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ABSTRACT

This paper presents recent research activities at the Center 
for Engineering Systems Advanced Research (CESAR) in 
the area of autonomous discovery and learning of emergency 
and maintenance tasks in unstructured environments by 
a mobile robot. The methodologies for learning basic 
operating principles of control devices, and for using the 
acquired knowledge to solve new problems with conditions 
not encountered before are presented. The algorithms 
necessary for the robot to discover problem-solving sequences 
of actions, through experimentation with the environment, in 
the two cases of immediate feedback and delayed feedback 
are described. The inferencing schemes allowing the robot 
to classify the information acquired from a reduced set of 
examples and to generalize its knowledge to a much wider 
problem-solving domain are also provided. A demonstration 
of the successful implementation of the algorithms on our 
HERMIES-IIB autonomous robot is then presented. The 
demonstration is based on a scenario in which the autonomous 
robot learns the functioning of a process control panel during 
a training session on a simulator. The robot is then asked 
to navigate through an unknown dynamic environment to 
search for, find, and dock at the real control panel, read 
and understand the status of the panel’s meters and dials, 
and manipulate the panel devices to solve an emergency 
maintenance problem, possibly never encountered before.
Conclusions are drawn concerning the applicability of the 
methodologies to more general classes of problems and 
implications for future work on autonomous discovery and 
learning of complex tasks by mobile robots are discussed.

INTRODUCTION

The Center for Engineering Systems Advanced Research 
(CESAR) was founded at Oak Ridge National Laboratory 
by the Department of Energy’s Office of Energy 
Research/Division of Engineering to conduct basic research 
in the area of intelligent machines. Within this framework,
CESAR has undertaken several research activities related to 
navigation, surveillance, and manipulation by autonomous 
mobile robots in unstructured dynamic environments. Key



to successful performance of autonomous robots in a-priori 
unknown and unstructured environments are their coupled 
capabilities of acquiring appropriate information concerning 
their environment and of rapidly processing this information 
to support flexible decision malting and task execution. 
While the knowledge concerning the environment dynamics 
must be acquired through sensors and real-time sensor 
data interpretation techniques, most of the meta-knowledge 
necessary for decision-making and coping with unpredictable 
problems and events can be acquired through programming 
by humans or through autonomous learning. When dealing 
with increasingly wide task domains in complex and realistic 
environments, the programming option rapidly becomes 
impractical and overwhelming for the knowledge engineer 
and programmer. A self-didactic capability thus appears as 
an essential component of an autonomous robot in complex 
unstructured environments.

This paper presents the results of recent investigations 
in this area as implemented on our HERMIES-IIB 
autonomous mobile robot. The next section describes 
the algorithms developed to allow the robot to discover, 
through experimentation with its environment, the functioning 
of control devices as well as the correct sequences of 
actions necessary to achieve a predetermined goal. Both 
cases of immediate feedback and delayed feedback from the 
environment during this discovery phase are discussed. The 
algorithms allowing classification of the acquired knowledge 
and generalization to a larger task domain are then presented. 
The demonstration illustrating the successful implementation 
of these algorithms on our HERMIES-IIB autonomous mobile 
robot is presented in Section 3. Conclusions and implications 
for future work are discussed in Section 4.

DISCOVERY AND LEARNING METHODOLOGIES

The learning methodologies presented here were developed 
within the context of a paradigm encompassing long term 
research goals in the area of intelligent machines for 
surveillance, maintenance, repair and emergency handling in 
complex, hazardous or unstructured environments. In this 
paradigm, mobile robots will be responsible for performing 
routine tasks autonomously and, as necessary, will be called 
upon to handle repair and emergency operations. The robots 
will be provided with learning capabilities which will allow 
them to discover novelties or changes in their environment 
characteristics, train themselves to perform tasks better 
or to learn new tasks, and use this acquired experience 
and knowledge to augment their problem-solving abilities. 
What is presented below represents the very initial steps in 
these directions with emphasis being given to integration, 
implementation, and feasibility demonstration of the progress 
simultaneously with the methods development. Our initial 
investigations focussed on discovery and learning by an



autonomous robot of the functioning of a control system. Our 
approach involves three major steps of learning: an initial trial- 
and-error learning phase in which the robot discovers various 
actions and response sequences to operate a given system which 
has controlling properties on the robot environment; a second 
phase in which observed attributes and their values are used in 
an inference scheme to classify the control system states into 
categories; and, finally a hypothesis-generation phase in which, 
based on previously solved problems and inferred categories, 
the robot selects a sequence of actions to try to solve a new 
problem presented by the control system. It should be noted 
that these three phases occur cyclically as the robot acquires 
or infers new information about the functioning of the control 
system.

