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ABSTRACT

MEASUREMENT OF HEAT AND MOMENTUM EDDY DIFFUSIVITIES

IN RECIRCULATING LMFBR OUTLET PLENUM FLOWS

by

Vincent P. Manno

and

Michael W. Golay

An optical technique has been developed for the measure-
ment of the eddy diffusivity of heat in a transparent flowing
medium. The_method uses a combination of two established
measurement tools: a Mach-Zehnder interferometer for the
monitoring of turbulently fluctuating temperature and a Laser
Doppler Anemometer (LDA) for the measuremeht of turbulent
velocity fluctuations. The technique is applied to the investi-
gation of flow fields characteristic of the LMFBR outlet plehum.  .
The study is accomplished using air as the working fluid in a
small scale Plexiglas test section. Flows are introduced
into both the 1/15 scale FFTF outlet plenum and the 3/80
scale CRBR geometry plenum at inlet Reynolds numbers of
22,000.

Measurements of the eddy diffusivity of heat and the
eddy diffusivity of momentum are performed at a total of 11
measurement stations. Significant differences of the

- turbulence parameters are found between the two geometries,
and the higher chimney structure of the CRBR case lS found to
be the major cause of the distinction. Spectral intensity
studies of the fluctuating electronic analog signals of
velocity and temperature are also performed. Error analysis
of the overall technique indicates an experimental error of
10% in the determination of the eddy diffusivity of heat
and 6% in the evaluation of turbulent momentum viscosity.
In general, it is seen that the turbulence in the cases
observed is not isotropic, and use of isotropic turbulent heat
and momentum diffusivities in transport modelling would not be
a valid procedure.
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COOLANT MIXING IN LMFBR ROD BUNDLES AND

OUTLET PLENUM MIXING TRANSIENTS

Contract AT(11-1)-2245

Quarterly Progress Report

The work of this contract has been divided into the

following Tasks:

TASK I: BUNDLE GEOMETRY (WRAPPED AND BARE RODS)

TASK   I A: Assessment of Available Data

TASK IB: Experimental Bundle Water Mixing
Investigation

TASK IC: Experimental Bundle Peripheral
Velocity Measurements
(Laser Anemometer)

TASK ID: Analytic Model Development - Bundles

TASK II: SUBCHANNEL GEOMETRY (BARE RODS)

TASK IIA: Assessment of Available Data

TASK IIB: Experimental Subchannel Water
Mixing Investigation

TASK IIC:  Experimental Subchannel Local
Parameter Measurements
(Laser Anemometer)

TASK IID: Analytic Model Development - Subchannels

TASK III: LMFBR OUTLET PLENUM FLOW MIXING

TASK IIIA: Analytical and Experimental Investigation
of Velocity and Temperature Fields

TASK IV: THEORETICAL DETERMINATION OF LOCAL TEMPERATURE
FIELDS IN LMFBR FUEL ROD BUNDLES



TASK I: BUNDLE GEOMETRY (WRAPPED AND BARE RODS)

TASK IB.2:  Experimental Bundle Water Mixing Experiments
(Michael Pate and Hafeez Khan)

During the period of this report, most of the time
was spent on the training of Michael Pate, a newcomer to
the Project. He was given full training in the fabri-
cation and platinization of the probes, as well as their
locations in the flow separator housing. Considerable
time was also spent familiarizing him with the Computer
Operating System. During this period, another complete
set of mixing data was obtained for the 12" lead bundle
to check out the previous data, and also to confirm the
validity of the present arrangement for locating the
probes.  Data was also taken for the-pressure drop in
the bundle. This data was not for the overall bundle
pressure drop, but was for individual subchannels, i.e.
central, edge, and corner.

The 6" lead rods were also prepared by wire wrapping
them.
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TASK IB.5:  Shared-Wire 61-Pin Blanket Bundle Experiment
(Song-Feng Wang and King-Wo Chiu)

Progress in shaved-wire 61-pin blanket bundle experi-
ment has been made in this quarter. The flow split mea-
surements for interior, edge, and corner subchannels have
been done both in laminar and turbulent flow regimes. Due
to the lack of the existing data in laminar regime, most
of the effort has been concentrated in this area.

The test section was made up by shaving the wire wrap
spacers adjacent to hexagonal duct wall to half of their
original diameter. Each face of the duct wall is then
squeezed a little toward the center of the assembly so
that the flow area in the peripheral subchannels is reduced
while the flow areas in the interior subchannels remain
the same as that for full-wire blanket bundle. The pur-
pose of this design is to force the coolant flow toward
the central region of the blanket bundle and hence, elimi-
nate the local cladding hot spots and overall thermal
gradients across the whole assembly.

