

NOTICE

**CERTAIN DATA
CONTAINED IN THIS
DOCUMENT MAY BE
DIFFICULT TO READ
IN MICROFICHE
PRODUCTS.**

XANES Investigation of Cerium as an Inhibitor for Al Alloys

Alison J. Davenport and Hugh S. Isaacs
Brookhaven National Laboratory, Upton NY 11973

Martin W. Kendig

Rockwell International Science Center, Thousand Oaks CA 91362

Cerium ions have been found to be effective corrosion inhibitors for aluminum, mild steel and zinc [1-5]. Development of cerium ions as corrosion inhibitors is particularly desirable as they provide a non-toxic alternative to carcinogenic chromates. The mechanism of interaction between cerium ions and oxide films on aluminum has been studied using XANES (X-ray Absorption Near Edge Structure [6,7]. The Ce L_3 x-ray absorption edge shows a clear difference between the 3- and 4-valent states. The results reported here show the valence state of cerium in oxide films on aluminum alloys formed by different treatments in solutions containing Ce^{3+} ions.

Measurements were made in the fluorescence mode with x-rays incident at small angles close to the critical angle (~ 6 mrad). The x-ray absorption signal is calculated by taking the ratio of the intensity of the fluorescent x-ray signal to that in the incident beam (I_f/I_0). Fluorescent x-rays are emitted when atoms which have absorbed monochromatic x-rays relax back to the ground state. X-ray absorption edges for standard compounds ($CeCl_3 \cdot 7H_2O$ and CeO_2) were measured in transmission geometry by taking the logarithm of the ratio of the incident to the transmitted x-ray intensity ($\log(I_0/I)$).

Specimens of Alloy 1100 (commercially pure aluminum), 2024 (Cu-containing), 2090 (Li-containing) and 7075 (Zn-containing) 5cm x 2.5cm x 0.5cm were lapped by an automatic lapping machine to a $0.03\mu m$ finish. Before treatment, the samples were lightly polished with $1\mu m$ diamond paste and rinsed with deionized water.

The specimens shown in Fig.1 were immersed in 4mM $CeCl_3$ for 7 days. 1100 shows predominantly 3-valent cerium (this can be seen by comparison with $CeCl_3$) whereas the other alloys show a stronger higher energy peak associated with significant 4-valent cerium (c.f. CeO_2). The potentials for the alloys in the aerated Ce(III) chloride solutions were all in the range -600 mV to -700 mV (SCE) except for the 2024 which was slightly higher. The potential for the Cu was in the vicinity of -200 mV whereas that for Zn was below -1200 mV. The film formed on copper contains 3-valent cerium whereas the film on Zn contains 4-valent cerium. This suggests that the metallic substrates exert no direct galvanic effect on the Ce(III)/Ce(IV) couple, rather it is other effects such as the extent of pH increase at local cathodes and codeposition with dissolved corrosion products which contribute to the conversion of the +3 valent Ce to +4.

Subsequent exposure to NaCl converts all the cerium to the 4-valent state. The weaker signal and higher noise level indicates that much of the cerium has been lost from the films.

Fig.2 indicates the effect of different surface treatments on cerium incorporation in the oxide film on Alloy 1100. The freshly polished and air oxidized surfaces give a mixture of 3- and 4-valent cerium (the air-oxidized surface was held in an oven at $100^\circ C$ for 1 hour). The etched and steam-aged (held over boiling deionized water for 12 hours) surfaces give predominantly 4-valent cerium.

Conclusion

The alloy and the surface preparation have a strong effect on the incorporation of cerium ions in the oxide film on aluminum alloys.

BNL--45484

DE91 005542

CONF-910552-2 BNL-45484

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy, Division of Materials Sciences, Office of Basic Energy Science under Contract No. DE-AC02-76CH00016 and Rockwell International Independent Research and Development. Measurements were carried out at the Brookhaven National Laboratory National Synchrotron Light Source at Beamline X11A.

References

- 1 D. R. Arnott, B. R. W. Hinton and N. E. Ryan, *Corrosion* **45**, 12 (1989).
- 2 B. R. W. Hinton, Paper No. 170, *Corrosion 89*, New Orleans, NACE (1989).
- 3 B. R. W. Hinton and L. Wilson, *Corrosion Sci.* **29**, 967 (1989)
- 4 F. Mansfeld, S. Lin, S. Kim and H. Shih, *Corrosion* **45**, 615 (1989).
- 5 H. S. Isaacs, A. J. Davenport and A. Shipley, *J. Electrochem. Soc.*, in press.
- 6 A. J. Davenport, H. S. Isaacs and M. W. Kendig, *J. Electrochem. Soc.* **136**, 1837-1838 (1989).
- 7 A. J. Davenport, H. S. Isaacs and M. W. Kendig, *Corrosion Sci.*, in press.

