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SUMMARY

S i t e  c h a r a c t e r i z a t i o n  i n v e s t i g a t i o n s  performed t o  d a t e  on t h e  West 

C h e s t n u t  Ridge S i t e  have i n c l u d e d  a geomorphic  a n a l y s i s ;  g e o l o g i c  

m a p p i n g ; s u r f i c i a l  s o i l  m app ing ;  s u b s u r f a c e  sampl ing  and t e s t i n g ;  p h y s i ­

ca l  , c h e m i c a l , and m i n e r a l o g i c  c h a r a c t e r i z a t i o n  of  s i t e  s o i l s ;  f i e l d  and 

1 a b o r a t o r y  g e o h y d r o l o g i c  t e s t i n g ;  g roundw a te r  f l u c t u a t i o n  m o n i t o r i n g ;  

and s u r f a c e  w a te r  d i s c h a r g e  and p r e c i p i t a t i o n  m o n i t o r i n g .

The West C h e s tn u t  Ridge S i t e  i s  t y p i c a l  o f  Knox t e r r a i n  t h r o u g h o u t  

t h e  C h e s t n u t  Ridge s t r i k e  b e l t .  B r o a d - c r e s t e d  r i d g e s  wi th  s t e e p  n o r t h ­

wes t  f l a n k s  and m o d e r a t e l y  s l o p i n g  s o u t h e a s t  f l a n k s  t y p i f y  Knox t e r r a i n .  

The r e l  i e f  o f  r i d g e  c r e s t s  above val l e y  f l o o r s  i s  a p p r o x i m a t e l y  100 m. 

The d r a i n a g e  p a t t e r n  on t h e  s i t e  i s  weakly  r e c t a n g u l a r .  F ive  k a r s t  

zones  have been i d e n t i f i e d  on t h e  s i t e ,  where k a r s t  zone deve lopm ent  i s  

a p p a r e n t l y  s t r a t i g r a p h i c a l l y  c o n t r o l l e d . K a r s t  zones in o t h e r  a r e a s  o f  

C h e s t n u t  Ridge occu r  in  s i m i l a r  s t r a t i g r a p h i c  i n t e r v a l s ,  s u g g e s t i n g  t h a t  

t h e  k a r s t  zones a r e  e i t h e r  d i s c o n t i n u o u s  or  a r e  no t  e x p r e s s e d  a t  t h e  

s u r f a c e  t h r o u g h o u t  t h e i r  f u l 1 e x t e n t .

G e o lo g ic  mapping of  t h e  s i t e  i s  based l a r g e l y  on t h e  i d e n t i f i c a t i o n  

o f  c h a r a c t e r i s t i c  1 i t h o l o g i e s  o f  s a n d s t o n e  and c h e r t  in  r e s i d u a l  s o i l , 

b e c au s e  t h e  e x t e n s i v e  w e a t h e r in g  and r e s i d u a l  s o i l  f o r m a t i o n  have 

c ove re d  most  bed rock  on t h e  s i t e .  One c r o s s c u t t i n g  s t r u c t u r a l  f e a t u r e  

has  been i d e n t i f i e d  by a e r i a l  p h o to g ra p h  i n t e r p r e t a t i o n  and s u r f i c i a l  

s o i l  m app ing .  T h i s  f e a t u r e  t r e n d s  n e a r  NIO'W and p a s s e s  t h ro u g h  t h e  

h e a d w a te r  c o n f l u e n c e  a r e a  o f  I sh  Creek .  Local bedding s t r i k e  and dip 

a r e  q u i t e  s i m i l a r  t o  t h e  r e g i o n a l  s t r u c t u r a l  t r e n d . Because o f  t h e  1ack 

o f  j o i n t  and f r a c t u r e  o r i e n t a t i o n  d a t a  about  t h e  b e d ro c k ,  a t e r r a i n  

a n a l y s i s  approach  t o  g e o l o g i c  s t r u c t u r a l  a n a l y s i s  was u s e d .  T h i s  a n a l y ­

s i s  conc luded  t h a t  t h e r e  may be fo u r  p rom inen t  f r a c t u r e  or  j o i n t  s e t s  

which have i n f l u e n c e d  g r o u n d w a te r  f low and t e r r a i n  e v o l u t i o n  in  t h e  

C h e s t n u t  Ridge s t r i k e  b e l t .

