
DOE/ER/25063—T7

DE89 010926

Implementation of an ADAMS Prototype:
the ADAMS Preprocessor (AP)

Cathleen L. Klumpp
John L. Pfaltz

IPC-TR-88-005
August 9, 1988

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22901

This research was supported in part by JPL Contract
#957721.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof. distribution of this DOCUMENT IS UNLIMITEB

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

Abstract

This report describes the implementation of an ADAMS prototype
called the ADAMS Preprocessor (AP). The goals of the project
are discussed and then the specific subset of the ADAMS interface
language which is supported by the AP is defined. After present­
ing the system’s user interface and an overview of the language’s
basic concepts, a BNF notation is used to precisely define its syn­
tax and the exact semantics of each statement are specified. In
addition, complete sample ADAMS programs are supplied.
Finally, the results of the prototype effort are summarized. This
document is intended to serve as a user’s guide for those wishing
to use the AP to implement ADAMS programs. However, readers
who are interested only in a high level overview of the prototype
and its capabilities may skip the more detailed sections.

TABLE OF CONTENTS

1. Introduction... 1
2. User Interface.. 2

2.1 Using the AP.. 2
2.2 Sample AP Session.. 3

3. Language Overview.. 5
3.1 Primitive Types: The Co-domain .. 5
3.2 Type Constructors: The Class.. 5
3.3 Data Persistence: The Dictionary .. 6
3.4 Data Manipulation ... 7
3.5 Dictionary Interrogation ... 7

4. Language Syntax... 9
4.1 Notation Conventions .. 9
4.2 Syntax Definition ... 10

4.2.1 ADAMS Source File... 10
4.2.2 Co-domain Definition ... 10
4.2.3 Class Definition.. 10
4.2.4 Instance Creation ... 11
4.2.5 Instance Manipulation... 11
4.2.6 Dictionary Interrogation ... 12
4.2.7 Miscellaneous .. 12

4.3 Implementation Notes.. 13
5. Language Semantics ... 17

5.1 Co-domain Definition .. 17
5.2 Class Definition.. 17
5.3 Instance Creation ... 18
5.4 Instance Manipulation.. 19
5.5 Dictionary Interrogation ... 21

6. Examples... 22
6.1 Defining the Persistent Database .. 22
6.2 Entering Data... 24
6.3 Interrogating the Dictionary.. 29
6.4 Displaying Data ... 32
6.5 Implementing Set Operators... 36

7. Conclusion .. 42
7.1 Implemented Modifications.. 42
7.2 Proposed Modifications ... 42
7.3 Unimplemented Features and Unresolved Issues ... 44

8. References...................... 46
APPENDIX A: Syntax Summary... 47
APPENDIX B: Dictionary Organization.. 49

1

1. Introduction
The Advanced DAta Manipulation System (ADAMS) is being developed by the Institute

for Parallel Computation at the University of Virginia. This paper describes the implementation
of a prototype for this system called the ADAMS Preprocessor (AP). Before defining the objec­
tives of the AP, a brief overview of the ADAMS project is given.

The ADAMS goal is to provide a generic facility which supports the creation of databases,
the persistent storage of data in those databases, and the retrieval of stored data. Unlike a tradi­
tional database management system (DBMS), the ADAMS facility is generic because the under­
lying representation of an ADAMS database is independent of any particular database model
(e.g., relational, network). Also unlike a typical DBMS, no interactive user support capabilities
are provided by ADAMS. A major objective in developing ADAMS is to separate the model
viewed by the end user from the actual database implementation scheme. Any traditional DBMS,
regardless of its user interface model, can then be implemented using ADAMS as a fundamental
data storage and retrieval utility. The many advantages of such an approach to database imple­
mentation are discussed in [Pf87] and [PfF], One significant advantage involves the goal of
effectively implementing ADAMS on a parallel, hypercube computer. The ADAMS approach
allows for more efficient implementation on such an architecture. To support its generic facili­
ties, ADAMS must provide a mechanism by which an application (presumably a DBMS, but pos­
sibly any program) can interface with an ADAMS database. The ADAMS embedded language
supplies such an interface by allowing an application program written in a high level program­
ming language, known as the host language, to create and access persistent ADAMS databases.

The purpose of developing the AP was to implement the ADAMS interface language, as
presented in the preliminary design document [Pf87]. The major goal of the project was to inves­
tigate the feasibility of proposed ADAMS concepts. The AP allows ADAMS programs to be
written and tested, thus supporting continued exploration of the specific language features and of
the overall approach. As is typical of prototypes, the system’s functionality was of more impor­
tance than the efficiency of its implementation. Because the methods used to implement the
interface language were not relevant, it was not developed on a parallel machine. However, the
ADAMS design is independent of the machine architecture on which it is implemented, so future
versions of ADAMS can easily be developed to take advantage of a parallel environment.
Because the objective was to build the prototype as rapidly as possible, the AP supports only a
subset of the ADAMS language. However, this is not a serious limitation because the subset
includes the significant features necessary to accomplish the goal of exploring fundamental
ADAMS capabilities.

The remainder of the paper describes the AP implementation in detail, including its user
interface and the subset of the ADAMS interface language it supports. This document is intended
to serve as a user’s guide for those wishing to use the AP to implement ADAMS programs.
Readers who are interested only in a high level overview of the prototype and its capabilities may
skip the following: sections 2.1 and 2.2, all of section 4, and all of section 5.

2. User Interface
In designing the user interface of the ADAMS prototype, two alternatives were available.

The first possibility was to build an interpreter, an interactive tool which executes inputed
ADAMS source statements immediately without compilation. The second alternative was a
non-interactive preprocessor which translates embedded ADAMS source statements into
equivalent statements in the host language. These statements are then compiled and linked with
the necessary ADAMS utilities and user supplied host code to produce an executable program.
Since ADAMS is designed to function as an embedded database "back end" in conjunction with
programs written in a host computational language, the preprocessor approach seemed most
appropriate. In addition, it better fulfilled the established requirements for rapid prototyping
because it avoids the development of an independent, interactive front end.

To use the preprocessor, a user must first create an ADAMS source file. This file contains a
combination of valid ADAMS and host language statements. The current implementation of the
AP uses C as the host language. However, other host language (e.g., FORTRAN, Pascal) prepro­
cessors will eventually be available as well. The AP is used to generate an equivalent host
language file by translating all ADAMS source statements into one or more calls to AP utilities.
Statements already in the host language are simply copied without any translation. The gen­
erated file is then compiled and linked, resulting in an executable program. Finally, this program
is executed.

2.1. Using the AP
This section is intended for those who actually plan to use the AP software. If the reader

does not belong in this category, it may be skipped. The AP user may use the system to perform
the following actions.

Access AP Utilities
The AP code is currently located on the following UVA CS Department computer which

runs under the UNIX 5.0 operating system: "babbage". In order to access any of the AP utilities,
the user must add the following path name to his default UNIX search paths:
"/va l/clk3h/gra/new_code".

Initialize AP Environment
The environment necessary to run the AP is created using the "adamsjnit" utility. It

creates the directories and files needed to support persistent ADAMS databases. Note that initial­
ization only needs to be done once for each directory in which the user wishes to run the AP.

invocation: adamsjnit [CR]

Re-initialize AP Environment
While testing an ADAMS program, the user will often wish to completely re-initialize the

AP environment (i.e., delete all existing persistent data). To do so, use the "adams_rinit" utility,
which first removes all existing database files and then runs the "adamsjnit" utility.

invocation: adams_rinit [CR]

Create Generated File
After proper initialization, the "adams_gen" utility is used to translate an ADAMS source

file (containing both ADAMS and C statements) into an equivalent generated C file. This utility

3

has one argument <fn>, the name of the source file. Note that this file must be named with a
".src" extension and that the extension is riot included in the <fn> argument. Also note that this
source file must be located in the directory from which the "adams_gen" utility will be invoked.
There are a few requirements regarding the contents of the source file. They are explained in the
"template.src" file located in the "/val/clk3h/gra/new_code" directory. This file can be used as a
template when creating a new ADAMS source file. If the generation is successful, a file with the
name <fii> and the extension ".c" is created and placed in the current directory.

invocation: adams_gen <fh> [CR]

Create Executable Program
After successful generation, the "adams_exec" utility is used to compile the newly created

C file and link it with the necessary AP utilities, creating an executable program. The <fn> argu­
ment must be the same name given in the previous generation phase. Note that it is assumed that
the generated file <fft>.c exists in the current working directory. If both the compilation and link­
ing phases are successful, a file with the name <fn> and the extension ".x" is created and placed
in the current directory.

invocation: adams_exec <fn> [CR]

Execute Program

After successful creation of the executable program, the program may be run. Any modifications
to the ADAMS permanent databases are not made until the entire program has executed success­
fully. Thus, if a program terminates as the result of an error, the session is aborted.

invocation: <fft>.x [CR]

2.2. Sample AP Session
The scenario in Figure 1 is intended to help an actual AP user who is just getting started

with the system. Assume that the file "test.src" is a source file containing ADAMS statements
embedded in a C program. Also, assume that this file is the only one existing in the current direc­
tory. Commands issued by the user are shown in bold type.

The directory is first initialized. Then the AP is used to generate the equivalent host
language file from the ADAMS source file and to create the executable program. Finally, the
program is executed and it prints a message indicating a successful run. In the example, the
UNIX "Is" command is used before and after each AP command to show what files and/or direc­
tories are created during its execution.

4

babbage $ Is
test.src
babbage $ adams_init
babbage $ Is
conv_func.dict
diet
test.src
babbage $ adams_gen test

Parsing the source file...

Finished parsing.
babbage $ Is
conv_func.dict
diet
test.c
test.src
babbage $ adams exec test

cc -c test.c
cc/val/clk3h/gra/new_code/code/ap_cplus.o ...

babbage $ Is
conv_func.dict
diet
test.c
test.o
test.src
test.x
babbage $ test.x

The ADAMS test program ran correctly!

babbage $

Figure 1. Sample AP Session

5

3. Language Overview
Before presenting the grammar for the ADAMS subset supported by the AP, it is useful to

give a brief overview of its major language features. Note that this is a description of the
language as it is implemented by the AP, and thus does not include some features present in the
complete ADAMS system. For a more complete definition of the actual ADAMS interface
language refer to [Pf87],

3.1. Primitive Types: The Co-domain
The database-specific nature of ADAMS has a great impact on the primitive types sup­

ported. Specifically, because ADAMS is an embedded interface language supporting only data
storage and retrieval, there is no need to differentiate between the various standard primitive
types (e.g., integer, real, boolean). Only the host computational language must support such
types. Therefore, all data values are treated uniformly as ASCII strings. The ADAMS term co­
domain is used to denote this single primitive type.

Although all ADAMS data values are represented as strings, user defined co-domains dif­
ferentiate between various semantic groupings of strings. For example, a co-domain may identify
all strings which represent a particular data type, such as all integers or a specific subrange of
integers. A co-domain definition includes a regular expression that specifies all strings (data
values) belonging to the type it represents. Functions which convert a co-domain value from the
ADAMS representation into the equivalent host language representation (fetch) or vice versa
(store) may be declared when defining a co-domain. These functions are written by the user in
the host language and are automatically invoked by the system whenever data is transferred
between ADAMS and the host language (see section 3.4).

