

COOLANT MIXING IN LMFBR ROD BUNDLES AND
OUTLET PLENUM MIXING TRANSIENTS

Progress Report

Principal Investigators

Neil E. Todreas - Tasks I and II

Michael W. Golay - Task III

Lothar Wolf - Task IV

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

MASTER

Massachusetts Institute of Technology
Department of Nuclear Engineering
Cambridge, Massachusetts 02139

March 1, 1978 - May 31, 1978

Prepared for the U.S. Energy Research and Development
Administration under Contract No. EY-76-S-02-2245

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

EYB

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

"This report was prepared as an account of Government-sponsored work. Neither the United States, or the Energy Research and Development Administration nor any person acting on behalf of the Commission

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report, or that the use of any information, apparatus method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

As used in the above, 'person acting on behalf of the Commission' includes any employee or contractor of the Administration or employee of such contractor, to the extent that such employee or contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Administration or his employment with such contractor."

ABSTRACT

MEASUREMENT OF HEAT AND MOMENTUM EDDY DIFFUSIVITIES IN RECIRCULATING LMFBR OUTLET PLENUM FLOWS

by

Vincent P. Manno

and

Michael W. Golay

An optical technique has been developed for the measurement of the eddy diffusivity of heat in a transparent flowing medium. The method uses a combination of two established measurement tools: a Mach-Zehnder interferometer for the monitoring of turbulently fluctuating temperature and a Laser Doppler Anemometer (LDA) for the measurement of turbulent velocity fluctuations. The technique is applied to the investigation of flow fields characteristic of the LMFBR outlet plenum. The study is accomplished using air as the working fluid in a small scale Plexiglas test section. Flows are introduced into both the 1/15 scale FFTF outlet plenum and the 3/80 scale CRBR geometry plenum at inlet Reynolds numbers of 22,000.

Measurements of the eddy diffusivity of heat and the eddy diffusivity of momentum are performed at a total of 11 measurement stations. Significant differences of the turbulence parameters are found between the two geometries, and the higher chimney structure of the CRBR case is found to be the major cause of the distinction. Spectral intensity studies of the fluctuating electronic analog signals of velocity and temperature are also performed. Error analysis of the overall technique indicates an experimental error of 10% in the determination of the eddy diffusivity of heat and 6% in the evaluation of turbulent momentum viscosity. In general, it is seen that the turbulence in the cases observed is not isotropic, and use of isotropic turbulent heat and momentum diffusivities in transport modelling would not be a valid procedure.

Reports Issued Under This Contract

B. Topical Reports (Available from National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22151)

E. Khan and N. Todreas, "A Review of Recent Analytical and Experimental Studies Applicable to LMFBR Fuel and Blanket Assembly Design", COO-2245-4TR, MIT, September 1973.

E. Khan, W. Rohsenow, A. Sonin and N. Todreas, "A Simplified Approach for Predicting Temperature Distribution in Wire Wrapped Assemblies", COO-2245-5TR, MIT, September 1973.

T. Eaton and N. Todreas, "Instrumentation Methods for Interchannel Coolant Mixing Studies in Wire-Wrap Spaced Nuclear Fuel Assemblies", COO-2245-9TR, MIT, June 1974.

Y. B. Chen, K. Ip, N. E. Todreas, "Velocity Measurements in Edge Subchannels of Wire Wrapped LMFBR Fuel Assemblies", COO-2245-11TR, MIT, September 1974.

E. Khan, N. Todreas, W. Rohsenow, A. A. Sonin, "Analysis of Mixing Data Relevant to Wire-Wrapped Fuel Assembly Thermal-Hydraulic Design", COO-2245-12TR, MIT, September 1974.

E. Khan, W. Rohsenow, A. Sonin, N. Todreas, "A Porous Body Model for Predicting Temperature Distributions in Wire Wrapped Fuel and Blanket Assemblies of an LMFBR", COO-2245-16TR, MIT, June 1975.

E. Khan, W. M. Rohsenow, A. Sonin, N. Todreas, "Input Parameters to the ENERGY Code (To be used with the ENERGY Codes Manual)", COO-2245-17TR, MIT, May 1975.

E. Khan, W. Rohsenow, A. Sonin, N. Todreas, "Manual for ENERGY Codes I, II, III", COO-2245-18TR, MIT, May 1975.

E. Khan, W. Rohsenow, A. Sonin, N. Todreas, "Manual for ENERGY Codes I, II, III Computer Programs", COO-2245-18TR, Revision I, MIT, July 1976.

P. Carajilescov and N. Todreas, "Experimental and Analytical Study of Axial Turbulent Flows in an Interion Subchannel of a Bare Rod Bundle", COO-2245-19TR, MIT.

B. Chen and N. Todreas, "Prediction of Coolant Temperature Field in a Breeder Reactor Including Interassembly Heat Transfer", COO-2245-20TR, MIT, May 1975.

B. Topical Reports (Continued)

B. Chen and N. Todreas, "Prediction of Coolant Temperature Field in a Breeder Reactor Including Interassembly Heat Transfer", COO-2245-20TR, Revision I, MIT, December 1976.

F. Carre and N. Todreas, "Development of Input Data to ENERGY Code for Analysis of Reactor Fuel Bundles", COO-2245-21TR, MIT, May 1975.

H. Ninokata and N. E. Todreas, "Turbulent Momentum Exchange Coefficients for Reactor Fuel Bundle Analysis", COO-2245-22TR, MIT, June 1975.

R. Anoba and N. Todreas, "Coolant Mixing in LMFBR Rod Bundles and Outlet Plenum Mixing Transients", COO-2245-24TR, MIT, August 1975.

B. Bosy, "Fabrication Details for Wire Wrapped Fuel Assembly Components", COO-2245-27TR, MIT, November 1975.

Ralph G. Bennett and Michael W. Golay, "Interferometric Investigation of Turbulently Fluctuating Temperature in an LMFBR Outlet Plenum Geometry", COO-2245-29TR, MIT, June 1976.

N. E. Todreas, "Thermal Analysis Methods for LMFBR Wire Wrapped Bundles", COO-2245-32TR, MIT, November 1976.

K. L. Basehore and N. E. Todreas, "Development of Stability Criteria and an Interassembly Conduction Model for the Thermal-Hydraulics Code SUPERENERGY", COO-2245-33TR, MIT, December 1976.

Robert Masterson and Neil E. Todreas, "Analysis of the Feasibility of Implementing an Implicit Temporal Differencing Scheme in the SUPERENERGY Code", COO-2245-35TR, MIT, February 1977.

S. Glazer, C. Chiu and N. Todreas, "Collection and Evaluation of Salt Mixing Data with the Real Time Data Acquisition System", COO-2245-36TR, MIT, April 1977.

B. Mikic, E. U. Khan and N. E. Todreas, "An Approximate Method for Predicting Temperature Distribution in Wire Wrapped Fuel Assemblies of an LMFBR", COO-2245-37TR, MIT, April 1977.

C. Chiu and N. Todreas, "Development of a Technique for Subchannel Flow Rate Measurements in LMFBR Wire Wrapped Assemblies", COO-2245-39TR, July 1977.

B. Topical Reports (Continued)

C. Chiu and N. Todreas, "WARD Blanket Assembly Pre-Test Predictions by SUPERENERGY", COO-2245-40TR, MIT, May 1977.

C. Chiu, N. Todreas, W. M. Rohsenow, "Flow Split Measurements in LMFBR Blanket Assemblies", COO-2245-41TR, MIT, April 1978.

C. Chiu, J. Hawley, W. M. Rohsenow and N. Todreas, "Pressure Drop Measurements in Wire Wrapped Blanket Assemblies", COO-2245-42TR, July 1977.

C. Chiu, W. M. Rohsenow and N. Todreas, "Mixing Experiments in LMFBR Wire Wrapped Blanket Assemblies", COO-2245-43TR, April 1978.

Yi Ben Chen and Michael W. Golay, "Coolant Mixing in the LMFBR Outlet Plenum", COO-2245-44TR, June 1977.

J. Kelly and N. Todreas, "Turbulent Interchange in Triangular Array Bare Rod Bundles", COO-2245-45TR, July 1977.

K. L. Basehore and N. E. Todreas, "Assessment of the Need to Incorporate a Variable Swirl Flow Model into the ENERGY Code", COO-2245-46TR, July 1977.

K. L. Basehore and N. Todreas, "Analysis of the Thermal-Hydraulic Behavior in the CRBR Secondary Control Assembly, Including Interassembly Heat Transfer Effects", COO-2245-47TR, July 1977.

J. G. Bartzis and N. E. Todreas, "Hydrodynamic Behavior of a Bare Rod Bundle", COO-2245-48TR, MIT, June 1977.

M. R. Fakori-Monazah and N. E. Todreas, "Measurement and Analysis of Flow Wall Shear Stress in an Interior Sub-channel of Triangular Array Rods", COO-2245-49TR, MIT, August 1977.

A. S. Hanson and N. E. Todreas, "Fluid Mixing Studies in an Hexagonal 61-Pin, Wire-Wrapped Rod Bundle", COO-2245-51TR, MIT, August 1977.

S. Glaser, N. Todreas, W. Rohsenow, and A. Sonin, "TRANSENERGY S,M - Computer Codes for Coolant Temperature Prediction in LMFBR Cores During Transient Events", To be issued as COO-2245-52TR, MIT.

C. Chiu, W. M. Rohsenow, and N. E. Todreas, "Mixing Experiments in an Alternating Wire Wrapped Assembly", COO-2245-54TR, MIT, December 1977.

B. Topical Reports (Continued)

C. Chiu, W. M. Rohsenow and N. E. Todreas, "Turbulent Sweeping Flow Mixing Model for Wire Wrapped LMFBR Assemblies", COO-2245-55TR, MIT, April 1978.

C. Chiu, W. M. Rohsenow and N. E. Todreas, "Flow Split Model for LMFBR Wire Wrapped Assemblies", COO-2245-56TR, MIT, April 1978.

K. Basehore and N. E. Todreas, "SUPERENERGY: Multiassembly Thermal-Hydraulic LMFBR Code", To be issued as Topical Report COO-2245-57TR, Department of Nuclear Engineering, MIT.

C-N. Wong and L. Wolf, "A 3-D Slug Flow Heat Transfer Analysis of Coupled Coolant Cells in Finite LMFBR Bundles", COO-2245-58TR, MIT, February 1978.

Roohollah Karimi and L. Wolf, "Two Dimensional Structural Analysis of Reactor Fuel Element Claddings Due to Local Effects", COO-2245-59TR, MIT, April 1978.

Vincent Manno and Michael Golay, "Measurement of Heat and Momentum Eddy Diffusivities in Recirculating LMFBR Outlet Plenum Flows", COO-2245-61TR, MIT, June 1978.

