LAUR- $7*150°
NI

An Object-Based Methodology For Knowledge
Representation

Robert L. Kelsey

Los Alamos National Laboratory

New Mexico State University

rob@lanl.gov | oo
Roger T. Hartley JUL 25 f’?
NS
New Mexico State University OST]

rthQcs.nmsu.edu

Robert B. Webster

Los Alamos National Laboratory

robw@lanl.gov

Abstract

An object-based methodology for knowledge representation is pregented. The constructs
and notation to the methodology are described and illustrated with examples. The “blocks
world,” a classic artificial intelligence problem, is used to illustrate some of the features of the
methodology including perspectives and events. Representing knowledge with perspectives
can enrich the detail of the knowledge and facilitate potential lines of reasoning. Events
allow example uses of the knowledge to be represented along with the contained knowledge.
Other features include the extensibility and maintainability of knowledge represented in the

MASTER

DISTABUTION OF THIS DOCUMENT 1S UNMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

1 Introduction

An object-based methodology for knowledge representation attempts to represent and describe
knowledge in terms of objects. The object is a conceptual building block for constructing the
representation for the knowledge of interest. This methodology is not unlike ob ject-oriented analysis
(OOA) and design (OOD) [1] [4]. They all share many of the same concepts and use similar
terminology. They all decompose knowledge into manageable units called objects.

An object paradigm for a knowledge representation methodology is appealing because it is natural
to define and decompose things in terms of objects. This is especially true of declarative knowledge
which is descriptive knowledge comprising “knowing that” rather than “knowing how” [3]. Another
reason this methodology is appealing is because objects are modular and this increases the potential
for dynamic and maintainable representations.

This methodology is an analysis and design methodology. It is meant to be used to design domains of
knowledge, perhaps to be put into existing knowledge representation systems. Systems are difficult
to use because they often have no methodology for modeling the knowledge.

Other features of this methodology include the use of perspectives and events. Representation of
knowledge using multiple perspectives is an important part of the methodology. Perspectives allow
for multiple views of the existing knowledge and put the knowledge in additional contexts. This may
increase the detail of the knowledge. Events allow the actual use of knowledge to be represented
along with the knowledge itself. An event describes an interaction or operation between two objects
by showing the objects before and after an interaction has occurred.

The following sections discuss the constructs of the methodology and illustrate the constructs and
notation with examples such as the blocks world. The blocks world is a good example because it
makes use of all of the methodology’s constructs. The increased use of object-oriented notions has
made some of the object-oriented terminology confusing and ambiguous. The terminology used in
this methodology is not always defined in the same way as some common object-oriented terms.
Thus, terminology is defined as it is used and attempts have been made to make the terminology
precise.

2 Constructs of the Methodology

2.1 Class

The basic construct in the methodology is the class. A class is a template or prototype that
describes an object or a collection of objects. A member of a class is called an object or instance
of a class [1] [4]. The act of creating an object is called instantiation (from a class). There are
two types of classes in the methodology. They are agent classes and non-agent classes. An agent

2

class typically describes an object that acts on other objects or initiates actions. A non-agent class
describes an object which is essentially inanimate and does not usually act on other objects.

An example of an agent class is the class of soccer players. An example of a non-agent class is
the class of soccer balls. A soccer player kicking a soccer ball is an example of an agent object
initiating an action (kicking) on a non-agent object. Classification into agents or non-agents is not
a requirement of the methodology, but it is helpful for determining behavior in classes of objects and
interactions between classes of objects. Schank [8] and others have made this distinction between
agent and non-agent, calling agent objects actors, and found the distinction to be useful.

2.2 Attributes, Methods, and Perspectives

There are three parts to a class which are necessary to adequately describe the objects which
belong to a class. The three parts are attributes, methods, and perspectives. Attributes are the
characteristics and properties that describe a class of objects. The attributes of an object can help
determine whether the object is of one class or another class. Upon instantiation the object is
assigned a unique name identifying it and its attributes are assigned values.