Discovery Phase

In this phase, the robot is assumed to have a knowledge 
of the basic actions it can perform with objects; that is, the 
robot knows the list of “primitive” actions which it is allowed 
to exercise on objects in the environment, such as grasp an 
object, pull or push an object, move an object right, left, 
up or down, observe changes in the status of an object (e.g. 
lamp on or off), etc. In the initial discovery, the robot uses its 
vision system to take pictures of the system with which it is 
to work. The gray-value images are transformed into binary 
images using thresholding and “patches” of contiguous pixels 
with similar values are identified. Each patch is labeled as a 
potential object, on which the robot attempts to exercise its 
manipulation primitives. The successful manipulation actions 
are recorded as paired items in a list of indexed responses: 
R; (object j, action k). The robot has thus established the 
list of potential features Fj (the set of objects) and the list of 
potential responses R,- that are pertinent for discovery of the 
functioning of the investigated system.

The robot’s vision system’s primitives can be used to 
establish the status (e.g., lamp on or off) or changes in 
the status (e.g., meter needle moved, handle moved) of the 
feedback devices by comparing new pictures of the devices 
with the original pictures. For each feature F,-, the robot 
considers a given list of possible feedback Bj which correspond 
to the characteristics that can be observed with the available 
sensor suite. A list of potential attributes At (F,-, Bj) 
for the studied system is then generated. Each attribute 
is given a range of possible value according to the type of 
feature it includes, and to the capabilities of the sensor-data 
interpretation routines in the related primitives. For example, 
in the current implementation on HERMIES-IIB, two types 
of feedback, illumination and position, are considered by the 
robot with respective discrete value ranges of (On, Off), and 
(Left, Middle, Right). At the end of this process, the robot 
has acquired a means of establishing the status (or state) of 
the system as the vector V(vit) of indexed attribute values v*,



detecting feedback from the system by observing changes in 
the attribute values, and experimenting with the system by 
using the responses Ri.

The robot continues its learning activities by 
experimenting with the system. To do so, it is asked to reach 
a goal or a series of goals, specified as a required change in the 
value of one (or several) attribute of the system. Alternatively, 
the robot can investigate changes in the attribute values, one 
at a time, as a series of self-set goals. The objective of the 
training is to establish, for a given goal G*, the appropriate 
sequence of responses (the sequence containing only necessary 
and sufficient responses) S,jt = {R/, Rm, R.n---} which relates 
an initial system state Vj to the goal G*:

Vi(uj)- {R/, Rmi R-n*”}
* G*

The functioning of the system investigated is assumed to 
be complex, but realistic, in the sense that the sequences 
Sik contain a non-trivial number of responses and may vary 
significantly with the goals and initial states considered, 
according to the physical law of the system they represent. 
However, in this initial development, we have assumed that 
any response R,- occurs at most once in a correct sequence Si it 
and that subsequently attempted responses in that sequence 
do not cancel previously attempted responses (i.e., Ry =^=>- R,-, 
where the overbar denotes the complement of a response).

We will refer to the couple (V,-, Gjt) as an exemplar for the 
learning process and to S,-* as the associated response sequence 
for this exemplar. Three algorithms were developed to support 
the autonomous sequence discovery activity corresponding 
to three possible characteristic behaviors of the system to 
be learned: (1) Immediate feedback is provided after each 
correct response, (2) feedback is delayed until all correct 
responses have been included in Sik in a non-ordered fashion 
and, (3) feedback is delayed until the correct responses, 
appropriately sequenced, have been included in S,*. To allow 
the robot to rapidly experience and learn many exemplars 
and response sequences, we have selected here to deal with 
types of systems which can easily and readily be reset to any 
given initial state (e.g., sets of light switches as immediate 
feedback systems, multiple converging and diverging hydraulic 
pipes and valves for delayed feedback systems with non-ordered 
sequences, safe locks as delayed feedback systems requiring 
ordered response sequences ).