Hafeez Khan, Chong Chiu and Neil Todreas, "Laboratory Manual for Salt Mixing Test in Rod Bundles", To be issued as Topical Report COO-2245-62TR, Department of Nuclear Engineering, MIT.

Reports Issued under this Contract

C. Papers and Summaries

Yi Bin Chen, Ka-Lam Ip, Neil E. Todreas, "Velocity Measurements in Edge Channels of Wire-Wrapped LMFBR Fuel Assemblies," American Nuclear Society Transactions Vol. 19, 1974, pp. 323-324.

P. Carajilescov, N. Todreas, "Experimental and Analytical Study of Axial Turbulent Flows in an Interior Subchannel of a Bare Rod Bundle," J. of Heat Transfer, Vol. 98, No. 2, May 1976, pp. 262-268 (Included as Appendix to Quarterly Progress Report, COO-2245-15).

E. Khan, W. Rohsenow, A. Sonin, N. Todreas, "A Porous Body Model for Predicting Temperature Distribution in Wire-Wrapped Fuel Rod Assemblies," Nuclear Engineering and Design, 35 (1975) 1-12.

E. Khan, W. Rohsenow, A. Sonin, N. Todreas, "A Porous Body Model for Predicting Temperature Distribution in Wire-Wrapped Rod Assemblies Operating in Combined Forced and Free Convection," Nuclear Engineering and Design, 35 (1975) 199-211.

Ralph G. Bennett and Michael W. Golay, "Development of an Optical Method for Measurement of Temperature Fluctuation in Turbulent Flows," American Nuclear Society Transactions, Vol. 22, 1975, p. 581.

B. Chen and N. Todreas, "Prediction of the Coolant Temperature Field in a Breeder Reactor Including Interassembly Heat Transfer," Nuclear Engineering and Design 35, (1975) 423-440 (Included as Appendix to Quarterly Progress Report, COO-2245-23).

R. Bennett and M.W. Golay, "Interferometric Investigation of Turbulently Fluctuating Temperature in an LMFBR Outlet Plenum Geometry," Accepted for the ASME Winter Annual Meeting, Dec., 1976, (Included as Appendix in Quarterly Progress Report, COO-2245-30).

B.B. Mikic, E.U. Khan, N.E. Todreas, "An Approximate Method for Predicting Temperature Distribution in Wire Wrapped Fuel Assemblies of a Liquid Metal Fast Breeder Reactor," Mech. Res. Comm., Vol. 3, 353-360 (1976).

Reports Issued Under this Contract

C. Papers and Summaries (Continued)

L. Wolf, R. Karimi, J.Y. Kim, C.N. Wong, M.K. Yeung "2-D Thermoelastic Analysis of LMFBR Fuel Rod Claddings," Paper C4/d, 4th International Conf. Structural Mechanics in Reactor Technology, San Francisco, August 1977.

M. Yeung, L. Wolf, "Effective Conduction Mixing Lengths for Subchannel Analysis of Finite Hexagonal LMFBR Bundles," ANS Meeting, New York, June 1977.

C. Chiu and N. Todreas, "Flow Split Measurements In An LMFBR Radial Blanket Assembly," ANS Meeting, New York, June 1977.

J.K. Kim and L. Wolf, "Laminar Mixed Convection Heat Transfer in Finite Hexagonal Bundles," ANL Winter Meeting, San Francisco, Nov. 27 - Dec. 2, 1977.

Kelly, J.M., Todreas, N.E., "Turbulent Interchange in Triangular Array Bare Rod Bundles," Presented at 6th International Heat Transfer Conference, Toronto, August, 1978.

Chiu, C., Todreas, N.E., Rohsenow, W.M., "Turbulent Flow Split Experiment and Model for Wire-Wrapped Assemblies," Transactions of the American Nuclear Society, June, 1978, Vol. 28, TANSAO 28, (1978), pp. 536-537, ISSN: 0003-018X.

COOLANT MIXING IN LMFBR ROD BUNDLES AND
OUTLET PLENUM MIXING TRANSIENTS

Contract AT(11-1)-2245

Quarterly Progress Report

The work of this contract has been divided into the following Tasks:

TASK I: BUNDLE GEOMETRY (WRAPPED AND BARE RODS)

 TASK IA: Assessment of Available Data

 TASK IB: Experimental Bundle Water Mixing Investigation

 TASK IC: Experimental Bundle Peripheral Velocity Measurements (Laser Anemometer)

 TASK ID: Analytic Model Development - Bundles

TASK II: SUBCHANNEL GEOMETRY (BARE RODS)

 TASK IIA: Assessment of Available Data

 TASK IIB: Experimental Subchannel Water Mixing Investigation

 TASK IIC: Experimental Subchannel Local Parameter Measurements (Laser Anemometer)

 TASK IID: Analytic Model Development - Subchannels

TASK III: LMFBR OUTLET PLENUM FLOW MIXING

 TASK IIIA: Analytical and Experimental Investigation of Velocity and Temperature Fields

TASK IV: THEORETICAL DETERMINATION OF LOCAL TEMPERATURE FIELDS IN LMFBR FUEL ROD BUNDLES

TASK I: BUNDLE GEOMETRY (WRAPPED AND BARE RODS)

**TASK IB.2: Experimental Bundle Water Mixing Experiments
(Michael Pate and Hafeez Khan)**

During the period of this report, most of the time was spent on the training of Michael Pate, a newcomer to the Project. He was given full training in the fabrication and platinization of the probes, as well as their locations in the flow separator housing. Considerable time was also spent familiarizing him with the Computer Operating System. During this period, another complete set of mixing data was obtained for the 12" lead bundle to check out the previous data, and also to confirm the validity of the present arrangement for locating the probes. Data was also taken for the pressure drop in the bundle. This data was not for the overall bundle pressure drop, but was for individual subchannels, i.e. central, edge, and corner.

The 6" lead rods were also prepared by wire wrapping them.

TASK IB.5: Shaved-Wire 61-Pin Blanket Bundle Experiment
(Song-Feng Wang and King-Wo Chiu)

Progress in shaved-wire 61-pin blanket bundle experiment has been made in this quarter. The flow split measurements for interior, edge, and corner subchannels have been done both in laminar and turbulent flow regimes. Due to the lack of the existing data in laminar regime, most of the effort has been concentrated in this area.

The test section was made up by shaving the wire wrap spacers adjacent to hexagonal duct wall to half of their original diameter. Each face of the duct wall is then squeezed a little toward the center of the assembly so that the flow area in the peripheral subchannels is reduced while the flow areas in the interior subchannels remain the same as that for full-wire blanket bundle. The purpose of this design is to force the coolant flow toward the central region of the blanket bundle and hence, eliminate the local cladding hot spots and overall thermal gradients across the whole assembly.

Figure 1 shows the flow split parameter x_1 for interior subchannels as function of bundle average Reynolds number. In the laminar regime, as the flow increases, the higher pressure drop in the central region than that in the peripheral region tends to divert the coolant to the peripheral subchannels. However, this tendency gradually saturates as bundle flow becomes highly turbulent. In this region (highly turbulent), the average gain of coolant flow in the central region is about 3% over the full wire design. Detailed comparison on flow split behavior between half-wire and full-wire designs is under way.

The flow split parameter x_2 for edge subchannels is shown in Figure 2. As the flow increases, x_2 increases, as we might have expected from the conservation law, in the laminar region and finally reaches a constant value when the coolant flow is highly turbulent. The behavior of this flow split parameter in the transition ($Re \sim 5000$) region is not clear and more data is going to be taken in this specific area.

The flow split data for corner subchannels is similar to that for edge subchannels. Figure 3 shows the flow split parameter x_3 for corner subchannels. It increases gradually from laminar to turbulent flow and comes up to a constant value approximately equal to 1.0. This result confirms the assumption that we made previously: the flow velocity in the corner subchannels is roughly equal to the bundle average coolant velocity. But, notice that this assumption is only good for turbulent flow.

The "closed loop test" has been postponed because low coolant temperature is favorable for the present experiment which is concentrated in the laminar region. The test run will be conducted when it is necessary.

