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ABSTRACT

_ This paper presents recent research activities at the Center
for Engineering Systems Advanced Research (CESAR) in
the area of autonomous discovery and learning of emergency
and maintenance tasks in unstructured environments by
a mobile robot.  The methodologies for learning basic
operating principles of control devices, and for using the
acquired knowledge to solve new problems with conditions
not encountered before are presented.  The algorithms
necessary for the robot to discover problem-solving sequences
of actions, through experimentation with the environment, in
the two cases of immediate feedback and delayed feedback
are described. The inferencing schemes allowing the robot
to classify the information acquired from a reduced set of
examples and to generalize its knowledge to a much wider
problem-solving domain are also provided. A demonstration
of the successtul implementation of the algorithms on our
HERMIES-IIB autonomous robot is then presented. The
demonstration is based on a scenario in which the autonomous
robot learns the functioning of a process control panel during
a training session on a simulator. The robot is then asked
to navigate through an unknown dynamic environment to
search for, find, and dock at the real control panel, read
and understand the status of the panel’s meters and dials,
and manipulate the panel devices to solve an emergency
maintenance problem, possibly never encountered before.
Conclusions are drawn concerning the applicability of the
methodologies to more general classes of problems and
implications for future work on autonomous discovery and
learning of complex tasks by mobile robots are discussed.

INTRODUCTION

The Center for Engineering Systems Advanced Research
(CESAR) was founded at Oak Ridge National Laboratory
by the Department of Energy’s Office of Energy
Research/Division of Engineering to conduct basic research
in the area of intelligent machines. Within this framework,
CESAR has undertaken several research activities related to
navigation, surveillance, and manipulation by autonomous
mobile robots in unstructured dynamic environments. Key



to successful performance of autonomous robots in a-priori
unknown and unstructured environments are their coupled
capabilities of acquiring appropriate information concerning
their environment and of rapidly processing this information
to support flexible decision making and task execution.
While the knowledge concerning the environment dynamics
must be acquired through sensors and real-time sensor
data interpretation techniques, most of the meta-knowledge
necessary for decision-making and coping with unpredictable
problems and events can be acquired through programming
by humans or through autonomous learning. When dealing
with increasingly wide task domains in complex and realistic
environments, the programming option rapidly becomes
impractical and overwhelming for the knowledge engineer
and programmer. A self-didactic capability thus appears as
an essential component of an autonomous robot in complex
unstructured environments.

This paper presents the results of recent investigations
in this area as implemented on our HERMIES-IIB
autonomous mobile robot. @ The next section describes
the algorithms developed to allow the robot to discover,
through experimentation with its environment, the functioning
of control devices as well as the correct sequences of
actions necessary to achieve a predetermined goal. Both
cases of immediate feedback and delayed feedback from the
environment during this discovery phase are discussed. The
algorithms allowing classification of the acquired knowledge
and generalization to a larger task domain are then presented.
The demonstration illustrating the successful implementation
of these algorithms on our HERMIES-IIB autonomous mobile
robot is presented in Section 3. Conclusions and implications
for future work are discussed in Section 4.

DISCOVERY AND LEARNING METHODOLOGIES

The learning methodologies presented here were developed
within the context of a paradigm encompassing long term
research goals in the area of intelligent machines for
surveillance, maintenance, repair and emergency handling in
complex, hazardous or unstructured environments. In this
paradigm, mobile robots will be responsible for performing
routine tasks autonomously and, as necessary, will be called
upon to handle repair and emergency operations. The robots
will be provided with learning capabilities which will allow
them to discover novelties or changes in their environment
characteristics, train themselves to perform tasks better
or to learn new tasks, and use this acquired experience
and knowledge to augment their problem-solving abilities.
What is presented below represents the very initial steps in
these directions with emphasis being given to integration,
implementation, and feasibility demonstration of the progress
simultaneously with the methods development. Our initial
investigations focussed on discovery and learning by an



autonomous robot of the functioning of a control system. Our
approach involves three major steps of learning: an initial trial-
and-error learning phase in which the robot discovers various
actions and response sequences to operate a given system which
has controlling properties on the robot environment; a second
phase in which observed attributes and their values are used in
an inference scheme to classify the control system states into
categories; and, finally a hypothesis-generation phase in which,
based on previously solved problems and inferred categories,
the robot selects a sequence of actions to try to solve a new
problem presented by the control system. It should be noted
that these three phases occur cyclically as the robot acquires
or infers new information about the functioning of the control
system.