Consider a class of chairs. The class chair may have attributes such as number of legs, style (early
American, art deco, modern, et cetera), and type (office, dining room, living room, outdoor, et
cetera). A particular chair identified as Sam’s chair has four legs and an early American wood
finish. Sam’s chair is for Sam’s dining room. Consider another class, a class of desks. The class
desk may have attributes such as number of legs, number of drawers, style (early American, art
deco, modern, et cetera), and type (office, computer, child, et cetera). Sam’s desk has four legs,
three drawers, is of modern style, and built especially for computer use. Although chairs are not
usually mistaken for desks (nor desks for chairs), the attributes and associated attribute values
make the difference in objects specific. Figure 1 shows an example of two class definitions, chair
and desk. The name of a class follows the keyword class. The names of attributes of a class follow
the keyword attributes. If an attribute is limited to specific values, those values are shown in square
brackets following the attribute name.

class chair class desk
attributes attributes
number_of_legs number_of_legs
style [early American, art deco, modernj number_of_drawers
type [office, dining room, living room, outdoor] style [early American, art deco, modern]

type [office, computer, child]
Figure 1: Class definitions for chair and desk.

Methods determine the behavior of objects of classes. Methods are the operations that are allowed
on an object of a class. Objects interact with each other through methods. By limiting the methods
available in a class, interaction between objects can be constrained. Methods are defined in a class,

3

but are not available for use until an object of the class has been instantiated. An example method
is the operation kick, in the class soccer balls. Suppose an object named Sam’s soccer ball is
instantiated from the class soccer balls. Further suppose that Sam is an agent object instantiated
from the class soccer players. The method or operation kick is how the agent object Sam interacts
with the object Sam’s soccer ball. Kick is an allowed operation on the object Sam’s soccer ball.
Figure 2 shows the class definitions for soccer ball and soccer player. Notice that soccer ball has no
attributes and one method. The name of a method follows the keyword method.

class soccer_ball class soccer_player
methods attributes
kick position

expertise_level
jersey_number

Figure 2: Class definitions for soccer ball and soccer player.

Perspectives are a means of expressing points of view. A perspective defines how or in what way an
object of a class may be viewed. It may be thought of as one user’s view or opinion of a domain of
knowledge. Some attributes and methods may be important to one perspective while not important
to another perspective. Thus, a particular perspective is defined by grouping the attributes and
methods in a class that are pertinent to the perspective. Similar to a method, a perspective on an
object is defined in that object’s class and limits or constrains the available views by other objects.
In this way, a perspective can be used to further focus and limit the knowledge in a domain.

As an example, consider an object hunk of quartz crystal of the class crystals. There are several
attributes including weight, type, color, and crystal size. Among the perspectives available are the
geologist’s point of view and rocks as a paperweight point of view. The geologist perspective may
be interested in all of the attributes while the paperweight perspective is probably only interested in
the weight attribute. Figure 3 shows the class definition for crystal and which attributes are grouped
to which perspectives. With each attribute listed in the class definition is the keyword per spective
followed by the perspective name or names (separated by commas) to which the attribute belongs.
Methods can be grouped in perspectives as well and the notation is similar.

class crystals

attributes

weight perspective paperweight, geologist
type perspective geologist

color perspective geologist
crystal_size perspective geologist

Figure 3: Class definition for crystal showing groupings of perspectives.

Like methods, perspectives on an object may be defined in both agent and non-agent classes. An
agent object acts on other objects (agent and non-agent) by invoking the object’s methods. The

4

situation is similar for perspectives. An agent object can have a perspective or point of view about
other objects (agent and non-agent). Thus, while the allowable perspective is defined in one object
of a class, the use or observation of the perspective takes place in an agent object.