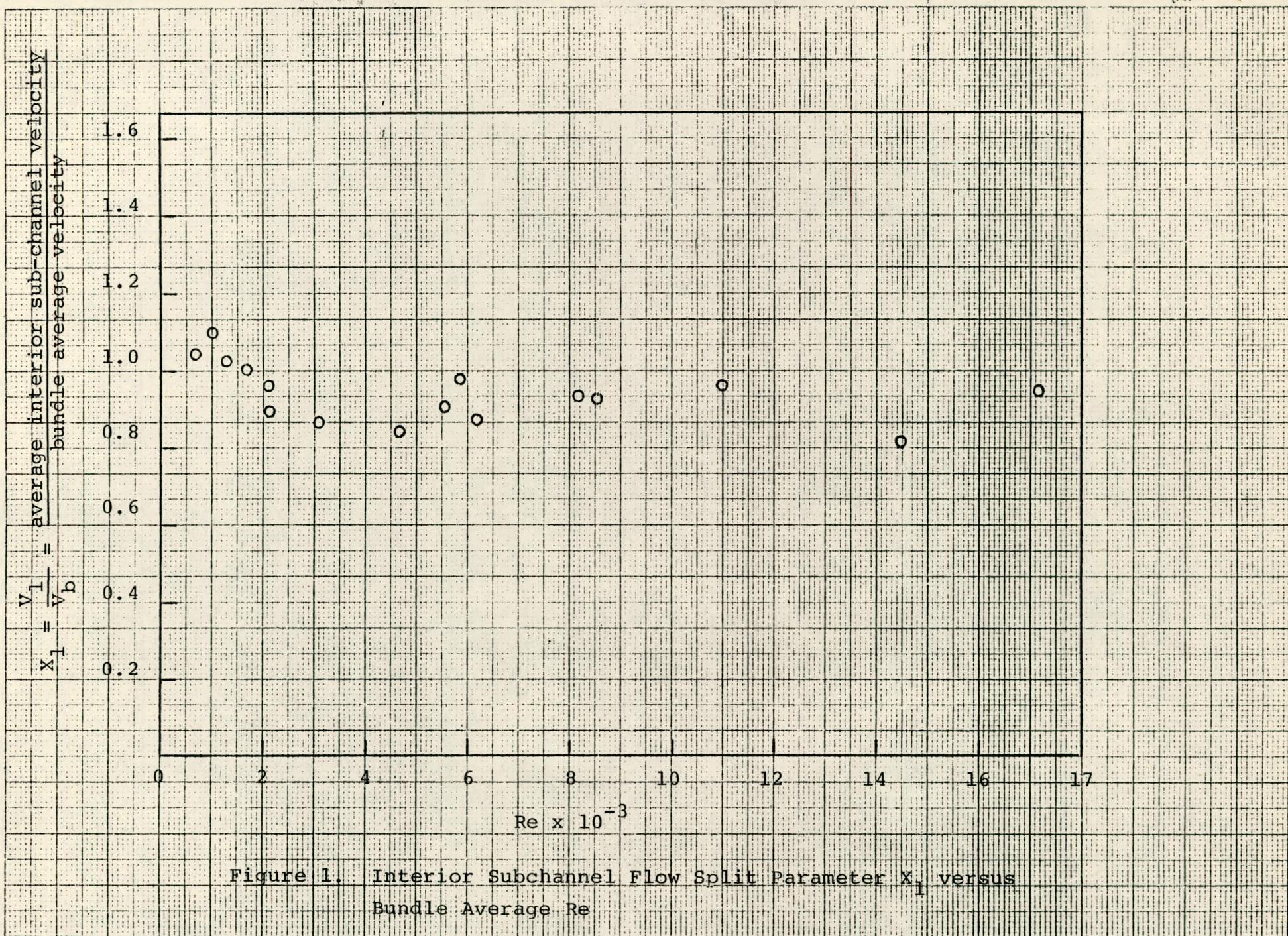


Figure 1. Interior Subchannel Flow Split Parameter X_1 versus
Bundle Average Re

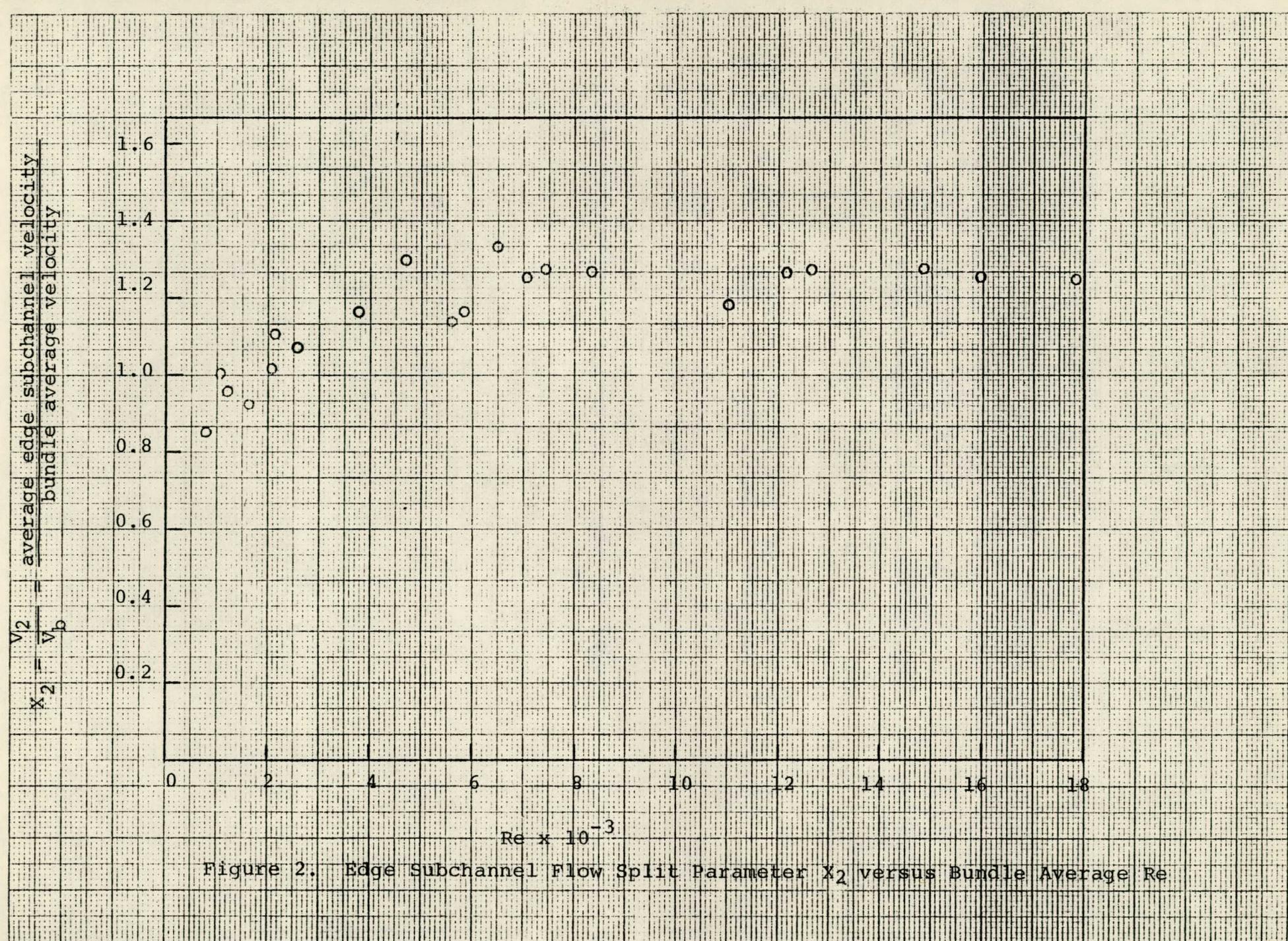


Figure 2. Edge Subchannel Flow Split Parameter X_2 versus Bundle Average Re

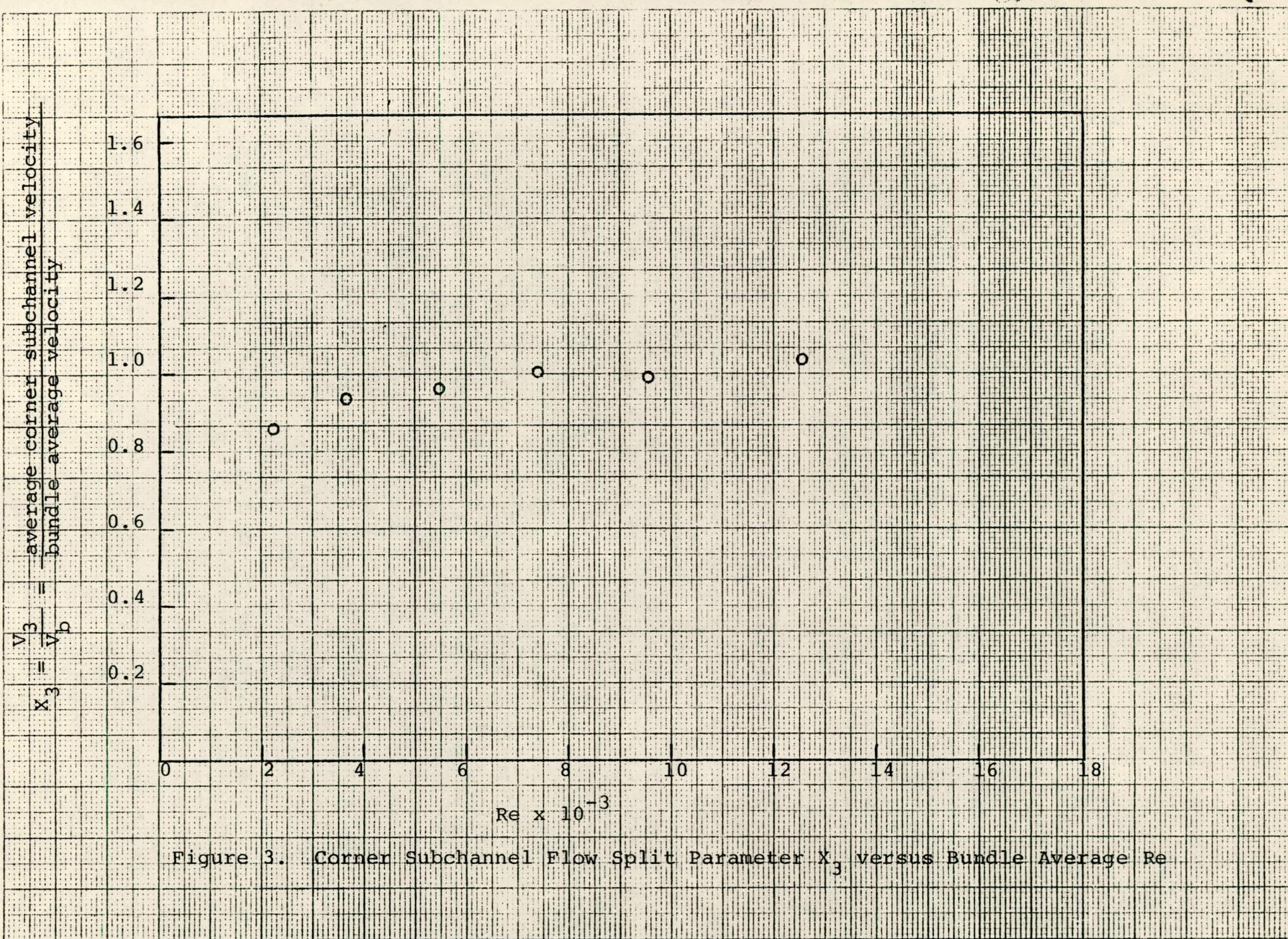


Figure 3. Corner Subchannel Flow Split Parameter X_3 versus Bundle Average Re

TASK 1D.2: Transient Code Development
(Stuart Glaser)

Our work on transient code development has progressed to the point of completion of the code TRANSENERGY-S. This discussion summarizes our entire effort to date in this area.

Techniques of predicting LMFBR coolant temperatures were investigated with the objective of developing a production-type computer code for use in transient safety analyses and design studies of LMFBR cores. Existing computer codes in the COBRA family are able to predict transient coolant temperatures. However, their complex models require long computation times and large amounts of core storage making them undesirable for use as production codes until accurate schemes for lumping regions are developed.

The extreme simplicity of the steady-state ENERGY model indicated that, if its approach could be extended to transient cases, then the resulting codes would be faster than existing codes and would be suitable for use as production codes. It was found that if the ENERGY model was modified to include heat capacity effects associated with the coolant and the duct wall, and if a transient model of the fuel pins could be developed, then a transient model could be developed for hexagonal wire-wrapped assemblies in which natural circulation effects are negligible.

TRANSENERGY-S, a computer code based on a modified version of the ENERGY model, was developed. The code calculates coolant temperatures for a single wire-wrapped LMFBR fuel assembly during coolant flow, power and inlet temperature transients. It is based on a computational scheme similar to the one used in the SUPERENERGY code. The assembly is nodalized using the subchannel concept employed in SUPERENERGY. The energy equation for the coolant is a temporally implicit, spatially explicit finite difference equation. The fuel model is a one-dimensional implicit finite difference equation.