Discovery Phase

In this phase, the robot is assumed to have a knowledge
of the basic actions it can perform with objects; that is, the
robot knows the list of “primitive” actions which it is allowed
to exercise on objects in the environment, such as grasp an
object, pull or push an object, move an object right, left,
up or down, observe changes in the status of an object (e.g.
lamp on or off), etc. In the initial discovery, the robot uses its
vision system to take pictures of the system with which it is
to work. The gray-value images are transformed into binary
images using thresholding and “patches” of contiguous pixels
with similar values are identified. Each patch is labeled as a
potential object, on which the robot attempts to exercise its
manipulation primitives. The successful manipulation actions
are recorded as paired items in a list of indexed responses:
R; (object j, action k). The robot has thus established the
list of potential features F'; (the set of objects) and the list of
potential responses R; that are pertinent for discovery of the
functioning of the investigated system.

The robot’s vision system’s primitives can be used to
establish the status (e.g., lamp on or off) or changes in
the status (e.g., meter needle moved, handle moved) of the
feedback devices by comparing new pictures of the devices
with the original pictures. For each feature F;, the robot
considers a given list of possible feedback B; which correspond
to the characteristics that can be observed with the available
sensor suite. A list of potential attributes Ax (Fi, Bj)
for the studied system is then generated. Each attribute
is given a range of possible value according to the type of
feature it includes, and to the capabilities of the sensor-data
interpretation routines in the related primitives. For example,
in the current implementation on HERMIES-IIB, two types
of feedback, illumination and position, are considered by the
robot with respective discrete value ranges of (On, Off), and
(Left, Middle, Right). At the end of this process, the robot
has acquired a means of establishing the status (or state) of
the system as the vector V(vi) of indexed attribute values vy,



detecting feedback from the system by observing changes in
the attribute values, and experimenting with the system by
using the responses Ri.

The robot continues its learning activities by
experimenting with the system. To do so, it is asked to reach
a goal or a series of goals, specified as a required change in the
value of one (or several) attribute of the system. Alternatively,
the robot can investigate changes in the attribute values, one
at a time, as a series of self-set goals. The objective of the
training is to establish, for a given goal Gi, the appropriate
sequence of responses (the sequence containing only necessary
and sufficient responses) S;x = {Ri, R, Rn...} which relates
an initial system state V; to the goal Gy:

Rpm,Rn...}
Sik
The functioning of the system investigated is assumed to
be complex, but realistic, in the sense that the sequences
Sir contain a non-trivial number of responses and may vary
significantly with the goals and initial states considered,
according to the physical law of the system they represent.
However, in this initial development, we have assumed that
any response R; occurs at most once in a correct sequence S
and that subsequently attempted responses in that sequence

do not cancel previously attempted responses (i.e., R; = R;,
where the overbar denotes the complement of a response).

Viv;)— Gy .

We will refer to the couple (V;, Gi) as an exemplar for the
learning process and to S;; as the associated response sequence
for this exemplar. Three algorithms were developed to support
the autonomous sequence discovery activity corresponding
to three possible characteristic behaviors of the system to
be learned: (1) Immediate feedback is provided after each
correct response, (2) feedback is delayed until all correct
responses have been included in S;; in a non-ordered fashion
and, (3) feedback is delayed until the correct responses,
appropriately sequenced, have been included in S;x. To allow
the robot to rapidly experience and learn many exemplars
and response sequences, we have selected here to deal with
types of systems which can easily and readily be reset to any
given initial state (e.g., sets of light switches as immediate
feedback systems, multiple converging and diverging hydraulic
pipes and valves for delayed feedback systems with non-ordered
sequences, safe locks as delayed feedback systems requiring
ordered response sequences ).

