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A FIELD STUDY OF TRACER AND GEOCHMISTRY BEHAVIOR DURING HYDRAULIC FRACTURING OF A 
HOT DRY ROCX GBOTHERHAL RESERVOIR 

ABSTRACT 

Bruce A. Robinson 

Earth and Space Sciences Divis ion 
Los Alamos National  Laboratory 

Los Alamos, NM 87545 

Tracer  and geochemistry measurements i n  
f r a c t u r e 9  H o t  Dry Rock (HDR) geothermal 
r e s e r v o i r s  a r e  u s u a l l y  performed a f t e r  a 
f r a c t u r e  connection has  been es tab l i shed  and 
cons tan t ,  near ly  equal  i n l e t  and o u t l e t  f low 
r a t e s  have been achieved. However, during 
hydraul ic  f r a c t u r i n g  experiments designed t o  
c r e a t e  a low-impedance f r a c t u r e  connection 
between t w o  w e l l s ,  t h e  i n l e t  and o u t l e t  f l o w  
r a t e s  can be dramat ica l ly  d i f f e r e n t  and can 
vary dur ing  t h e  test, f o r c i n g  us  t o  r e v i s e  
t h e  common a n a l y t i c a l  methods f o r  
i n t e r p r e t i n g  t r a c e r  response curves and 
geochemistry behavior. 

This s tudy presents  t r a c e r  and geochemistry 
d a t a  from s e v e r a l  hydraul ic  f r a c t u r i n g  
experiments a t  t h e  Fenton H i l l ,  NU, HDR 
geothermal r e s e r v o i r .  Tracers  have been 
i n j e c t e d  a t  var ious times during these  tests: 
1 )  i n i t i a l l y ,  before any f low communication 
e x i s t e d  between t h e  w e l l s ;  2 )  s h o r t l y  a f t e r  a 
flow connection was e s t a b l i s h e d ;  and 3) a f t e r  
t h e  o u t l e t  flow had increased  t o  its s teady  
s t a t e  value. An i d e a l i z e d  flow model 
c o n s i s t i n g  of a combination of main f r a c t u r e  
flow pa ths  and f l u i d  leakoff  i n t o  secondary 
permeabi l i ty  expla ins  t h e  d i f f e r e n t  tracer 
response curves f o r  these cases, and allows 
us  t o  p r e d i c t  t h e  f r a c t u r e  volume of t h e  slain 
paths .  

The geochemistry during these  experiments 
supports  our prev ious ly  developed models 
p o s t u l a t i n g  t h e  ex is tence  of a high 
concentrat ion indigenous ‘pore f luid.’  A l s o ,  
t h e  quar tz  and Na-K-Ca geothermometers have 
been used s u c c e s s f u l l y  to  i d e n t i f y  t h e  
temperatures and depths  a t  which f l u i d  
t rave led  while  i n  the reservoi r .  The q u a r t z  
geothermometer is somewhat more r e l i a b l e  
because a t  these  high temperatures (about  
2SO0C) the i n j e c t e d  f l u i d  can come to 
equi l ibr ium with quar tz  i n  t h e  r e s e r v o i r .  
The Na-K-Ca geothermometer relies on 
obta in ing  a sample of t h e  indigenous pore 
f l u i d ,  and thus  i s  somewhat s u s c e p t i b l e  t o  
problems of d i l u t i o n  with t h e  i n j e c t i o n  
f l u i d  . 

INTRODUCTION AND BACKGROUND 

The hot  d r y  rock  geothermal concept c u r r e n t l y  
being developed a t  the  Fenton Hill, NM and 
Rosemanowes Quarry, Cornwall UK geothermal 
sites c o n s i s t s  of c r e a t i n g  a network of 
high-permeability f r a c t u r e s  between two 
wellbores d r i l l e d  i n t o  hot  g r a n i t e  or 
c r y s t a l f i n e  basement rock of l o w  i n h e r e n t  
permeabi l i ty  (see Figure 1 ) .  Water is 
c i r c u l a t e d  down one wellbore, through t h e  
l a r g e  volume of ho t  rock def ined by t h e  
f r a c t u r e  network, and i s  c o l l e c t e d  and 
brought t o  t h e  sur face  as heated, p ressur ized  
water t o  be u t i l i z e d  f o r  e l e c t r i c i t y  
generat ion.  The c r e a t i o n  and 
c h a r a c t e r i z a t i o n  of t h e  downhole f r a c t u r e  
network of t h e  Fenton H i l l  r e s e r v o i r  has been 
t h e  goa l  of t h e  Los Alamos HDR p r o j e c t  f o r  
the  past t h r e e  years .  The role of tracers 
and geochemistry i n  t h i s  e f f o r t  i s  reported 
i n  t h e  p r e s e n t  study. 

I n  previous HDR r e s e r v o i r  s t u d i e s ,  t r a c e r s  
and geochemistry have been used ex tens ive ly  
i n  systems which have a l ready  been crea ted  
and s teady s ta te  c i r c u l a t i o n  e s t a b l i s h e d  
(Tes te r  e t  al., 1982, Grigsby, 1983, Robinson 
and Tester, 1984).  Tracers  a r e  used t o  
measure t h e  f r a c t u r e  volume of both main and 
secondary flow paths and to  es t imate  t h e  flow 
sp l i t  among f r a c t u r e s  of var ious 
permeabi l i t i es  (Robinsonoand Tester, 1984).  
The tracer modal volume V, the produced f l u i d  
volume corresponding t o  t h e  peak of t h e  
tracer response curve, is a good measure of 
t h e  f r a c t u r e  void volume of t h e  main f l o w  
paths. I n  prev ious ly  operated r e s e r v o i r s  i n  
which tracer and long-term engrgy e x t r a c t i o n  
measurements have been made, v can be 
c o r r e l a t e d  roughly with t h e  e f f e c t i v e  h e a t  
t r a n s f e r  sur face  a rea  as determined from 
produced f l u i d  temperature d e c l i n e  over t i m e .  
Figure 2 i l l u s t r a t e s  t h i s  c o r r e l a t i o n .  The 
e f f e c t i v e  h e a t  t r a n s f e r  sur face  a r e a  i s  t h e  
a r e a  of a s i n g l e  f r a c t u r e  which would r e s u l t  
In t h e  measured rate of produced f l u i d  
cooldown, and thus  is obviously a 
s i m p l i f i c a t i o n .  Nonetheless, the c o r r e l a t i o n  
Implies that a s i n g l e  measurement of f r a c t u r e  
volume using t r a c e r s  can provide an es t imate ,  
a u b j e c t  to  u n c e r t a i n t i e s ,  of the h e a t  