Figure 1 shows the flow split parameter x1 for interior
subchannels as function of bundle average Reynolds number.
In the laminar regime, as the flow increases, the higher
pressure drop in the central region than that in the peri-
pheral region tends to divert the coolant to the peripheral
subchannels. However, this tendency gradually saturates
as bundle flow becomes highly turbulent. In this region
(highly turbulent), the average gain of coolant flow in the
central region is about 3% over the full wire design.
Detailed comparison on flow split behavior between half-
wire and full-wire designs is under way.

The flow split parameter x2.for edge subchannels is
shown in Figure 2.  As the flow increases, x2 increases,
as we might have expected from the conservation law, in

. -  the laminar region and finally reaches a constant value
when the coolant flow is highly turbulent. The behavior
of this flow split parameter in the transition (Re-*5000) region
is not clear and more data is going to be taken in this
specific area.

The flow split data for corner subchannels is similar
to that for edge subchannels. Figure 3 shows the flow
split parameter x  for corner subchannels. It increases
gradually from laJinar to turbulent flow and comes up
to a constant value approximately equal to 1.0. This
result confirms the assumption that we made previously:
the flow velocity in the corner subchannels is roughly
equal to the bundle average coolant velocity. But,
notice that this assumption is only good for turbulent
flow.
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The "closed loop test" has been postponed because
low coolant temperature is favorable for the present·
experiment which is concentrated in the laminar region.
The test run will be conducted when it is necessary.

-    -
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TASK lD.2: Transient Code Development
(Stuart Glaser)

Our work on transient code development has progressed
to the point of completion of the code TRANSENERGY-S. This
discussion summarizes our entire effort to date in this
area.

Techniques of predicting LMFBR coolant temperatures
were investigated with the objective of developing a
production-type computer code for use in transient safety
analyses and design studies of LMFBR cores. Existing
computer codes in the COBRA family are able to predict
transient coolant temperatures. However, their complex
models require long computation times and large amounts of
core storage making them undesirable for use as production
codes until accurate schemes for lumping regions are devel-
oped.

The extreme simplicity of the steady-state ENERGY
model indicated that, if its approach could be extended to
transient cases, then the resulting codes would be
faster than existing codes and would be suitable for use
as production codes. It was found that if the ENERGY
model was modified to include heat capacity effects asso-
ciated with the coolant and the duct wall, and if a transient
model of the fuel pins could be developed, then a transient
model could be developed for hexagonal wire-wrapped
assemblies in which natural circulation effects are negli-
gible.

TRANSERGY-S, a computer code based on a modified
version of the ENERGY model, was developed. The code cal-
culates coolant temperatures for a single wire-wrapped
LMFBR fuel assembly during coolant flow, power and inlet
temperature transients. It is based on a computational
scheme similar to the one used in the SUPERENERGY code.

. - -  The assembly is nodalized using the subchannel concept
employed in SUPERENERGY.  The energy equation for the coolant
is a temporally implicit, spatially explicit finite difference
equation. The fuel model is a one-dimensional implicit
finite difference equation.

The predictions of TRANSENERGY-S were compared with
experimental measurements and with the predictions of
COBRA-III-C/MIT and COBRA-III-M. TRANSENERGY-S made
accurate predictions for most transients in wire-wrapped
hexagonal fuel bundles.  Changes in geometry and very
rapid transients were found to cause significant deviations
in the predictions by TRANSENERGY-S.



The computation time and core storage required to
extend TRANSENERGY-S to analysis of more than 19 assemblies
make it unsuitable as a production code. A second code,
TRANSENERGY, TRANSENERGY-M, has been proposed. It calculates
coolant temperatures in from one to 41 coupled fuel
assemblies.  The computational requirements are reduced by
lumping the assembly· into six interior nodes, six edge
nodes, six nodes in the duct wall and six nodes in the
interassembly gap. The coarse nodalization of the assemblies
makes TRANSENERGY-M useful for complete assemblies only.
The coolant temperature predictions within the assemblies
by TRANSENERGY-M are not as accurate as the detailed pre-
dictions made by TRANSENERGY-S for single assemblies.
However, they are accurate enough to identify the hottest
assemblies relative to the other assemblies.

This suggests a techftique which may be useful for
many transient analyses.  Detailed core analyses may be
made using a cascade approach. TRANSENERGY-M is used
to determine the heat flux on each face of the fuel
assemblies as a function of time. These heat fluxes are
input to TRANSENERGY-S as boundary conditions for the sub-
channel-level analysis of the hottest fuel assemblies
indicated in the TRANSENERGY-M analysis.