Immediate Feedback. Considering the first exemplar (Vy,
G)), the robot sequentially attempts the responses R; of its
response list until feedback is provided indicating that the
first correct response for the exemplar has been found. The
response is stored in memory and the robot repeats this process
until the entire sequence S;; has been found for the exemplar.
The triplet (Vy, Gi, S11) is stored in long-term memory and



a new initial state of the system is requested by the robot
which repeats the discovery and memorizing process for this
new exemplar. If the robot determines that the state of the
system in an exemplar which is currently presented has been
previously treated, it recalls the corresponding S;x which was
stored and attempts it. In the following sections we will show
that the sequence search process which is initially unguided for
the first exemplars, can become guided and considerably sped
up for following exemplars using classification and inferencing
schemes.

Delayed Feedback for Non Ordered Sequences. When the
correct sequence necessary to reach the goal does not need

to be performed in an ordered fashion and the feedback is
delayed until the goal is attained, the robot attempts the
possible responses of its list according to their ranking index
(R1, Rz, Rs, ...). Since for non-ordered seqences feedback
is guaranteed to occur when or before all responses have
been attempted, the robot will reach the goal during the
first pass through the response list. Because the objective
here, however, is to discover the sequence containing only
the necessary responses, the robot proceeds according to the
following algorithms: the system is reset to this exemplar
original state. Since the last response attempted prior to
receiving feedback, say R,, belongs to the correct sequence, it
is attempted first. The responses next attempted are again
those of the list according to their ranking order. In this
second attempt, therefore, the attempted sequence proceeds
as (Ry, Ry, Rg, Rj ...), until feedback is obtained, say following
R,:. The system is reset to this exemplar original state, and
the sequence now attempted proceeds as (R;, R, Rj, Ry,
R3 ...). The process repeats until all responses in the last
attempted sequence have been shown to precede a feedback.
This sequence contains only necessary and sufficient responses
and is stored in memory with the exemplar characteristics V;,
and Gg. The robot then moves on to a new exemplar.

Delayed Feedback for Ordered Sequences. When the
responses in the correct sequence need to be performed in

an ordered fashion and feedback is delayed until the goal is
reached, the search space for the robot grows combinatorially
with the number of possible responses. What was attempted
here was to decrease to a minimum the number of sequences
which the robot needs to try prior to receiving a feedback.
(Since in this case feedback is not guaranteed for a sequence
containing all responses R;). The algorithm thus proceeds as
follows: If n is the total number of available responses, the
robot generates lists containing 2n-1 responses. The first n
responses of each list are the n possible responses Ri, arranged
by increasing index in the first list, and rearranged according
to the rule of factorial divisibility in the following lists. The
last n-1 responses in each list are a duplication of the first n-1
responses in the list. If n=5, for example, the first list which
will be attempted by the robot is: (R;, Rz, Rs, R4, Rs, Ry,



Rz, R3, R4), the second list: (R.x, Rz, Rs, R5, R4, R], Rz,
Rs, Rs), etc. Following each unsuccessful list, the system is
reset to its exemplar initial state prior to the robot attempting
the next list. When feedback is obtained, the correct ordered
sequence is included within the currently attempted list, and
the robot proceeds by elimination to determine all necessary
and sufficient responses in the list. The solution (V;, Gg, Sit)
is stored in memory and the robot moves on to a new exemplar.

Classification Phase

The classification phase of the learning process
presented here draws from the approach of “instance-to-class”
generalization! based on examples which the robot experienced
and solved in the discovery phase. The robot first groups
all experienced exemplars into categories. Each category
consists of the set of exemplars for which an identical goal
was reached using the same response sequence. The robot uses
a set of discrimators (e.g. “i=i"; equal values for attribute
Ai, “i>j)"; values for attribute A; greater than values for
attribute Aj, ...) to identify true relationships between the
attribute values of all exemplars in each category and to
classify the categories uniquely using conjunctions of those
relationships. This classification process is repeated everytime
a new exemplar is added to a category and does not verify the
conjunction of relationships for that category.