t r a n s f e r  capac i ty  of an HDR reservoi r .  
Geochemical behavior i n  these c i r c u l a t i n g  
systems can be t r e a t e d  with a n a l y t i c a l  
techniques similar to  those of t r a c e r  
s t u d i e s .  Grigsby (1984) has out l ined  t h e  
theory necessary t o  e v a l u a t e  experiments i n  
which t h e  geochemical conten t  of t h e  i n j e c t e d  
f l u i d  i s  changed temporarily. The q u a r t z  and 
Na-K-Ca geothermometers have a l s o  been used 
i n  reservoir eva lua t ion .  

Unfortunately, dur ing  the hydraul ic  
f r a c t u r i n g  of an HDR r e s e r v o i r ,  t h e  
i n t e r p r e t a t i o n  of tracer and geochemistry 
d a t a  is much more complex and s u b j e c t  t o  
uncer ta in ty .  In  the f r a c t u r i n g  experiments 
descr ibed b e l o w ,  l i t t l e  or no hydraul ic  
communication e x i s t e d  when pumping began. AS 
a test proceeded, the o u t l e t  flow r a t e  
increased ,  and the ra t io  of f l u i d  produced to  
f l u i d  s t o r e d  i n  the f r a c t u r e  system 
decreased. Thus the timing of the  t r a c e r  
i n j e c t i o n  and the i n l e t  and o u t l e t  f l u i d  flow 
r a t e s  a f f e c t  t h e  tracer response i n  a manner 
u n l i k e  t h a t  experienced i n  t h e  s teady  s t a t e  
tests. Geochemistry is d i f f i c u l t  t o  
i n t e r p r e t  a s  a tracer i n  these  experiments, 
b u t  the  geothermometers are a c t u a l l y  more 
u s e f u l  i n  these t r a n s i e n t  tests f o r  
determining temperatures  and depths  a t  which 
f l u i d  i s  being produced. Frac tur ing  
experiments of the  so-cal led Phase 11 
r e s e r v o i r  a t  Fenton H i l l  a r e  descr ibed below, 
and t r a c e r  and geochemical techniques a r e  
developed t o  eva lua te  t h e  r e s e r v o i r  f r a c t u r e  
s y s  t e m  . 
THE FENTON HILL PHASE I1 CAMPAIGN 

The Phase I1 campaign a t  t h e  Fenton H i l l  
geothermal s i t e  is designed to  demonstrate 
t h e  commercial f e a s i b i l i t y  of the HDR 
geothermal energy concept. The f i r s t  
r e s e r v o i r s  proved the t e c h n i c a l  merits of the 
concept, bu t  the r e s e r v o i r  l i f e t i m e s  and 
thermal energy product ion l e v e l s  w e r e  too  
small  i n  these  prototype systems t o  be 
commercially i n t e r e s t i n g .  Figure 3 provides 
a usefu l  re ference  f o r  t h e  fol lowing 
d e s c r i p t i o n  of events .  In  August 1982, t w o  
new wellbores. (EE-2 and EE-3) w e r e  d r i l l e d  t o  
a depth of about 3.9 km, w i t h  the f i n a l  1.4 
km i n c l i n e d  a t  an angle  up t o  35" from 
v e r t i c a l .  Several  hydraul ic  f r a c t u r i n g  
experiments were performed i n  both w e l l s  
wi thout  achieving t h e  d e s i r e d  f l o w  
communication between EE-2 and EE-3. The 
most important  of these  was Experiment 2032, 
i n  which a t o t a l  of 21000 m of water was 
i n j e c  ed i n  EE-2 a t  an average flow r a t e  of 
0.1 m /sec and 48 HPa sur face  pressure.  
House e t  a l .  (1985) presented an a n a l y s i s  of 
t h e  microseismic events  located during this 
f r a c t u r i n g  experiment, and one perspective of 
these  events  a r e  shown i n  Figure 3. 

As evidenced by t h e  se i smic i ty ,  t h e  i n j e c t e d  
f l u i d  s t imulated a series of f r a c t u r e s  which 

3 

s 

w e r e  e s s e n t i a l l y  p a r a l l e l  t o  t h e  two 
wellbores, and thus  the i n t e r s e c t i o n  of t h e  
two holes  with a network of flowpaths'was n o t  
p o s s i b l e  w i t h  this wel lbore / f rac ture  
geometric configurat ion.  Thus it was decided 
t o  r e d r i l l  the bottom por t ion  of wellbore 
EE-3 t o  i n t e r s e c t  the 3-dimensional .cloudw 
o f  microseismici ty  loca ted  dur ing  Experiment 
2032. Figure 3 a l s o  shows the near ly  
v e r t i c a l  t r a j e c t o r y  of the new s e c t i o n  of 
wellbore c a l l e d  EE-3A. 