Immediate Feedback. Considering the first exemplar (Vi, 
Gj), the robot sequentially attempts the responses R, of its 
response list until feedback is provided indicating that the 
first correct response for the exemplar has been found. The 
response is stored in memory and the robot repeats this process 
until the entire sequence Sn has been found for the exemplar. 
The triplet (Vi, Gj, Sn) is stored in long-term memory and



a new initial state of the system is requested by the robot 
which repeats the discovery and memorizing process for this 
new exemplar. If the robot determines that the state of the 
system in an exemplar which is currently presented has been 
previously treated, it recalls the corresponding S,* which was 
stored and attempts it. In the following sections we will show 
that the sequence search process which is initially unguided for 
the first exemplars, can become guided and considerably sped 
up for following exemplars using classification and inferencing 
schemes.

Delayed Feedback for Non Ordered Sequences. When the 
correct sequence necessary to reach the goal does not need 
to be performed in an ordered fashion and the feedback is 
delayed until the goal is attained, the robot attempts the 
possible responses of its list according to their ranking index 
(Ri, R2, R3, ...). Since for non-ordered seqences feedback 
is guaranteed to occur when or before all responses have 
been attempted, the robot will reach the goal during the 
first pass through the response list. Because the objective 
here, however, is to discover the sequence containing only 
the necessary responses, the robot proceeds according to the 
following algorithms: the system is reset to this exemplar 
original state. Since the last response attempted prior to 
receiving feedback, say R/, belongs to the correct sequence, it 
is attempted first. The responses next attempted are again 
those of the list according to their ranking order. In this 
second attempt, therefore, the attempted sequence proceeds 
as (R/, Ri, R2, R3 ...), until feedback is obtained, say following 
Rm. The system is reset to this exemplar original state, and 
the sequence now attempted proceeds as (R/, Rm, Rj, R2, 
Rs ...). The process repeats until all responses in the last 
attempted sequence have been shown to precede a feedback. 
This sequence contains only necessary and sufficient responses 
and is stored in memory with the exemplar characteristics V,-, 
and 0*. The robot then moves on to a new exemplar.

Delayed Feedback for Ordered Sequences. When the 
responses in the correct sequence need to be performed in 
an ordered fashion and feedback is delayed until the goal is 
reached, the search space for the robot grows combinatorially 
with the number of possible responses. What was attempted 
here was to decrease to a minimum the number of sequences 
which the robot needs to try prior to receiving a feedback. 
(Since in this case feedback is not guaranteed for a sequence 
containing all responses R,). The algorithm thus proceeds as 
follows: If n is the toted number of available responses, the 
robot generates lists containing 2n-l responses. The first n 
responses of each list are the n possible responses Ri, arranged 
by increasing index in the first list, and rearranged according 
to the rule of factorial divisibility in the following lists. The 
last n-1 responses in each list are a duplication of the first n-1 
responses in the list. If n=5, for example, the first list which 
will be attempted by the robot is: (Rj, R2, R3, R4, R5, Ri,



R.2, R3, R4), the second list: (Rj, R2, R3, R5, R4, Ri, R?? 
R3, R5), etc. Following each unsuccessful list, the system is 
reset to its exemplar initial state prior to the robot attempting 
the next list. When feedback is obtained, the correct ordered 
sequence is included within the currently attempted list, and 
the robot proceeds by elimination to determine all necessary 
and sufficient responses in the list. The solution (V,-, Gjt, 
is stored in memory and the robot moves on to a new exemplar.

Classification Phase

The classification phase of the learning process 
presented here draws from the approach of “instance-to-class” 
generalization1 based on examples which the robot experienced 
and solved in the discovery phase. The robot first groups 
all experienced exemplars into categories. Each category 
consists of the set of exemplars for which an identical goal 
was reached using the same response sequence. The robot uses 
a set of discrimators (e.g. “i=i”; equal values for attribute 
Ai, “i>j”; values for attribute A,- greater than values for 
attribute Ay, ...) to identify true relationships between the 
attribute values of all exemplars in each category and to 
classify the categories uniquely using conjunctions of those 
relationships. This classification process is repeated everytime 
a new exemplar is added to a category and does not verify the 
conjunction of relationships for that category.