Hypotheses Generation Phase

In this last phase of the learning process, the robot uses
the knowledge it has acquired in the previous phases to
generate hypotheses of solution sequences for new exemplars.
The robot first determines the initial attribute value vector
Vi(ve) for the new exemplar. It then identifies the categories
with the same goal G; as the exemplar and attempts to
verify the relationships of each category with the exemplar
attribute values. If a perfect match is obtained for a category,
the response sequence of that category will be the preferred
attempted sequence. If no perfect match exists, a preference
factor is calculated for each category. The preference factor
is the sum of the “discriminating weights” of the relationships
verified by the new exemplar in each category. Sequences are
attempted in the order defined by the calculated preference
factors. If none of the attempted sequences turn out to be
successful, the robot returns to the original discovery phase to
derive the correct sequence for this exemplar.

PROOF OF PRINCIPLE DEMONSTRATION

In order to focus our research activities, prove the
correctness of our general approach, test and verify the
basic methodologies and algorithms, and better identify
areas for further investigation, several experimental scenarios
were developed and some associated demonstrations were



implemented on our HERMIES autonomous mobile robots.
In this section, we present one such demonstration which was
conducted to test HERMIES-IIB’s capabilities in unsupervised
learning, autonomous navigation in unstructured and dynamic
environments, handling of contingencies, goal recognition,
reading and understanding of complex control devices, vision-
guided manipulation, and innovative problem-solving based on
prior learning.

General Description of HERMIES-IIB

HERMIES-IIB (Hostile Environment Robotic Machine
Intelligence Experiment Series IIB) is the latest member in a
series of progressively more capable and sophisticated robots.
The first HERMIES robots provided valuable experience
in planning, world modeling, and communication, but the
intensive computations and high-level decision making in
these experiments were performed off board in computers
linked by radio with the robot.2~* HERMIES-IIB stresses
computational autonomy; hence, the need for powerful on-
board computing capabilities.”* HERMIES-IIB manipulators
are too primitive to perform tasks requiring significant strength
or high precision; however, their capabilities were sufficient
to support autonomous vision-guided manipulation in the
context of simple maintenance tasks at a control panel, and
consequently demonstrate some of the learning algorithms
presented here.

HERMIES-IIB is a self-powered robot sytem consisting
of a wheel-driven chassis, dual manipulator arms, on-
board distributed concurrent processors, and a directionally
controlled sensor platform (see Fig. 1). The robot is propelled
by a dual set of independent wheels having common axle
alignment and driven by separate DC gear head motors
powered by pulse-width modulated servo amplifiers.

The batteries and drive chassis components are located
in the robot body’s rectangular lower part. An IBM 7532
and above it, a VME rack are mounted in the robot frame’s
trapezoid-shaped upper part just above the drive chassis. A
dual-arm manipulator torso is mounted above the IBM 7532,
forward of the VME rack and on the outside of the robot’s
“skin.” The manipulators are five-degree-of-freedom units
mztx)nufactured by Zenith/Heathkit and used on the Hero home
robot.

The sonar sensing sytem, an array of Polaroid range
finders, consists of 25 individual transceivers, arranged in
six 2 X 2 matrix clusters. Twenty-four of these sonar
transducers are mounted and operated as phased-array range-
finding elements to reduce the effective sonar beam from
approximately 30 degrees of the individual transducers to
about 12 degrees for the phased-array clusters. Five of these
clusters are mounted in a ring on the periphery of the rotatable



robot head; the sixth cluster is mounted on a tiltable platform
attached to the head. The remaining sonar transceiver (not
shown on Fig. 1) is located on the front side of the robot, near
the mid-section and between the manipulators. It serves as a
collision-avoidance sensor during navigation.

A video data acquisition system forms the heart of the
machine vision hardware. Currently, the system uses two Sony
CCD black-and-white cameras, one of them equipped with a
wide-angle lens. Frame acquisition is via a Maxvideo system
from Datacube.