3.2. Type Constructors: The Class
The fundamental ADAMS type constructor is the class. A class represents a group of

objects which all share common characteristics (i.e., have the same type). Each member of a
class is known as an instance of the class. To support the modeling of complex relationships
among data objects, the ADAMS language supports inheritance. A superclass inherits the proper­
ties of an existing class known as its parent. In addition, it may have some of its own unique
characteristics. The current version of the AP supports single (as opposed to multiple) inheri­
tance. That is, each class may have exactly one immediate parent. Thus, class definitions in
ADAMS form a tree structure, or class hierarchy, rather than a network.

There are three predefined system classes in ADAMS: attributes, maps, and sets. These
definitions include operations and properties associated with the instances of each class. In addi­
tion to these system classes, user defined classes are allowed. All ADAMS types are constructed
from some combination of predefined and user defined classes.

Attributes
Members of this class represent functions mapping a given class instance into a given co­

domain. For an attribute to be defined on a specific instance, it must be associated with the
instance’s class. This practice of associating particular functions with a class is explained later in
this section.

Attribute instances are created by declaring the co-domain which is to serve as the
attribute’s image (i.e., the type of the data value returned by the application of the attribute func­
tion). The method by which an attribute’s value is obtained is also specified. This version of the
AP supports only explicit assignment of attribute values (although ADAMS itself postulates other

6

methods). A user selected string signifying an undefined value for the attribute may also be sup­
plied. Otherwise, the literal string value "undefined" is used by default.

An application operation is defined for attributes. When an attribute is applied to an
instance whose class is associated with that attribute, the correct value from the attribute’s image
is returned.

Maos
The map class is similar to the attribute class because map instances also represent func­

tions. However, maps link an instance of one class with an instance of another. For a map to be
defined on a given instance, an association between the map and the instance’s class must exist.

Map instances are created in the same manner as attributes, except that a map’s image is
another class rather than a co-domain, and no undefined value may be specified. A map is applied
to an instance with the same application operator.

Sets
The set class is one of the most important concepts in ADAMS because sets provide the

basic type constructor used to model various database structures. Instances of this class represent
sets of instances belonging to some other common class. A set class is characterized by the class
of the instances its members may contain. Note that the selection of such a class is virtually
unrestricted, so sets may themselves contain sets, which can in turn contain attributes, maps, or
instances of some other class. Thus, the ability to build complex and powerful types in ADAMS
is supported largely by the set concept. Set instances are created by specifying the desired set
class. An optional list of initial set members may be given.

User Defined Passes
A user defined class may be specified by declaring its parent class. There are no predefined

operations associated with such a class. An instance of a user defined class is created simply by
declaring the desired class name.

Association and Restriction
Both sets and user defined class definitions can include association clauses. These clauses

associate particular attributes and/or maps with the class being defined. The associated functions
will then be defined on all instances of the class. In a similar manner, both types of class
definitions can include predicate restrictions which enforce desired integrity constraints on the
members of the class. Although an abbreviated form of such restrictions may be declared using
the current version of the AP, they are not actually used in validation.

3.3. Data Persistence: The Dictionary
The ADAMS concept of scope characterizes the persistence of ADAMS database elements.

An element is one of the following: a co-domain definition, a class definition, or a class instance.
Access to all ADAMS database elements is by means of a dictionary, with a separate dictionary
existing for each possible scope. When a named element is created, the scope specified by the
user determines the dictionary into which its name is entered. Elements which have a local scope
are not persistent and, therefore, disappear when the program that created them terminates. Ele­
ments which have a user scope are visible only to the user who created them and are recorded
permanently in a local user dictionary. The system scope provides a dictionary of permanent
objects common to all ADAMS users. Users may access elements stored in this dictionary, but

7

they cannot be modified. The predefined system classes (e.g., attribute, map, set) discussed above
have this scope. The user may specify the desired scope whenever a co-domain or class is
defined, or when a class instance is created. If a particular scope is not given when such a dic­
tionary entry is made, the scope is local by default.

3.4. Data Manipulation
The ADAMS language supports the following facilities for accessing and manipulating

class instances stored in an ADAMS database. Note that uniform access is provided for both per­
sistent (user or system scope) and non-persistent (local) instances.

Assigning and Retrieving Attribute Values
Attribute values of an existing instance may be directly assigned (from other attribute

values) using the assign statement. In addition, they may be assigned from host language vari­
ables and constants using the store statement. If a store conversion function was declared in the
attribute’s co-domain definition (see section 3.1), then it is automatically invoked before the
value is stored to convert between the internal representations of the host and ADAMS languages.
Attribute values are returned to host variables using the fetch statement. If a fetch conversion
function exists (see section 3.1), it is called before returning the value. If no store (or fetch)
conversion function was declared, then the type of the host variable being stored from (or fetched
into) must be a character string.

Assigning Maos
The assign statement (when applied to maps) assigns a value to a map of an existing

instance. The new value must be another existing instance (which is a member of the map’s
image class). Note that the instance being assigned as the new map value is not copied (i.e., the
map acts as a pointer to instance).

Assigning Instances
The assign statement (when applied to instances) assigns all the attribute and map values of

an existing instance by copying the corresponding values from another instance. All inherited
function values are included in the copy. If the instance being assigned is a set, then the current
members of the set being copied are inserted into it. Note that copies are not actually made of
each member instance. Only the structure which keeps track of the set’s members is copied.
Thus, inserting or deleting from the original will not affect the membership of the copy (and vice
versa).

Modifying and Accessing Sets
The insert statement adds a new member to an existing set instance. Note that no copy of

the instance being inserted is made (i.e., the insertion is made "by reference"). The delete state­
ment removes a member from an existing set instance. Note that the instance being deleted still
exists in the database, it is simply no longer a member of the set. The/or loop allows sequential
access to each member of an existing set instance. The body of the loop may contain both
ADAMS and host statements, either of which may reference the current set member.

3.5. Dictionary Interrogation
The interface language, as implemented by the AP, allows the user to interrogate ADAMS

dictionaries to obtain useful information about the elements stored in them. Two methods of
interrogation are possible. Unlike the typical ADAMS statement (which is a separate statement

8

delimited by special begin and end markers), the first dictionary interrogation method allows a
limited number of facilities to be called in the same manner as standard host language functions.
Thus, they may appear in host language expressions (e.g., in the condition of an "if/then" state­
ment or as an argument in a "printf statement). The AP user may obtain the class of a given
instance, the class of the members of a given set instance, the dictionary name of the set member
currently being iterated on in a for all loop, the image class of a given map instance, and the inter­
nal id of a given instance. Also, a user may determine if a given name is currently entered in an
ADAMS dictionary, if a given name represents an ADAMS class, and if a given instance is
currently a member of a given set.

The second interrogation approach involves regular ADAMS statements. The "view of "
statement searches the dictionary for all the attributes associated with a given class and assigns
them to a given set. The "map of " statement searches the dictionary for all the maps associated
with a given class and assigns them to a given set. These view sets may then be manipulated by
the user in the same manner as any other set instance. Note that the views include all the associ­
ated attributes (or maps) because the search goes up the class hierarchy. The reader should see
[PFW88] for a more in depth discussion of this topic.

9

4. Language Syntax
This section gives the grammar for the AP language subset. First the notation used to

describe the syntax is given and then the syntax itself is defined. Finally, implementation notes
relevant to the syntax are included.

4.1. Notation Conventions
An extended BNF notation, summarized in Figure 2, is used for the syntax definition. The

symbol "xxx" represents any literal string of characters and an "e" denotes any legal BNF expres­
sion. All the items listed in the left column of Figure 2 are themselves legal expressions.. All of
the grammar rules in the BNF are of the form "<x> ::= e". The ADAMS reserved words appear
in the grammar rules as bold type.

Figure 3 identifies a special group of non-terminal symbols which all represent some literal
string, and are thus all recognized by the same regular expression [a-zA-Z]*. Although they are
the same syntactically, they differ in their associated semantics. Therefore, they are distinguished
from each other in the BNF grammar rules to better express the appropriate meaning.

Expression Explanation

'xxx' terminal symbol
<xxx> non-terminal symbol
[e] optional occurrence of e
(e) a grouping of syntactic elements
e+ one or more occurrences of e
e* zero or more occurrences of e
el Ie2 one occurrence of either el or e2

Figure 2. BNF Notation

<attr_name> <loop_variable_name>
<co_domain_name> <map_name>
<func_set_name> <set_class_name>
<func_name> <set_name>
<host_vai> <set_synonym>
<host_const> <string>
<host_func> <user_class_name>
<inst_name> <variable>

Figure 3. Names Used in Syntax Definition

10

As mentioned in section 3.5, the ADAMS interface language does support some standard
host language function calls which can be used to interrogate an ADAMS dictionary. In the syn­
tax definition, the BNF format is not used to define these functions. Instead, a function declara­
tion is given. First the type of the return value is given, then the name of the function and a list of
the formal parameters (including their types). Since the AP host language is C, the "Boolean"
type represents an "int" ("0" for false and ”1” for true) and the "Charstr" type represents a
"char*".

4.2. Syntax DeRnition

4.2.1. ADAMS Source File
All ADAMS source files consist of both ADAMS and host language statements. The

<host_stmt> non-terminal symbol represents any valid host language statement (as determined by
the language defintion), and thus is not defined fiirther.