2.3 Creating a Domain

Up to this point discussion has focused on the defining of classes and the parts necessary to define
classes. There has been a little discussion about the difference between classes and objects, but not
about how objects are created or instantiated. Instantiation leads to defining a knowledge domain.
The defining of classes designates what is available to a domain. A class can be thought of as an
available resource. To create a domain of knowledge, the class pertinent to that domain must be
instantiated for use. This means that classes of interest are identified and instantiation causing
objects (of those classes) to be made available for use in the domain. Figure 4 shows a domain
definition named soccer practice which includes objects Sam’s soccer ball and Sam (a soccer player).

domain soccer_practice

soccer_ball Sam’s_soccer_balil
soccer_player Sam

Figure 4: Domain definition for soccer practice.

2.4 Using the Knowledge

A domain of objects can represent knowledge and how the knowledge may be used, but it does not
necessarily represent use or show use. The representation of knowledge alone can be valuable, but
adding examples of actual use to the representation will increase the value. Another construct is
needed to represent examples of actual use in the methodology. This construct is the event.

An event has a unique name and is essentially composed of four parts. The four parts are the
before state, method, after state or result state, and agent. A state is defined with the values of
the attributes of an object at a particular moment in time. More than one object may participate
in an event, thus a state can contain the attribute values of multiple objects. A method is the single
operation that causes the change in state from before to after. An agent is the agent-object that
called or instigated the method. To keep things simple, only the objects with attribute values that
change from before state to after state are listed within the before and after states.

A single event represents a single operation use or example of the knowledge contained in the
domain. A sequence of events may be utilized to represent plans for reaching some goal or the
steps involved for some kind of instruction. A sequence of events may be represented in a list in
chronological order. Figure 5 shows the declaration of a single event. The event name follows the
keyword event. Following the keywords before state and a fter state are the object name, attribute

-9

name, and attribute value for those that change during state change. Following the keyword method
is the object name and method name that caused the change in state. Following the keyword agent
is the name of the instigating agent object.

event event_one
before state
computer.power_switch = off

method
computer->turn_on

after state

computer.power_switch = on
agent

computer_operator

Figure 5: Event declaration for event one.

2.5 Inheritance and Aggregation

The concepts of inheritance and aggregation can be useful when creating classes and adding to
current classes. Inheritance is the generalization/specialization abstraction mechanism [2]. Gener-
alization takes one or more classes and generalizes them into one class. The is-a relation is often
used to express generalization (and inheritance). For example, the class of modes of transporta-
tion is a generalization of the classes, trains, automobiles, and planes. The reverse relationship to
generalization is specialization.

Aggregation/decomposition or aggregation/disaggregation is another abstraction mechanism [2].
Aggregation is the idea of the sum of the parts being the whole. The part-of relation is often used
to express the aggregation abstraction. For example, rooms, walls, and doors are parts of a house.
The reverse relationship to aggregation is decomposition or disaggregation.

The methodology supports the ability to do inheritance and aggregation /disaggregation. For inher-
itance, when a new class is defined, it may be defined as a sub-class of some existing class. All the
attributes, methods, and perspectives of the existing class are inherited by the sub-class. Figure 6
shows the definition of a class transportation vehicle and the definition of a class (sub-class) car
inheriting from transportation vehicle. The keyword of is used to show inheritance.

For aggregation/disaggregation, the attributes in a class may have names which are instances of
another class. This means the parts of a whole are described by the attributes in a class. The class
is the whole while the attributes are the parts. Since an attribute can be an instance of a class,
each part can have parts as well. Figure 7 shows the class definitions for house, wall, door, and
room. The classes wall, door, and room have instances in the attributes of the class house.

class transportation_vehicle class car of transportation_vehicle
attributes attributes

passenger_quantity transmission_type [standard, automatic]

cost door_quantity
miles_per_gallon
Figure 6: Example of inheritance.
class house class wall class door class room
attributes attributes attributes attributes
door front_door area material area
wall front_wall " material
room den

Figure 7: Example of aggregation/disaggregation.

3 Classic AI Example

One of the classic problems in artificial intelligence (AI) is the blocks world [6] [7] [9). The blocks
world comes from a set of problems with limited and focused domains of knowledge known as
microworlds [7]. These problems appear to need intelligence to solve them. The blocks world
problem involves a number of blocks on a table and a robot arm that can pick up a single block at
a time. Tasks in the blocks world involve the robot arm manipulating the blocks into a particular
arrangement such as a stack of blocks. The blocks world has often been used to discuss planning
and goal-oriented Al approaches.