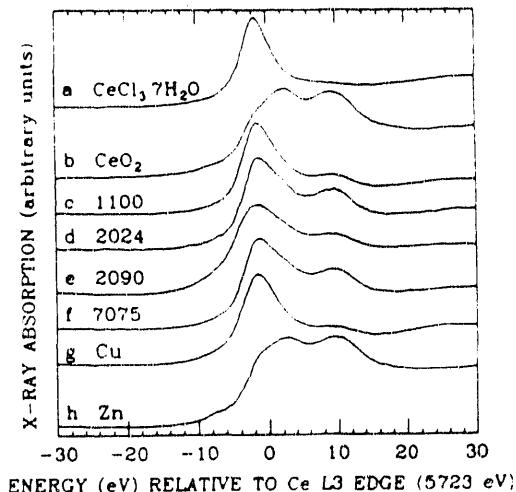


Fig.1 Cerium L_3 x-ray absorption edges of powdered samples measured in transmission: (a) $CeCl_3 \cdot 7H_2O$, (b) CeO_2 . Films formed on aluminum alloys by immersion in 4mM $CeCl_3$ measured in fluorescence geometry: (c) 1100, (d) 2024, (e) 2090, (f) 7075, (g) pure Cu, (h) pure Zn. The data are normalized to give the same peak height.

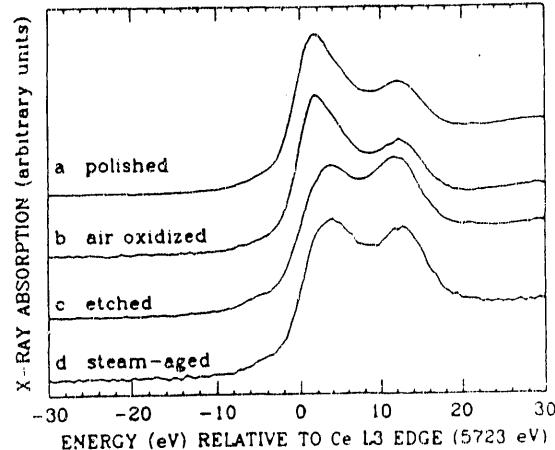


Fig.2 Cerium L_3 x-ray absorption edges measured for films on aluminum Alloy 1100 after immersion in 4mM $CeCl_3$ for 7 days following different pre-treatments: (a) freshly polished, (b) air-oxidized, (c) etched, (d) steam-aged.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

75-Word Abstract Form

Extended Abstract must be submitted with the 75-Word Abstract by December 1, 1990

Washington, DC, May 5-10, 1991

Submit to: The Electrochemical Society, Inc.
10 South Main Street, Pennington, NJ 08534-2896
With a copy to the Organizer

Abstract No.
(to be assigned by the Society)

Schedule for Corrosion Inhibitors
(Title of Symposium)

Sponsored by Corrosion
(Division/Group)

Title of paper XANES Investigation of Cerium as an Inhibitor for Al Alloys

Authors (Underline name of author presenting paper.)

..... Alison. J. Davenport, Hugh S. Isaacs and Martin W. Kendig

Business affiliation and complete mailing address Brookhaven National Laboratory
..... Bldg. 480

..... Upton NY 11973 516-282-4410

(State or Country)

(ZIP Code)

(Telephone No.)

(Type abstract in this area—double-spaced.)

Cerium ions are under investigation as possible replacements for toxic chromates. The use of cerium ions as corrosion inhibitors for aluminum alloys is investigated using XANES (x-ray absorption near edge structure). On immersion in a dilute solution of cerium ions, cerium is incorporated into the oxide films on aluminum alloys in either the 3- or 4-valent state depending upon the alloy and on the surface preparation.

Do you require any audiovisual equipment?

- 35 mm (2 x 2 in.) slide projector
- Overhead projector
- Other equipment at author's expense and subject to availability

Has the information in this abstract been presented verbally, submitted for publication, or published?

- Yes
- No

If the answer is yes, please provide the reference (except in the case of invited review presentations). _____

Is a full length paper on this work to be submitted for Society Journal publication? Yes No

The Extended Abstracts will be published in a volume copyrighted by The Electrochemical Society, Inc.

END

DATE FILMED

04 / 03 / 91