<adams_source> ::= (’«’ <adams_stmt> ’»’ I <host_stmt>)+
<adams_stmt> ::= <co_domain_def> I <class_def> I <inst_creation> I <inst_manip>

<dict_interrog> I <name_var>

4.2.2. Co-domain DeRnition

<co_domain_def> ::= <co_domain_name> is a CO_DOMAIN
consisting of ’#’ <regular_expi> ’#’
[<store_clause>]
[<fetch_clause>]
[<scope_clause>]

<store_clause> ::= with store <host_func>
<fetch_clause> ::= with fetch <host_func>

4.2.3. Class DeRnition

<class_def> ::= <user_class_def> I <set_class_def>

User Defined Pass

<user_class_def> ::= <user_class_name> is a <user_class_desig>
[<class_def_clause>]
[<scope_clause>]

<user_class_desig> ::= <user_class_name> I <set_class_name> I CLASS

Set Class

<set_class_def> ::= <set_class_name> is a SET
of <class_desig> elements
[<class_def_clause>]
[<scope_clause>]

Association and Restriction

11

<class_def_clause> ::= (<assoc_clause> I <restrict_clause>)+
<assoc_clause> ::= having [<set_synonym> ’=’] <func_set>
<func_sel> ::= <func_set_name> I <enum_func_set>
<enum_func_set> ::= ’{’ (<func_name>)+ ’}’

<restrict_clause> ::= in which <quantifiei> <predicate>
<quantifier> ::= ’(’ for all <variable_name> ’)’
<predicate> ::= ’[’ <variable_name> <attr_name> <rel_op> <string> ”” ’]’
<rel_op> ::= ’==’ I ’!=’ I ’<’ I ’>’ I ’<=’ I ’>=’

4.2.4. Instance Creation

<inst_creation> ::= <attr_creation> I <map_creation> I <user_creation> I <set_creation>

Attribute Class

<attr_creation> ::= <attr_name> belongs to ATTRIBUTE
with image <co_domain_name>
<value_assign_clause>
[<undef_clause>]
[<scope_clause>]

<undef_clause> ::= with undefined <string>
<value_assign_clause> ::= value is assigned

Map Class

<map_creation> ::= <map_name> belongs to MAP
with image <class_desig>
<value_assign_clause>
[<scope_clause>]

User Defined Class

<user_creation> ::= <inst_name> belongs to <user_class_name>
[<scope_clause>]

Set Class

<set_creation> ::= <set_name> belongs to <set_class_name>
[consisting of <set_value>]
[<scope_clause>]

<set_value> ::= <set_desig> I <enum_set>
<enum_set> ::= ’ {’ (<inst_name>)+ ’} ’

4.2.5. Instance Manipulation

<inst_manip> <attr_assign> I <store> I <fetch> I <map_assign> I <inst_assign>
I <set_access>

Attribute Assignment and Retrieval

<attr_assign> ::= assign into <attr_desig> from <attr_value>
<attr_value> ::= <attr_desig> I’"’ <string> ””

<store> ::= store into <attr_desig> from <host_value>
<host_value> ::= <host_var> I <host_const>

<fetch> ::= fetch into <host_var> from <attr_desig>

Mao Assignment

<map_assign> ::= assign into <inst_desig> from <inst_desig>

Instance Assignment

<inst_assign> assign into <inst_namc> from <insl_dcsig>

Set Access

<set_access> ::= <insert> I <delete> I <for_all>
<insert> ::= insert <inst_desig> into <set_desig>
<delete> ::= delete <inst_desig> from <set_desig>
<for_all> ::= for all <loop_variable_name> in <set_desig> do

(<adams_stmt> I <host_stmt>)+

4.2.6. Dictionary Interrogation

<dict_interrog> ::= <attr_view> I <map_view>

<attr_view> ::= <set_desig> view of <class_name>
<map_view> ::= <set_desig> map of <class_name>

Host Language Functions

Charstr class_of(inst: Charstr)
Charstr class_of_element(set_inst: Charstr)
Charstr dict_name_of(for_loop_var: Charstr)
Charstr id_of(inst: Charstr)
Charstr image_of(map_inst: Charstr)

Boolean is_class(name : Charstr)
Boolean is_dict_entry(name : Charstr)
Boolean is_element_of(inst, set_inst: Charstr)

4.2.7. Miscellaneous

Designators

<attr_desig> ::= <inst_desig> <attr_name>
<class_desig> ::= <user_class_name> I <set_class_name> I ATTRIBUTE | MAP

| SET | CLASS

13

<inst_desig> ::= <inst_name> [<map_desig>] [<map_desig>]
<map_desig> ::= <map_name>
<set_desig> ::= <set_name> I <inst_desig>

Scope

<temp_scope> ::= LOCAL
<permanent_scope> ::= USER
<scope_clause> ::= with scope <permanent_scope>

Name Variables

<name_vai> ::= name_variable (<inst_name> I <class_name>)+

4.3. Implementation Notes

regular expressions
When defining a co-domain, the user must surround the regular expression by "#" delim­

iters. The LEX definition of regular expressions is used by ADAMS to determine validity of such
an expression. However, because the regular expression is not currently used by the AP imple­
mentation, a simple expression such as "#[a-z]#" may be used as a default. To satisfy the parser,
some expression must be supplied by the user. Also, in the current implementation, blanks may
not occur in the regular expression.

instance designators
In statements where a particular instance must be designated, nested maps may be used.

However, this nesting is limited to only two levels. Thus, as noted in the grammar rule defining
the non-terminal symbol <inst_desig>, an instance may be designated by any of the following
forms:

(1) <inst_name>
(2) <inst_name>.<map_name>
(3) <inst_name>.<map_name>.<map_name>

In statements where a particular attribute is being designated, the attribute name may be
added to the end of any of the above form of instance designator. Thus, the valid possibilities are:

(1) <inst_name>.<attr_name>
(2) <inst_name>.<map_name>.<attr_name>
(3) <inst_name>.<map_name>.<map_name>.<attr_name>

restriction clauses
Currently restriction clauses are not actually used to verify attribute values. However, they

may be supplied in the class definition anyway, as eventually they will be used in validation.

specifying scopes
Currently the scope of a definition or instance creation may be specified by the user. The

default scope is "LOCAL". If "USER" scope is indicated, an entry is made in the permanent user

14

dictionary. However, the AP does not allow the scope to be given within an ADAMS statement
when referencing existing dictionary entries. Whenever a reference is made to an ADAMS name,
the dictionaries are automatically searched in this order: LOCAL, USER, SYSTEM. The first
entry found with the given name is used.

conversion functions
The current implementation does support the use of conversion functions in storing and

fetching data. If such a function is supplied in the co-domain definition, it will be called every
time a value in that co-domain is stored or fetched. These functions must satisfy the following
constraints. There must be exactly one input parameter with type being character pointer. Also,
the function must return a character pointer. For implementation reasons, the code for any
conversion functions you use should be in a separate file and then included (using #include state­
ment) with every ".src" file. This is required because the code must be compiled and linked every
time, so that the functions are accessible whenever a store or fetch is carried out.

value assignment clause
Note that even though only one option is valid ("value is assigned"), this clause is currently

required in the creation of attributes and maps. This requirement is somewhat inconvenient, but it
must be followed anyway.

dictionary name variables
The name variable statement is a particulary useful feature supported by the AP. As defined

in the grammar rule for the non-terminal symbol <name_vai>, this statement is simply a list of
names which will be used in the program as ADAMS variables. They are called "name" vari­
ables because they can be used in any ADAMS statement in place of a literal dictionary name.
After name variables are declared, they may appear in an ADAMS statement wherever a diction­
ary name is expected. However, before being used in an ADAMS statement, the name variable
must be declared as a host language character string and must be assigned some string value. In
the BNF grammar rules, any non-terminal symbol of the form <xxx_name>, where the "xxx"
represents any string, represents a dictionary name and may therefore be replaced by a name vari­
able rather than a literal name.

The great advantage of these variables is that the same ADAMS statement may be executed
over and over, but with different values assigned to the variables each time. Thus, ADAMS state­
ments may more easily be placed in host language procedures. The name variables may be used
as formal parameters for these procedures. An example of such a use is given in Figure 4.
Whenever it is invoked, this C function creates a new instance of the "PERSON" class which is
saved in the permanent database. The name of the new instance, which is used to make an entery
in the ADAMS dictionary, is determined by the current value of the name variable "X". Thus, in
this example, two different people (Cathy and Joe) are created.

Note that the current implementation requires that only one "name_variable" statement may
appear during a single ADAMS execution. Thus, the user should collect all name variables and
declare them in a single statement at the very beginning of the program.

15

« name_variable X »

main
{

char X[30];

DICTJnitO;

create_pcrson("Cathy McCabe");
create_person("Joe Smith");

DICT_close();
}

create_person(X)
char* X;

{
« X belongs to PERSON, with scope USER »

}

Figure 4. Using Name Variables

host language interrogation functions
When invoking one of the dictionary interrogation functions, a literal ADAMS dictionary

name must be surrounded with double quotes when used as an argument. However, an ADAMS
name variable (declared using the "namejvariable" statement) does not need quotes. The "for
all" loop variable is considered to be a literal name, and therefore does need the quotes.

attribute and map views
As defined in section 3.5, the AP allows users to query the dictionary to obtain useful infor­

mation about the set of functions associated with a particular class. Such a set is known as a
view. Figure 5 gives examples of how the <attr_view> and <map_view> statements can be used
in an ADAMS program. Note that the view includes all associated attributes (or maps) by going
up the inheritance tree. Also, this statement acts as an assignment in that the current set value is
deleted before the attributes (or maps) that form the view are inserted.

commas
The AP parser allows commas to be inserted into any ADAMS statement, wherever the user

wishes to use them to increase conceptual clarity. For example, an enumerated set may appear as
"{ A B C}" or as "{ A, B, C }". Either is perfectly acceptable, and the two are treated as
equivalent.

exiting for all loop

16

« <attr_set_class> is a SET of ATTRIBUTE elements »
« <attr_set_inst> belongs to <attr_set_class> »
« <attr_set_inst> view of <class_name> »
« for all attr in <attr_set_inst> do »

« <map_set_class> is a SET of MAP elements »
« <map_set_inst> belongs to <map_set_class> »
« <map_set_inst> map of <class_name> »
« for all attr in <map_set_inst> do »

Figure 5. Using Views

To exit a for all loop before every member of the set has been iterated over, use the follow­
ing host language function call: break_for_loop("<loop_variable_name>"). Note that the loop
variable name must be surrounded by quotations, since it is a literal name. Also, the loop is not
exited immediately upon execution of the "break_for_loop" call. Rather, the entire loop body (if
any statements remain after the break) is completed and then the loop is terminated.

17

5. Language Semantics
This section contains a detailed interpretation of the semantics of statements implemented

by the AP. Readers who do not actually plan to use the AP may find this information too
specific. Before reading this section, the reader should be familiar with the grammar defined in
section 4 of this report.

This semantic definition characterizes a particular statement in two ways. First, the actions
taken during statement execution are described. Each statement consists of individual com­
ponents (or parameters), which are denoted by square brackets for emphasis. For example, the
name of a new class, which is a component of the set class definition statement, is indicated by
"<name>". Optional components are marked with square brackets (e.g., [<name>]). Second,
typical run time errors are discussed. A statement is executed only if no such errors occur. Upon
encountering an invalid statement, the AP displays an error message and the entire ADAMS pro­
gram is terminated. Unless otherwise mentioned, the current AP implementation validates each
of the error conditions listed.

The term "valid dictionary" appears in many of the error descriptions. If a <scope clause>
is an explicit component of the statement, than a valid dictionary is one with a scope "greater
than" or "equal to" the designated scope. See section 3.3 for a definition of "scope" and section
4.3 for an explanation of scope ordering). If no specific <scope clause> is given, then any diction­
ary may be valid (in this case all dictionary searches would begin with the default, or "lowest",
scope).

Every dictionary entry must belong to one of these three types: CO_DOMAIN, CLASS, or
INSTANCE. The CO_DOMAIN category contains only co-domain definitions and the CLASS
category includes system, user defined, and set classes. Each CLASS entry is considered to have
a root, which is the class in the root position of the tree structure, or class hierarchy, formed by
inheritance. See section 3.2 for a definition of inheritance. An INSTANCE refers to an instance of
any class.

5.1. Co-domain Definition
This statement defines a new co-domain with the following components: <name>, cregular

expression^ [<store clause>], [<fetch clause>], [<scope clause>]. If successfully executed, a
new CO_DOMAIN entry is made in the designated dictionary.
invalid name: If the <scope clause> specifics a permanent scope, then the <namc> cannot

already exist in the corresponding dictionary.
invalid conversion function:

Conversion functions identified by the <store clause> or the <fetch clause> must
exist (i.e., be a valid C function) and perform the required operation correctly
(i.e., receive the proper argument and return the expected value). NOTE: valida­
tion not implemented.

