) observgtion és described in Chapter II, the
univariate deviates were generated from a Cauchy distribution. A
rélatively high contamination rate of 50% resulted in marginal distribu-
tions with a sharp peak at the mean.

Two data sets were geherated similar td ones discussed in earlier
chapters except that a contamination factor was .introduced in pfoducing
the observations, One data file, Cl, contained obse;§ations from the
user and aiien;classes listed in Table 4. The datajweregenérated with
random mixtures of classes as before, but deviates from a Laplace
distribution were used to contaminate the data. The Secénd data set,
C2, was based on the claéses presented in Table 9. No alien material
was present in this case, and mixtures.of the ﬁser classes were randomiy
generated. The datauwéregontaminatéd by introducing 10% extreme points.

Thg final two files'lisfed in Table 13, D1 and D2, were generated
using the same file parameters as for Cl and C2, respectively, except
that no contamination‘was'used. These last two tiles were included to
see if the L

classifier would perform any worse than the L, classifier

1

on truly normél data.

2

C. Results

The results in Table 13 are encouraging, but not as conclusive as

one might wish for.  The mean square errors for file A should be taken
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as indicating the potential improvement that can be realized with the
L1 classifier since the data was constructed specifically to illustrate

how L, can do better with extreme points in the data.

1
Files Bl and B2 present ambiguous results, The differences are
small in both cases, probably because there was a great deal of overlap
in the discriminant regions defined by the two classifiers.

Files Cl and C2 both favored the L1 classifier, although the
difference was very élight for4fi1e C2, where the contamination rate
was only 10%. Since these data séts both consisted of LANDSAT-type
data, one with alien material and the other without, these results
are perhaps the most encouraging ones as far as the use of L1 is con-
cerned, |

The results for files D1 and D2 indicatg that there does not ap-
pear to be much penalﬁy for using the L1 classifier Whgn‘the data are
" really normal. In fact, file D1 demonstrateé that ﬁi can actually
do better in some cases. |

The timinglgesults seem to be as one would expect from a considera-
tion of the computations involved. On the avérage the L1 classifiér
required 107 less computing time, wﬁich could be highly significant
where éxtremely_large vplgmes of data are involved, as can be the
case in processing multispectral data..

While the results presented'in Table 13 are merely a preliminary
investigation, they do éeem to indicate that the L, norm merits further
attention. It would be hélpﬁul to have a élearer understanding of the

“kinds of perturbations in the data that L1 can handle better than L2.

Also, the fact that the L] norm ie eimply one norm from the general
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class of Lp norms suggests that there may be other norms worth examining

in this context.

D. Application to Mixtureés

In Section A of this chapter it was shown how a normed exponential
model based on the L1 norm could be utilized in classifying observa-
tions of multispectral data. An avenue for further research would be
to consider how one might approach the mixtures problem given a normed
ekponential model for the data. In this section the groundwork for
such an approach is presented, and some'suggestions are made for
continuing the deyelopment;'

The mixtureskmodel to be presented here paraliels the presentation
given in Chapter I éxcept that the Ll-normea exponential.density4is
taken as the model for the data. Suppose ;Here are m classeé of material
énd n spectral channels. Assume a resolution element consists of N
gells, with Ni cells containing material i. Le;:vXij be the‘random
'variable asso;ia;ed with the'response of the jth cell contaiﬁing material
i, and assume Xij and Xik’ 1<ji#k SZNi, are independent for all
i=1, ..., m. Let pq and Z? denote the mean and covariance matrix of

xij’ and assume Zz =,S§S§'. Then under the L1 model, the density

function of X,, is

ij
. N *x=-1 *
Isz'll -ﬁkfl Isi(k)(x-p'i)l

fi(x) = ——;75— e _ (5.4)

2
Let Yi be the random variable associated with the total response

obtained from the cells of class i, i = 1, ..., m. Then
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N,
1
Y= I X,
=1
*
E(Yi) = 1“’i b
and
v(y,) = Niz§ .

If the entire resolution element contained only material from class i,

then one would have

= Nu¥ =
E(Yi) Np; = By
and
v(y,) = Nzi = zi .

Let Y denote the random variable representing the observed response
from the entire reéolution element, and let Ai be the proportion of the
resolution element containing material i. If the random variables

for cells from different classes are assumed to be independent,

then )
N.
m m i
Y= ¥ Y = ¥ ¥ X.,
i=1 1 i=1 j=1 M
o %* n % e
E(Y) = “? N1|.1,i = .Z kiNMi = .Z Aiui .
i=1. i=1 i=1
and
, m ' m N m
V(Y) = Z N.Z)‘ = = }\.NZ',\ = z A..E. .
. ii i i _ ii

i=1 i=1 i
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Y is a linear combination of multivariate random variables each having

an L.-normed exponential distribution, It remains to be determined

1
what the density fuﬁction is for Y.

Thus, a Starting pbint for further investigation would be to refer
to results from multiVariate'distribution theory to establish the
density function g(y; M, Z,IX) for Y. Once one has the distribution of

Y, the problem becomes one of estimating A given an observation on Y.

For a maximum likelihood sdlution, one would have to solve
maximize g(y; W, Z, A)

such that

M8

A, =land A, >0, i =1, ..., m.
1 1 ] 1 -

i

It is quite possible thathgertain simplifying assumptions would be
necessary ‘to thain a solution with a feasible ampunt of gffort,

The fqlloﬁipg questions are given to suggest points to be pur-
sued in considering tﬁé applicatiqn of thg Ll’?odel to mixtures.

1. ‘ What is the distribution of Y, the random variable as-
sociated with thé mixture? |

2, 'If g(Y) is known, can a computationally efficient algorithﬁ
be found to obtain estimates of the Ai? | |

3. How good are the estiﬁates of X?

4. How do the p;operties of the L, norm affect the values of
the estihates, eséecially when alien material.is presént? |

Iﬁ is'fel; that alterpétivgs to ;hé hormal mbdel and 1§ast Squares,.

~ such as thosé'presented above based on the L; norm, should be given
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further consideration‘iﬂ vieﬁ of the potential computational simplifica-
tions and the nonnormal nature of much'multispectral data, However,
more should be learned about these alternativés to accurately and
completely assess thé tradeoffs involved in using them in lieu of

normality and the L2 norm,
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