This  r e d r i l l i n g  was i n t e r r u p t e d  and followed 
by s e v e r a l  hydraul ic  p r e s s u r i z a t i o n  
experiments i n  t h e  new EE-3A w e l l b o r e ,  two of 
which w e r e  successfu l  i n  c r e a t i n g  the des i red  
f r a c t u r e  f l o w  communication between t h e  two 
holes. Hydraulic f r a c t u r i n g  is  almost 
c e r t a i n l y  a misnomer here ,  a s  t h e  pumping 
most l i k e l y  r e s u l t e d  i n  res t imula t ion  of t h e  
e x i s t i n g  flowpaths c rea ted  during Experiment 
2032 descr ibed above. However, a f t e r  s e v e r a l  
years  of  f l u i d  d i f f u s i o n  away from t h i s  
s t imula ted  zone, the j o i n t s  required more 
p r e s s u r i z a t i o n  t o  i n c r e a s e  t h e i r  hydraul ic  
conduct ivi ty .  This was done using a newly 
designed openhole packer, which allowed 
specific i n t e r v a l s  of wel lbore EE-3A t o  be 
pressur ized  independently. Another e s s e n t i a l  
reason f o r  t h e  openhole packer is the 
exis tence  i n  the openhole region a t  3.1 km 
(10250 f t )  of a high-permeability zone which 
accepts  l a r g e  amounts of f l u i d  a t  l o w  
pressures .  This zone i s  not  connected t o  
EE-2, and e l imina tes  any a t tempt  t o  pump 
f l u i d  i n t o  the formation a t  lower depths  
without  a packer. 

There are f o u r  packer flow s t i m u l a t i o n  tests 
f o r  which t h e r e  are t r a c e r  and/or 
geochemistry d a t a  of i n t e r e s t .  Experiment 
2032, t h e  massive hydraul ic  f r a c t u r i n g  
experiment i n  wellbore EE-2, was descr ibed 
e a r l i e r .  Experiment 2059 w a s  the f i rs t  
successfu l  a t tempt  i n  t h e  Phase I1 r e s e r v o i r  
t o  achieve hydraul ic  communication between 
t h e  w e l l s .  I t  was performed with the packer 
set a t  a r e l a t i v e l y  shallow depth i n  EE-3A. 
A second s t imula t ion  test, Experiment 2061, 
pressur ized  a region much deeper i n  the 
w e l l b o r e ,  w i t h  a much greater s e p a r a t i o n  
d i s t a n c e  between t h e  i n j e c t i o n  and t a r g e t  
product ion regions.  I n  this i n s t a n c e  
hydraul ic  communication w a s  n o t  e s t a b l i s h e d .  
F i n a l l y ,  Experiment 2062 crea ted  a second se t  
of f l o w  paths connecting the w e l l s .  The 
packer was set a t  an in te rmedia te  depth,  and 
a f t e r  8 hours of pumping, i n t e r w e l l  flow was 
achieved. 

TRACW DATA ANALYSIS 

The primary goa l  of HDR r e s e r v o i r  modeling i s  
to estimate t h e  r e s e r v o i r  h e a t  t r a n s f e r  
capac i ty  and thus  the p o t e n t i a l  l i f e t i m e  of 
t h e  system. The tracer modal volume V has 
been shown t o  be u s e f u l  i n  t h i s  regard when 
s teady  s ta te  c i r c u l a t i o n  experiments a r e  



performed (Figure 2 ) .  Since this volume i s  
best thought of a s  t h e  f r a c t u r e  volume 
assoc ia ted  with t h e  main f r a c t u r e  flow pathsr 
t h i s  c o r r e l a t i o n  i s  not  Surpris ing:  t h e  most 
d i r e c t  hydraul ic  connections a r e  l i k e l y  to 
cool most rap id ly ,  and thus  c o n t r o l  the h e a t  
t r a n s f e r  capaci ty .  

When t r a c e r  experiments are c a r r i e d  o u t  
during t h e  pumping experiments descr ibed 
b e l o w ,  t h e  i n l e t  f l o w  rate was l a r g e r  than 
t h e  o u t l e t  r a t e  a s  t h e  hydraul ic  connection 
w a s  developed. This n e t  accumulation of 
water i n  t h e  r e s e r v o i r  must be accounted f o r  
t o  c a l c u l a t e  t h e  volume of t h e  main f r a c t u r e  
flow paths. 
schematical ly  i n  Figure 4, which assumes 
i n t e r w e l l  flow through t h e  main j o i n t s  and 
f l u i d  leakoff  i n t o  secondary permeabi l i ty .  

most r a q i d l y  near t h e  i n l e t  and slows down 
due to  water leakoff  wi th  d i s t a n c e  or volume 
u n t i l  it is  t r a v e l i n g  a t  t h e  production flow 
r a t e  when it leaves  t h e  system. The unknown 
i s  t h e  main f r a c t u r e  volume (assumed to be 
t h e  tracer modal volume VI, which i s  found 
from t h e  fol lowing i n t e g r a t i o n :  

This s i t u a t i o n  is depicted 

- Tracer t r a v e l s  through t h e  main f r a c t u r e s  

0 :=p ( 1 )  

0 * i s  t h e  measured modal res idence time and 
t h e  independent v a r i a b l e  V i s  t h e  f r a c t i o n a l  
v o l q e  of t h e  main pa ths  (0 a t  t h e  en t rance  
and V a t  t h e  e x i t ) .  An expression f o r  Q = 
Q(V) is  needed fo  d e r i v e  an a n a l y t i c a l  
expression f o r  V. The s imples t  poss ib le  
r e l a t i o n  is obtained by assuming a l i n e a r  
d e c l i n e  i n  flow r a t e  w i t h  v, or 

S u b s t i t u t i n g  Eqn. ( 2 )  i n t o  ( 1 ) .  w e  o b t a i n ,  
a f t e r  i n t e g r a t i o n  and rearrangement: 

0 

* ( Pin-Qout ) 

( 2 )  

( 3 )  

Perhaps a more real is t ic  representa t ion  of 
t h e  flow r a t e  is obtained by assuming a 
l i n e a r  pressure  d e c l i n e  along t h e  main 

* f r a c t u r e s ,  implying t h a t  the f r a c t i o n a l  water 
loss l i n e a r l y  decreases .  4suming no water 
loss t o  t h e  formation a t  V=V, t h e  appropr ia te  
expression f o r  t h e  f l o w  rate f o r  t h i s  model 
is 

When Eqn. ( 4 )  is e u b s t i t u t e d \ $ n t o  Eqn. ( 5 1 ,  
t h e  r e s u l t i n g  expression f o r  V 
is 

0 

*out ( Qin-Qou t ) 
- *  

*out 

( 5 )  

Equations (3) and ( 5 )  w i l l  be used t o  
eva lua te  t w o  of the  tracer experiments b e l o w .  