5.2. Class Definition

User Defined Class
This statement defines a new user defined class with the following components: <name>,

<parent>, [<scope clause>]. If successfully executed, a new CLASS entry is made in the desig­
nated dictionary.

18

invalid name: If the <scope clause> specifies a permanent scope, then the <name> cannot
already exist in the corresponding dictionary.

invalid parent: the <parent> must be an existing CLASS entry in a valid dictionary.

Set Class
This statement defines a new set class with the following components: <name>, <elemcnt

typo, [<scope clauso]. If successfully executed, a new CLASS entry is made in the designated
dictionary. Its parent is the SET system class and, thus, it is referred to as a SET CLASS.
invalid name: If the <scope clauso specifies a permanent scope, then the <name> cannot

already exist in the corresponding dictionary.
invalid element type:

The <element typo must be an existing CLASS entry in a valid dictionary.

Association
This statement is actually a component in either a user defined or set class definition state­

ment. It creates an association clause (for the <class> being defined) with the following com­
ponents: [<synonym>], <set>. If successfully executed, adds a new association clause to the
group of such clauses defined for the CLASS entry corresponding to <class>.
invalid synonym:

The <synonym> cannot already exist as a synonym for <class>. NOTE: valida­
tion not implemented.

invalid set: If a specific <set> is given, its root class must be an existing SET CLASS entry
in a valid dictionary. The element type of the root must be either ATTRIBUTE
or MAP.

invalid set enumeration:
If an enumerated <set> is given, each member must be an existing INSTANCE
entry in a valid dictionary. All the enumerated instances must be of the same
class (either ATTRIBUTE or MAP).

Restriction
This statement is actually a component of either a user defined or set class definition state­

ment. It creates a class restriction clause (for the <class> being defined) with the following com­
ponents: <attribute>, crelative op>, <const>. If successfully executed, adds a new restriction
clause to the set of such clauses defined for the CLASS entry corresponding to <class>.
invalid attribute:

The <attribute> must be an existing INSTANCE entry (of class ATTRIBUTE) in
a valid dictionary. It must also be an attribute associated with <class>.

5.3. Instance Creation

Attribute Pass
This statement creates an instance of the ATTRIBUTE class with the following com­

ponents: <name>, <image>, cvalue assign clauso, [cundefined clauso], [<scope clause>]. If
successfully executed, a new INSTANCE entry is made in the designated dictionary.

19

invalid name: If the <scope clauso specifies a permanent scope, then the <name> cannot
already exist in the corresponding dictionary.

invalid image: The cimago must be an existing CO_DOMAIN entry in a valid dictionary.

Mao Class
This statement creates an instance of the MAP class with the following components:

<name>, cimago, cvalue assign clauso, [cscope clauso]. If successfully executed, a new
INSTANCE entry is made in the designated dictionary.
invalid name: If the cscope clauso specifies a permanent scope, then the cnamo cannot

already exist in the corresponding dictionary.
invalid image: The cimago must be an existing CLASS entry in a valid dictionary.

User Defined and Set Class
This statement creates an instance of a user defined or set class with the following com­

ponents: cnamo, cclass>, [cset>], [cscope clauso]. If successfully executed, a new
INSTANCE entry is made in the designated dictionary. All the attributes for the instance (i.e., all
those associated with cclass>) are initialized to their proper undefined values. If the instance is a
set and a cset> value is given, then it is initialized accordingly.
invalid name: If the cscope clauso specifies a permanent scope, then the cnamo cannot

already exist in the corresponding dictionary.
invalid class: The cclass> must be an existing CLASS entry in a valid dictionary.
invalid set: If a specific cset> is given, its root must be an existing SET CLASS entry in a

valid dictionary. The root of cclass> must also be an existing SET CLASS entry
in a valid dictionary. The element types of both roots must be the same.

invalid set enumeration:
If an enumerated cset> is given, each member must be an existing INSTANCE
entry in a valid dictionary. All the enumerated instances must be the same class.
The root of cclass> must be an existing SET CLASS entry in a valid dictionary.
The element type of the root must be the same class as that of the enumerated
instances.

5.4. Instance Manipulation

Attribute Assignment
This statement assigns the cvalue> to the given cattributo. If successfully executed, it

performs the assignment.
invalid attribute:

The cattributo must evaluate to a valid attribute associated with an INSTANCE
entry in a valid dictionary.

invalid value: The cvalue> must be a member of the co-domain defined for the cattributo’s
image. NOTE: validation not implemented.

Attribute Store

20

This statement assigns the <value> of a host language variable to the given <attribute>. If
successfully executed, performs the assignment.
invalid attribute:

The <attribute> must evaluate to a valid attribute associated with an INSTANCE
entry in a valid dictionary.

invalid value: The <value> must be a member of the co-domain defined for the <attribute>’s
image. NOTE: validation not implemented.

Attribute Fetch
This statement assigns the <value> of the given attribute to a host language variable. If suc­

cessfully executed, performs the assignment.
invalid attribute:

The <attribute> must evaluate to a valid attribute associated with an INSTANCE
entry in a valid dictionary.

Mao Assignment
This statement assigns the given <instance> as the new value of the <map>. If successfully

executed, performs the assignment.
invalid map: The <map> must evaluate to a valid map associated with an INSTANCE entry in

a valid dictionary.
invalid instance:

The <instance> must evaluate to an INSTANCE entry in a valid dictionary.

Instance Assignment
This statement assigns the values of all attributes and maps associated with the class of the

given ctarget instanco. For set instances, the current set value is copied as well. The new
values are obtained by copying those of the <value instanco.
invalid instance:

Both the ctarget instanco and the cvalue instance> must evaluate to
INSTANCE entries in a valid dictionary. The root classes of the two instances
must be the same or the root class of the ctarget instanco must be an ancestor in
the class hierarchy of the cvalue instanco. In the latter case, only the functions
associated with the ctarget instanco are copied.

Set Insertion
This statement inserts the designated cmember> into the cset>. Note that the cmember>

instance is not actually copied (i.e., the insertion merely points to the existing instance entry). If
successfully executed, the insertion is performed. Note that if the instance is already a member of
the set, no error occurs.
invalid member:

The cmemben> must evaluate to an existing INSTANCE entry in a valid diction­
ary.

invalid set: The cset> must evaluate to an existing INSTANCE entry in a valid dictionary.
The root of the cset>’s class must be an existing SET CLASS entry in a valid

21

dictionary.
invalid insert: The element type of the root of the <set>’s class must be the same as the class of

the <member>.

Set Deletion
This statement deletes the designated <member> from the <set>. Note that the <mcmber>

is not removed from the dictionary, it is simply no longer a member of the <set>. If successfully
executed, the deletion is performed.
invalid member:

The <membei> must evaluate to an existing INSTANCE entry in a valid diction­
ary.

invalid set: The <set> must evaluate to an existing INSTANCE entry in a valid dictionary.
The root of the <set>’s class must be an existing SET CLASS entry in a valid
dictionary.

invalid delete: The <member> must be an existing member of <set>.

Set Iteration
This statement iterates over each member of the <set> by associating successive members

with the given <variable>. If successfully executed, allows any statement in the loop body to
reference the current member by referencing <variable>.
invalid set: The <set> must evaluate to an existing INSTANCE entry in a valid dictionary.

The root of the <set>’s class must be an existing SET CLASS entry in a valid
dictionary.

5.5. Dictionary Interrogation
See sections 3.5 and 4.3 of this report for a description of dictionary interrogation state­

ments.

22

6. Examples
This section contains examples of ADAMS source files. Output from sample runs of some

of the programs is also shown. These programs allow the user to create and manipulate entities in
a university student/faculty database. The order in which the programs are compiled and exe­
cuted makes a difference. Order is significant because of dependencies on previously created
definitions and instances.

These source files are located on babbage in the directory
"/val/clk3h/gra/new_code/examples". An actual AP user may wish to copy them into his own
directory and try running them in order to get a feel for the basic scenario. See section 2 of this
paper for specific instructions on using the AP. Don’t forget to run the "adamsjnit" utility first!
If you use "adams_exec" and get an error "Cannot find include file conv_func.dict", then you
didn’t execute this initialization properly.

6.1. Defining the Persistent Database

^include "conv_func.dict"

main()
/*
** This program creates a database structure based on the one described
** in the paper "ADAMS Interface Language" presented at the Hypercube
** Conference January 1988. The significant change is that students
** and faculty are subclasses of the class of PEOPLE, and consequently
** inherit all ’people’ properties. The program does not actually
** insert any elements into the sets (i.e., relations) it creates.
*/

«

«

«

«

«

«

«

«

DICTJnit(); I* necessary DB initialization */

/* co_domain definitions */
string20 is a CO_DOMAIN

consisting of #[a-zA-Z0-9](1,20)#
with scope USER »

academic_rank is a CO_DOMAIN
consisting of
#(researchlvisitingl)(fulllassociatelassistant)professor#
with scope USER »

dept_codes is a COJDOMAIN
consisting of #t0-3][0-9]#
with scope USER »

course_nbrs is a CO_DOMAIN
consisting of #[A-Z]{2,4)[0-9](3)#
with scope USER »

academic_terms is a CO_DOMAIN
consisting of #[8-9][0-9][l-3]#
with scope USER »

S_S_nbrs is a CO_DOMAIN
consisting of #[0-9]{9}#
with scope USER »

grade_options is a CO_DOMAIN
consisting of
#A+IAIA-IB+IBIB-IC+ICIC-ID+IDID-IFIINCIPIWPIWF#
with scope USER »

date is a CO_DOMAIN
consisting of #[0-9]{2)/[0-9]{2}/88#
with scope USER »

/* attribute definitions */
name belongs to ATTRIBUTE

with image string20, value is assigned
with scope USER »

rank belongs to ATTRIBUTE
with image dept_codes, value is assigned
with scope USER »

dept belongs to ATTRIBUTE
with image dept_codes, value is assigned
with scope USER »

c_nbr belongs to ATTRIBUTE
with image course_nbrs, value is assigned
with scope USER »

c_name belongs to ATTRIBUTE
with image string20, value is assigned
with scope USER »

term belongs to ATTRIBITTE
with image academic_terms, value is assigned
with scope USER »

major belongs to ATTRIBUTE
with image dept_codes, value is assigned
with scope USER »

soc_sec_nbr belongs to ATTRIBUTE
with image S_S_nbrs, value is assigned
with scope USER »

b_date belongs to ATTRIBUTE
with image date, value is assigned,
with scope USER »

grade belongs to ATTRIBUTE
with image grade_options, value is assigned
with scope USER »

date_last_mod belongs to ATTRIBUTE
with image date, value is assigned,
with scope USER »

/* class declaration required for */
/* the following map functions */

PERSON.REC is a CLASS
having data_fields = { name, soc_sec_nbr, b_date },
with scope USER »

