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NEIGHBORING EXTREMAL OPTIMAL CONTROL
DESIGN INCLUDING MODEL MISMATCH ERRORS

Theodore J. Kim* and David G. Hullt

Abstract

The mismatch control technique that is used to sim-
plify model equations of motion in-order to determine
analytic optimal control laws is extended using neigh-
boring extremal theory. The first variation optimal con-
trol equations are linearized about the extremal path
to account for perturbations in the initial state and
the final constraint manifold. A numerical example
demonstrates that the tuning procedure inherent in the
mismatch control method increases the performance of
the controls to the level of a numerically-determined
piecewise-linear controller. '

Nomenclature

ay - fy linearization coefficients for trig functions
Cp aerodynamic drag coefficient

Cp, zero-lift drag coefficient

CL aerodynamic lift coefficient

C; lift coefficient for maximum lift /drag ratio
E* maximum lift/drag ratio

h ~ altitude (ft)

hg density scale height (ft)

l sweep variable

M tuning parameter matrix

m,n sweep variable matrices
Lagrange multiplier vector
, R, S sweep variable matrices
time (sec)
aerodynamic control vector
velocity (ft/sec)
mismatch control vector
state vector
downrange distance {(nm)
crossrange distance (nm)
running variable
flight path angle
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nondimensional crossrange
scaled lift coefficient
Lagrange multiplier
nondimensional velocity
nondimensional downrange
air density (slugs/ft?)
scaled side force coefficient
track angle

final constraint manifold
nondimensional density
end point function
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Introduction

Optimal control theory that is derived from Newton’s
calculus of variations [1] is often used to compute a con-
trol law. However, this control is the solution of a two
point boundary value problem (TPBVP) that is usu-
ally nonlinear and can only be solved numerically. The
mismatch controls that are defined in {2] reduce the
complexity of the differential equations of motion that
describe a physical system. The resulting model equa-
tions of motion simplify the TPBVP and often admit
an analytic solution for the controls.

The general optimal control problem that includes
the mismatch controls is written

ev)at II%}'D J (1)

where w denotes the mismatch controls and u denotes
the “normal” controls. (In this paper, u will be called
the aerodynamic controls.) The mismatch controls ex-
tremize (either minimize or maximize) the performance
index, J, hence the nonstandard notation “ext”. The
performance index for this problem is

¢ 1 Tar1
J=¢(tf,mf)+£ [ﬁ(t,m,u)+§w M w] dt (2)

where the matrix M is a diagonal matrix of constants.
These constants are the tuning parameters that are as-
sociated with the mismatch controls. The tuning pa-
rameters are user-selected by tuning the control solu-
tion against the true vehicle dynamics during computer
simulations of the control law.
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If the performance index is separable in u and w, the
control solution is independent of the order of optimiza-
tion (3] and the first variation conditions that describe
the extremal path are

dx -

il fit,z,u)+w (3)

Lcil_lt)' = —Hg(ta m$uawap) (4)
0 = HZ(t, T, u,p) (5)
0 = H%}(t, T, W, p). (6)

In the above equations, t is the time, = is the state
vector, p is the Lagrange multiplier vector, f is the
approximate state vector, and H is the Hamiltonian.
The Hamiltonian for this problem is

H = £(t,:x:,u)+-;—wTM“w

+pT[F(t, 2, u) + W] Y

and is separable in © and w. The boundary conditions
for the extremal differential equations are

to, o specified (8

P(ts, ) =0 (9)
Uts, s us, Wi, ) = L7+ G, fy+ G,y =0 (10)
p;= G(I‘m,(tf,wfv!") (11)

where G is the Bolza function, Q is the end point func-
tion, and 4 is the final constraint manifold. These
equations along with Eqs. (3) - (6) define the TPBVP
which yield the extremal controls.

A necessary condition for the optimality of the
extremal controls is the Legendre-Clebsch condition,
which checks the sign of the second derivative of the
Hamiltonian with respect to the controls. For the aero-
dynamic controls to be minimal,

Huu(t,w, u,p) Z 0, (12)

which can only be checked when the specific problem
has been defined. However,
Hww =M1, (13)

so the sign of the individual tuning parameters deter-
mine whether the mismatch controls minimize or max-
imize the performance index.

Neighboring Extremal Controls

A neighboring extremal (NE) path is a path that lies
in the neighborhood of the extremal path and satisfies

the first variation conditions [1]. The equations that de-
scribe this path are found by linearizing the extremal
equations and boundary conditions about the extremal
path. Even though it is not known whether the mis-
match controls minimize or maximize the performance
index, the NE path can be determined.