Hypotheses Generation Phase

In this last phase of the learning process, the robot uses 
the knowledge it has acquired in the previous phases to 
generate hypotheses of solution sequences for new exemplars. 
The robot first determines the initial attribute value vector 
Vi(vfc) for the new exemplar. It then identifies the categories 
with the same goal Gjt as the exemplar and attempts to 
verify the relationships of each category with the exemplar 
attribute values. If a perfect match is obtained for a category, 
the response sequence of that category will be the preferred 
attempted sequence. If no perfect match exists, a preference 
factor is calculated for each category. The preference factor 
is the sum of the “discriminating weights” of the relationships 
verified by the new exemplar in each category. Sequences are 
attempted in the order defined by the calculated preference 
factors. If none of the attempted sequences turn out to be 
successful, the robot returns to the original discovery phase to 
derive the correct sequence for this exemplar.

PROOF OF PRINCIPLE DEMONSTRATION

In order to focus our research activities, prove the 
correctness of our general approach, test and verify the 
basic methodologies and algorithms, and better identify 
areas for further investigation, several experimental scenarios 
were developed and some associated demonstrations were



implemented on our HERMIES autonomous mobile robots. 
In this section, we present one such demonstration which was 
conducted to test HERMIES-IIB’s capabilities in unsupervised 
learning, autonomous navigation in unstructured and dynamic 
environments, handling of contingencies, goal recognition, 
reading and understanding of complex control devices, vision- 
guided manipulation, and innovative problem-solving based on 
prior learning.

General Description of HERMIES-IIB

HERMIES-IIB (Hostile Environment Robotic Machine 
Intelligence Experiment Series IIB) is the latest member in a 
series of progressively more capable and sophisticated robots. 
The first HERMIES robots provided valuable experience 
in planning, world modeling, and communication, but the 
intensive computations and high-level decision making in 
these experiments were performed off board in computers 
linked by radio with the robot.2-4 HERMIES-IIB stresses 
computational autonomy; hence, the need for powerful on­
board computing capabilities.5 HERMIES-IIB manipulators 
are too primitive to perform tasks requiring significant strength 
or high precision; however, their capabilities were sufficient 
to support autonomous vision-guided manipulation in the 
context of simple maintenance tasks at a control panel, and 
consequently demonstrate some of the learning algorithms 
presented here.

HERMIES-IIB is a self-p>owered robot sytem consisting 
of a wheel-driven chassis, dual manipulator arms, on­
board distributed concurrent processors, and a directionally 
controlled sensor platform (see Fig. 1). The robot is propelled 
by a dual set of independent wheels having common axle 
alignment and driven by separate DC gear head motors 
powered by pulse-width modulated servo amplifiers.

The batteries and drive chassis components are located 
in the robot body’s rectangular lower part. An IBM 7532 
and above it, a VME rack are mounted in the robot frame’s 
trapezoid-shaped upp>er part just above the drive chassis. A 
dual-arm manipulator torso is mounted above the IBM 7532, 
forward of the VME rack and on the outside of the robot’s 
“skin.” The manipulators are five-degree-of-freedom units 
manufactured by Zenith/Heathkit and used on the Hero home 
robot.

The sonar sensing sytem, an array of Polaroid range 
finders, consists of 25 individual transceivers, arranged in 
six 2x2 matrix clusters. Twenty-four of these sonar 
transducers are mounted and operated as phased-array range­
finding elements to reduce the effective sonar beam from 
approximately 30 degrees of the individual transducers to 
about 12 degrees for the phased-array clusters. Five of these 
clusters are mounted in a ring on the periphery of the rotatable



robot head; the sixth cluster is mounted on a tiltable platform 
attached to the head. The remaining sonar transceiver (not 
shown on Fig. 1) is located on the front side of the robot, near 
the mid-section and between the manipulators. It serves as a 
collision-avoidance sensor during navigation.

A video data acquisition system forms the heart of the 
machine vision hardware. Currently, the system uses two Sony 
CCD black-and-white cameras, one of them equipped with a 
wide-angle lens. FYame acquisition is via a Maxvideo system 
from Datacube.

The IBM 7532, an industrial version of the IBM AT, 
provides mass storage with a 20M-byte hard disk and a 
1.2M-byte floppy disk as well as 2M-byte RAM. Six AT- 
style and two XT-type expansion slots are available on the 
computer’s back plane. Four of the eight slots are used 
for I/O devices and memory expansion, while the other four 
slots are available for NCUBE parallel processing boards, each 
containing four processor nodes—for a total of sixteen nodes— 
arranged in an hypercube configuration. Communication 
between the IBM 7532 and the 20-slot double-high industrial 
VME rack is by an 8-megabaud parallel link made by the Bit-3 
computer company, with a transfer rate of IM-byte per second.