FACULTY_REC is a PERSON_REC
having fac_data_fields = { rank, dept },
with scope USER »

FACULTY is a SET
of FACULTY_REC elements,
having { date_last_mod },
with scope USER »

/* map functions */
advisor belongs to MAP

with image FACULTY_REC, value is assigned,
with scope USER »

instructor belongs to MAP
with image FACULTY_REC, value is assigned,
with scope USER »

STUDENT_REC is a PERSON_REC

/* class declarations required */
/* for the following map functions */

having stu_data_fields = { major },
having maps = { advisor },
with scope USER »

STUDENTS is a SET

«
«
«
«
«
«

of STUDENT_REC elements,
with scope USER »

COURSE_REC is a CLASS
having data_fields = { c_nbr, c_name, term },
having maps = { instructor },
with scope USER »

COURSES is a SET
of COURSE_REC elements,
with scope USER »

/* map functions for many-to many */
/* enrollment relationship */

student belongs to MAP
with image STUDENT_REC, value is assigned,
with scope USER »

course belongs to MAP
with image COURSE_REC, value is assigned,
with scope USER »

ENROLL_REC is a CLASS
having data_fields = { grade },
having maps = { student, course },
with scope USER »

ENROLLMENT is a SET
of ENROLL_REC elements,
with scope USER »

/* FINALLY, the 6 actual data sets */
courses belongs to COURSES, with scope USER »
enrollment belongs to ENROLLMENT, with scope USER »
tenured belongs to FACULTY, with scope USER »
untenured belongs to FACULTY, with scope USER »
graduate belongs to STUDENTS, with scope USER »
undergrad belongs to STUDENTS, with scope USER »

DICT_close();
}

6.2. Entering Data

6.2.1. Source File

^include <stdio.h>
#include "conv_func.dict"

#define TRUE 1
#define FALSE 0

main()

** This program provides a simple-minded data entry capability
** for the elements in the basic sets of the "school database"
** described in the "ADAMS Interface Language" paper presented
** at the Hypercube Conference, Jan 1988.

** It allows the user to select any of the six basic data sets
** tenured (FACULTY)
** untenured (FACULTY)
** undergrad (STUDENTS)
** graduate (STUDENTS)
** courses (COURSES)
** enrollment (ENROLLMENT)
** and to create instances with the associated attribute and

25

** map values.
*1
{

char response[20], attr_value[30], query_value[30];
int found, running;

DICT_init();

« name_variable rec, set_inst, fac_type »

« fac_rec belongs to FACULTY_REC» /* LOCAL ADAMS instances */
« stu_rec belongs to STUDENT_REC »
« course_rec belongs to COURSE_REC »
« enroll_rec belongs to ENROLL_REC »

printf ("The 'school database' has 6 data sets (or relations). They are:Vi");
printf ("\ttenured (FACULTY) Vi^untenured (FACULTY)\n");
printf ('^graduate (STUDENTS) \n\tundergrad (STUDENTS)\n");
printf ('Vcourses (COURSES) V'tenrollment (ENROLLMENT)^");
running = TRUE;
while (running)

{
printf ("\nEnter name of data set to accept entry (’q’ to quit) > ");
scanf ("%s", response);
switch (response[OJ)

(
case’t’: /* ’tenured’ faculty input */

enter_faculty("fac_rec");
« insert fac_rec into tenured »

break;
case ’u’:

switch (response[2])
(
case Y: /* ’unTenured’ faculty input */

enter_faculty("fac_rec");
« insert fac_rec into untenured »

break;
case’d’: /* ’unDergrad’ input */

enter_studen t("stu_rec ");
/* find student’s advisor */

printf ("When correct advisor appears respond with ’yes’, else ’no’Nn");
found = find_faculty("advisor", "tenured","stu_rcc");
if (Ifound) /* search untenured faculty */

find_faculty("advisor", "untenured","stu_rec");
« insert stu_rec into undergrad »

break;
default:

printf (’\t%s is an unrecognized response'll", response);
printf ("StStEnter data set name (in lower case) oi\n");
printf (’Wq’ to exit the program.W);
break;

}
break;

case ’g’: /* ’graduate’ input */
enter_student("stu_rec");

/* find student’s advisor */
/* Note—only tenured faculty */
/* may advise grad students */

printf ("When correct advisor appears respond with ’yes’, else ’no’W);
find_faculty("advisor", "tenured", "stu_rec");

26

« insert stu_rec into graduate »
break;

case ’c’:

printf ("When correct instructor appears respond with ’yes’, else ’no’W);
found = fmd_faculty("instructor", "tenured", "course_rec");
if (Ifound) t* search untenured faculty */

«
find_faculty("instructor", "untenured", "course_rec");

insert course_rec into courses »
break;

case ’e’: /* ’enrollment’ input */

«
enter_enroll("enroll_rec");
insert enroll_rec into enrollment»
break;

case ’q’:
running = FALSE;
break;

default:
printf ("\t%s is an unrecognized responseVi", response);
printf ("\t\tEnter data set name (in lower case) or\n");
printf ('NtNt’q' to exit the programVi");
break;

enter_faculty(rec)
char *rec;

I*
** This function allows the user to create a new instance of the ’FACULTY_REC’ class.
*/
{
char attr_value[30];

printf ("Enter faculty name > ");
scanf ("%s", attr_value);

« store into rec.name from attr_value »
printf ("Enter soc.sec. nbr > ");
scanf ("%s", attr_value);

« store into rec.soc_sec_nbr from attr_value »
printf ("Enter birth date > ”);
scanf ("%s", attr_value);

« store into rec.b_date from attr_value »
printf ("Enter current rank > ");
scanf ("%s", attr_value);

« store into rec .rank from attr_value »
printf ("Enter department > ");
scanf ("%s", attr_value);

« store into rec .dept from attr_value»

enter_student(rec)
char *rec;

!*** This function allows the user to create a new instance of the ’STUDENT_REC’ class.
*1
{

DICT_close();

char altr_value(30];

printf ("Enter student name > ");
scanf attr_value);

« store into rec.name from attr_value »
printf ("Enter soc.sec. nbr > ");
scanf ("%s". attr_value);

« store into rec.soc_sec_nbr from attr_value »
printf ("Enter birth date > ");
scanf ("%s”. attr_value);

« store into rec.b_date from attr_value »
printf ("Enter student's major > ");
scanf ("%s", attr_value);

« store into rec.major from attr_value »
}

find_faculty(fac_type, set_inst, rec)
char *fac_type, *set_inst, *rec;

/*
** This function searches the given set instance to find the desired faculty member.
*/
{
int found;
char attr_value[30], response[30];

found = FALSE;
« for all f in set_inst do
« fetch into attr_value from f.name »

printf ('V\t%s,", attr_value);
« fetch into attr_value from f.dept»

printf ("%s ? ", attr_value);
scanf ("%s", response);
if (*response == 'y')

{
found = TRUE;

« assign into rec.fac_type from f »
break_for_loop("f');
}

»
retum(found);
)

find_student(name, set_inst, rec)
char *name, *set_inst, *rec;

/*
** This function searches the given set instance to find the desired student.
V
{
int found;
char attr_value[30], response[30J;

found = FALSE;
« for all s in set_inst do
« fetch into attr_value from s.name »

if (strcmp(name, attr_value) == 0)
{
found = TRUE;

« assign into rec.student from s »
break_for_loop("s");
}

28

»
retum(found);

enter_course(rec)
char *rec;

t*** This function allows the user to create a new instance of the ’COURSE_REC class.
*/
{
char attr_value[30];

printf ("Enter course number XXnnn > ”);
scanf ("%s", attr_value);

« store into rec.c_nbr from attr_value »
printf ("Enter course name > ");
scanf ("%s", attr_value);

« store into rec.c_name from attr_value »
printf ("Enter course term e.g. f88 > ");
scanf ("%s", attr_value);

« store into rec .term from attr_value »
)

enter_enroll(rec)
char *rec;

/*
** This function allows the user to create a new instance of the ’ENROLL_REC’ class.
*/
{
int found;
char attr_value[30], response[30], query_value[30];

printf ("Enter student name > ");
scanf ("%s", query_value);
printf ("Mis the student undergraduate (’y’ or ’n’)? ");
scanf ("%s", response);
if (*response == ’y’) /* search ’undergraduate’ */

found = find_student(query_value, "undergrad", rec);
else /* search ’graduate’ */

found = find_student(query_value, "graduate", rec);
if (Ifound)

{
printf ("Mstudent - %s - unknown, entry abortedSn", query_value);
retum(O);
}

printf ("Enter course number > ");
scanf ("%s", query_value);
found = FALSE;

« for all c in courses do
« fetch into attr_value from c.c_nbr »

if (strcmp(query_value, attr_value) == 0)
{
found = TRUE;

« assign into rec.course from c »
break_for_loop("c");
}

»
if (Ifound)

{
printf ("Stcourse - %s - unknown, entry aborted\n", query_value);

19/30

retum(O);
J

printf ("Enter grade received > ");
scanf ("%s", attr_value);

« store into rec.grade from attr_value »
}

6.2.2. Sample Output

The ’school database' has 6 data sets (or relations). They are:
tenured (FACULTY)
untenured (FACULTY)
graduate (STUDENTS)
undergrad (STUDENTS)
courses (COURSES)
enrollment (ENROLLMENT)

Enter name of data set to accept entry (’q’ to quit) > enrollment

Enter student name > Smith
Is the student undergraduate (’y’ or ’n’)? y

Enter course number > CS655
Enter grade received > B+

Enter name of data set to accept entry (’q’ to quit) > graduate

Enter student name > Thomas
Enter soc.sec. nbr > 111-22-3333
Enter birth date > 5/1/60
Enter student’s major > CS
When correct advisor appears respond with ’yes’, else ’no’

Pfaltz, CS ? no
Reynolds, CS ? yes

Enter name of data set to accept entry (’q’ to quit) > q

6.3. Interrogating the Dictionary

6.3.1. Source File

If include <stdio.h>
//include "conv_func.dict"

//define TRUE 1
//define FALSE 0

main()
/*
** This program supports an interactive interface which inputs names
** of elements in the perm an ant name space and then describes the
** indicated instance or class.
*1
{
char name[30];
int running;

DICTJnitQ;

running = TRUE;
while (running)

31

in_loop = FALSE;
« for all x in attr_view do

in_loop = TRUE;
indent (depth);
printf ('\t\t%sVr, dict_name_of ("x"));
»

if (!in_loop)
printf("\t\tnone\n");

« map_view map of the_class »
indent (depth);
printf ("NtList of Associated Maps:W);
in_loop = FALSE;

« for all x in map_view do
in_loop = TRUE;
indent (depth);
printf ('V\t%s -> %sNn", dict_name_of ("x"), image_of(”x"));
»

if (!in_loop)
printf("St\tnone\n");

}

indent (depth)
int depth;

I*
** Indent a printed line by "depth" tabs
*/
{
int i;

for (i=0; i<depth; -H-i)
printf ('Nt'');

I
I
I
I
I
I

6.3.2. Sample Output

Enter class or instance name (’q’ to quit) > enrollment

enrollment belongs to class ENROLLMENT with the following properties
List of Associated Attributes:

none
List of Associated Maps:

none
SET instance composed of ENROLL_REC elements

List of Associated Attributes:
grade

List of Associated Maps:
student -> STUDENT_REC
course -> COURSE_REC

Enter class or instance name (’q’ to quit) > graduate

graduate belongs to class STUDENTS with the following properties
List of Associated Attributes:

none
List of Associated Maps:

none
SET instance composed of STUDENT_REC elements

List of Associated Attributes:
major

32

name
soc_sec_nbr
b_date

List of Associated Maps:
advisor -> FACULTY_REC

Enter class or instance name ('q' to quit) > FACULTY_REC

FACULTY_REC is a class with the following properties
List of Associated Attributes:

rank
dept
name
soc_sec_nbr
b_date

List of Associated Maps:
none

Enter class or instance name (’q’ to quit) > courses
courses belongs to class COURSES with the following properties

List of Associated Attributes:
none

List of Associated Maps:
none

SET instance composed of COURSE_REC elements
List of Associated Attributes:

c_nbr
c_name
term

List of Associated Maps:
instructor -> FACULTY_REC

Enter class or instance name (’q’ to quit) > q

6.4. Displaying Data

6.4.1. Source File

#include <stdio.h>
#include "conv_func.dict"

#deline TRUE 1
#define FALSE 0

This program provides a simple-minded display capability for the elements
in the basic sets (i.e., relations) of the "school database" described
in the "ADAMS Interface Language" paper presented at the Hypercube
Conference, January 1988.