Experiment 2059: 
first f r a c t u r i n g  test i n  t h e  Phase I1 
r e s e r v o i r  which r e s u l t e d  i n  a successfu l  
connection between t h e  w e l l s .  
t h e  vent  f l u i d  a t  EF-2 was  indeed caused by 
f l u i d  i n j e c t e d  a t  EE-3, 1 kg of sodium 
f l u o r e s c e i n  dye was placed i n  t h e  i n j e c t i o n  
w e l l  before  pumping began. Color imetr ic  
measurements of  t h e  produced f l u i d  using a 
W-vis ib le  spec tophotmeter  v e r i f i e d  t h e  
presence of the  dye. Unfortunately, t h e  
s t r a t e g y  of p lac ing  the  tracer i n  t h e  w e l l  
before  pumping began made t h e  e x t r a c t i o n  of 
q u a n t i t a t i v e  information about  t h e  r e s e r v o i r  
near ly  impossible. Af te r  t h e  product ion wel l  
had vented t h e  e n t i r e  w e l l b o r e  volume, t r a c e r  
immediately appeared i n  t h e  f l u i d ,  suggest ing 
t h a t  the  tracer f r o n t  had t raversed  t h e  
e n t i r e  wellbore separa t ion  d i s t a n c e  before  
vent ing began. Given this s i t u a t i o n ,  it is  
Q i f f i c u l t  t o  es t imate  t h e  t r a c e r  t r a n s i t  time 
* t o  use i n  Eqns. ( 3 )  and ( 5 ) .  

The only r e l i a b l e  q u a n t i t a t i v e  information 
from t h i s  tracer test i s  t h e  to ta l  mass of 
t r a c e r  c o l l e c t e d  dur ing  t h e  vent. In t h i s  
test  32% of t h e  tracer i n j e c t e d  i n t o  EE-3 was 
c o l l e c t e d  a t  EE-2, compared t o  an expected 
maximum of 47%, which i s  t h e  r a t i o  of t h e  
water  volume vented t o  the  amount i n j e c t e d .  
This  recovery (68% of t h e  expected maximum) 
seems q u i t e  high, e s p e c i a l l y  s i n c e  t h e  
r e s e r v o i r  w a s  n o t  a closed, confined system 
with l imi ted  boundaries during t h e  test. 
Thus the d a t a  suggest  t h a t  a s h o r t - c i r c u i t i n g  
flow path probably e x i s t s  between t h e  w e l l s ,  
a l lowing most of  the i n j e c t e d  t r a c e r  t o  reach 
t h e  production wellbore rap id ly .  Since a 
commercially v i a b l e  hot  d r y  rock r e s e r v o i r  
requi res  a sweep of f l u i d  through a l a r g e  
rock volume, t h i s  d i r e c t  i n t e r w e l l  connection 
is not  an acceptable  r e s u l t ,  and f u r t h e r  
hydraul ic  f r a c t u r i n g  experiments w e r e  c a r r i e d  
out. 

Experiment 2062: This  test  was t h e  second 
successfu l  attempt t o  connect wellbores EE-3 
and EE-2 w i t h  a se t  of h y d r a u l i c a l l y  
s t imula ted  f r a c t u r e s ,  this t i m e  with t h e  
i n j e c t i o n  region a t  a depth about 150 m 
deeper i n  EE-3A. The d i f f i c u l t i e s  i n  
q u a n t i t a t i v e l y  analyzing t h e  d a t a  of t h e  
previous tracer test led  t o  changes i n  t h e  
t r a c e r  i n t e r r o g a t i o n  s t r a t e g y  f o r  t h i s  
experiment, with s i g n i f i c a n t l y  improved 
r e s u l t s .  The foremost r u l e  learned from 
Experiment 2059 was t h a t  tracer should be 
i n j e c t e d  only a f te r  a hydraul ic  connection i s  
achieved. A l s o ,  dur ing  t h e  t r a c e r  test t h e  
i n l e t  and o u t l e t  flow r a t e s  should be kept  a s  
cons tan t  as p o s s i b l e  to  minimize unwanted 

This  experiment was t h e  

To prove t h a t  



t r a n s i e n t s .  Two t r a c e r  experiments were 
performed dur ing  Experiment 2062. 
wa8 a 0.91 kg (2  l b )  sodium f l u o r e s c e i n  dye 
pulse  i n j e c t e d  e a r l y  a f t e r  t h e  production 
v e n t  began. I n  t h e  second experiment, after 
t h e  i n l e t  and o u t l e t  flow r a t e s  were more 
n e a r l y  equal ,  t h r e e  tracers were i n j e c t e d :  
0.91 kg ( 2  Ib) sodium f l u o r e s c e i n  dye, 113.6 
kg (250 l b )  sodium bromide, NaBr, and 22.7 kg 
(50  l b )  sodium n i t r a t e ,  N a F 3 .  The, NaBr bnd 
NaN03 w e r e  analyzed for Br 
respec t ive ly ,  using an anion chromatograph. 
Figures  5 and 6 show t h e  t r a c e r  responses for 
these two experiments, with t h e  o r d i n a t e  
cor rec ted  f o r  background l e v e l s  and wellbore 
residence times, and t h e  concent ra t ion  is 
normalized so t h a t  t h e  a rea  under t h e  curve 
would be u n i t y  f o r  complete recovery of a l l  
i n j e c t e d  tracer. Figure 5 compares the 
normalized response curves f o r  t h e  t h r e e  
tracers 4njected i n  t h e  second experiment. 
Since t h e  peak response for a l l  t h r e e  t r a c e r s  
occurred s imultaneously,  a l l  tracers are 
non-adsorbing to  wi th in  t h e  l i m i t  of 
measurabi l i ty .  The d i f f e r e n c e s  i n  response 
curves a r e  most l i k e l y  due t o  measurement 
d i f f i c u l t i e s  a t  high concent ra t ion  i n  t h e  
case of t h e  dye, and p o s s i b l e  degradat ion of 
NO for , the  n i t r a t e .  Nonetheless, t h e  modal 
vojurne V can be a c c u r a t e l y  detgrmined: t a s e d  
09 t h e  produced f l u i d  volume, V is 260 -20 
m .  