The predictions of TRANSENERGY-S were compared with experimental measurements and with the predictions of COBRA-III-C/MIT and COBRA-III-M. TRANSENERGY-S made accurate predictions for most transients in wire-wrapped hexagonal fuel bundles. Changes in geometry and very rapid transients were found to cause significant deviations in the predictions by TRANSENERGY-S.

The computation time and core storage required to extend TRANSENERGY-S to analysis of more than 19 assemblies make it unsuitable as a production code. A second code, TRANSENERGY, TRANSENERGY-M, has been proposed. It calculates coolant temperatures in from one to 41 coupled fuel assemblies. The computational requirements are reduced by lumping the assembly into six interior nodes, six edge nodes, six nodes in the duct wall and six nodes in the interassembly gap. The coarse nodalization of the assemblies makes TRANSENERGY-M useful for complete assemblies only. The coolant temperature predictions within the assemblies by TRANSENERGY-M are not as accurate as the detailed predictions made by TRANSENERGY-S for single assemblies. However, they are accurate enough to identify the hottest assemblies relative to the other assemblies.

This suggests a technique which may be useful for many transient analyses. Detailed core analyses may be made using a cascade approach. TRANSENERGY-M is used to determine the heat flux on each face of the fuel assemblies as a function of time. These heat fluxes are input to TRANSENERGY-S as boundary conditions for the sub-channel-level analysis of the hottest fuel assemblies indicated in the TRANSENERGY-M analysis.

Future work is expected to include indepth testing of TRANSENERGY-S in order to determine its accuracy and its limitations. Development of the proposed TRANSENERGY-M computer code is pending awaiting an assessment of ongoing other national efforts.

TASK III. LMFBR OUTLET PLENUM FLOW MIXING

TASK IIIA. MEASUREMENTS OF THE RATIO OF THERMAL TO MOMENTUM DIFFUSIVITIES IN OUTLET PLENUM FLOWS

(V.P. Manno)

In work recently completed the eddy diffusivities of heat and momentum in small scale LMFBR outlet plenum flows have been measured. Each diffusivity has been measured separately in air flows, and the dimensionless ratio of these diffusivities has been computed. The purpose of these measurements is to investigate the degree to which common assumptions in the formulation of these quantities in turbulence modelling are valid.

In particular, it is commonly assumed (e.g. in the VARR-II analyses of LMFBR Outlet Plenum Flows) that the ratio of ϵ_H/ϵ_M , where ϵ_H and ϵ_M are the eddy diffusivities of heat and momentum, respectively, is constant in time and space throughout a flow transient. It is usually also assumed that the turbulence is isotropic. Our work shows that these are poor approximations for outlet plenum flows.

The experiments were performed in two-dimensional steady non-isothermal air flows. In these flows co-flowing streams of hot and cold air were introduced symmetrically at the plenum inlet, and their turbulent mixing was observed at selected stations in the flow field (see Fig. III-1). The turbulent velocity and temperature fields were measured using a laser doppler anemometer and a Mach-Zehnder interferometer, respectively. These measurements add to the relatively small literature in existence regarding turbulent heat transport, and are of special importance in outlet plenum flow modelling. Power spectral density data at a representative FFTF measurement station for velocity and temperature are shown in Figs. 2 and 3. It is seen that velocity fluctuations remain strong in the range up to 16 KHz, while significant temperature fluctuations in the range above 4KHz are not observed. The resulting measured diffusivity values are shown in Figs. 4 through 8. It is seen that overall turbulence levels decay monotonically as the inlet jet follows mean streamlines to the plenum exit, and as the flow becomes well-mixed the magnitude of the effective eddy heat diffusivity becomes progressively damped. It is also seen that the turbulence is generally anisotropic, especially down stream of the inlet chimneys.

These data provide the basis for formulation of an improved turbulence model for heat transport. However, our research has indicated the existence of basic problems in models for turbulent momentum transport. This latter class of problems must be resolved before it would make sense to formulate an

eddy heat transport model--based upon the momentum transport model.

This work is described in detail in Ref. 1, which has been distributed separately. The abstract of Ref. 1 is appended to this text.

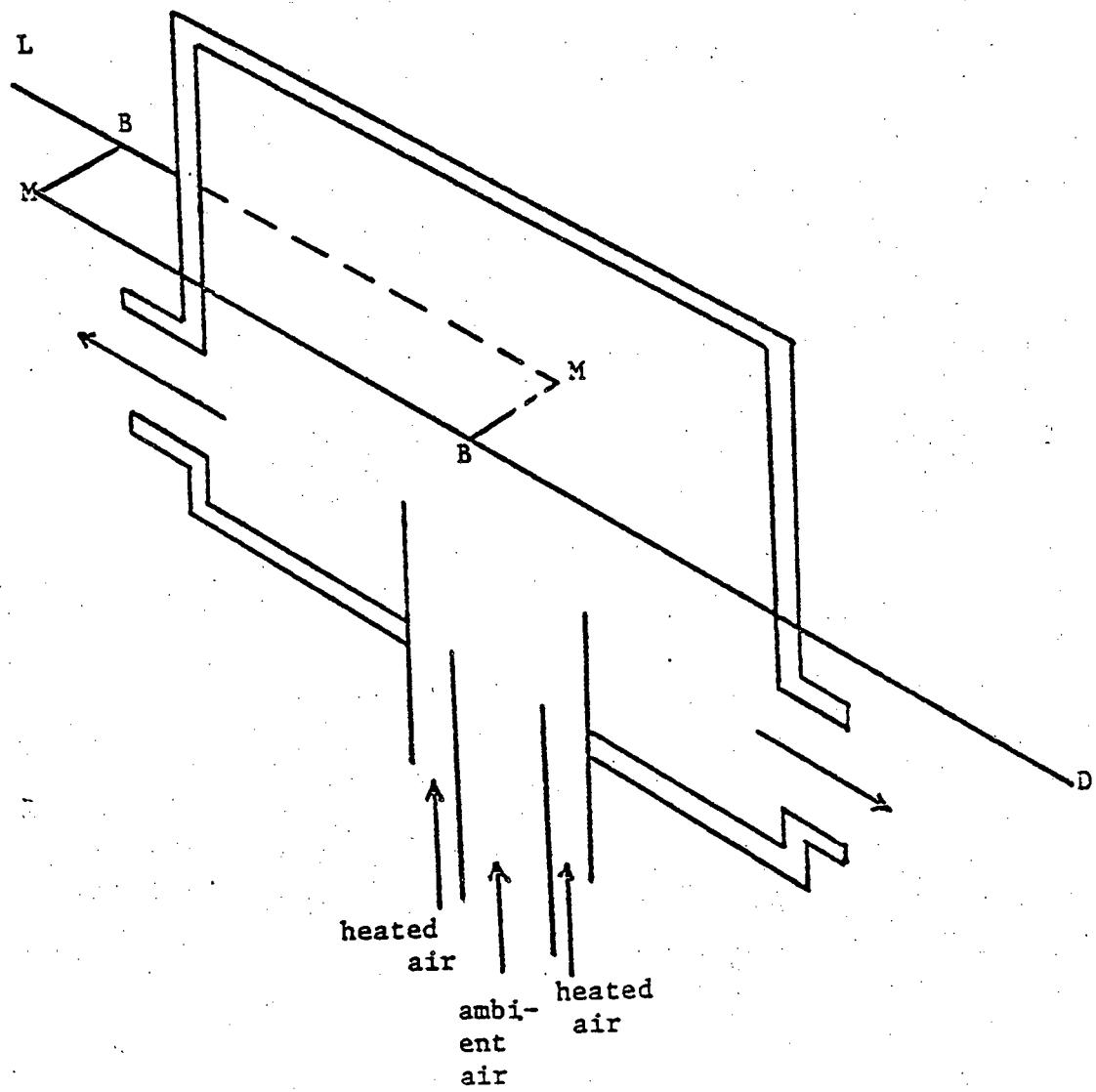


FIGURE 1: ISOMETRIC VIEW OF MACH-ZEHNDER INTERFEROMETER
 L - Laser, B - Beamsplitter, M - Mirror, D - Detector

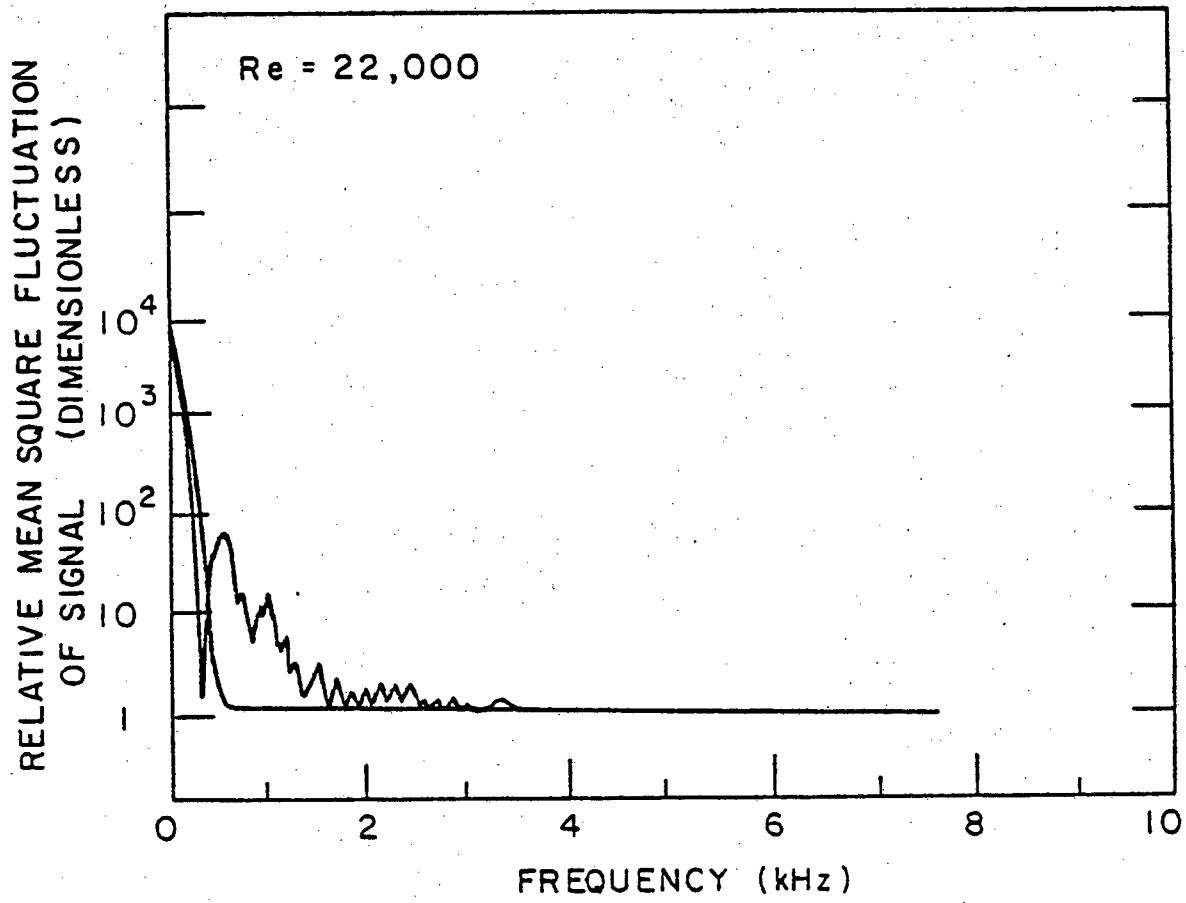


FIGURE 2: T' FREQUENCY SPECTRUM AT STATION B
IN FFTF GEOMETRY

RELATIVE MEAN SQUARE FLUCTUATION
OF SIGNAL (DIMENSIONLESS)