It allows the user to select any of the six basic data sets:
tenured (FACULTY)
untenured (FACULTY)
undergrad (STUDENTS)
graduate (STUDENTS)
courses (COURSES)
enrollment (ENROLLMENT)

The program then displays the attribute values of the current members

I

I
main()

**

**

**
**

**
**

**

**

*♦
**

**

♦*

33

«
«
«

«
«

«
«

«
«

«

** of the selected data set.
*/
{
char attr_value[30], element_class[30], query_value[30], response[20];
int running;

DICTJnitQ;

name_variable element_class »
SCHEMA is a SET of ATTRIBUTE elements »
attr_set belongs to SCHEMA »

printf ("The ’school database’ has 6 data sets (or relations). They are:Vi");
printf (’Nttenured (FACULTY) NnVluntenured (FACULTY)W’);
printf ("Vtgraduate (STUDENTS) \n\tundergrad (STUDENTS)\n”);
printf ('Ntcourses (COURSES) V'ienrollment (ENROLLMENT)'*!");
running = TRUE;
while (running)

{
printf ("Winter name of data set to be displayed (’q’ to quit) > ");
scanf ("%s", response);
printf("\n");
switch (response[0])

{
case’t’:

printf ('ViDisplay of ’tenured’ facultyW);
strcpy (element_class, class_of_element("tenured"));
attr_set view of element_class »
for all x in tenured do

display_atts ("x", "attr_set");
printf ("Sn");

»
printf (’V);
break;

case ’u’:
switch (response[2])

{
case ’t’:

printf ('ViDisplay of ’untenured’ facultyNn");
strcpy (element_class, class_of_element("untenured"));
attr_set view of element_class »
for all x in un tenured do

display_atts ("x", "attr_set");
printf ('W);

»
printf ('W');
break;

case’d’:
printf ('ViDisplay of 'undergraduate' students'*!1');
strcpy (element_class, class_of_element("undergrad"));
attr_set view of element_class »
for all x in undergrad do

display_atts ("x", "attr_set");
fetch into attr_value from x.advisor.name »
printf ("advisor is - %sVi", attr_value);
printf ('Vi");

»
printf ('V');
break;

default:

34

«
«

«

«
«

«

«

«
«

«
«

«

«

printf (’M%s is an unrecognized responseVi", response);
printf ('WEnter data set name—in lower caseVi");
printf ("St\tor ’quit’ to exit the programW);
break;

}
break;

case 'g':
printf ("ViDisplay of ’graduate’ studentsVT);
strcpy (element_class, class_of_element("graduate"));
attr_set view of element_class »
for all x in graduate do

display_atts ("x", "attr_set");
fetch into attr_value from x.advisor.name »
printf ("advisor is - %s\n", attr value);
printf ("Vi");

»
printf ('Vi");
break;

case V:
printf ("ViDisplay of ’courses’ offered^");
strcpy (element_class, class_of_element(”courses"));
attr_set view of element_class »
for all x in courses do

display_atts ("x", "attr_set");
fetch into attr_value from x.instructor.name »
printf ("instructor is - %s", attr_value);
fetch into attr_value from x.instructor.dept »
printf (", %sVi", attr_value);
printf ('Vi");

»
printf ("Vi");
break;

case V:
printf ("ViDisplay of ’enrollment’ by classVi");
for all c in courses do

fetch into query_value from c.c_nbr »
printf ("St%s query_value);

for all e in enrollment do
fetch into attr_value from e.course.c_nbr »
if (strcmp(attr_value, query_value) == 0)

{ /* Display this enrollment */
fetch into attr_value from e.student.name »
printf ("V%s", attr_value);
fetch into attr_value from e.grade »
printf ("V- %sViV", attr_value);
}

»
printf ("Vi");
»

break;
case ’q’:

running = FALSE;
break;

default:
printf ('\t%s is an unrecognized responseVi", response);
printf ("VVEnter data set name (in lower case) 01V1");
printf ("Wq’ to exit the program.Vi");
break;

35

}
DICT_close();

display_atts (x, attr_set)
char *x, *attr_set;

/*
** Given an ADAMS instance with the indicated set of associated attributes,
** access each attribute value and display them one per line.
*/
{
char attr_value[30];

« for all attr in attr_set do
« fetch into attr_value from x.attr »

printf ("%-15s- %s\n", dict_name_of("attr"), attr_value);
»
}

6.4.2. Sample Output

The ’school database’ has 6 data sets (or relations). They are:
tenured (FACULTY)
untenured (FACULTY)
graduate (STUDENTS)
undergrad (STUDENTS)
courses (COURSES)
enrollment (ENROLLMENT)

Enter name of data set to be displayed (’q’ to quit) > tenured

Display of ’tenured’ faculty
rank - prof,
dept - CS
name - Pfaltz
soc_sec_nbr - 001-00-0007
b_date - 6/25/35

rank - assoc.prof.
dept - CS
name - Reynolds
soc_sec_nbr - 002-00-1111
b_date - 4/23/45

Enter name of data set to be displayed (’q’ to quit) > graduate

Display of ’graduate’ students
major - CS
name - Klumpp
soc_sec_nbr - 123-45-6789
b_date - 8/13/53
advisor is - Reynolds

major - CS
name - Baron
soc_sec_nbr - 234-56-7890
b_date -11/3/52
advisor is - Pfaltz

major - CS

name - Orlandic
soc_scc_nbr - 987-65-4321
b_date -2/12/51
advisor is - Pfaltz

major - CS
name - Thomas
soc_sec_nbr - 1111-22-3333
b_date - 5/1/60
advisor is - Reynolds

Enter name of data set to be displayed (’q’ to quit) > enrollment

Display of ’enrollment’ by class
CS662 - Klumpp - B+

Baron - A

CS655 - Klumpp - A
Baron - B
Orlandic - A-
Smith - B+

Enter name of data set to be displayed (’q’ to quit) > courses

Display of ’courses’ offered
c_nbr - CS662
c_name - Database
term - s88
instructor is - Son, CS

cnbr - CS655
c_name - Languages
term - f88
instructor is - Reynolds, CS

Enter name of data set to be displayed (’q’ to quit) > q

6.5. Implementing Set Operators

6.5.1. Source File

#include <stdio.h>
#include "conv_func.dict"

mam()
/*
** This program tests the implementation of the hierarchical union
** (e.g., "h_union") facility.
**

** The names of two operand sets are entered by the user. The
** current extent of these two sets is displayed and the name
** of the resulting set is requested. Finally, the union is formed
** and the extent of the resultant set is diplayed.
*/
{
char operandl[20], operand2[20], result[20];

DICTJnitO;

« name_variable X, Y, Z, x_class, y_class, CLASS_z, CLASS_Z,

37

z_elem, inst, element_class »

accept_set_name (operandl);
show_set (operandl);
accept_set_name (operand2);
show_set (operandl);
accept_new_name (result);
h_union (operandl, operand2, result);
show_set (result);

DICT_close();
}

a_union (X, Y, Z)
char *X, *Y, *Z;

I*
** Form Z <- X union Y
** where we assume that
** 1. the instance ’Z’ exists, and
** 2. ’Z’ is empty.
**
** NOTE: This is easily implemented at the system level as
** an O(n) process rather than the 0(n"2) process here.
*/
{

if (strcmp(class_of_element(X), class_of_element(Y)) != 0
II class_of_element(X) == M)’)
{ /* X and Y are not conformable */

/* or X is not a set instance */
return (0);
}

« assign into Z from X » /* Z <- X */
« for all y in Y do

if (!is_element_of("y”, X)) /* don’t duplicate elements */
« insert y into Z »

»
return (1);
}

ajntersect (X, Y, Z)
char *X, *Y, *Z;

/*
** Form Z <- X intersect Y
** where we assume that
** 1. the instance ’Z’ exists, and
** 2. ’Z’ is empty.
**
** NOTE: This is easily implemented at the system level as
** an O(n) process rather than the 0(n~2) process here.
*/
{
if (strcmp(class_of_element(X), class_of_element(Y)) != 0

II class_of_element(X) == ’NO’)
{ /* X and Y are not conformable */

/* or X is not a set instance */
return (0);
}

« for all y in Y do
if (is_element_of("y", X))

« insert y into Z »
»
return (1);
}

h_union (X, Y, Z)
char *X. *Y, *Z;

/*

**
*♦

**
**
**

**
**

**

*/
{

This procedure creates the set ’Z’ <- ’X’ union ’Y’
in an environment that supports class hierarchies.
(In this environment we do not require X and Y to consist
of elements of the same class; instead ’CLASS_z’ will consist
of those attributes which are common to both.)

NOTE: In this version, if the two operand sets are not of the
same class, ’CLASS_z’ and ’CLASS_Z’ are established
within the procedure, and the instance ’Z’ created.
One could as well expect the invoking procedure to
create the set instance 'Z' and thus its class.

