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SUMMARY

Dry cask storage is being developed in the United States because utility
spent fuel space is being depleted and spent fuel must be stored until reposi-
tory disposal is available, The casks used for dry storage must be able to
safely reject large heat loads to the environment. This study was performed to
determine the effects of abnormally high temperatures on spent fuel behavior.
The results of this study are applicable to safety analyses and evaluations of
fuel conditions following a postulated abnormal heating event during dry
storage.

Prior to testing, calculations using the CIRFI3 code were used to deter-
mine the steady-state fuel and cask component temperatures. The TRUMP code was
used to determine transient heating rates under postulated abnormal events dur-
ing which convection cooling of the cask surfaces was obstructed by a debris
bed covering the cask. The peak rate of temperature rise during the first 6 h
was calculated to be ~15°C/h, followed by a rate of ~1°C/h.

A Turkey Point spent fuel rod segment was heated to ~800°C. The segment
deformed uniformly with an average strain of 17% at failure and a local strain
of 60%. Pretest characterization of the spent fuel consisted of visual exami-
nation, profilometry, eddy-current examination, gamma scanning, fission gas
collection, void volume measurement, fission gas analysis, hydrogen analysis of
the cladding, burnup analysis, cladding metallography, and fuel ceramography.
Post-test characterization showed that the failure was a pinhole cladding
breach., The results of the tests showed that spent fuel temperatures in excess
of 700°C are required to produce a cladding breach in fuel rods pressurized to
500 psig (3.45 MPa) under postulated abnormal thermal transient cask condi-
tions. The pinhole cladding breach that developed would be too small to com-
promise the confinement of spent fuel particles during an abnormal event or
after normal cooling conditions are restored, This behavior is similar to that
found in other slow ramp tests with irradiated and nonirradiated rod sections
and nonirradiated whole rods under conditions that bracketed postulated
abnormal heating rates. This similarity is attributed to annealing of the
irradiation-strengthened Zircaloy cladding during heating. In both cases,
the failure was a benign, ductile pinhole rupture.
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INTRODUCTION

Because spent fuel storage space in at-reactor pools is being depleted in
-ne United States, alternatives to pool storage that could be added incremen-
tally at a utility site are being assessed. One alternpative, dry cask storage,
takes advantage of the experience gained in dry storage of spent fuel {Johnson
and Gilbert 1983). Casks used for dry storage must be capable of safely
rejecting large heat loads to the environment, Healt is rejected to the
environment largely by radiative and convective heat transfer from the body and
finned surfaces of the cask. Thus, if heat transfer is impeded in any way,
cask temperatures and fuel temperatures can increase, For example, convective
heat transfer could be impeded by debris from a natural event such as an earth-
quake or tornado, No data are currently available to assess the rate of rise
or the end point temperatures of the cask and fuel rods under these postulated
conditions, Some experimental results under different conditions were obtained
for the Sandia Transportation Technology Center by Battelle Columbus Labora-
tories {BCL) using an experimental arrangement similar to that used in the
present study (Burian et al., 1985). These results provided some insight;
however, the Sandia tests focused on characterization of the source term and
not on fuel rod performance,

The work detailed in this report was sponsored by the Commercial Spent
Fuel Management Program Office at Pacific Northwest Laboratory (PNL).{a) The
objective of this work was to provide information on anticipated fuel rod
behavior under postulated abnormal thermal transient conditions during dry
storage. The study involved both analysis and experimentation. During the
analysis, the rate of temperature rise was calculated as a function of heat
loads and surface heat transfer coefficients for an assumed generic cask.
Boundary conditions obtained from preliminary calculations and transient analy-
ses provided the rate of fuel temperature increase during assumed abnormal
eyvents,

(a) Operated for the U.S. Department of Energy {DOE) by Battelle Memorial
Institute under Contract DE-AC06-76RLO 1830.



Using the TRUMP computer code, fuel temperatures were predicted to
increase at ~15°C/h under the most severe conditions. In previous tests con-
ducted on nonirradiated fuel rods (Guenther 1983), the behavior of the fuel
rods was similar for rods heated at rates from 10 to 60°C/h, The experimental
work discussed in this report was conducted at 55°C/h, which is within the
range used by Guenther (1983) and thus would appear to apply for the most
severe thermal transient case.