Future work is expected to include indepth testing
of TRANSENERGY-S in order to determine its accuracy and
its limitations. Development of the proposed TRANSENERGY-M
computer code is pending awaiting an assessment of ongoing
other national efforts.
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TASK III. LMFBR OUTLET PLENUM FLOW MIXING

TASK IIIA. MEASUREMENTS OF THE RATIO OF THERMAL TO MOMENTUM
DIFFUSIVITIES IN OUTLET PLENUM FLOWS

(V.P. Manno)

In work recently completed the eddy diffusivities of heat and momen-
tum in small scale LMFBR outlet plenum flows have been measured.
Each  diffusivity  has been measured separately inair flows,
and the dimensionless ratio of these diffusivities has been
computed.  The purpose of these measurements is to investigate
the degree to which common assumptions in the formulation of
these quantities in turbulence modelling are valid.

In particular, it is commonly assumed (e.g. in the VARR-II
analyses of LMFBR Outlet Plenum Flows) that the ratio of

EH/ M' where Ets and EM are the eddy diffusivities of heat and
momentum, respoctively, is constant in time and space throughout
a flow transient. It is usually also assumed that the turbu-
lence is isotropic. Our work shows that these are poor approxi-
mations for outlet plenum flows.

The experiments were performed in two-dimensional steady non-
isothermal air-flows.  In these flows co-flowin4 streams of hot
and cold  air were introducid   syltmetr-ically  at the plenum inlet,    -   -
and their turbulent mixing was observed at selected stations in
the flow field (see Fig. III-1). The turbulent velocity and
temperature fields were measured using a laser doppler anemometer
and a Mach-Zehnder interferometer, respectively. These measure-
ments add to the relatively small literature in existence
regarding turbulent heat transport, and are of special import-
ance in outlet plenum flow modelling. Power spectral density
data at a representative FFTF measurement station for velocity
and temperature are shown in Figs. 2 and 3. It is seen that
velocity fluctuations remain strong in the range up to 16 KHz,
while significant temperature fluctuations in the range above 4KHz
Rre not observed. The resulting measured diffusivity values
are shown in Figs. 4 through 8. It is seen that overall turbu-
lence levels decay monotnically as the inlet jet follows mean
streamlines to the plenum exit, and as the flow becomes well-
mixed the magnitude of the effective eddy heat diffusivity
becomes progressively damped.  It is also seen that the turbu-
lence is generally anisotropic, especially down stream of the
inlet chimneys.

These data provide the basis for formulation of an improved
turbulence model for heat transport. However, our research
has indicated the existence of basic problems in models for
turbulent momentum transport. This latter class of problems
must be resolved before it would make sense to formulate an



-

eddy heat transport model--based upon the momentum transport
model.

This work is described in detail in Ref. 1, which has been
distributed separately. The abstract of Ref. 1 is appended
to this text.
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FIGURE S: EDDY DIFFUSIVITY OF HEAT IN FFTF GEOMETRY (Y-COMPONENT)
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TABLE 1:   (6H   ly In the FFTF Geometry

Position (EH _ )x/Q„
..

B                    .119

C                     .065

D                    .211

E                    .227

F                    .055

9.

4
1.

k:

. A                                                                                                                                                                 E,9 3
TABLE   2: ·"     (   rI/(M ) y   In   the FFTF Geometry

, 5

+
Position (EH   )5                                              /4 3 3It

B                   2.665
E:                                                                                         c                                                                            3.0 7 1

.D                    1.743el I

E                                 .014

F                    .039

*

f
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TASK'IV: THEORETICAL DETERMINATION OF LOCAL TEMPERATURE
FIELDS IN LMFBR ROD BUNDLES

TASK IV.A: Coupling of Lumped and Distributed Parameter Codes
(Man-Kit Yeung)

In the previous report, a computational scheme of coupling
the distributed and lumped parameter solution methods was pro-

Figure 1. It has been reported that the results for the
posed. The general flow chart of this scheme is shown in

7-rod bundle calculation were quite encouraging. More
detailed·results of this 7-rod bundle calculation can be found
in the forthcoming topical report by Yeung and Wolf [1].