In general, the neighboring extremal path originates
at a perturbed initial state, dxq, and ends at a per-
turbed value of the final constraint manifold, % + 8.
The symbol 5:1:0 denotes a time-constant variation of
the initial state, while 6 refers to the total change in
. The relationship between fixed and total variations
is

6( e =6()u + d) bt. (14)
dt |,
where ¢, is any value between ¢y and ¢;.

By linearizing Eqgs. (3) - (6) about the optimal path,
the neighboring extremal equations are determined to
be

d /- S - -

= ( :z:) = fobz + fubu + fwbw (15)

d /= - -

a—t' ( p) = ——Hq;m&l! - Hmuﬁu

' —Hywéw — fL6p (16)
0 = Huygdx+ Hyubu+ fEép (17)

0 = Hwzgbx+ Hywéw + f&ép (18)

where the substitutions Hgp = 1z, Hyp = f&, and
Hwp = f{& have been made using the definition of the
Hamiltonian, Eq. (7). For convenience, an augmented
control vector is defined as @” = [u w]. Egs. (17) and
(18) are rewritten more compactly as

0 = Hgzdx+ Hygba + fLép (19)
where
H. T
mw=| g | = E ] @
H 0
Hgq = { gu Horve ] (21)

If Hyq is nonsingular, the control perturbation can
be solved from Eq. (19) as

§u=—Hg} (HamSw + f%gp) : (22)

This solution is used to eliminate the control pertur-
bation in Eqs. (15) and (16) so that the differential
equations for éx and ép become

Abxz — Bép
—Céx — ATgp

b’ =

§p =

(23)
(24)
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where
A Fz — faHgiHax (25)
B = foHz4f4 (26)
C = Hgz — HyaHppHuz- 27

The boundary conditions, Egs. (8) - (11), are also
linearized around the optimal path to obtain

20, bxo specified (28)
b = 1[)}5Zf + g, 0 (29)
0= Q}(SZf + Qg by + Q,,,éu (30)

6pf = Gmfzfézf + G;pf;cféwf -+ wa“,(s[,l, (31)
since 61 = 0 and

(32)
(33)

Q‘l_l:f = E'&f +waf'a_f

= La,+p}fa, =Ha, =0.
The total variations of the states and the Lagrange mul-
tipliers at the final point z; are replaced by the corre-

sponding fixed variations using Eq. (14). The boundary
conditions are now rewritten in matrix form as

Spf Gr,x, "/’:qz;f Qqa::, bx ¢
& | =| Y, 0 Py sp | (34)
0 O, (@y)" @ |l

by applying the following substitutions:

Q = g, (35)
Gx,p = v, (36)
Q = Q, +Qx,f; (37)
Y = W, g, f;. (38)

The sweep method is used to solve the neighboring
extremal equations. This method offers greater stabil-
ity for numerical computation than a transition maftrix
solution [1]. The symmetry of the coefficient matrix in
Eq. (34) motivates the solution

ép S(z) R(z) m(z) Sz
[w]={ﬁb)aw n(2) i | (39)
5Q m7T(z) nT(z) U(2) 6zf

where the final values of these sweep variables are

T T
Sy =Gz, Ry= "/I’:B,’ my /= Qm, (40)
Qf=0, Ny =¢f’ lf=Qf.
Eq. (39) is differentiated with respect to z and bx', 6p'
and &p are eliminated using Egs. (23), (24) and (34).

The resulting differential equations for the sweep vari-
ables are

5 = -SA-ATS+S8BS-C  (41)
R = (SB-AT)R (42)
m = (SB-AT)m (43)
Q = R'BR (44)
n’ = RTBm (45)
v mTBm. (46)

The differential equation for S is a matrix Ricatti equa-
tion while the equations for R and m are linear matrix
equations. The differential equations for @, n, and !
are simply quadratures. Each of the sweep variables is
integrated backwards from z; to z.

The Lagrange multiplier perturbations are obtained
by eliminating 8¢ and éz; from Eq. (39) to obtain

dp= [(§ RO IR oz + Tza‘lw] (47)
where S, Q and R are defined as
T
5 & s- ""l"' (48)
T
Q& - (49)
T
R &4 p-T0 (50)

!

The above expression for ép is used in Eq. (22) to obtain
the control perturbation

fo = —{[Huo+7EE-RQE)

+ [ARQ oy} Hgh, (51)
This control is added to the extremal control to guide
the vehicle along the neighboring extremal path.