The blocks world problem has many different versions but they all do basically the same thing.
Sometimes the constraints differ like the number of blocks that may be stacked atop one another.
Knowledge about the blocks world is typically represented using predicate calculus. The blocks
are represented by constants. Conditions or state information about the blocks are represented as
predicates for example, on and clear. Then there are actions, for example move, which are also
represented by predicates. Although it is a simple knowledge domain, the blocks world contains
enough parts and pieces to exercise this object-based methodology. In the following sections the
representation of the blocks world is described using the object-based methodology.

3.1 Class Definitions

There are three classes which must be defined for the blocks world. They are the class table, class
block, and class robot arm. The class table is simple because it contains no attributes or methods.
While it is true a table can have many attributes similar to those of the desk and chair previously
described, in the blocks world the table is merely a physical object where the blocks may be located.

Any knowledge beyond this is outside the scope of the problem. Figure 8 shows the definition of
the class table with the perspective named stacking for the blocks world problem.

class table class block
perspective stacking attributes
iD perspective stacking
location [table, an ID] perspective stacking

covered [NULL, an ID] perspective stacking

methods
pickup perspective stacking
putdown (locale) perspective stacking

Figure 8: Definition of the classes table and block.

The class block is more interesting than the class table. The class block has three attributes which
are an identification (ID), a location, and a covered (or not) indicator. Although each instance of a
class block has a unique name, the ID attribute is available for the methods. The value of a location
attribute may be the table or the ID of another block (to indicate stacking of a block) or the robot
arm. The value of the covered attribute may be null or the ID of another block. Null indicates
there is nothing atop (covering) this block and an ID indicates which block is atop this block. All
the attributes of class block belong to the perspective named general. Figure 8 shows the definition
of the class block.

The methods of the class block are the operations that may be performed on an instance of the
class. There are two methods, pickup and putdown. The pickup method allows this block (a
particular instance) to be picked up by an agent object (in this case the robot arm). The putdown
method allows the block to be put down at some location, hence an argument in the method is
necessary and may have the value table or an ID. Both these methods belong to the perspective
named general. The actual content of a method, that is how a method does what it does, can be
represented in a number of ways. It may be represented with rules, pseudocode, or even a program.
The representation of the method content depends on the end application of the knowledge. Figure 9
shows a pseudocode representation of the content of the methods pickup and putdown.

The class robot arm is the only agent class in the blocks world. Table and block are non-agent
classes. The class robot arm has only one attribute which is named holding. The holding attribute
indicates whether the robot arm is holding a block or not, and if so, the ID of which block it
is holding. There are no methods for the class robot arm. Since robot arm is an agent, it has
a perspective of the rest of the domain. Figure 10 shows the definition of the class robot arm.
The name of the perspective follows the keyword perspective. In this case the perspective name
is stacking since the typical blocks world problem is about stacking the blocks. A brief definition
describes the perspective and follows the keyword definition. After the keyword classes follows a
list of the classes pertinent to this perspective. Objects of these classes are within the perspective
(or view) of the robot arm agent object instantiated from the class robot arm. The class definitions
(of the listed classes) can then be inspected to see which attributes and methods are grouped to

method pickup method putdown

IF robot_arm.holding is NULL THEN IF robot_arm_.holding !NULL THEN
IF covered is NULL THEN IF locale = an ID THEN
location := robot_arm IF locale.location = an ID THEN
robot_arm.holding := ID error “stack too high”
ELSE ELSE
error "biock covered” location := locale
ELSE robot_arm.holding := NULL
efror "arm is holding” ELSE

location := locale
robot_arm.holding := NULL
ELSE
error "not holding block®

Figure 9: Examples of method contents.

the perspective named stacking (see Figure 8 for the class block definition).

class robot_arm

attributes
holding [NULL, an ID]

perspective stacking
definition

the typical view of the blocks worid
classes

table
block

Figure 10: Definition of the class robot arm.