The f i r s t  

' 

and NO3, 

Figure 6 compares t h e  dye t r a c e r  responses 
f o r  the  two tracer tests i n  Experiment 2062. 
The discrepancy i n  peak response volumes can 
be explained using t h e  conceptual r e s e r v o i r  
models described e a r l i e r .  The f i r s t  tes t  vas  
operated a t  higher  i n j e c t i o n  and lower o u t l e t  
flow r a t e .  Using kps. ( 3 )  and ( 5 )  t h e  modal 
volume estimates f o r  the  two experiments a re :  

3 
Experiment 1: 550 m3 Eqn. ( 3 )  

371 m Eqn. ( 5 )  

388 m Eqn. ( 5 )  
Experiment 2: 470 m Eqn. ( 3 )  

For e i ther ,of  t h e  models, the ca lcu la ted  
values  of V f o r  t h e  two t r a c e r  tests agree 
adequately. However, t h e  choice of the  model 
a f f e c t s  the r e s u l t ,  makingoi t  d i f f i c u l t  t o  
ass ign  a p r e c i  e va lue  t o  V. I n  round 
numbers, 400 m i s  our best es t imate  for 
modal volume f o r  Experiment 2062. As seen i n  
Figure 2, t h i s  volume is  l a r g e r  than t h a t  of 
any f r a c t u r e  system previous ly  c rea ted  a t  
Fenton H i l l .  Consequently the reservoir 
l i f e t i m e  should be correspondingly higher. 
Future opera t ions  w i l l  attempt to enlarge  t h e  
r e s e r v o i r  still  more and increase  t h e  
hydraul ic  conduct iv i ty  between t h e  w e l l s .  

9 

GEOCHEMISTRY RESULTS 

Geochemistry i n  the Penton H i l l  reservoir is 
cont ro l led  by both a c t i v e  d i s s o l u t i o n  of 
minerals  and displacement of indigenous pore 
f l u i d .  In  t h e  s teady  state opera t iona l  mode, 
i n j e c t i o n  of f r e s h  water  l o w  i n  concent ra t ion  

of d isso lved  ions  r e s u l t s  i n  behavior q u i t e  
similar t o  an i n t e r w e l l  tracer. However, 
dur ing  a hydraul ic  f r a c t u r i n g  experiment, 
t r a n s i e n t  e f f e c t s  dominate t h e  e a r l y  
geochemical behavior. When a pressur ized ,  
shut- in  production w e l l  is f i r s t  opened, a 
rush of a lmost  pure pore f l u i d  e n t e r s  t h e  
wellbore. 
connection improves, t h e  pore f l u i d  becomes 
more and more d i l u t e d  w i t h  i n j e c t i o n  f l u i d  
u n t i l  cons tan t  concent ra t ions  a r e  reached. 
This s i t u a t i o n ,  though simple t o  descr ibe  
q u a l i t a t i v e l y ,  does not  provide much 
i n f o r n a t i o n  about f r a c t u r e  volume or 
d i s p e r s i v e  c h a r a c t e r i s t i c s .  

Despite t h i s  f a c t ,  geochemistry i n  t h e  form 
of chemical geothermometers provides  valuable  
information about the  f l u i d  temperature and 
hence depth when it resided i n  the r e s e r v o i r .  
This  temperature, combined with a background 
temperature log,  y i e l d s  t h e  depth a t  which 
f l u i d  t rave led  i n  t h e  f r a c t u r e  system. 
two most e f f e c t i v e  geothermometers f o r  t h e  
Penton H i l l  HDR r e s e r v o i r s  a r e  t h e  quar tz  and 
Na-K-Ca geothermometers, although t h e i r  
appl ica t ion  i s  somewhat d i f f e r e n t  due t o  t h e  
d i f f e r e n c e  i n  e q u i l i b r a t i o n  t i m e s ,  as 
descr ibed below. 

As t i m e  proceeds and t h e  i n t e r w e l l  

The 

p a r k  Geothermometer: The s o l u b i l i t y  of 
q u a r t z  i n  water i s  a s t rong  func t ion  of 
temperature, and thus the  concentrat ion of 
s i l i c i c  ac id  i n  a f l u i d  sample can be r e l a t e d  
t o  an underground f l u i d  temperature. 
R i m s t i d t  (1979) compiled t h e  a v a i l a b l e  
equi l ibr ium d a t a  and obtained the  fol lowing 
c o r r e l a t i o n :  

where CD i s  t h e  equi l ibr ium s o l u b i l i t y  ( i n  
ppm) and T t h e  absolu te  temperature ( i n  K). 