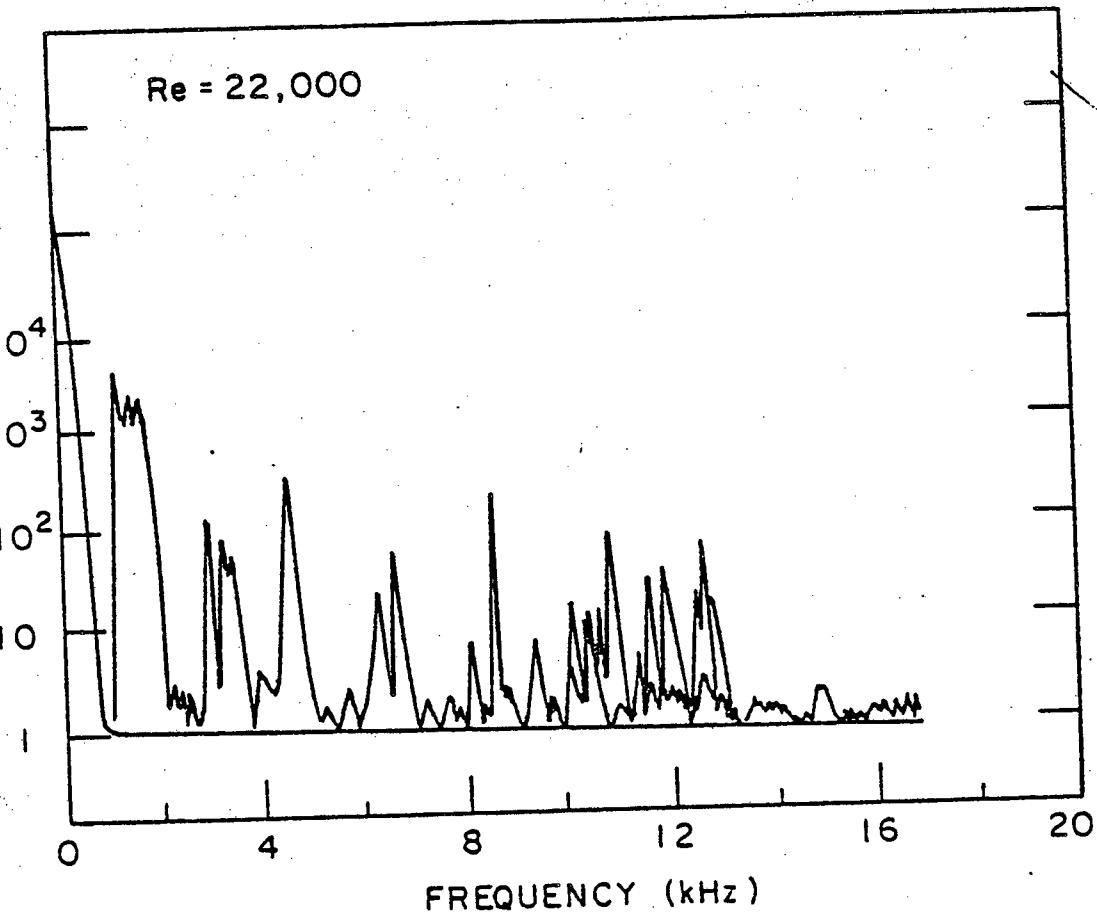


FIGURE 3: u' FREQUENCY SPECTRUM AT STATION B
IN FFTF GEOMETRY

FIGURE 4: EDDY DIFFUSIVITY OF HEAT IN FFTF GEOMETRY (X-COMPONENT) (m^2/sec)

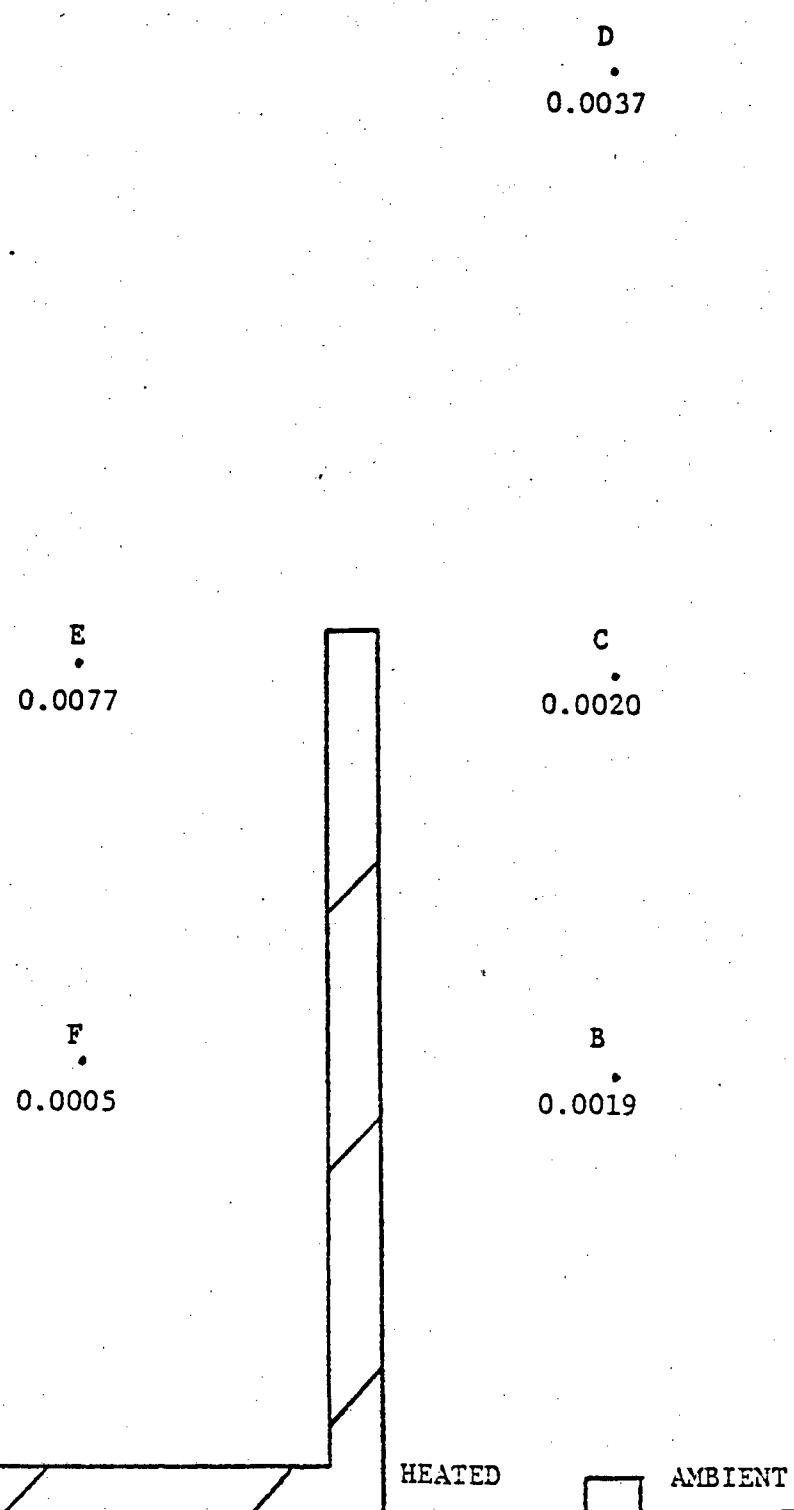


FIGURE 5: EDDY DIFFUSIVITY OF HEAT IN FFTF GEOMETRY (Y-COMPONENT)
(m^2/sec)