The IBM 7532, an industrial version of the IBM AT,
provides mass storage with a 20M-byte hard disk and a
1.2M-byte floppy disk as well as 2M-byte RAM. Six AT-
style and two XT-type expansion slots are available on the
computer’s back plane. Four of the eight slots are used
for I/O devices and memory expansion, while the other four
slots are available for NCUBE parallel processing boards, each
containing four processor nodes—for a total of sixteen nodes—
arranged in an hypercube configuration. Communication
between the IBM 7532 and the 20-slot double-high industrial
VME rack is by an 8-megabaud parallel link made by the Bit-3
computer company, with a transfer rate of 1M-byte per second.

Computer programs controlling the robot’s behavior are
mostly written in C and can be organized into four classes:
the HERMIES primitives, the expert systems and associated
navigation and learning routines, the image analysis routines,
and the control and integration programs that reside on the
NCUBE host. The expert systems may be executed from either
MS-DOS or AXIS while all of the image analysis routines have
been developed in C for execution on the NCUBE concurrent
processing computer.

Demonstration Results

Figure 2 illustrates the layout and actual events in the
experimental demonstration. Initially, the robot is at its “idle”
position at point A. At the training station, a robot’s brain
emulator is in communication with a control panel simulator.
Note that several emulators could be trained simultaneously
on several plant control device simulators depending on the
variety of surveillance, maintenance, repair or emergency-
type tasks which the robot may be requested to perform or,
alternatively, representing the different types of process control
devices actually existing in the plant. In this experiment,
HERMIES-IIB is to learn the functioning of a plant process
control panel. The control panel includes six control devices,
four buttons and two levers, (see Fig. 1) and nine feedback
devices, two meters, four LEDs in the buttons, the two levers,
and a danger light. Due to the current limitations on its
manipulation capabilities, the robot is given the elemental
knowledge of the basic actions possible with each device (e.g.,
buttons can be pushed, levers can be grasped and moved right



or left, meters can be read, lamps can light up to indicate a
correct action, etc.). An initial state ¢ of the panel is defined by
the vector V(vi), the components of which are the attribute
values defining the sytem (in this demonstration, left meter
needle position and upper lever position are two examples of
attributes of the system, with possible respective values of low,
medium or high and left, center, or right). The overall control
scheme of the panel is programmed on PCs located within
the actual panel and in the simulator. This control scheme,
unknown to the robot, requires that, for each initial state of the
panel, a specific sequence of actions on the control devices be
performed to achieve the predetermined goal of “turning-off the
danger light.” During the training session on the simulator, the
robot’s brain emulator is exposed to a set of initial states (the
training set) which the panel may take. The role of the expert
system brain is to discover, by trial and error experimentation
with the control panel, the correct sequence of responses which
achieves the goal for each exemplar in the training set and infer
categories from these discoveries. In this trial and error phase,
we assume that immediate feedback about the correctness of
actions is provided to the robot through the nine feedback
devices. When the training session is completed, the acquired
knowledge is stored as “long term memory” on a PC diskette
and is transferred, when necessary, to the robot.

An emergency situation is then simulated by turning on the
danger light on the real panel. The location of the panel, as
well as that of all other objects in the room, is unknown to the
robot. The panel control devices are also arbitrarily moved to
set the panel in an initial state possibly never dealt with before
by the robot (i.e., not included in the training set). The relative
coordinates of a subgoal location B are sent to the robot via a
RF-link, and a “GQO” statement is issued. HERMIES-IIB’s
task is to autonomously navigate from A to B avoiding or
removing several types of static and moving obstacles. From
location B, HERMIES-IIB is to find the control panel, move up
to the panel and manipulate the control devices in the exactly
correct sequence necessary to turn-off the danger light. It is
assumed that there are no obstacles between location B and
the panel.

HERMIES-IIB starts by making a wide angle sonar scan
of the environment and planning a collision free path to the
reachable point closest to B. As the robot moves toward its
destination a sonar scans the area ahead of the robot. If
the sonar detects an unexpected obstacle in its path, it stops
within 2 feet, diagnoses the nature of the obstacle and takes
appropriate action. A conflict resolution and error propagation
scheme® is used to combine data from the sonar and vision in
this path-planning and collision-avoidance algorithm. Several
unexpected events are generated to illustrate the robot’s
capabilities for detection, contingency handling, and dynamic
replanning. At point S, HERMIES-IIB stops for an unexpected
obstacle, small enough to be picked up and moved out of