The main ques t ion  of t h e  a p p l i c a b i l i t y  of 
t h i s  r e l a t i o n  r e s i d e s  i n  t h e  assumption of 
equi l ibr ium. 
i n  t h e  r e s e r v o i r  long enough t o  reach 
equi l ibr ium, erroneously l o w  geothermorneter 
readings w i l l  r e s u l t .  
d i s s o l u t i o n  has been s tudied  by many workers 
(Kitahara ,  1960, Van L i e r  e t  a l . ,  1960, 
S i e b e r t  e t  al . ,  1963, Weill and Fyfe, 1964, 
Stober ,  1967, and Rimst idt ,  19791, and t h e  
r e s u l t s  w e r e  reviewed and f u r t h e r  experiments 
performed by Robinson (1982). 
rate law i n  a closed v e s s e l  is: 

I f  i n j e c t e d  f l u i d  does n o t  s t a y  

The k i n e t i c s  of quar tz  

The accepted 

dC - - ka*(CB - c)  d t  ( 7 )  

where k is t h e  d i s s o l u t i o n  rate cons tan t  ( i n  
m/sec) and a*  the rock sur face  area to  f l u i d  
volume ra t io  ( m  ). Thus l /ka* i s  a 
c h a r a c t e r i s t i c  reac t ion  t i m e .  and equi l ibr ium 
may be s a f e l y  assumed f o r  downhole f l u i d  
residence t i m e  g r e a t e r  than t h r e e  times t h i s  
r e a c t i o n  t i m e ,  or v > 3/ka*. I n  a f r a c t u r e d  



r e s e r v o i r ,  a* = 2/b, where b i s  the average 
f r a c t u r e  aper ture .  In  r e a l i t y  the f r a c t i o n  

included, b u t  f o r  this approximate 
c a l c u l a t i o n  this c o r r e c t i o n  is unnecessary. 
The rate cons tan t  k was found by Robinson 
(1982) t o  obey an Arrhenius temperature 
dependence with E = 78.3 kJ/mol and Ar = 
2.712 m/sec. 
e q u i l i b r a t i o n  of t h e  q u a r t z  geothermometer i s  

. of rock which is q u a r t z  should also be 

Thug t h e  c r i t e r i o n  f o r  

where i s  i n  hours ,  b i n  m, and T i n  K. 
?quatioH (8) should always be used t o  
eva lua te  t h e  l ike l ihood of chemical 
equi l ibium of the quar tz  geothermometer, as a 
lack  of equi l ibr ium w i l l  r e s u l t  i n  
erroneously low temperatures. A t y p i c a l  
average f r a c t u r e  apert re f o r  HDR r e s e r v o i r s  
i s  on t h e  order  of lo-’ m (1 mn). Using t h i s  
value,  t h e  approximate e q u i l i b r a t i o n  t i m e s  
f o r  flow i n  h y r a u l i c a l l y  s t imula ted  f r a c t u r e s  
a t  150, 200, and 25OOC are 690 h r ,  66 h r ,  and 
10 h r  respec t ive ly .  
experiments analyzed h e r e ,  t h e  downhole 
residence t i m e s  a r e  long enough and 
temperatures high enough for e q u i l i b r a t i o n .  
Note however t h a t  i n  geothermal systems of 
in te rmedia te  temperature (150-2OO0C) t h e  
q u a r t z  geothermometer must be used w i t h  
cau t ion  when eva lua t ing  the geochemistry of 
in jec t ion- f  l o w  experiments of l imi ted  
durat ion.  

Other p o t e n t i a l  problems with the quar tz  
geothermometer are polymerization or 
depos i t ion  of s i l i c a ,  mixing of f l u i d s  of 
d i f f e r e n t  temperatures ,  and f l a s h i n g  dur ing  
sample c o l l e c t i o n .  I n  genera l ,  t h e  quar tz  
gaothermorneter is not  a f f e c t e d  s t r o n g l y  by 
depos i t ion  unless  long residence times a t  
l a r g e  degrees  of supersa tura t ion  a r e  
encountered, such a s  i n  an above ground h e a t  
exchanger or i n  an i n j e c t i o n  w e l l .  As a 
r e s u l t ,  i f  a f l u i d  e q u i l i b r a t e s  with respect 
to  quar tz  a t  one temperature and then 
encounters a s e c t i o n  of r e s e r v o i r  a t  a lower 
temperature, the geothermometer reading a t  
t h e  h igher  temperature is preserved. Fluid 
d i l u t i o n  and mixing w i l l  obviously affect the  
reading,  a l though r e e q u i l i b r a t i o n  a f t e r  
mixing can i n  many cases e l imina te  the 
problem. Flashing of steam w i l l  r e s u l t  i n  a 
higher  concent ra t ion  i n  the remaining f l u i d  
sample, b u t  t h i s  e f f e c t  can be accounted f o r  
p r e c i s e l y  by c a l c u l a t i n g  the steam f r a c t i o n  
using an enthalpy balance. 

Na-K-Ca Geothermometer: This geothermometer 
provides a measure of rock temperature 
through t h e  r a t i o s  of t h e s e  ions  i n  s o l u t i o n ,  
which are c o n t r o l l e d  by c a t i o n  exchange 
r e a c t i o n s  among the f e l d s p a r s  and f e l d s p a r  
a l t e r a t i o n  minerals  (Eburnier and h u e s d e l l ,  
1973). The empir ical  r e l a t i o n s h i p  proposed 
by Fournier and Truesde l l  is 

In  t h e  f r a c t u r i n g  

T =  ( 
1647 

l o g 1 0 ( N a / K ) + ~ [ l o g 1 0 ~ ~ / N a ) + 2 . 0 6 1 + 2 . 4 7  9 )  

where concent ra t ions  are i n  ppm, T i n  K, and 
B = 1/3 for T > 100°C and 4/3 f o r  T < 100°C. 
The major d i f f e r e n c e  of this geothernometer 
from t h e  quar tz  measurement is  t h a t  t h e  
d i s s o l u t i o n / a l t e r a t i o n  r e a c t i o n s  r e q u i r e  much 
longer  times for equi l ibr ium. Thus only 
f l u i d  present  i n  t h e  r e s e r v o i r  for long 
periods of t i m e  w i l l  r e f l e c t  the downhole 
temperature, and i n j e c t e d  f l u i d  w i l l  no t  
reach equi l ibr ium i n  a t y p i c a l  s h o r t  term 
flow test. Nonetheless, the e f f e c t s  of 
d i l u t i o n  caused by i n j e c t i o n  of c lean  f l u i d  
are n o t  great s i n c e  the r a t i o s  of ions  i n  
s o l u t i o n  are used i n  Equation ( 9 ) .  As long 
as the f l u i d  samples conta in  some of t h e  
r e s e r v o i r  pore f l u i d ,  the geothermometer will 
provide a good measure of  downhole 
temperature. Mixing of f l u i d s  of somewhat 
d i f f e r e n t  temperatures w i l l  affect t h e  
reading,  with t h e  measured r e s u l t  f a l l i n g  i n  
between the temperatures of the f l u i d s  before  
mixing. 