Hypersonic Glider Problem

The above technique is now applied to maximize the
final velocity of a hypersonic glider that is descending
between two altitudes. The differential equations that
describe a nonthrusting vehicle moving over a spherical,
non-rotating Earth and modeled as a point mass are [4]

dX Ts

== = 52
g Vrs "y COS 7Y COS X (52)
dY Ts .

= = 53
7 Vr3 R cosysinx (53)
dh = Vsiny (54)

dat




(_11 = _._D_ —_ Ts : 3 55
&t~ mo F\r+h) T (55)
dy L + v
dt ~ meV re +h
2

s Ts
| v (7'3 +h) ] cosy  (56)
dxy S V cosycosx Y
dt =~ moeVcosy + s+ h tan(rs). (57)

In the above equations, the states (X,Y,h,V,v, x) are
the downrange, the crossrange, the altitude, the veloc-
ity of the glider, the flight path angle, and the track
angle.. The mean radius of the Earth and gravity at the
Barth’s surface have the numerical values of

rs = 20,925,672 ft, g, = 32.172 ft/sec?®.  (58)

The glider has a mass and reference surface area of
Sr = 1.5 ft2.

~ mg = 15.52 slugs, (59)

The aerodynamic lift, drag, and side force are written
in terms of nondimensional aerodynamic coefficients as

L= %sz.S'RCL . (60)
D= % pV2SrCp (61)
S = %pv2sRcs (62)

where p denotes the density of the air, which is de-
termined from interpolated data of the 1976 standard
atmosphere [5]. The aerodynamic coefficients are deter-
mined by linear interpolation of wind tunnel data that
is stored as a function of angle of attack, sideslip angle,
the Mach number and the Reynolds number.

Approximate Model

The above equations of motion define the simulation
environment (or truth model) that describes the glider.
Since they are highly nonlinear, a reduction to a set of
model equations must be performed in order to get an
analytic solution for the optimal controls. The follow-
ing approximations are considered to be valid for this
problem:

¢ Low Altitude Flight
The altitude of the glider is considered to be small
compared to the radius of the Earth. Therefore,
Ts +h .

e Parabolic Drag Polar
The glider is assumed to be flying hypersonically

throughout the trajectory so the nondimensional
drag coefficient is approximated by
Cp = Cp,(1 + A2 +0?) (63)
where \ 2 CL/C{ and ¢ = Cs/C1 are the scaled
lift and side force coefficients and are the aerody-
namic controls for this problem. The drag polar
constants are
Cp, = 0.043,

C; =0.2888 (64)

and the maximum lift-to-drag ratio is E* = 3.281.

¢ Dominant Aerodynamic Forces
Since the glider is flying hypersonically, the aero-
dynamic forces are assumed to be much larger than
the other terms on the right hand side of the V, v,
and x differential equations.

¢ Exponential Density .
An analytic approximation for the air density is

hihr (65)

Pe = Ps€
where p, = 0.0023769 ,slug/ft3 is the density at sea
level and hgr = 23, 800 ft is the density scale height
chosen by fitting an exponential curve to a plot of
density vs. altitude.

¢ Linearized Flight Path Angle
The flight path angle is linearized about some flight
path angle 7 to simplify the trigonometric func-

tions to
siny 2 a,+byy (66)
cosy = ¢y +dyy (67)
1
cosy ey + v (68)

where the coefficients ay - f, are the Taylor se-
ries expansion coefficients. The accuracy of these
angular approximations depends on the range of
values of the flight path angle compared with vo.

The dimensional states (X, Y, h, V) are replaced with-
the following nondimensional variables:

¢ 2 = (69)

. (70)

w 8 Cf‘;‘f,;zh%(h) (71)
2

v 2 (er) (72)




and the differential equation for the nondimensional
density replaces Eq. (54). In addition, the time deriva-
tive of a new integration variable z is defined as [6]

4z a Vo
dt hr’

The value of z always increases along any trajectory
(unlike v, which is used in [7]) since its time derivative
is always positive. The initial value of 2 is chosen to be
equal to 0.