During the last quarter, a 19-rod bundle calculation has
been performed and compared with the measurement of MBller
and Tsch6ke's experiment [2] in order to demonstrate the
capability of this analysis. The geometric configuration and
the subchannel layout of the bundle is shown in Figure 2.  The
mixing parameters used for the COBRA-IIIC calculation are those
presented in [3]. As shown in Figure 2, by the shaded region,
a 7-rod section has been cut out from the 19-rod bundle. In
order to obtain a reasonable.estimate for the clad tempera-
ture of the corner rod, it is necessary to have some knowledge
of the coolant temperatures of the two shaded areas. Unfor-
tunately, these are not directly available from the COBRA-IIIC
calculations. Approximations have to be made to obtain
these values. In this case, it has been assumed that the
average temperature of the shaded area which consists of
<A 3>3 and half of <A2,3 is equal to Tl, the coolant tempera-
ture of subchannel 3.  This approximation should be reason-
ably valid as long as a large power gradient does not exist across
the bundle. On the other hand, it would be questionable
to use T4 as the temperature of the shaded area <A4>4 because
of the geometric irregularity of subchannel 4. One possible
way to determine <T4>4 is to utilize the calculational
results of the fully developed temperature field of the 19-rod
bundle. In addition, the axial correction F(Z) is also
used to account for the thermal etnrance effect.. Thus , the
relation between <T4>4 and T4 is given by the following:

<T4>4 - T4 <A3>4
-" ' 2     =                 {2 Y0142 + F(Z) [<04,4 - <93,31 3q   a /2kc <A3>4 + <A4>4

Having established the values of the coolant temperatures neces-
sary for the analysis for the 7-rod section, the coupled
distributed-lumped parameter technique is applied at the axial
position of Z = 25.94" and the result of calculation is shown
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in Fig. 3 in which the clad temperature distribution of the
'     corner cell is plotted vs. the angular position 4. For compari-

son, the clad temperature distribution of the corner cell
measured by MBller and Tsch6ke is also presented. It can be
seen that the shape of the predicted curve compares fairly well
with the experiment. The clad temperature distribution pre-
dicted by the coupled analysis matches the experimental datain the near-wall region fairly well but tends to over-estimate
the temperature in the away-from-wall region. In addition , the
predicted clad temperature distribution has a maximum (minimum)
circumferential variation of approximately 50°F which is about
16°F higher than the measurement. The discrepancy between the
calculated and the measured clad temperature distribution may
be the combined effect of the following uncertainties and deri-
vations between experiment and calculation:

(1) Uncertainty in the geometric and thermal
parameters of the experimental apparatus.

(2) The rounded corner of·the bundle shroud. in
the experimental apparatus.

(3) Underestimation of the mixing parameter.

Among these three possibilities, it is felt that the mixing
parameter probably has the greatest impact on the result of the
calculation.

Therefore, it becomes apparent that the determination of
a realistic clad temperature distribution relies on the validity
of the subchannel calculation which cannot be achieved without
the proper knowledge of the various mixing parameters. As a
result, the present analysis is only a first step effort to
link the distributed and lumped parameter analysis and improve-
ments in many areas will be made to extend and upgrade the
analysis.
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64.
TASK IV.B: 3-D Multi-Region Single Cell Turbulent Flow Analysis

(Chung-Nin Wong)

The work on the turbulent heat transfer analysis of hexa-
gonal rod bundles in LMFBRs has been underway throughout this
quarter. The computer code RODBUN by Ramm [4] has been made
operational and employed for various analyses. Thus far, the
principal work has been the set-up of the code and an attempt
to initiate the code to run in an efficient way.

The code RODBUN uses the finite differencing scheme to
solve the conservation equations of momentum and energy for an
incompressible, steady-state, hydrodynamically fully developed
turbulent flow for an equilaterial triangular rod array.  A
phenomenological turbulent model, based on the principal ideas
of Buleev's theoretical model of turbulent transfer in a three
dimensional fluid flow [5], is used in the code. Morever, the
code can handle any anisotropic turbulent diffusivity and also
the effect of secondary flow.

' Substantial time and effort have been spent to fix up
the code and have it run well because quite a number· of errors
have been detected in the original version of the code due to
various reasons.  First, an initiation for the arrays in the
common blocks and many of the unknown variables has been imple-
mented. Second, several statements have been changed because
they read variables from a scrap tape that is not needed at
M.I.T.. Third, a minor re-adjustment of the iteration loop
is performed, thus making sure that there won't be any needless
iterations. Furthermore, a graphic display of the velocity fields
has been added to the code.

By solving the momentum equation, the velocity field of
the internal cell can be obtained and plotted in a three-dimen-
sional way as shown in Fig. 4 and Fig. 5. Since the underlying
basic principle assumes that the flow is hydrodynamically fully
developed, the velocity profile stays the same at any of the

. axial levels. Obviously, with the addition of the secondary
flow, the azimuthal gradient of the axial velocity becomes
comparatively smaller. Finally, the typical time to run the

I code in order to obtain the velocity profile requires less than
30sCPU time totally in an IBM370-168 machine, which is amazingly
good. Next, with the result of this velocity distribution,
the temperature field of the internal cell will be calculated
and shown in the next quarter report.
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