Experiment 2032: I n  this f r a c t u r e  experiment 
which r e s u l t e d  i n  t h e  microseismic events  
shown i n  Figure 3, equipnent f a i l u r e  r e s u l t e d  
i n  an uncontrol led vent  back u3  the i n j e c t i o n  
wellbore a f t e r  pumping 21000 m of f l u i d .  
After 34 hours of vent ing the s i t u a t i o n  
became s a f e  enough to  collect s e v e r a l  f l u i d  
samples. Table 1 shows t h e  quar tz  and 
Na-K-Ca geothermometer readings of t h e s e  
samples. Since f l a s h i n g  occured during t h e  
vent ,  the quar tz  geothermometer readings 
using t h e  simple equi l ibr ium r e l a t i o n s h i p  a r e  
a r t i f i c i a l l y  high. Grigsby and Hatsunaga 
(1984) have cor rec ted  these  va lues  f o r  t h e  
condi t ions  a t  Penton H i l l  (where t h e  b o i l i n g  
p o i n t  of water i s  90°C) and obtained an 
average value of 216OC. Both geothermometers 
g i v e  a temperature of about  215OC, which is 
approximately equal  t o  the i n i t i a l  rock 
temperature a t  the i n j e c t i o n  depth during 
t h i s  experiment. This  suggests  t h a t  the 
i n j e c t e d  f l u i d  t rave led  away from t h e  
i n j e c t i o n  region with no tendency to  flow 
p r e f e r e n t i a l l y  e i t h e r  upward or downward. 
The seismic event  l o c a t i o n s  (F igure  3) agree 
w i t h  this conclusion. Although this may not  
s e e m  s u r p r i s i n g ,  a later experiment descr ibed 
b e l o w  (Pxperiment 2061) r e s u l t e d  i n  a 
d i f f e r e n t  conclusion, and the  geochemistry 
eva lua t ion  added t o  the i n t e r p r e t a t i o n  of t h e  
test. 

Experiment 2059: This  test was t h e  f i r s t  t o  
r e s u l t  i n  i n t e r w e l l  f l o w ,  and t h e  geochemical 
measurements i n  this case. were of produced 
f l u i d  r a t h e r  than water  being vented back up 
t h e  i n j e c t i o n  w e l l .  The f i r s t  few samples 
were simply f l u i d  r e s i d i n g  i n  t h e  production 
w e l l  and n o t  i n d i c a t i v e  of reservoir chemical 
condi t ions.  
t h e  Na-K-Ca concent ra t ions  l i s t e d  i n  Table 1 
i n d i c a t e  a f l u i d  temperature of 240-25Ooc. 
This  range agrees  with the i n i t i a l  rock 

Once t h i s  f l u i d  was d isp laced ,  



temperature a t  the known i n j e c t i o n  region,  
dt termined p r e c i s e l y  from a temperature log 
performed after t h e  experiment. The f l u i d  
apparent ly  shor t -c i rcu i ted  d i r e c t l y  from one 
w e l l  t o  t h e  o t h e r ,  and showed no tendency t o  
t a k e  a more c i r c u i t o u s  r o u t e  downward before  
reaching the production w e l l .  I f  it had 
t rave led  downward, higher  geothermometer 
measurements would have been obtained. The 
d e c l i n e  i n  t h e  geothermometer temperatures 
dur ing  t h e  experiment are probably due t o  
f l u i d  mixing which occured during the 
experiment. These e f f e c t s  a r e  d i f f i c u l t  t o  
d i s c e r n  with t h e  geothermometers, which smear 
t h e  a c t u a l  downhole temperatures i n t o  an 
average temperature. 

Experiment 2061: During this unsuccessful  
a t tempt  t o  c r e a t e  more f r a c t u r e  f low 
connect ions between the w e l l s ,  samples of the 
ventback f l u i d  w e r e  co l lec ted .  The q u a r t z  
and Na-K-Ca geothermometers do not  agree i n  
t h i s  case. We bel ieve  t h a t  d i l u t i o n  and 
mixing probably a f f e c t e d  t h e  Na-K-Ca readings 
and t h a t  the  quar tz  va lues  a r e  more 
r e p r e s e n t a t i v e  of t h e  r e s e r v o i r  f l u i d .  The 
va lues  of t h e  quar tz  geothermometer (277 and 
286OC) are much higher  than the rock 
temperature a t  t h e  i n j e c t i o n  region,  
i n d i c a t i n g  t h a t  the vented f l u i d  w a s  being 
recovered from a region much deeper than the 
i n j e c t i o n  depth. Since the t a r g e t  depth i n  
t h e  production w e l l  w a s  above the i n j e c t i o n  
zone b u t  t h e  water  t r a v e l e d  p r e f e r e n t i a l l y  
downward, it is  not  s u r p r i s i n g  t h a t  t h e  
des i red  f low connection was not  achieved. 
This explanat ion agrees  w i t h  microseismic 
event  l o c a t i o n s  dur ing  t h i s  experiment, which 
c l u s t e r e d  f a r  b e l o w  the i n j e c t i o n  region. 
The geochemical evidence c i t e d  here  augments 
t h a t  f i n d i n g  and provides  a more complete. 
p i c t u r e  of the downhole flow geometry a t  
remote l o c a t i o n s  away from t h e  i n j e c t i o n  
wellbore. 