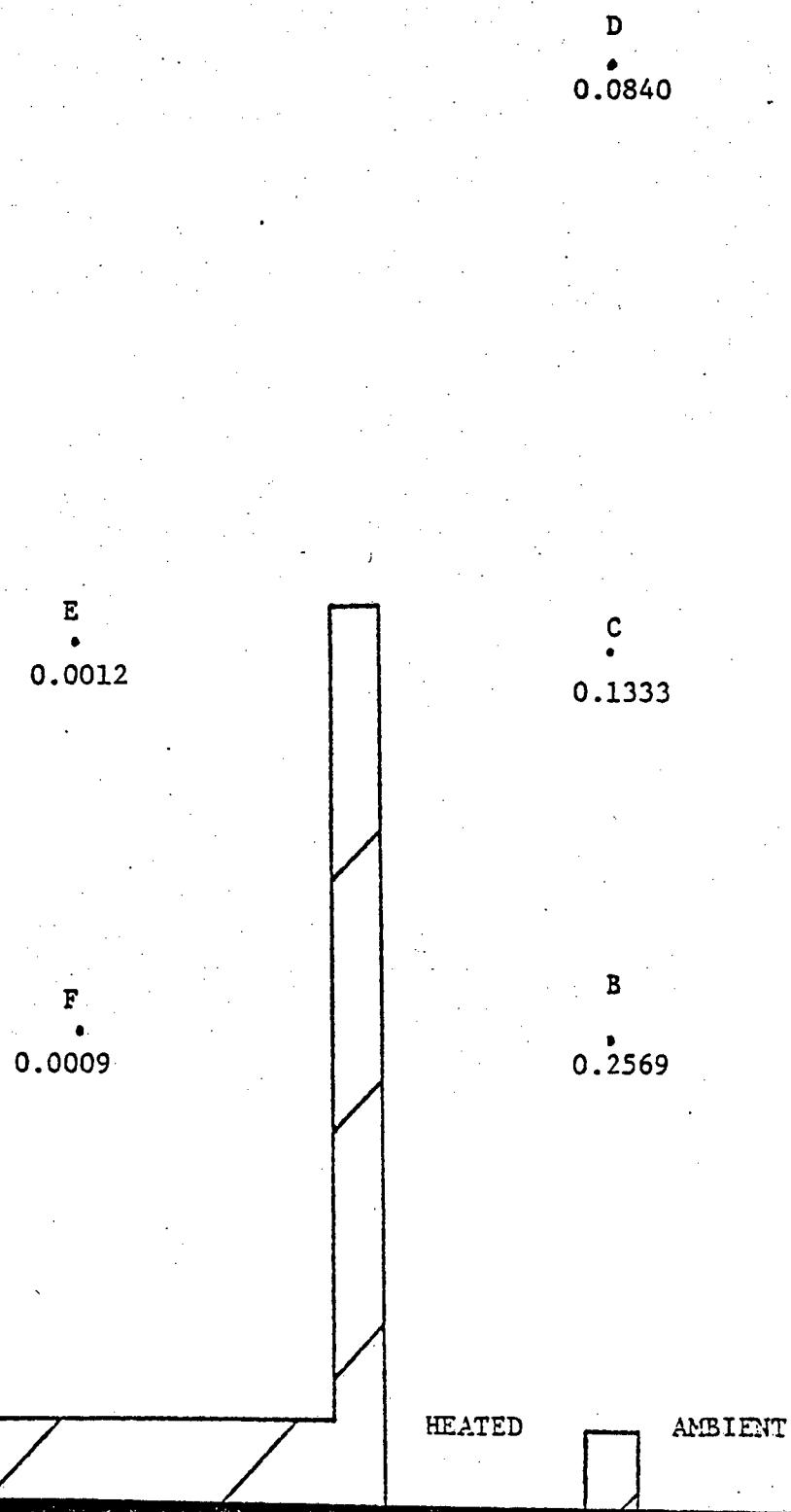


FIGURE 6: EDDY DIFFUSIVITY OF MOMENTUM IN FFTF GEOMETRY (X-COMPONENT)

(m^2/sec)

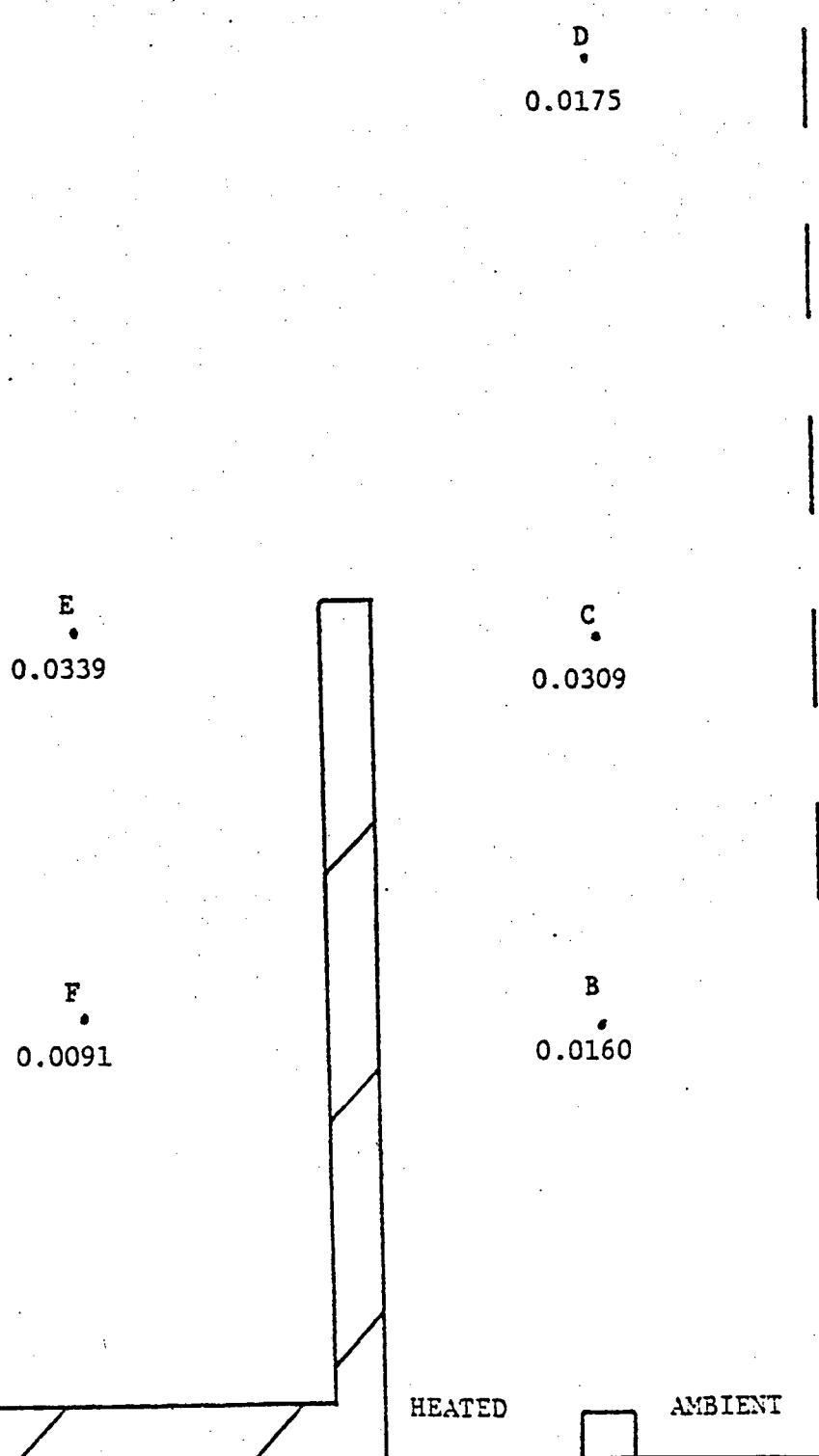


FIGURE 7: EDDY DIFFUSIVITY OF MOMENTUM IN FFTF GEOMETRY (Y-COMPONENT)
(m^2/sec)

D
0.0482

E
0.0868

C
0.0434

F
0.0229

B
0.0964

HEATED

AMBIENT

TABLE 1: $(\epsilon_H/\epsilon_M)_x$ In the FFTF Geometry

<u>Position</u>	<u>$(\epsilon_H/\epsilon_M)_x$</u>
B	.119
C	.065
D	.211
E	.227
F	.055

TABLE 2: $(\epsilon_H/\epsilon_M)_y$ In the FFTF Geometry

<u>Position</u>	<u>$(\epsilon_H/\epsilon_M)_y$</u>
B	2.665
C	3.071
D	1.743
E	.014
F	.039

TASK IV: THEORETICAL DETERMINATION OF LOCAL TEMPERATURE FIELDS IN IMFBR ROD BUNDLES

TASK IV.A: Coupling of Lumped and Distributed Parameter Codes
(Man-Kit Yeung)

In the previous report, a computational scheme of coupling the distributed and lumped parameter solution methods was proposed. The general flow chart of this scheme is shown in Figure 1. It has been reported that the results for the 7-rod bundle calculation were quite encouraging. More detailed results of this 7-rod bundle calculation can be found in the forthcoming topical report by Yeung and Wolf [1].

During the last quarter, a 19-rod bundle calculation has been performed and compared with the measurement of Möller and Tschöke's experiment [2] in order to demonstrate the capability of this analysis. The geometric configuration and the subchannel layout of the bundle is shown in Figure 2. The mixing parameters used for the COBRA-IIIC calculation are those presented in [3]. As shown in Figure 2, by the shaded region, a 7-rod section has been cut out from the 19-rod bundle. In order to obtain a reasonable estimate for the clad temperature of the corner rod, it is necessary to have some knowledge of the coolant temperatures of the two shaded areas. Unfortunately, these are not directly available from the COBRA-IIIC calculations. Approximations have to be made to obtain these values. In this case, it has been assumed that the average temperature of the shaded area which consists of $\langle A_3 \rangle_3$ and half of $\langle A_2 \rangle_3$ is equal to \bar{T}_3 , the coolant temperature of subchannel 3. This approximation should be reasonably valid as long as a large power gradient does not exist across the bundle. On the other hand, it would be questionable to use \bar{T}_4 as the temperature of the shaded area $\langle A_4 \rangle_4$ because of the geometric irregularity of subchannel 4. One possible way to determine $\langle T_4 \rangle_4$ is to utilize the calculational results of the fully developed temperature field of the 19-rod bundle. In addition, the axial correction $F(Z)$ is also used to account for the thermal entrance effect. Thus, the relation between $\langle T_4 \rangle_4$ and \bar{T}_4 is given by the following:

$$\frac{\langle T_4 \rangle_4 - \bar{T}_4}{\bar{q}''' a^2 / 2kc} = \frac{\langle A_3 \rangle_4}{\langle A_3 \rangle_4 + \langle A_4 \rangle_4} \{ 2 Y_{0142} + F(Z) [\langle \theta_4 \rangle_4 - \langle \theta_3 \rangle_3] \}$$

Having established the values of the coolant temperatures necessary for the analysis for the 7-rod section, the coupled distributed-lumped parameter technique is applied at the axial position of $Z = 25.94"$ and the result of calculation is shown

in Fig. 3 in which the clad temperature distribution of the corner cell is plotted vs. the angular position ϕ . For comparison, the clad temperature distribution of the corner cell measured by Möller and Tschöke is also presented. It can be seen that the shape of the predicted curve compares fairly well with the experiment. The clad temperature distribution predicted by the coupled analysis matches the experimental data in the near-wall region fairly well but tends to over-estimate the temperature in the away-from-wall region. In addition, the predicted clad temperature distribution has a maximum (minimum) circumferential variation of approximately 50°F which is about 16°F higher than the measurement. The discrepancy between the calculated and the measured clad temperature distribution may be the combined effect of the following uncertainties and derivations between experiment and calculation:

- (1) Uncertainty in the geometric and thermal parameters of the experimental apparatus.
- (2) The rounded corner of the bundle shroud in the experimental apparatus.
- (3) Underestimation of the mixing parameter.

Among these three possibilities, it is felt that the mixing parameter probably has the greatest impact on the result of the calculation.

Therefore, it becomes apparent that the determination of a realistic clad temperature distribution relies on the validity of the subchannel calculation which cannot be achieved without the proper knowledge of the various mixing parameters. As a result, the present analysis is only a first step effort to link the distributed and lumped parameter analysis and improvements in many areas will be made to extend and upgrade the analysis.