The state differential equations are now rewritten ex-
actly as

(73)

@ _ (eyt+dyy)cosx
dz w
rscosycosx  (ey +dyy)cosx (74)
(rs + h)w w
dn _ (ey+dyy)siny
dz w
rscosysiny  (ey +dyy)siny (75)
(rs + h)w w
dw _
5 = ~(ay+by7) |
hrdp .
+ {—p—dhsm'y + (a7~+ bf/)} (76)
v (1+X+4%
dz B
{ (1+X2%2+0%) —Cp/Cp,
+
E*
2hgrg rs \°
S 8 .
-, (Ts — h) sm'y} (™)
dvy 1
& ~ { [rs +h
g T 2| he cos Y
. I8 s
V2 (rs-%—h) :‘ w } (78)
dx 1
= - et {a {cosv B e.,]

hpcosvycosy Y
+ o(rs + 1) tan (Ts . (79)

Bach of the terms in braces is small compared with
the corresponding non-braced terms. Therefore, the six
mismatch controls we(t), wy(t), wo(t), wu(t), w,(t),
and w,(t) are defined to replace those braced terms.
The model equations of motion, then, are

d¢ (ey +dyy)cosx
—_ = A 0
T ” +we (80)
dn (cy +dyy)sinx
-4 = X - 1
dz W + Wy (8 )
dw

= —(ay+by7) + Wy (82)

dz

dv 1+ 2% +0?)

T B a— +w, (83)
dy

T = A4 w, (84)
d

= ety (85)

Guidance Scheme

A close examination of the model equations reveals
that the last four equations are linear in the states
(quadratic in the controls). However, the range equa-
tions, Egs. (80) and (81), contain the state w in the de-
nominator. An analytic optimal control solution for the
descent to a constrained downrange, crossrange, and al-
titude cannot be found because of this nonlinearity.

Tor this reason,the guidance scheme used to reach a
desired location is similar to the one found in [7]. At
each guidance step:

1. The linearization coefficients are recalculated
based on the current state of the glider.

2. The unconstrained-range (UR) optimal controls
are calculated for a descent from the current posi-
tion to the constrained final altitude only. '

3. The final states of the glider using the UR controls
are determined by numerically integrating the nec-
essary model differential equations.

4. The miss distance between the desired final posi-
tion and the UR final location is used to calculate
the NE controls (see Fig. 1). The NE corrections
are added to the UR controls and applied to the
vehicle.

Optimal UR Controls

The optimal control problem is to find the two sets
of controls u and w that respectively minimize and ex-~
tremize the performance index

1 [* 1
J = [—Vf + 5/ WTM_ w dz] (86)
o

subject to the model differential equations, Egs. (80) -
(85), and the boundary conditions

29 =0, mg specified (87)
& —&p

¥(zs,25)=| ny—7mp | =0, (88)
Wg —Wp
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Figure 1: Neighboring extremal miss distances.

where the subscript D denotes the desired final loca-
tion. The downrange and crossrange equations and con-
straints are included in the problem formulation only
for the subsequent calculation of the NE controls.

The performance index is separable for this problem
since dv/dz = f1(u) 4+ fo(w) and integration is a linear
operator. The Bolza function and the Hamiltonian for
this problem are

G

—vs + pe(és — €p)
+tn(nf — D) + pw(ws —wp) (89)
1 Wg W2 W‘Z WZ W‘27 W2 jl

= - w4 v .
8 BV YR VIR VI VR V

+ Ws]
[(ey + dZ)'y) sin y + Wn]

+Dw [—(a’y + b’y')’) + Ww]
w,,]

9 1 A? 2
_@4 XN+
+py [A + W] +py (40 + Wy ].

M,

[(cy + dyv) cos x

+pe ] ”

+py

+py

I E*
(90)

Since the ranges are not constrained, the associated
Lagrange multipliers are set to zero, i.e. pg = p, = 0
and p¢ = p, = 0. From Egs. (4) and (11), the other
multipliers are

Pus unknown constant (91)
p, = -1 (92)
Py = bypu(z - 2z) (93)
py = 0. (94)

The extremal UR controls are determined from
Egs. (5) and (6) to be

R P ) (95)
our = 0 (96)
we = 0 (97)
wyp = 0 (98)
W, = —puoM, (99)
w, = M, (100)
Wy = —bypuMy(z - zf) (101)
wy = 0 (102)

using the above expression for p,. Both ¢ and w, are
zero, which implies that the UR descent occurs in a
vertical plane. The aerodynamic controls satisfy the
Legendre-Clebsch condition since

2Py

E*

The unknowns p, and z; are determined by ana-
lytically integrating Eq. (84), then Eq. (82), and then
applying the first integral (for details, see [8]). The
expression for p,, in terms of zy is

H)\z\ =H;; =

> 0. (103)