the way. On its way to point A;, HERMIES-IIB faces a
large moving obstacle obstructing its path, and is forced to
backtrack and globally replan its navigation. At point M,
a pedestrian forces HERMIES-IIB to stop but quicly moves
out of the way, allowing the robot to pursue its original path.
When HERMIES-IIB has reached location B, the vision system
searches for the panel as a black box with aspect ratio of 2
to 3. Upon discovering a potential candidate for its goal, the
robot initiates its navigation toward this potential target. Once
the robot is close enough to the panel for the meters to be
recognized by the vision system, the panel is identified as the
desired goal, and the robot progressively moves to a position
allowing it to read and manipulate the panel control devices.

The vision system is first used to determine the location of
all devices on the panel face and evaluate their state (attribute
value). In the case of the analog meters, for example, the
region of the binary image identified as a meter is searched to
find groups of pixels that form lines. Since the meters have two
needles (one is a preset or limit needle) the images are searched
to find the most prominent pair of lines. A Hough transform is
used to convert the needle position data from cartesian to polar
(r, ) values and a corresponding attribute value is assigned.

The knowledge learned during the training session is
subsequently used to infer the correct sequence of actions
on the control devices to turn off the danger light, and
the vision-guided manipulation is used to perform these
manipulation tasks. For this particular demonstration we
showed”® that only 14 exemplars in the training set were
necessary before the emulator “brain” had acquired enough
knowledge about the panel control scheme to solve any new
problem (initial states not previously encountered) with no
error in the sequence of control actions. In Refs. 7 and 8,
we also showed that the practicality of autonomous robots
discovering, learning, and memorizing new tasks was great
indeed. For problems based on relatively simple devices such
as the control panel presented here, all humans who were
involved in the comparison study (our CESAR laboratory
cooperative students) exhibited a combination of high error
rates, repeated errors, false recall or non-memorization, and
no consistent improvement of performance with increasing
numbers of exemplars. HERMIES-IIB, on the other hand,
rapidly derived the necessary knowledge and understanding of
the control system to achieve a fully error-free performance on
any new problems. Of course, HERMIES-IIB did not forget
any of the rules it learned or exemplars it experienced.

DISCUSSION AND CONCLUSIONS

The successful implementation of the demonstration just
described validates some of the concepts of autonomous robot
learning for surveillance, maintenance, repair or emergency-
type of activities in unstructured environments. In particular,



the feasibility for an autonomous robot to discover and
memorize feedback features and response devices, and to
infer from these discoveries some characteristic behavior of
a complex control system has been demonstrated. We
have also shown the practicality of using unsupervised
learning to increase the robot’s knowledge in a wide task
domain and to improve its problem-solving capabilities
to cope effectively (with no error) with new problems
or situations, without increasing the programming burden
of the knowledge engineer. Finally, the HERMIES-IIB
demonstration presented here clearly suggests areas requirin

further research and developments. For example, ours an(gi
others’ recent investigations have shown that the efficiency
of the coupled discovery and inferencing processes can be
dramatically improved by taking into account the information
corresponding to negative examples (incorrect actions). The
classification and hypotheses generation phases leading to
“no error” performances can jso be improved and sped-up
through utilization of dynamically adaptive discriminators and
weighting functions. These developments, in turn, would
support extensions of the unsupervised learning methodologies
to include self-generation of exemplars. Clearly, further
research is needed in the areas of temporal and approximate
reasoning methodologies to support more advanced and flexible
learning strategies. Investigations in these directions as well as
research on novel methodologies to allow the robot to learn its
own capabilities (e.g. primitives) by observation of humans are
pursued in ongoing projects at CESAR.
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Fig. 1. HERMIES-IIB moving a lever of the
control panel.
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Fig. 2.

A layout of the experimental area for
HERMIES-IIB. The robot navigates from point A to
point B, stopping at intermediate goals A,, A3, and
A, and responding to dynamic obstacles at points
A,, S and M. The robot moves from point B to the
control panel, stopping at intermediate goals B; and
B,. At point C the robot is close enough to read and

manipulate the panel control devices.
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