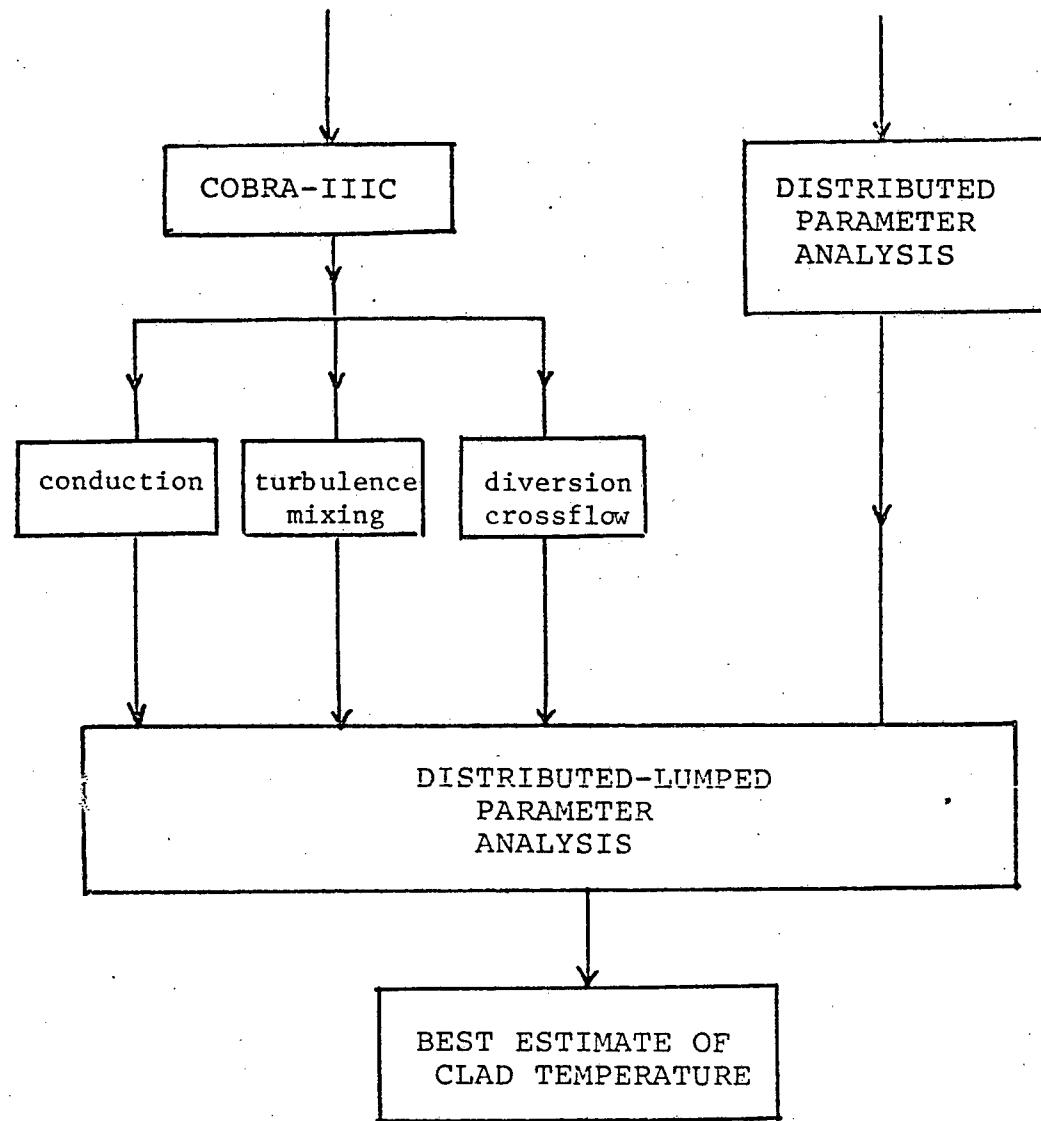


Fig. 1. General Procedure of the Coupled Distributed-Lumped Parameter Analysis

— SUBCHANNEL BOUNDARY

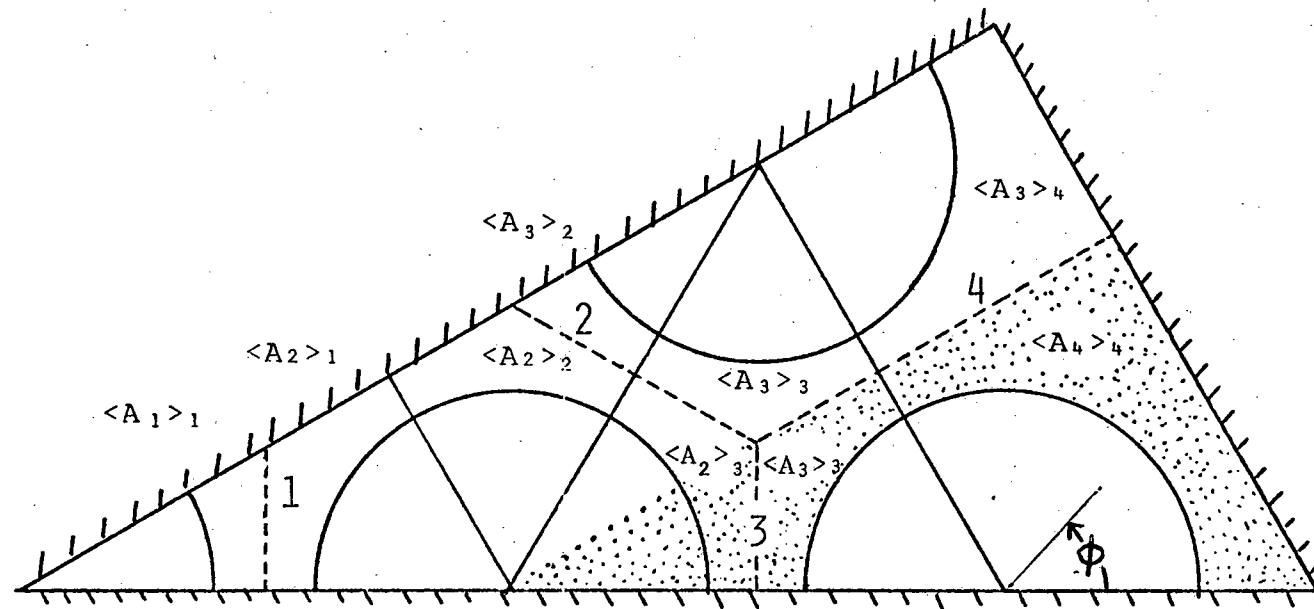


Fig. 2. Subchannel Layout of the 19-Rod Bundle

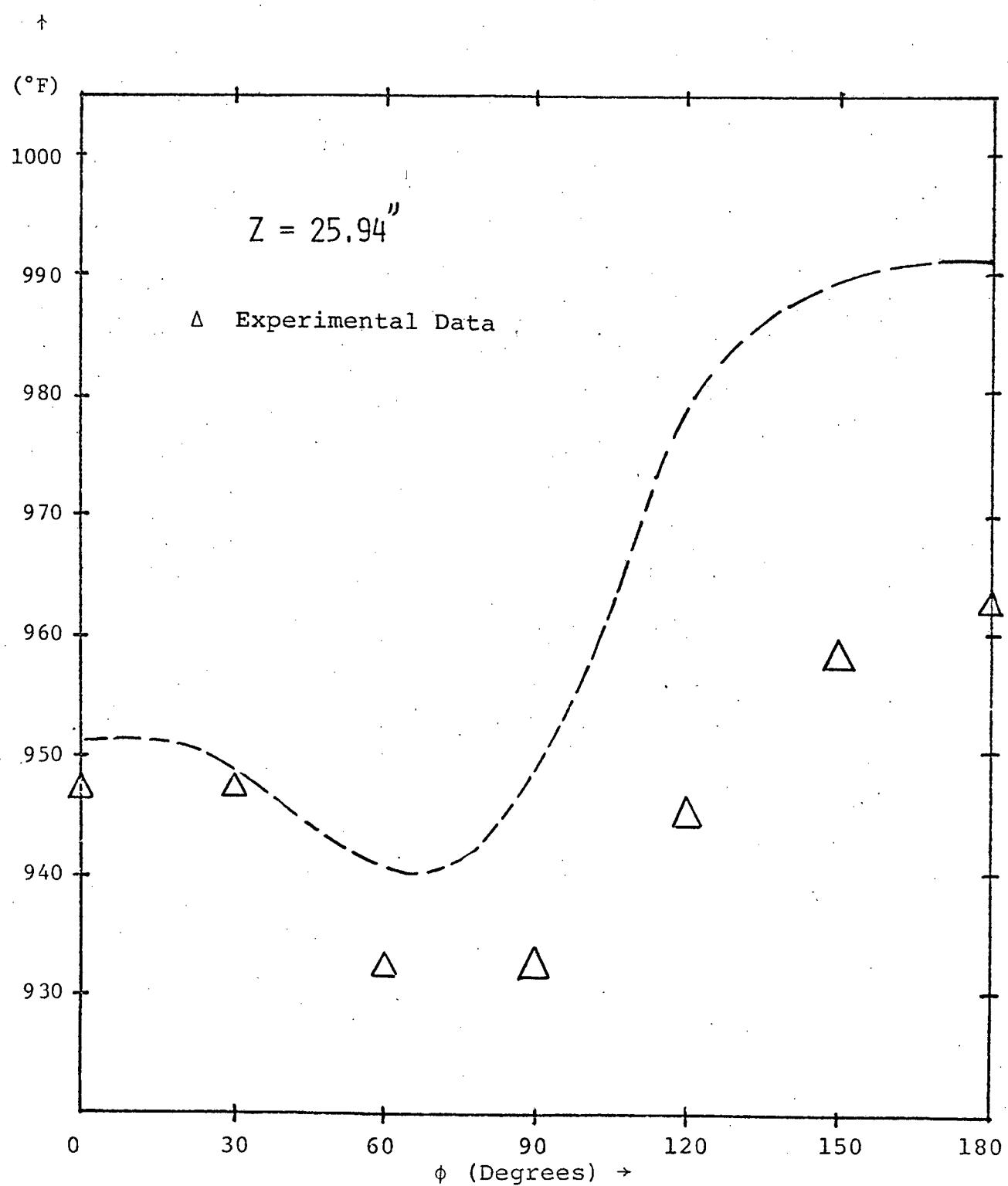


Fig. 3 Clad Temperature Distribution of the Corner Rod for the Experimental 19-Rod Bundle

TASK IV.B: 3-D Multi-Region Single Cell Turbulent Flow Analysis
(Chung-Nin Wong)

The work on the turbulent heat transfer analysis of hexagonal rod bundles in LMFBRs has been underway throughout this quarter. The computer code RODBUN by Ramm [4] has been made operational and employed for various analyses. Thus far, the principal work has been the set-up of the code and an attempt to initiate the code to run in an efficient way.

The code RODBUN uses the finite differencing scheme to solve the conservation equations of momentum and energy for an incompressible, steady-state, hydrodynamically fully developed turbulent flow for an equilateral triangular rod array. A phenomenological turbulent model, based on the principal ideas of Buleev's theoretical model of turbulent transfer in a three dimensional fluid flow [5], is used in the code. Moreover, the code can handle any anisotropic turbulent diffusivity and also the effect of secondary flow.