NOTE: This version determines the common attributes.
An alternate approach would search the dictionary for
the greatest common parent (if any) and use that as the
class of the result.

char x_class[20], y_class[20];
char z_elem[20], CLASS_z[20], CLASSJZ[20];

strcpy (x_class, class_of_element(X)); /* get operand classes */
strcpy (y_class, class_of_element(Y));

if (strcmp (x_class, y_class) == 0)
{ /* EASY case, sets are of the same class*/
strcpy (CLASS_Z, class_of(X));

« Z belongs to CLASS_Z »
a_union (X, Y, Z);
return (1);
}

/* HARD case, sets are not conformable */
/* find their common attributes */

« x_attr_view belongs to ATTRIBUTES »
« y_attr_view belongs to ATTRIBUTES »
« x_attr_view view of x_class »
« y_attr_view view of y_class »
« result_attrs belongs to ATTRIBUTES »

a_intersect ("x_attr_view", "y_attr_view", "result_attrs");

make_class_name (CLASS_z);
« CLASS_z is a CLASS, having result_attrs »

make_class_name (CLASS_Z);
« CLASS Z is a SET, of CLASS_z elements
« Z belongs to CLASS_Z »

« for all x in X do
make_name (z_elem); /* generate arbitrary name */

« z_elem belongs to CLASS_z »
« for all attr in result_attrs do

« assign into z_elem.attr from x.attr »
»

« insert z_elem into Z
»

»

«

«
«
«

«

int

for all y in Y do
if (!is_element_of("y", X))

{ /* don’t include duplicate elements */
make_name (z_elem); /* generate arbitrary name */
z_elem belongs to CLASS_z »
for all attr in result_attrs do

assign into z_elem.attr from y.attr »
»
insert z_elem into Z »

»
return (1);
}

n_count = 0;

make_class_name (name)
char *name;

/*
** Generate a unique LOCAL CLASS name
*1
{
sprintf (name, "%s_%d", "T_CLASS", ++n_count);

make_name (name)
char *name;

/*
** Generate a unique LOCAL name
*/
{
sprintf (name, "%s_%d’', "TEMP", ++n_counl);

show_set (inst)
char *inst;

I*
** Display the attributes of elements in the named set instance.
** This is a generic, but not particularly elegant procedure.
*/
{
char attr_value[30], element_class[30];

printf ("Display of the set ’%s’Vi", inst);
« attr_set belongs to ATTRIBUTES »

strcpy (element_class, class_of_element(inst));
« attr_set view of element_class »
« for all x in inst do
« for all attr in attr_set do
« fetch into attr_value from x.attr »

printf ("%-12s ", attr_value);
»

printf ('Vi");
»

printf ("\n");

acccpt_set_name (set_name)
char *set_name;

{
int accepted;

accepted = 0;
while (! accepted)

{
printf ("Enter the name of a set instance > ");
scanf ("%s", set_name);
printfCW);
if (class_of_element(set_name) != 0)

accepted = 1;
else

printf ('\t\t%s is NOT a set instanceViVi", set_name);
}

}

accept_new_name (name)
char *name;

{
int accepted;

accepted = 0;
while (! accepted)

{
printf ("Enter a new name to denote the result > ");
scanf ("%s", name);
printf("\n");
if (is_dict_entry(name))

printf ("M\t%s already exists as a ADAMS name\n\n", name);
else

accepted = 1;
}

}

6.5.2. Sample Output

Enter the name of a set instance > tenured

Display of the set ’tenured’

prof. CS Pfaltz 001-00-0007 6/25/35
assoc.prof. CS Reynolds 002-00-1111 4/23/45

Enter the name of a set instance > graduate

Display of the set ’graduate’

CS Klumpp 12345-5678 8/13/53
CS Baron 234-56-7890 11/3/52
CS Orlandic 987-654321 2/12/51
CS Thomas 111-22-3333 5/2/60

Enter a new name to denote the result > people

Display of the set ’people’

123-45-5678 8/13/53
001- 00-0007 6/25/35
002- 00-1111 4/23/45
234-56-7890 11/3/52
987-65-4321 2/12/51
111-22-3333 5/2/60

Klumpp
Pfaltz
Reynolds
Baron
Orlandic

Thomas

42

7. Conclusion
This section of the report summarizes the results of the AP project. First, the modifications

to the ADAMS language which have already been incorporated into the current AP implementa­
tion are discussed. Most of these ideas will be integrated into the definition of the actual
ADAMS interface language. However, the implementation and syntactic details may, of course,
be changed after more careful consideration. Second, this conclusion lists modifications which
have been proposed as a direct result of experimentation with writing ADAMS programs using
the AP. Finally, the areas in which considerable design effort is still needed are identified. These
are issues which are not thoroughly addressed in the current ADAMS language definition docu­
ment [Pf87] and should serve as a check list for further design work.

7.1. Implemented Modifications
The following features, which were not defined in the original ADAMS design document,

have been added to the AP system. For the most part, these features increase the data manipula­
tion capabilities available to the user. The data definition facilities had been focused on in the ini­
tial design efforts and were therefore more extensively and better defined.
(1) The set of all attributes or maps associated with a given class may be obtained through a

view statement (see section 3.5 and 4.3).
(2) For programming convenience, literal dictionary names in any ADAMS statement may be

replaced by a dictionary name variable (see section 4.3).
(3) A small group of host language functions are supported by the AP version of ADAMS to

allow user interrogation of dictionaries (see sections 3.5 and 4.2.6).
(4) An ADAMS "for all" loop may be exited before all members of the set have been accessed

(see section 4.3).
(5) Data manipulation statements (including set insertion and assignment of attributes, maps,

sets, and instances) have been more precisely defined (see sections 3.4 and 5.4).

7.2. Proposed Modifications
(1) Currently attributes and maps are treated as instances of the system classes ATTRIBUTE

and MAP. However, it seems conceptually clearer to require that the user define a new
class whose parent is one of these two classes, and then create instances of the new class.
This allows the image of the function to be declared in the definition statement rather than
in the instance creation statement. Two important issues become more apparent with this
change. First, the map or attribute classes may now have their own attributes or maps
associated them (as with all class definitions). The problem is that an ambiguity is intro­
duced in trying to reference the attribute or map values of an instance whose class is itself
a function. Second, attributes or maps are often collected together in a set. Under the
current implementation, such a set is described as containing "ATTRIBUTE elements".
However, the proposed change would require such a set to consist of instances which may
have different parent classes (such as INTEGER_ATTRIBUTE, or DATE_ATTRIBUTE)
but all have a common ancestor, the system defined ATTRIBUTE class. We must ensure
that such a set is legal and that operations on it are well defined. The first issue is syntac­
tic, and requires a revision of the basic ADAMS syntax. The second affects the semantics
of set operations where one has a class hierarchy.

(2) The small set of dictionary interrogation facilities now supported must be greatly
expanded. For example, routine information such as whether or not a name respresents a
co-domain entry in the dictionary, what the current scope of an instance is, or whether a set

43

is empty should be available to the user. In addition, given two classes, the system should
be able to return the "highest" common parent class (if a common class exists). There are
numerous such interrogations that must be defined and included in the ADAMS definition.

(3) Because ADAMS requires all instances to have a unique name, it is desirable for the sys­
tem to provide an automatic name generation routine. Often a user does not care what
name is used and does not want to be bothered with the "house keeping" details necessary
to ensure uniqueness. Probably this facility will differentiate between names for per­
manent (user scope) and temporary (local scope) instances.

(4) Although this is an implementation concern, it is worth noting here. The current AP sys­
tem stores both the definitions and data (i.e., instances) in the dictionary. In an actual
ADAMS implementation this would clearly not be the case. The instance names, of
course, be recorded in the dictionary. However, the collection of data associated with each
instance (i.e., the function values) will be stored separately, possibly in a different manner.

(5) This is a small syntactic observation, but will make ADAMS code a lot easier to write,
debug, and read. All literal dictionary names should appear in quotations (as is the com­
mon convention in most programming languages). This change will then make the use of
a name variable immediately apparent (currently the program must be examined to deter­
mine if a name is to be interpreted as a literal or a name variable), and eliminate the need
for the adhoc name_variable ADAMS statement.

(6) The current implementation has included a "kludge" which allows temporary instances to
be inserted into permanent sets. The system automatically converts the temporary instance
into a permanent one before the insertion is made. The name of the new persistent instance
is automatically chosen by the system (since it is not considered relevant to the user, who
simply wants a collection of unnamed objects). Although such a mechanism is useful, it
confuses several different issues (unnamed instances, rescoping, validity of operations that
involve instances of different scopes, etc.). A careful reworking of these concepts is
required (also see item 3 in this list). The entire issue of "copy" verses "reference" seman­
tics needs to be systematically reviewed, and then reflected in the syntax (see the next para­
graph as well).

(7) The semantics of the assignment statement have been questioned. The current implemen­
tation treats the assign statement as three separate actions. The desired interpretation is
determined by the types of the arguments. If the left hand side (LHS) argument is an attri­
bute designator then the assignment is interpreted as "attribute assignment", in which the
co-domain value of the RHS is copied to become the new value of the LHS attribute. If
the LHS argument is a map designator then the assignment is interpreted as "map assign­
ment", in which the map is made to point to the instance designated by the RHS. Finally,
if the LHS is a the name of an instance, then all the function values associated with the
RHS instance are copied into the corresponding values of the LHS. One issue that arises is
whether or not the assignment of instances should be handled as a separate copy statement.
Such a statement would be used only when a user wishes to make such a copy. The advan­
tages are two-fold. First, the change is desirable to clarify for the user which action is
being carried out as a result of the statement execution. Second, the LHS instance could be
designated by a map evaluation in addition to a explicit instance name. Currently such a
designation is impossible because of the ambiguity as to whether the map value itself is
being updated or the instance which is the current value of the map is to be modified.

44

An interesting outcome of the initial experimentation with the AP is a clearer understanding
of ADAMS as a "minimalist" approach to building a database system. As stated in the introduc­
tion of this report, ADAMS is not intended to be an all-encompassing DBMS (with interactive
user support, etc.). However, the basic primitives supported by ADAMS are intended to support
the development of such a system. To aid the user (i.e., a programmer) in this job, it has been
proposed that ADAMS provide a group of higher level uilities, built only upon the ADAMS
primitives.

The method in which one would use ADAMS to model multi-valued attributes is used as an
example of this approach. In ADAMS, multi-valued attributes are represented by maps which
have a set class as their image. The set must then contain intances of a class which has the
appropriate attribute associated with it. Figure 6 first gives the abbreviated version of a multi­
valued attribute definition and then gives the actual ADAMS code needed to carry out the
definition. Note that literal names are surrounded by quotations (as proposed) and functions are
first defined as classes and then instances are created (as proposed above). The goal would be to
support many such abbreviated statements (and let the system take care of generating the details).
Facilities which simplify the definition of relational databases are also envisioned.

7.3. Unimplemented Features and Unresolved Issues
(1) syntax and use of predicates in restriction clauses (including how they will be used to

enforce integrity constraints)

Abbreviated Version

« "children" is a multi-valued instance of the "child" ATTRIBUTE
having image "child_name"

»

Expanded Code

« X is an ATTRIBUTE with image "child_name" »
« "child" belongs to X »
« Y is a CLASS having attribute = {"child" } »
« Y is a SET of X elements »
« Z is a MAP with image Y »
« "children" belongs to Z »

Accessing an Attribute Value

« for all x in "joe"."children"
« fetch into name from x. "child" »

»

Figure 6. Sample of ADAMS User-Friendly Utility

45

(2) error recovery/transaction mechanism
(3) partition/subset facility (including update propagation issues)
(4) "forward" definition statements (how they can be used, how to handle validation in respect

to their use)
(5) system supported set operations: which ones are supported and how are they defined (of

particular interest is how inheritance is dealt with in defining them)?
(6) parallelism: how is it incorporated into ADAMS (internal and external)?
(7) computed attribute values: when and how are the computations triggered and how are the

computations defined?
(8) store and fetch conversion functions (how are they best used and implemented?)
(9) inheritance: single or multiple?