In the experimental work, the spent fuel rod segment was heated in an
existing furnace at the BCL hot cell laboratory to determine the effects of
abnormal transient heating on spent fuel. The pressurized-water reactor {PWR)
fuel rods, which had a prototypic burnup of ~30,000 MWd/MTY, were from the
Turkey Point reactor. These rods had been previously characterized during the
CLIMAX program conducted at BCL {Atkin 1981; Davis 1981). The characterization
included visual examination, profilometry, eddy-current examination, gamma
scanning, fission gas collection, void volume measurement, fission gas analy-
sis, hydrogen analysis of the cladding, burnup analysis, cladding metallog-
raphy, and fuel ceramography. The rod segment was also characterized after the
test, The fuel rod segment was heated from 300°C to approximately 800°C at a
rate of 55°C/h. The pressure and temperature were monitored continuously. The
segment was heated to 300°C in less than 1 h.

The objectives of the experimental activities were to determine the fail-
ure time, temperature, and pressure of spent PWR fuel using a 12-in.-long
(30-cm-1ong) segment. The results allow the extension of failure predictions
for PWR fuel rods under transient heating conditions from the few minutes
associated with a loss-of-coolant accident {LOCA) {where data are available) to
longer periods of several days that are more typical of abnormal cask events
(where data are not available}., These results for an irradiated fuel rod seg-
ment were compared with those obtained for nonirradiated full-length fuel rods
in a similar PNL program {Guenther 1983) and for nonirradiated and irradiated
rod segments in the Sandia program (Burian et al. 1985},



ANALYTICAL AND EXPERIMENTAL PROGRAMS

The analytical portion of the study was conducted to provide guidance in
designing tests with appropriate heating rates. Transient analyses of spent
“ue]l temperatures under assumed abnormal conditions identified heating rates
-nat were used in the experimental studies. An assumed generic cask was used
15 the bas"s for the model. Some preliminary work centered on pretest char-
jcterization of the fuel rods. Dnce the characterization was complete, the

1eating rate tests were initiated.

SPENT FUEL HEATING RATE ANALYSIS

Dry storage casks are typically right circular cylinders with the cavity
opening at one end, 1In use, most casks are stored in the upright position.
The fuel assemblies are held in the cavity in a basket and separated by divid-
ers, If necessary, the dividers contain enough neutron poisons to assure a
subcritical condition within the cask. The cylindrical walls and ends of the
cask contain gamma-~ and neutron-shielding materials.

The CIRFI3 computer code was used for the steady-state fuel and cask com-
ponent temperatures. This code provided a closed-form solution for cask com-
ponent boundary temperatures and heat generation for given ambient and outer
surface temperatures. The code was written for a horizontally oriented cask
and inciuded convective and radiative effects at the surface., It was modified
to account for convective effects in the water/50% glycol shield by adding a
routine tc calculate an effective heat transfer coefficient for the water/50%
Jlycol annulus; the Lis correlation was used to calculate this coefficient
‘Lis 1966},

The thermal transient analyses were conducted using the TRUMP computer
>rogram (Edwards 1972). The two-dimensionat analytical model (radial and
axial) contained 37 nodes consisting of six materials. A radial section of the
mdel 15 shown in Figure 1, The ends of the cask were similarly modeled assum-
ing only lead and stainless steel {SS) components {no neutron shield) with
65 in. {15 cm) of debris around the outside of the cask. The model assumed that
the cask was horizontal.



Stainless
Steel

FIGURE 1. Radial Section of Analytical Model for Two-Dimensional Analyses
(a1l dimensions in inches; 1 in, = 2.54 cm)

In this report, 250°C is used as the maximum temperature for safe opera-
tion in an unlimited air environment (Pasupathi and Stahl 1982). However,
recent data and analysis have shown that U308 formation in breached spent fuel
precludes storage in air at temperatures as high as 250°C (White et al. 1983;
Einziger and Cook 1983; Gilbert et al, 1983; Gilbert, White, and Knox 1985).
Instead, a temperature limit of 380°C or higher in inert gas is recommended for
dry storage of spent fuel {Johnson and Gilbert 1983). HMHowever, the test
results presented in this report are stil] expected to remain applicable to
storage at these higher temperatures,

Starting temperatures for the transient analyses were calculated for the
model shown in Figure 1 with the debris removed and with heat being rejected to
the environment directly from the neutron shield shell, Manual calculations
using the heat transfer coefficient from the surface for the horizontal



















































CONCLUSTONS

The following conclusions are based on the work presented in this report:

The maximum rate of temperature rise during a postulated abnormal
thermal transient during dry storage was calculated to be 15°C/h.