It can be argued that the methods pickup and putdown belong to the robot arm and not the block.
It makes sense that the robot arm actually exercises the actions of picking up and putting down
blocks. So, why does the class block have these methods? After trying both ways (with more than
the blocks world example) a decision was made to think of methods as operations on an object and
therefore contain them within the operated-on object. Also, this seems to lead to a cleaner way of
constraining allowable interactions between objects. The truth is methods can be represented in
either place, but it is important to pick and use one or the other and not both.

3.2 Domain Definition and Events

Now that the available resources are defined, a particular domain for the blocks world can be created.
In this domain there is the table, robot arm, and four blocks. Figure 11 shows the definition of the
domain blocks world one. The table object is named tablel. The robot arm object is named robot
arml and the keyword with indicates the perspective that this particular instance of robot arm is

using. In this case the perspective is stacking. The four block objects are named blockA, blockB,
blockC, and blockD.

domain blocks_world_one

table table1

robot_arm robot_arm1 with stacking
block blockA

block blockB

block blockC

block blockD

Figure 11: Definition of the domain blocks world one.

Some example events for the blocks world are shown in Figure 12. The first event, event one,
illustrates that blockA is picked up by the robot arm. The second event, event two, illustrates
that blockA is putdown on top of blockB by the robot arm. What is interesting about the event
construct is that it can be used to draw inferences. Given two of either the before state, method,
or after state, the third may be inferred with the help of class definitions and method contents.
For example, suppose the method pickup had not been identified in event one of Figure 12. By
looking at the change in values of blockA’s location and the robot arm’s holding indicator and the
method contents, it can be inferred that the pickup operation was executed. It may also be possible
to make inferences by including the agent, that is, given any two of the four event parts, infer the
other two.

event event_one event event_two
before state before state
blockA.location = table1 biockA location = robot_arm1
robot_arm1.holding = NULL robot_arm1.holding = blockA
method blockB.covered = NULL
blockA->pickup method
after state blockA->putdown(blockB)
. after state
blockA Jocation = robot_arm 1 blockA location = blockB
robot_arm1.holding = blockA robot_arm1.holding = NULL
agent blockB.covered = blockA
robot_arm1 agent
robot_arm1

Figure 12: Two events taking place in blocks world one.

3.3 Another Perspective

Suppose that the blocks world is viewed from another perspective. Suppose that it is not an exercise
in stacking blocks but an exercise in putting blocks next to one another, as if they are alphabet
blocks for teaching a child to spell. This perspective requires a different group of attributes and
methods for the class block. Figure 13 shows the class block with the newly added perspective

10

named spelling. Note that knowledge to actually spell is not represented. The attributes grouped
in the perspective spelling are ID, rightside, and leftside. Rightside indicates which block (if any)
is on the right and leftside indicates which block (if any) is on the left, hence the possible values of
null or an ID.

class Dblock
attributes
ID perspective stacking, spelling
location [table, an ID] perspective stacking
covered [NULL, an ID] perspective stacking
rightside [NULL, an ID] perspective spelling
leftside [NULL, an ID] perspective spelling
methods
pickup : perspective stacking, spelling
putdown (locale) perspective stacking

putbeside (NULL | an ID, side) perspective spelling

Figure 13: The class block with the two perspectives stacking and spelling.

The methods grouped in the perspective spelling are pickup and putbeside. The method putbeside
can have an argument of null or two arguments identifying a block and a block’s side. A null
argument essentially means the block is put down on the table away from other blocks. The two
argument pair, a block ID and the left or right side, identifies which block on the table to put
the block in the robot arm beside. Note that a method content for putbeside is not shown. The
attribute ID and method pickup are shared with the perspective named stacking and are therefore
the same.