= otV -2Ke (104)
C2
where .
o 2 @y + byyo + by Moz (105)
e & M, -bK,2 (106)
and the constants K, and K., are defined as
K, & —+% (107)
K, & M- %— (108)
The value of z; is a root of the sixth-order polynomial
aez? + a4z§ + ang’r + azzfe +ay3=0 (109)
whose coefficients are
ag = bl[8K, K2+ 3K, Mj] (110)
as = bM, [48K, K, +2TM})
12K, [ Molw + b33
+a2bZ -+ 2a,b3 7o) (111)
a3 = T2MoM,, [b3v + a,b,]
—48KAw [B370 + a4b2] (112)
ay = T2K,MZ —36b2K,Aw’
+36M,, [byMoAw + b24Z
+2a4byv0 + a2] (113)
a = —36Aw M, (114)



Simulation work reveals that the correct value of 2y
is the second positive root of Eq. (109). This value
must be determined numerically since there is no known
analytical solution to a sixth-order polynomial.

Neighboring Extremal Controls

The NE trajectory is-defined relative to the UR path.
Therefore, all of the partial derivatives and sweep vari-
ables used for the NE control computation are evalu-
ated on the extremal path along which ps = p, = 0.

The boundary conditions for the sweep variables are
determined from Eq. (40) to be

S§ =06x6, Qs =06xs, lf =—byMop, (115)

[1 0 0] [0
010 0
0 0 1 0
0 00 —bypu,
[ 0 0 0| | 0]
(ey + dyyy) cos xs
‘ wf o
ng=| (& +dyys)siny, (117

wy
—(ay +byv5) — PuMo

These final conditions are used to integrate the differen-
tial equations describing the sweep variables backwards
from z¢ to 2 2o.

The differential equation for S is homogeneous since
C = 0gxs. Therefore, since Sy is zero,

S(z) = Ogxs. (118)

The derivative of the R matrix is defined in Eq. (42).
Solving for those elements of R that can be integrated
yields -

1 0 0
0 1 0
R(z) = Rg" R§2 (1) (119)
R51 R52 b.,(z - Zf)
Rs1 R 0

The remaining elements have the following differential
equations:

dRa; _ (ey +dyy)cosx (120)
dz w?
dRs2 (ey +dyv)siny
121
dz w? (121)
dR, —dcosx
y :1 = "w + by Ra1 (122)

dRs5o —dysiny

e = —;—' + b7R32 (123)
dRsl — (c‘)' + d‘Y’Y) SinX (124)
dz w
dRey _  —(ey+dyy) cosx (125)
dz w )

The @Q matrix is symmetric since its derivative, de-
fined in Eq. (44), is symmetric and Q; = 0. The dif-
ferential equations for the first 5 elements of Q are

dgz” = M+ R} M, + K,RZ, + K, R, (126)
dgzm = Rz Ra2M,, + K, Rs1 Rs2 |
+K, Re1 Rs2 (127)
T RaMy b K Ra(s—zy)  (128)
dg:z = M, + R3M, + KRS, + Ky R3,(129)
L0 R, +b,KResz ) (130)
where
K, 2M, + e,";—,Ez—*. . (131)
The last diagonal element of Q is integrated to be
Qas(z2) = Mu(z—2zp)
+B2 K, (f; — 252 + 252 — %?-) . (132)

The m matrix is constant and m(z) = my. The deriva-
tives of the first two elements of the n matrix are

dny

—E;- = —b7K7pr51 (133)
dn
_d—zz = —byK,ypy,Rs2, (134)

and the third element of the matrix is
z2 22
—b2 Kyps (7 —2f2+ -Ef

—(ay +byyp) + L. (135)
o Mw

ng(z) =

Finally, the sweep variable.l is
1(z) = Byl (2 — 7).

The sweep variables are used to calculate the neigh-
boring extremal control perturbations from Egs. (48)
- (51). The thirteen differential equations for the ma-
trix elements that are listed above must be integrated
numerically.

(136)




Numerical Results

The UR optimal controls are added to the NE cor-
rections to obtain the total aerodynamic controls

*

E -
A ——2—b,,pw(z —2zf) + 6A

i

(137)

o = bo (138)

which are applied to the vehicle. These commanded
controls are assumed to be instantaneously achievable.
At each guidance step during the simulation (every 0.1
seconds), the linearization coefficients and the controls
are computed and held constant until the next guidance
step.

Neither the mismatch controls nor their NE pertur-
bations enter directly in the simulation environment
since they do not appear explicitly in the simulation
equations of motion. However, they are included im-
plicitly throughout the problem in the equation for p,,,
the equations for the coeflicients ag, as, ..., ag, and the
NE sweep variable differential equations.