Because the time required to breach spent fuel cladding after a
postulated incident of blocked cooling exceeds 1 week, adequate time
would be available for operator response to remove the blockage
before a cladding breach could occur,

The cladding breach resulting from a postulated abnormal heating
inzident during dry storage is a small pinhole and will not com-
promise confinement of fuel particles following an incident,

The ductile cladding breach associated with abnormal heating during
dry storage would not propagate breaches in adjacent spent fuel rods.
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APPENDIX

PRETEST CHARACTERIZATION DATA

This appendix consists of pretest characterization data on the fuel rod
void and gas volumes (Table A,1), the fuel rod fission gas analysis
(Table A.2), the hydrogen analysis of the Zircaloy-4 cladding (Tabte A.3), and
the oxide thickness measurements (Table A.,4} for the Turkey Point spent fuel
rod samples that were used in this study.

TABLE A.1. Fuel Rod Yoid and Gas Volumes(2)

Pressure at

Rod Yoid Volume, cm3 Gas Volume, cn’ (STP) 25°C, psia (MPa)
D01-GY 22.36 692.4 495.7 (3.4)
001-G10 21.01 684.,2 522.6 {3.6)
001-H9 22.05 704,6 514.2 {3.5)
D04-GY 22.88 711.5 498.9 {3.4)
D04-G10 22.71 7117.9 507.5 (3.5)
(a) Atkin (1981).

TABLE A.2. Fission Gas Analysis of Fuel Rods(d)
Gas Analysis, vol%

Rod He O2 NZ Ar Kr Xe Xe/Kr
D01-GY 99,4 - 0.01 0.07 0.05 0.43 8.6
0d1-G10 99.4 - - 0,13 0.05 0.45 9.0
DUl-Hg 980? - —— [].?2 0.05 Ol4g 9.8
b04-G9 98.9 - - 0.58 0.05 0.44 8.8
004-610  98.3  0.12¢P)  0.43(P)  0.60 0.05 0.46 9.2

(a) Atkin (1981).
{b) 0, and N, concentrations were due to a smalil leak in the
transfer vial.

A.l



TABLE A.3. Hydrogen Analysis of Zircaloy-4 Cladding(?)

Sample
Identification Hydrogen Content, ppm

TP-DO1-G9-4 39 +13 (10)
TP-D01-G9-9 56 16
TP-D01-G9-14 53 ¢2
TP-D01-G9-20 60 111
TP-001-G9-25 90 t5
TP-D01-G9-12 82 3
TP-D04-G9-8 39 £2
TP-D04-G9-14 53 13

NBS Standard 352(P) 33.5 £2.0

Atkin (1981},

The calibrated NBS value is 32 12 ppm.
standard was run at the beginning of the
analysis, after every four samples, and at the
end of the analysis.

(a)

(b} The

TABLE A.4. Oxide Thickness Measurements{a’b)

Oxide Thickness at
Circumferential Location, pm

Distance

Sample from Bottom,

oo

c)

Identification in, {cm) _ 90° 180° 270°

TP-001-G9-3 15.5 (39) 5.33 +4,57 4.57 +0.76 5.33 0,51 5.08 0,25
TP-D01-G9-8 50.5 (128) 4,83 10,51 4,57 $0.25 4,57 1£0.25 2.79 $1.78
TP~DO1-G9-13 65.0 {165} 4,83 t0.76 4,83 $0.76 6.86 +0.76 5.08 +0.76
TP-D0O1-G9-19  90.5 {230) 6.10 ¢0.76 8.13 $0.51 7,11 £0.76 6.86 +0.51
TP-001-69-24 120.5 (306) 14,73 +0.76 14,73 +2.03 15.75 +1.02 12.95 +0.76
TP-DO1-HY9-6 65.5 (165) 5.33 £1.52  5.59 $0.76 4.57 $0.25 6,10 £0.76
TP-D0O1-H9-11 90.5 (230) 12.95 +1,52  8.13 £1.52 14.48 +1.02 8.64 +1.02
TP-D01-G10-3 65,5 {165) 3.81 $i.27 4,83 t0.51 5.33 t0.76 4.83 t0.51
TP-D04-G9~3 40 (101} 4.06 £0,25 4.57 +0.51 4,32 +0.51 4,83 +0.76
TP-004-G9-7 65.5 (165) 4,32 +0.25 4.32 +0,51 4.83 +0.25 4.83 10,51
TP-D04-G9-13 90 (229) 4,83 +0.76 5.59 +1.78 5.59 +1.52 8,13 +1.02
TP-D04-G10-6  65.5 (165) 4,32 +0.76 4,06 0.51 4,83 $1.02 5.08 0,51

(a)
(b)

Atkin (1981).
The numbers given are the average of five measurements; the standard

deviation {log) of the five measurements is included.

(c)

A2

Angle of rotation is from "A" face of assembly looking down,
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