Computer programs controlling the robot’s behavior are 
mostly written in C and can be organized into four classes: 
the HERMIES primitives, the expert systems and associated 
navigation and learning routines, the image analysis routines, 
and the control and integration programs that reside on the 
NCUBE host. The expert systems may be executed from either 
MS-DOS or AXIS while all of the image analysis routines have 
been developed in C for execution on the NCUBE concurrent 
processing computer.

Demonstration Results

Figure 2 illustrates the layout and actual events in the 
experimental demonstration. Initially, the robot is at its “idle” 
position at point A. At the training station, a robot’s brain 
emulator is in communication with a control panel simulator. 
Note that several emulators could be trained simultaneously 
on several plant control device simulators depending on the 
variety of surveillance, maintenance, repair or emergency- 
type tasks which the robot may be requested to perform or, 
alternatively, representing the different types of process control 
devices actually existing in the plant. In this experiment, 
HERMIES-IIB is to learn the functioning of a plant process 
control panel. The control panel includes six control devices, 
four buttons and two levers, (see Fig. 1) and nine feedback 
devices, two meters, four LEDs in the buttons, the two levers, 
and a danger light. Due to the current limitations on its 
manipulation capabilities, the robot is given the elemental 
knowledge of the basic actions possible with each device (e.g., 
buttons can be pushed, levers can be grasped and moved right



or left, meters can be read, lamps can light up to indicate a 
correct action, etc.). An initial state i of the panel is defined by 
the vector Vi(vjt), the components of which are the attribute 
values defining the sytem (in this demonstration, left meter 
needle position and upper lever position are two examples of 
attributes of the system, with possible respective values of low, 
medium or high and left, center, or right). The overall control 
scheme of the panel is programmed on PCs located within 
the actual panel and in the simulator. This control scheme, 
unknown to the robot, requires that, for each initial state of the 
panel, a specific sequence of actions on the control devices be 
performed to achieve the predetermined goal of “turning-off the 
danger light.” During the training session on the simulator, the 
robot’s brain emulator is exposed to a set of initial states (the 
training set) which the panel may take. The role of the expert 
system brain is to discover, by trial and error experimentation 
with the control panel, the correct sequence of responses which 
achieves the goal for each exemplar in the training set and infer 
categories from these discoveries. In this trial and error phase, 
we assume that immediate feedback about the correctness of 
actions is provided to the robot through the nine feedback 
devices. When the training session is completed, the acquired 
knowledge is stored as “long term memory” on a PC diskette 
and is transferred, when necessary, to the robot.

An emergency situation is then simulated by turning on the 
danger light on the real panel. The location of the panel, as 
well as that of all other objects in the room, is unknown to the 
robot. The panel control devices are also arbitrarily moved to 
set the panel in an initial state possibly never dealt with before 
by the robot (i.e., not included in the training set). The relative 
coordinates of a subgoal location B are sent to the robot via a 
RF-link, and a “GO” statement is issued. HERMIES-IIB’s 
task is to autonomously navigate from A to B avoiding or 
removing several types of static and moving obstacles. From 
location B, HERMIES-IIB is to find the control panel, move up 
to the panel and manipulate the control devices in the exactly 
correct sequence necessary to turn-off the danger light. It is 
assumed that there are no obstacles between location B and 
the panel.

HERMIES-IIB starts by making a wide angle sonar scan 
of the environment and planning a collision free path to the 
reachable point closest to B. As the robot moves toward its 
destination a sonar scans the area ahead of the robot. If 
the sonar detects an unexpected obstacle in its path, it stops 
within 2 feet, diagnoses the nature of the obstacle and takes 
appropriate action. A conflict resolution and error propagation 
scheme6 is used to combine data from the sonar and vision in 
this path-planning and collision-avoidance algorithm. Several 
unexpected events are generated to illustrate the robot’s 
capabilities for detection, contingency handling, and dynamic 
replanning. At point S, HERMIES-IIB stops for an unexpected 
obstacle, small enough to be picked up and moved out of