Substantial time and effort have been spent to fix up the code and have it run well because quite a number of errors have been detected in the original version of the code due to various reasons. First, an initiation for the arrays in the common blocks and many of the unknown variables has been implemented. Second, several statements have been changed because they read variables from a scrap tape that is not needed at M.I.T.. Third, a minor re-adjustment of the iteration loop is performed, thus making sure that there won't be any needless iterations. Furthermore, a graphic display of the velocity fields has been added to the code.

By solving the momentum equation, the velocity field of the internal cell can be obtained and plotted in a three-dimensional way as shown in Fig. 4 and Fig. 5. Since the underlying basic principle assumes that the flow is hydrodynamically fully developed, the velocity profile stays the same at any of the axial levels. Obviously, with the addition of the secondary flow, the azimuthal gradient of the axial velocity becomes comparatively smaller. Finally, the typical time to run the code in order to obtain the velocity profile requires less than 30sCPU time totally in an IBM370-168 machine, which is amazingly good. Next, with the result of this velocity distribution, the temperature field of the internal cell will be calculated and shown in the next quarter report.

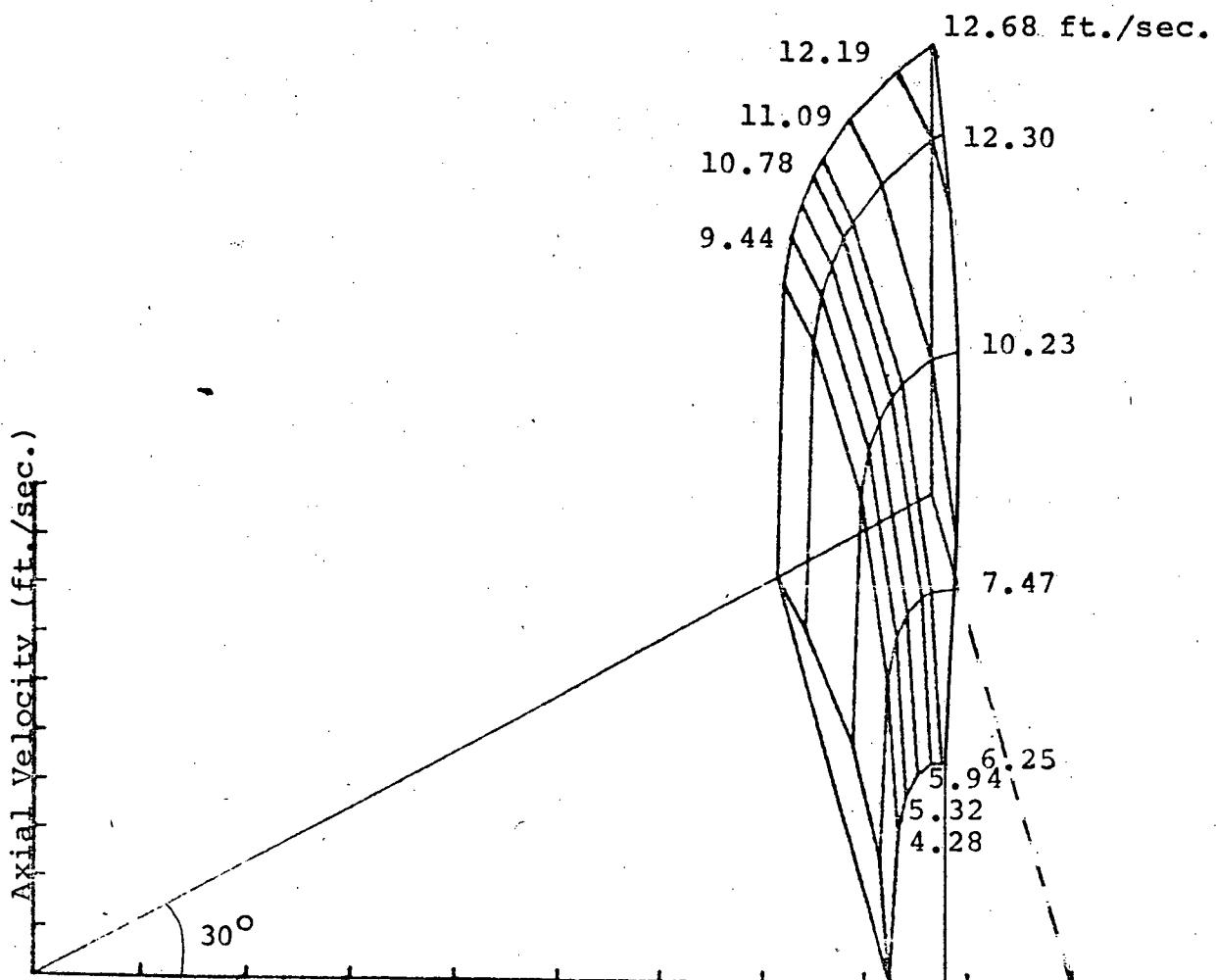
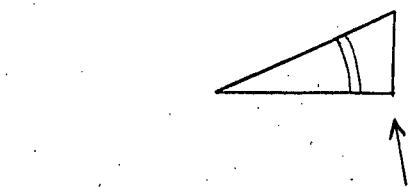



Fig. 4 Velocity Profile of the Internal Cell with Anisotropic Turbulent Model and No Secondary Flow

(Boundary Condition: $P/D = 1.05$, Dia. = 0.622 in.,
 $Re = 3.40 \times 10^4$, Hydrodynamically Fully Developed,
 $V_{avg.} = 10.3$ ft/sec.)

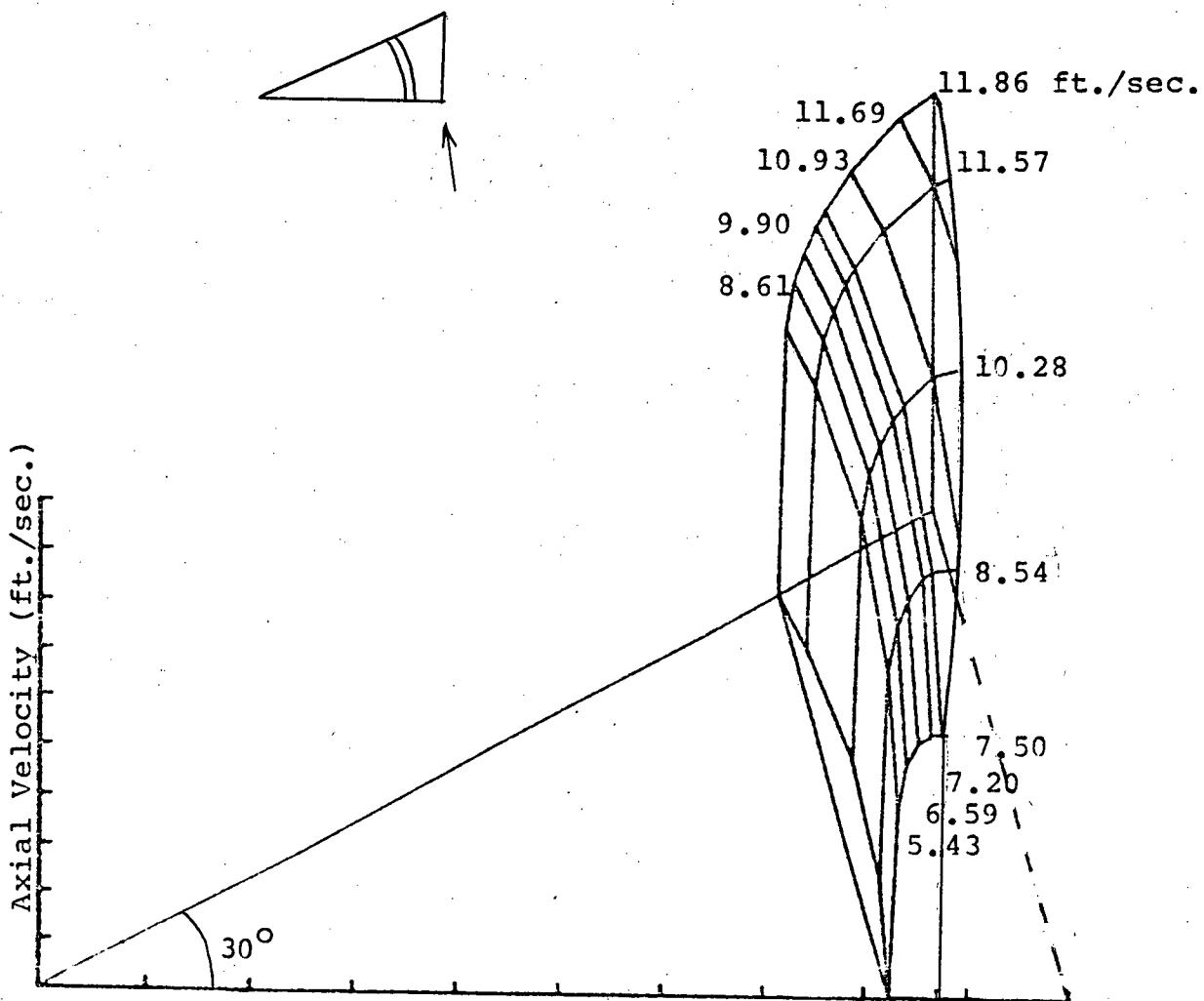


Fig. 5 Velocity Profile of the Internal Cell with Anisotropic Turbulent Model and Secondary Flow

(Boundary Condition: $P/D = 1.05$, Dia. = 0.622 in.,
 $Re = 3.39 \times 10^4$, Hydrodynamically Fully Developed,
 $V_{avg.} = 10.14$ ft/sec.)

REFERENCES

- (1) M.K. Yeung, L. Wolf: "A Multi-Cell Slug Flow Heat Transfer Analysis for Finite LMFBR Bundles," M.I.T. Report, to be published.
- (2) Möller, H. Tschöke. "Experimental Determination of Temperature Fields in Sodium-Cooled Pin Bundles" (In German), Nuc. Conf., Dusseldorf, Germany, 1976.
- (3) M.K. Yeung, L. Wolf, "Effective Conduction Mixing Lengths for Subchannel Analysis of Finite Hexagonal LMFBR Bundles" ANS Meeting, New York, June 1977.
- (4) H. Ramm, K. Johannsen, "A Phenomenological Turbulence Model and its Application to Heat Transfer in Infinite Rod Arrays with Axial Turbulent Flow" J. of Heat Transfer, August 1975.
- (5) N.I. Buleev, "Theoretical Model for Turbulent Transfer in Three-Dimensional Fluid Flow," Paper No. 329 presented at the 3rd UN Intern. Conf. on Peaceful Uses of Atomic Energy, Geneva, 1964.