S u r f i c i a l  s o i l s  on t h e  s i t e  were mapped in s u p p o r t  of  t h e  s i t e  

c h a r a c t e r i z a t i o n .  So i l  t y p e s  on t h e  s i t e  a r e  p r e d o m i n a n t ly  P a l e u d u l t s ,  

though  minor  a r e a s  of  E n t i s o l s  and I n c e p t i s o l s  o c c u r . P a l e u d u l t s  a re  

s o i l s  which have d e ve lope d  over  long p e r i o d s  of  t i m e .  C o l l u v i a l  and 

e r o s i o n a l  p r o c e s s e s  a r e  l o c a l l y  a c t i v e .
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S u b s u r f a c e  i n v e s t i g a t i o n s  pe rfo rmed  on t h e  s i t e  i n c l u d e  s e i s m ic  

r e f r a c t i o n  s u r v e y s  t o  p r o f i l e  t h e  bed rock  s u r f a c e  i n  s e l e c t e d  a r e a s ,  

s o i l  d r i l 1 ing and s a m p l in g ,  and r o t a r y  d r i l 1 ing in b e d ro c k .  E l e c t ro m a g ­

n e t i c  t e r r a i n  c o n d u c t i v i t y  has  been used  in  s e l e c t e d  a r e a s  o f  t h e  s i t e  

t o  i d e n t i f y  g r o undw a te r  f low p a th w a y s . I n f o r m a t i o n  o b t a i n e d  from t h e  

s u b s u r f a c e  i n v e s t i g a t i o n s  has  been used t o  e v a l u a t e  s o i l  and bed ro c k  

c o n d i t i o n s  on t h e  s i t e .

A c o n c e p t u a l  model of  s u b s u r f a c e  c o n d i t i o n s  i n c l u d e s  r e s i d u a l  

s o i l s ,  w e a t h e r i n g  b e d ro c k ,  and unwea thered  bedrock  z o n e s .  The e x t e n ­

s i v e l y  l e a c h e d  r e s i d u a l  s o i l s  o v e r l i e  t h e  zone of  w e a t h e r i n g  c a r b o n a t e  

b e d r o c k .  The w e a t h e r in g  bed rock  zone r a n g e s  from <1 t o  >30 m t h i c k  and 

i s  a zone o f  mixed w e a t h e r in g  c a r b o n a t e  b o u l d e r s  and p i n n a c l e s ,  and of  

s o l u t i o n  c a v i t i e s  v a r i a b l y  f i l l e d  w i th  w a t e r , mud, and g r a v e l . At 

d e p t h ,  t h e  s o u t h e a s t  d i p p in g  bedrock  i s  e s s e n t i a l  l y  unwea thered  e x c e p t  

a long  bedd ing  p l a n e s  and open f r a c t u r e s .  Based on i n f o r m a t i o n  o b t a i n e d  

t o  d a t e ,  t h e  C he p u l t e p e e  Do lom i te  i s  a s s o c i a t e d  w i th  t h e  d e e p e s t  

w e a t h e r i n g  zones in b e d r o c k .

R e s id u a l  s o i l s  on t h e  West C h e s t n u t  Ridge S i t e  a r e  p r e d o m i n a n t l y  

c l  ays of  low t o  h igh  p l a s t i c i t y  w i th  v a r y i n g  amounts o f  s i l t ,  f i n e  s a n d ,  

and c h e r t  g r a v e l  p r e s e n t .  So i l  s t r e n g t h  i s  i n v e r s e l y  p r o p o r t i o n a l  t o  

t h e  1 i q u i d i t y  index  of  t h e  s o i l s  and t y p i c a l l y  d e c r e a s e s  w i th  de p th  as  

m o i s t u r e  c o n t e n t  i n c r e a s e s .  S i t e  s o i l s  have v e r y  s t r o n g  m o i s t u r e - r e t e n -  

t i o n  c h a r a c t e r i s t i c s ,  and even d u r i n g  1 a t e  summer and autumn t h e  s a t u r a ­

t i o n  i n d i c e s  a r e  g e n e r a l l y  >90% below d e p t h s  of  3 m.

R e s id u a l  s o i l s  on t h e  s i t e  a r e  s i i g h t l y  a c id  and v e r y  weak ly  

b u f f e r e d . Chemical  a n a l y s e s  of  n a t u r a l  and s y n t h e t i c  s o i l  w a t e r s  i n d i ­

c a t e  t h a t  t h e  s o i l s  have been e x t e n s i v e l y  l e a c h e d  and t h a t  v e r y  few 

s o l u b l e  i ons  r e m a in .  An i n t e r e s t i n g  a s p e c t  of  s i t e  s o i l s  i s  t h a t  t h e y  

c o n t a i n  v e r y  1 i t t l e  c a r b o n a t e  above t h e  w e a t h e r i n g  be d ro c k  zone .