The glider is initially flying at a constant altitude of
100,000 ft with a flight path angle of 0°. The initial ve-
locity of the vehicle is 11,000 ft/sec and both the initial
time and downrange are set to zero. Depending on the
values of the tuning parameters, the UR trajectory to a
final altitude is O ft ends at a downrange of about 70 nm
and exactly no crossrange. The first scenario that is ex-
amined is the descent to a downrange of 70 nm and a
crossrange of 10 nm.

Four control laws -are used to gmde the vehicle. The
first two are of the form derived in this paper but use
different values of the tuning parameters. The un-
tuned controller has all of the tuning parameters set to
0, which corresponds to zero mismatch controls. The
tuned controller uses a suboptimal set of tuning param-
eters chosen by testing various combinations of parame-
ter values. The only parameters changed from 0 for this

tuned set are M, = 1/500 and M,, = 1. The third con-

trol law is a seven-node piecewise-linear control law de-
termined by a numerical parameter optimization code
using the true vehicle dynamics [9]. The last control law
is a proportional navigation (PRONAV) scheme that
weights the final miss distance ten times more than the
integrated square control effort {8].

Unfortunately, the determinant of the sweep variable
Q decreases tremendously along the trajectory for both
sets of the tuning parameters (see Fig. 2). The small
determinant causes the NE control corrections to get
very large, since they are a function of Q1. To avoid
the misleading large decrease in the final velocity due to
large terminal controls, PRONAY is used in place of the
tuned and untuned control laws after the glider passes
10,000 ft altitude, which corresponds roughly to the last

10° ¢
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100 >
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00001 Lo b v o Vi
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Time (sec)

Figure 2: The determinant of the sweep variable Q.

2 seconds of the trajectory. The switch to PRONAYV is
justified by the fact that the glider is essential pointing
directly at the desired final position at 10,000 ft altitude
and very little control effort is needed to achieve the
desired final position.

The commanded lift and side force coefficients gen-
erated by the four control laws are compared in Figs. 3
and 4. For both the lift and the side force, the tun-
ing procedure modifies the controls to be more like
the numerically-determined optimal control. The tuned

_ side force coefficient does not match the numerical op--

timal control as well as the lift coefficient because the -
crossrange control is achieved only by the neighboring
extremal control.

All of the control laws successfully guide the vehi-
cle to the desired final location. The trajectories that .
the glider follows using these control laws are shown in
Figs. 5 and 6 and the final velocities of the glider are
listed in Table 1. PRONAY yields the lowest final veloc-
ity which is to be expected since it minimizes the miss
distance (relative to the control effort) and not the final
velocity. For the controller derived in this paper, the
tuning procedure increases the final velocity over 250
ft/sec. In addition, the final velocity using the tuned

Table 1: Performance comparison of the controllers.

i [ Vi (B/sec) ||
Untuned Controller 6517.6
Tuned Controller 6780.4
Numerical Optimal 6798.7
PRONAV 4767.0
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Figure 4: Comparison of commanded Cg.

controller is within 20 ft/sec of the velocity produced
using the numerical optimal control law.

The altitude profile of the glider using the tuned
control law is almost coincident with the numerical-
determined profile. However, the groundtracks using
the tuned and untuned controllers are equally far from
the groundtrack produced using the numerical optimal
control law. This situation arises because the UR opti-
mal side force control is identically zero and the cross-
range is achieved solely with the NE control. The tun-
ing procedure is therefore more effective when the UR
control has a specific form about which the NE controls
can be linearized.

A comparison of the tuned and untuned control laws
for different desired final locations is shown in Figs. (7)
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Figure 5: Groundtracks for the three controllers.
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Figure 6: Altitude profiles for the controllers.
and (8) . Both controllers guide the vehicle to the

desired final locations and the tuned controller consis-
tently outperforms the untuned controller. The perfor-
mance gain of the tuned controller does decrease as the
final position gets farther from the design point about
which the parameters were tuned.

Conclusions

The neighboring extremal controls have been derived
for a system that includes mismatch controls to simplify
the model equations of motion. The tuning parame-
ters associated with the mismatch controls are adjusted
after the neighboring extremal controls are added to
the extremal controls and simulated on a computer.
The specific example shows that the performance of the
tuned control law approaches the performance achieved
using a numerically-determined piecewise-linear con-
troller and is much better than the performance ob-
tained using a proportional navigation control law.
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