the way. On its way to point Aj, HERMIES-IIB faces a 
large moving obstacle obstructing its path, and is forced to 
backtrack and globally replan its navigation. At point M, 
a pedestrian forces HERMIES-IIB to stop but quicly moves 
out of the way, allowing the robot to pursue its original path. 
When HERMIES-IIB has reached location B, the vision system 
searches for the panel as a black box with aspect ratio of 2 
to 3. Upon discovering a potential candidate for its goal, the 
robot initiates its navigation toward this potential target. Once 
the robot is close enough to the panel for the meters to be 
recognized by the vision system, the panel is identified as the 
desired goal, and the robot progressively moves to a position 
allowing it to read and manipulate the panel control devices.

. The vision system is first used to determine the location of 
all devices on the panel fane and evaluate their state (attribute 
value). In the case of the analog meters, for example, the 
region of the binary image identified as a meter is searched to 
find groups of pixels that form lines. Since the meters have two 
needles (one is a preset or limit needle) the images are searched 
to find tne most prominent pair of lines. A Hough transform is 
used to convert the needle position data from cartesian to polar 
(r, 6) values and a corresponding attribute value is assigned.

The knowledge learned during the training session is 
subsequently used to infer the correct sequence of actions 
on the control devices to turn off the danger light, and 
the vision-guided manipulation is used to perform these 
manipulation tasks. For this particular demonstration we 
showed7’8 that only 14 exemplars in the training set were 
necessary before the emulator “brain” had acquired enough 
knowledge about the panel control scheme to solve any new 
problem (initial states not previously encountered) with no 
error in tne sequence of control actions. In Refs. 7 and 8, 
we also showed that the practicality of autonomous robots 
discovering, learning, and memorizing new tasks was great 
indeed. For problems based on relatively simple devices such 
as the control panel presented here, all humans who were 
involved in the comparison study (our CESAR laboratory 
cooperative students) exhibited a combination of high error 
rates, repeated errors, false recall or non-memorization, and 
no consistent improvement of performance with increasing 
numbers of exemplars. HERMIES-IIB, on the other hand, 
rapidly derived the necessary knowledge and understanding of 
the control system to achieve a fully error-free performance on 
any new problems. Of course, HERMIES-IIB did not forget 
any of the rules it learned or exemplars it experienced.

DISCUSSION AND CONCLUSIONS

The successful implementation of the demonstration just 
described validates some of the concepts of autonomous robot 
learning for surveillance, maintenance, repair or emergency- 
type of activities in unstructured environments. In particular,



the feasibility for an autonomous robot to discover and 
memorize feedback features and response devices, and to 
infer from these discoveries some characteristic behavior of 
a complex control system has been demonstrated. We 
have also shown the practicality of using unsupervised 
learning to increase the robot’s knowledge in a wide task 
domain and to improve its problem-solving capabilities 
to cope effectively (with no error) with new problems 
or situations, without increasing the programming burden 
of the knowledge engineer. Finally, the HERMIES-IIB 
demonstration presented here clearly suggests areas requiring 
further research and developments. For example, ours and 
others’ recent investigations have shown that the efficiency 
of the coupled discovery and inferencing processes can be 
dramatically improved by taking into account the information 
corresponding to negative examples (incorrect actions). The 
classification and hypotheses generation phases leaning to 
“no error” performances can also be improved and sped-up 
through utilization of dynamically adaptive discriminators and 
weighting functions. These developments, in turn, would 
support extensions of the unsupervised learning methodologies 
to include self-generation of exemplars. Clearly, further 
research is needed in the areas of temporal and approximate 
reasoning methodologies to support more advanced and flexible 
learning strategies. Investigations in these directions as well as 
research on novel methodologies to allow the robot to learn its 
own capabilities (e.g. primitives) by observation of humans are 
pursued in ongoing projects at CESAR.
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Fig. 1. HERMIES-IIB moving a lever of the 
control panel.
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Fig. 2. A layout of the experimental area for 
HERMIES-IIB. The robot navigates from point A to 
point B, stopping at intermediate goals A2, A3, and 
A4 and responding to dynamic obstacles at points 
Ai, S and M. The robot moves from point B to the 
control panel, stopping at intermediate goals Bx and 
B2. At point C the robot is close enough to read and 
manipulate the panel control devices.
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