With the new perspective the class robot arm also changes. The perspective named spelling must be
added to the class robot arm by listing a definition and the classes associated with the perspective.
Figure 14 shows the class robot arm with the added perspective. Adding this new perspective to
the current knowledge also illustrates how simple it is to extend the knowledge domain using this
methodology. A domain definition will be the same as shown in Figure 11 except that the instance
of robot arm will with the perspective named spelling.

class robot_arm
attributes
holding [NULL, an ID]

perspective stacking perspective spelling
definition definition
the typical view of the blocks world setting blocks side by side for spelling
classes classes
table table
block block

Figure 14: The class robot arm with the two perspectives stacking and spelling.

11

The representation of multiple perspectives may allow for additional reasoning over the domain.
Different perspectives on the same object and the same perspective on different objects may initiate
some useful comparisons and contrasts. Gentner [5] describes domain comparisons including literal
similarity, analogy, and abstraction which are derived from the mapping of objects, ob ject attributes,
and relations between objects. Consider the two different perspectives presented for the blocks
world. These are two different views of the same set of objects. Are they really so different? The
general perspective sees stacks of blocks and the spelling perspective sees lines of blocks side by
side. If a stack of blocks is laid down on the table then it will look like a line of blocks side by side.

This is an important observation and a type of observation or inference that may be facilitated by
perspectives.

4 Conclusions

This object-based methodology is a structured, yet flexible means of representing knowledge. Only
the knowledge that is pertinent and necessary to a problem or application area need be represented.
Should the needs change, the knowledge is easily extended by changing and/or extending the classes
and/or adding new classes to the domain. The notion of containing knowledge in classes allows
knowledge to be shared and re-used. Class libraries of common knowledge may be created and
distributed. The use of perspectives also adds to the extensibility and detail of the knowledge.
Perspective may also facilitate new lines of reasoning over the domain of knowledge. The use of
events allows for representing knowledge use along side of knowledge containment and facilitates
another line of reasoning.

Initial work shows a large potential for this methodology. More research must be done to further un-
derstand and implement the potential reasoning mechanisms in this methodology. Other reasoning
based on inheritance and aggregation/disaggregation has not been mentioned, but holds potential
as well. This methodology needs to be more rigorously exercised to identify the types of knowledge
it may represent and the limits or bounds on that knowledge. Also, comparisons to other knowledge
representation schemes and systems must be made.

References
[1] Grady Booch. Object-Oriented Anaiysis and Design with Applications. Addison-Wesley Pub-
lishing Company, Menlo Park, CA, second edition, 1994.

[2] Alexander Borgida, John Mylopoulos, and Harry K. T. Wong. On Conceptual Modelling, chapter
4, Generalization/Specialization as a Basis for Software Specification, pages 84-114. Springer-
Verlag, New York, NY, 1984.

[3] Ronald J. Brachman and Hector J. Levesque. Readings In Knowledge Representation. Morgan
Kaufmann Publishers, Inc., Los Altos, CA, 1985.

12

[4] Peter Coad and Edward Yourdon. Object-Oriented Design. Yourdon Press, Englewood Cliffs,
NJ, 1991.

[5] Dedre Gentner. Readings in Cognitive Science A Perspective from Psychology and Artificial
Intelligence, chapter 3.2, Structure-Mapping: A Theoretical Framework for Analogy, pages 303—
310. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1988.

[6] Elaine Rich and Kevin Knight. Artificial Intelligence. McGraw-Hill, Inc., New York, NY, second
edition, 1991.

[7] Stuart J. Russell and Peter Norvig. Artificial Intelligence A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ, 1995.

[8] Roger C. Schank and Robert P. Abelson. Scripts Plans Goals and Understanding An Inquiry
Into Human Knowledge Structures. Lawrence Erlbaum Associates, Publishers, Hillsdale, NJ,
1977.

[9] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley Publishing Company, Reading,
MA, second edition, 1984.

13

M37@A 7330
JE

Report Number (14, A {4 R--97-ISZ
CONE S T

Publ. Date (11) (4370Y]
Sponsor Code (18) _DAE /DP 4 XF
UC Category (19) (L C. — 705/; DOE JER

DOE