46

8. References

[Pf87] J. L. Pfaltz and et.al., Basic Database Concepts in ADAMS (Advanced DAta Manipula­
tion System): Language Interface for Process Service, IPC Technical Report 87-001, UVA Dept,
of C.S., November 1987.

[P1F] J. L. Pfaltz and J. C. French, Abstract of Proposed Paper: The Multi-faceted Role of
Sets and Functions in ADAMS, UVA Dept, of C.S., October 1987.

[PWF88] J. L. Pfaltz, J. C. French and J. L. Whitlach, Scoping Persistent Name Spaces in
ADAMS, IPC Tech. Rep. 88-003, Institute for Parallel Computation, Univ. of Virginia, June
1988.

47

APPENDIX A: Syntax Summary
The following is a condensed summary of the complete ADAMS language subset imple­

mented by the AP. The syntax definition given here is exactly the same as the one in section 4.2
of this report. However, all the headings and additional text in that section has been stripped out,
leaving only the BNF grammar rules (and, in the case of the host languauge dictionary interroga­
tion routines, the function declarations).

<adams_source> ::= (’«’ <adams_stmt> ’»’ I <host_stmt>)+
<adams_stmt> ::= <co_domain_def> I <class_def> I <inst_creation> I <inst_manip>

<dict_interrog> I <name_var>
<co_domain_def> ::= <co_domain_name> is a CO DOMAIN

consisting of ’#’ <regular_expi> ’#’
[<store_clause>]
[<fetch_clause>]
[<scope_clause>]

<store_clause> ::= with store <host_func>
<fetch_clause> ::= with fetch <host_func>
<class_del> ::= <user_class_def> I <set_class_def>
<user_class_def> ::= <user_class_name> is a <user_class_desig>

[<class_def_clause>]
[<scope_clause>]

<user_class_desig> ::= <user_class_name> I <set_class_name> I CLASS
<set_class_def> ::= <set_class_name> is a SET

of <class_desig> elements
[<class_def_clause>]
[<scope_clause>]

<class_def_clause> ::= (<assoc_clause> I <restrict_clause>)+
<assoc_clause> ::= having [<set_synonym> ’=’] <func_set>
<func_set> ::= <func_set_name> I <enum_func_set>
<enum_func_set> <func_name>)+ ’) ’
<restrict_clause> ::= in which <quantifien> <predicate>
<quantifier> ::= ’(’ for all <variable_name> ’)’
<predicate> ::= ’[’ <variable_name> <attr_name> <rel_op> <string> ’]’
<rel_op> ::= ’==’ I ’!=’ I ’<’ I ’>’ I ’<=’ I ’>=’
<inst_creation> ::= <attr_creation> I <map_creation> I <user_creation> I <set_creation>
<attr_creation> ::= <attr_name> belongs to ATTRIBUTE

with image <co_domain_name>
<value_assign_clause>
[<undef_clause>]
[<scope_clause>]

<undef_clause> ::= with undefined ”” <string>
<value_assign_clause> ::= value is assigned
<map_creation> ::= <map_name> belongs to MAP

with image <class_desig>
<value_assign_clause>
[<scope_clause>]

<user_creation> ::= <inst_name> belongs to <user_class_name>
t<scope_clause>]

<set_creation> ::= <set_name> belongs to <set_class_name>

[consisting of <set_value>]
[<scope_clause>]

<set_value> ::= <set_desig> I <enum_set>
<enum_set> (<inst_name>)+ ’}’
<inst_manip> ::= <attr_assign> I <store> I <fetch> I <map_assign> I <inst_assign> I <set_;
<attr_assign> ::= assign into <attr_desig> from <attr_value>
<attr_value> ::= <attr_desig> I <string>
<store> ::= store into <attr_desig> from <host_value>
<host_va!ue> ::= <host_var> I <host_const>
<fetch> ::= fetch into <host_var> from <attr_desig>
<map_assign> ::= assign into <inst_desig> from <inst_desig>
<inst_assign> ::= assign into <inst_name> from <inst_desig>
<set_access> <insert> I <delete> I <for_all>
<insert> ::= insert <inst_desig> into <set_desig>
<delete> ::= delete <inst_desig> from <set_desig>
<for_all> ::= for all <loop_variable_name> in <set_desig> do

(<adams_stmt> I <host_stmt>)+
<dict_interrog> ::= <attr_view> I <map_view>
<attr_view> ::= <set_desig> view of <class_name>
<map_view> ::= <set_desig> map of <class_name>
<attr_desig> ::= <inst_desig> <attr_name>
<class_desig> ::= <user_class_name> I <set_class_name> I ATTRIBUTE | MAP

|SET|CLASS
<inst_desig> ::= <inst_name> [<map_desig>] [<map_desig>]
<map_desig> ::= <map_name>
<set_desig> ::= <set_name> I <inst_desig>
<temp_scope> ::= LOCAL
<permanent_scope> ::= USER
<scope_clause> ::= with scope <permanent_scope>
<name_var> ::= name_variable (<string>)+

Charstr class_of(inst: Charstr)
Charstr class_of_element(set_inst: Charstr)
Charstr dict_name_of(for_loop_var: Charstr)
Charstr id_of(inst: Charstr)
Charstr image_of(map_inst: Charstr)
Boolean is_class(name: Charstr)
Boolean is_dict_entry(name : Charstr)
Boolean is_element_of(inst, setjnst: Charstr)

49

APPENDIX B: Dictionary Organization
Although the typical AP user should not need to examine the contents of the permanent data

dictionaries, this section provides the necessary implementation details if a user wishes to do so.
The ADAMS dictionaries are stored in the "diet" directory (which is a sub-directory of the
current working directory). The user dictionary resides in "dict/user" and the system dictionary
resides in "dict/sys". The following list describes the contents of each ".diet" file in these direc­
tories. For each file, its name, the format of each entry (surrounded by square brackets), and a
brief description of its contents are given. Note that an empty field (i.e., the NULL string) is
stored as a zero and the symbol "$" is used as an "end of entry" marker. There are three categories
of dictionary entries: co-domain definitions, class definitions, and class instances.

assoc.dict: [class name, synonym, set name]
Contains a list of all the association clauses for all class entries.

attr.dict: [attribute name, instance id, value]
Contains a list of all the attribute values for all instance entries.

class.dict: [class name, parent class, element type]
Contains a list of all class entries.

co dom.dict: [co-domain name, regular expression, store function, fetch function]
Contains a list of all co-domain entries.

entrv.dict: [entry name]
Contains a list of all entries currently in the dictionary.

init.dict
Contains the next available unique instance id. Note that this file exists only in the user diction­
ary (not in the system dictionary).

inst.dict: [instance name, class, instance id]
Contains a list of all instance entries.

map.dict: [map name, instance id, value]
Contains a list of all the map values for all instance entries.

restrict: [class name, attribute name, relative operator, constant]
Contains a list of all the restriction clauses for all class entries.

set.dict: [set name, value]
Contains a list of all the set values for all set instance entries.

THE FACULTY AND THEIR RESEARCH INTERESTS (1989-I99U)

The faculty members of the Institute for Parallel Computation are listed below with their
research interests.

REYNOLDS, PAUL F., JR. - Director, Associate Professor of Computer Science, Ph.D.,
University of Texas at Austin. Distributed Systems, Parallel Languages.

PFALTZ, JOHN L. - Associate Director, Professor of Computer Science, Ph.D., University of
Maryland. Data Management, Graph Theory, Parallel Data Access.

PRATT, TERRENCE W. - Research Professor of Computer Science, Ph.D., University of
Texas at Austin. Programming Languages and Environments, Theory of Programming, Parallel
Computation.

BROWN, DONALD E. - Associate Director, Assistant Professor of Systems Engineering,
Ph.D., University of Michigan. Inductive Systems, Data Analysis, Decision Support, Design
Aiding.

RICHARDS, DANA S. - Assistant Professor of Computer Sceince, Ph.D., University of Illi­
nois. Analysis of Algorithms.

MARTIN, WORTHY N. - Assistant Professor of Computer Science, Ph.D., University of
Texas at Austin. Computer Vision, Robotics, Graphics.

SON, SANG H. - Assistant Professor of Computer Science, Ph.D., University of Maryland.
Database Systems, Distributed Real-Time Systems, Database Prototyping.

COHOON, JAMES P. - Assistant Professor of Computer Science, Ph.D., University of Min­
nesota. Design and Analysis of Algorithms, Design Automation, Parallel Algorithms.

FRENCH, JAMES C. - Senior Scientist, Ph.D., University of Virginia. Data Management,
Programming Environments, Performance Measurement.

STEWART, BRADLEY S. - Senior Scientist, Ph.D., University of Virginia. Terrain Model­
ing, Heuristic Search, Decision Analysis, Parallel Algorithms.

INSTITUTE FOR PARALLEL COMPUTATION RECENT TECHNICAL REPORTS

TR__ #

87- 001

88- 001

88-002

88-003

38-004

58-005

58-006

88-007

88-008

8- 009

8-010

8-011

9- 001

____________________ TITLE_____________________ AU’ll 1URS DATE

"Basic Database Concepts in ADAMS (Advanced Pfaltz, Jolin Novauber 30, 1987
Data Manipulation Systau): Language Intel:- Son, Sang 11.

__£ace_fgr_Prgcess_Sei:yicei"____________________ _______________________________________

"Compact 0-Complete Trees: A New Method for Orlandic, Ratko January 26, 1988
Pfaltz, JohnSearching Large Files.

"Reliability Mechanisms for ADAMS." Son, Sang
Pfaltz, John

"Scoping Persistent Name Spaces in ADAMS." Pfaltz, John
French, James

March 20, 1988

June 28, 1988

"implementing Set Operators Over Class
Hierarchies."

Whitlatch, Jenona L.

Pfaltz, John August 5, 1988

"implementation of an ADAMS Prototype:
The ADAMS Preprocessor (AP)."

"Ihe 1988 Parallel Sorting Bibliography."

"A Spectrum of Options for Parallel
Simulation."

Klumpp, Cathloen August 9, 1988
Pfaltz, Join

Richards, Dana August 25, 1988

Reynolds, Paul September 9, 1988

"A Neural Network implementation of a
Correspondence Processing Algorithm."

Barker, Allen October 9, 1988
Brown, Donald
Martin, Worthy

"A Prototyping Environment for Distributed
Database Systans: Functional
Description."

Son, Sang 11. October 9, 1988
Rattier, Jeremiah
Chang, Chun-llyon

"A Global Time Reference for llypercube French, James C. October 10, 1988
Multicomputers."

"A Procedure for Generating Source Weights
in Group Consensus Problems^"____________

Brown, Donald E. December 12, 1988
Mos taghimii_Mehdi___________________

"A Bibliography of Heuristic Search." Stewart, Bradley January 30, 1989