Experiment 2062: This experiment, l i k e  
Experiment 2059, r e s u l t e d  i n  an i n t e r w e l l  
connection, and t h e  samples c o l l e c t e d  were 
production f l u i d  samples. The geothermometer 
d a t a  w e r e  q u i t e  s i m i l a r  to  the previous test, 
with downhole temperatures  close to  t h a t  of 
t h e  rock near  the i n j e c t i o n  region. Once 
again t h e  i n j e c t e d  f l u i d  swept pore f l u i d  
from t h i s  depth t o  the production w e l l ,  and 
t h e  geothermometer readings r e f l e c t  the 
temperature of the rock a t  this depth. 

In  summary, t h e  geothernameter measurements 
can provide a d d i t i o n a l  information about  
r e s e r v o i r  geometry dur ing  a hydraul ic  
f r a c t u r i n g  experiment. S p e c i f i c a l l y ,  t h e  
depths  a t  which f l u i d  res ided  when i n  the 
r e s e r v o i r ,  and hence the flow d i r e c t i o n  (e.g. 
uprard or downward) can be determined from 
geochemical analyses ,  knowing t h e  i n i t i a l  
rock temperature a8 a func t ion  of depth frm 
a background temperature survey. 
experiments descr ibed above , t h i s  geochemical 
information agreed w e l l  wi th  microseismic 

I n  the 

event  loca t ions ,  which i n d i c a t e  where the  
f l u i d  i s  t r a v e l i n g  i n  space. This suggests  
t h a t  i n  pumping experiments i n  which no 
microseismici ty  is induced, geothermometer 
readings can be used t o  determine t h e  
l o c a t i o n  of f l u i d  f low paths ( i n  t h e  vertical  
d i r e c t i o n ) .  In  one such i n t e r w e l l  flow 
experiment performed r e c e n t l y  a t  Fenton H i l l  
(Brown, 1985) t h e r e  was no microseismici ty ,  
and a temperature l o g  i n d i c a t e d  two possible 
depths  for f l u i d  e n t e r i n g  t h e  wellbore. The 
geochemical evidence r u l e d  o u t  the shallower 
of  t h e  two ent rance  depths ,  and t h e  flow 
geometry w a s  thus  determined. 

CONCLUSIONS 

The Fenton H i l l  f i e l d  tests have i d e n t i f i e d  
s e v e r a l  p r a c t i c a l  conclusions regarding the 
use of tracers and geochemistry during 
hydraul ic  f r a c t u r i n g  experiments. 

1. m a c e r  and geochemical information must be 
i n t e r p r e t e d  d i f f e r e n t l y  dur ing  hydraul ic  
f r a c t u r i n g  due t o  unequal i n l e t  and o u t l e t  
flow rates and t r a n s i e n t  e f f e c t s .  
2. -0 simple models of flow i n  main 
f r a c t u r e s  with water s torage  i n  secondary 
j o i n t s  were developed. 
the volume of the main f r a c t u r e  flow pa ths  t o  
be est imated from an i n t e r w e l l  test. 
3. During hydraul ic  f r a c t u r i n g  tests, t r a c e r  
should be i n j e c t e d  only a f t e r  flow 
communication has  been e s t a b l i s h e d  between 
the w e l l s .  
4. The quar tz  and Na-K-Ca geothermometers a r e  
u s e f u l  t o  i d e n t i f y  t h e  downhole temperature 
and hence depth a t  which f l u i d  i s  t r a v e l i n g .  
5. The quar tz  geothermometer e q u i l i b r a t e s  
r a p i d l y  enough i n  f r a c t u r e d  r e s e r v o i r s  a t  
25OoC to be used accurately.  An approximate 
c r i t e r i o n  has been developed to  eva lua te  t h e  
l ike l ihood of e q u i l i b r a t i o n .  
6. The Na-K-Ca geothermorneter does n o t  
e q u i l i b r a t e  rap id ly ,  b u t  still  may be used i n  
in jec t ion- f low experiments because s u f f i c i e n t  
q u a n t i t i e s  of indigenous pore f l u i d  are 
contained i n  t h e  f l u i d  samples. It is  
somewhat more s u s c e p t i b l e  t o  problems due t o  
f l u i d  mixing and d i l u t i o n ,  however. 

These models a l low 
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NOMENCLATURE 

a 

Ar r e a c t i o n  r a t e  pre-exponential f a c t o r  

b f r a c t u r e  a p e r t u r e  width (a) 
C disso lved  s i l i ca  concent ra t ion  ( p p )  
CD equi l ibr ium s o l u b i l i t y  of q u a r t z  (ppm) 

roEf sur face  a r e a  t o  f l u i d  volume r a t i o  
( m  1 

(a/sec) 



Ea 
k '  

Q 
Qi n 
Eout 

v 
II * 
* 
r 

reac t ion  ra te  activation energy 
(k J/mol) 
quar tz  d i s8olu t ion  reaction rate 
cons tan t  (n/sec) 
volumetric flow r a t e  ( m  /sec) 
i n l e t  volumetric f law r a t e  (m34sec) 
o u t l e t  volumetr ic  f l o w  rate ( m  /sec) 
temperature ( K )  
f r a c t u r e  volume3(a 
modal volume ( m  ) 
modal res idence t i m e  ( s e c )  
c h a r a c t e r i s t i c  r e a c t i o n  t i m e  for quar tz  
d i s s o l u t i o n  (sec) 
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Figure 1. Hot Dry Rock Geothermal Concept 
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Figure 3. Elevation View of Phase I1 Wellbores 
and Experiment 2032 Microseismicity 

Figure 5. Normalized Tracer Response Curves . 
for 2nd Tracer Test o f  Experiment 2062 
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Figure 2. Effective Heat Transfer Surface Area 
Versus Modal Volume Correlation 

Figure 4. Schematic of Fracture Flow, Water 
Loss Model 
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Figure 6. Comparison o f  Tracer Response Curves 
for the 1st and 2nd Tracer Tests o f  Experiment 
2062 