S u r f a c e  w a t e r s  which show t h e  i n f l u e n c e  of  t h e  bedrock  a q u i f e r  have a 

n e a r l y  n e u t r a l  pH and c o n t a i n  more d i s s o l v e d  c a r b o n a t e  t h a n  s o i l  w a t e r . 

Water  in  h e a d w a te r  r e a c h e s ,  which t end  t o  be w e tw e a th e r  s t r e a m s ,  a re  

c h e m i c a l l y  s i m i l a r  t o  s o i l  w a t e r .  F a v o r a b l e  s o r p t i o n  r a t i o s  a r e  

o b t a i n e d  f o r  c o b a l t ,  c e s iu m ,  s t r o n t i u m ,  t h o r i u m ,  e u ro p iu m ,  and u ran ium .  

S o r p t i o n  r a t i o s  <1 were o b t a i n e d  f o r  i o d i n e  and t e c h n e t i u m .
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M i n e r a l o g i c a l  l y ,  t h e  s u r f a c e  s o i l s  a r e  more complex th a n  t h e  r e s i ­

duum o b t a i n e d  from d e p t h s  >10 m. S u r f i c i a l  s o i l s  c o n t a i n  k a o l i n i t e ,  

i l l i t e ,  v e r m i c u l i t e ,  an a luminum -hydroxy  i n t e r l a y e r e d  v e r m i c u l i t e ,  

g i b b s i t e ,  q u a r t z ,  and i r o n  o x i d e s ,  i n c l u d i n g  t h e  m agne t ic  s p e c i e s  

m aghem ite .  By c o m p a r i s o n ,  t h e  samples  o b t a i n e d  from d e p th s  >10 m 

c o n t a i n e d  k a o l i n i t e ,  i l l i t e ,  v e r m i c u l i t e ,  q u a r t z ,  and amorphous i r o n  and 

aluminum o x i d e s .  The p r e s e n c e  of  al uminum-hydroxy i n t e r l a y e r e d  ve rm icu-  

1 i t e  in  t h e  s u r f i c i a l  s o i l s  i s  a t t r i b u t e d  t o  p ro lo nged  w e a t h e r i n g .

A c t i v e  s o i l  p r o c e s s e s  i n c l u d e  col 1u v i a l  and a l 1u v ia l  p r o c e s s e s ,  

s u r f a c e  e r o s i o n ,  c o n t i n u i n g  res iduum f o r m a t i o n  by bedrock  w e a t h e r i n g ,  

and k a r s t - r e l a t e d  s o i l  movement.  E s t i m a t e s  of  e r o s i o n  based on t h e  

u n i v e r s a l  s o i l  l o s s  e q u a t i o n  a r e  p r e s e n t e d .

F i e l d  g e o h y d r o l o g i c  t e s t i n g  i n c l u d e d  per fo rmance  of  f a l 1 ing head 

p e r m e a b i l i t y  t e s t s  in  s o i l , p a c k e r  p e r m e a b i l i t y  t e s t s  in  b e d r o c k ,  and 

one a q u i f e r  pump t e s t  in  t h e  w e a th e re d  bedrock  zone .  The range  of 

p e r m e a b i l i t y  v a l u e s  o b t a i n e d  encompasses  f o u r  o r d e r s  of  m a g n i tu d e .  The 

mean p e r m e a b i l i t y  of  t h e  s o i l s  i s  a p p r o x i m a t e l y  10~6  c m / s .  The bedrock  

and w e a th e r e d  bed rock  zones w i th  m e a s u r a b l e  p e r m e a b i l i t i e s  have mean 

p e r m e a b i l i t i e s  on t h e  o r d e r  of  1 0 "'^ c m / s .

Groundwate r  f l u c t u a t i o n s  in  o b s e r v a t i o n  w e l l s  in  s o i l  and bed rock  

were m o n i to re d  b e g in n i n g  in  O c tobe r  1983 .  Responses  t o  l a r g e  s to rm s  

occu r  w i t h i n  1 t o  5 days in most  w e l l s .  Maximum well  f l u c t u a t i o n s  

v a r i e d  from <1 m t o  as much as 15 m. Groundwater  g r a d i e n t s  i n d i c a t e  

f low  toward  t h e  n e a r e s t  p e r e n n i a l  s u r f a c e  w a te r  b o d i e s .  A dye t r a c e r  

t e s t  was pe rfo rmed  in one k a r s t  f low  sys tem on t h e  s i t e .  The e s t i m a t e d  

f low  r a t e  in t h e  sys tem t e s t e d  was 240 t o  380 m/d and d i s c h a r g e  was 

d e t e c t e d  in  a s u r f a c e  s t r eam  n e a r  t h e  C l inch  R i v e r .  S u b s u r f a c e  f low 

p a t h s  d i r e c t l y  t o  t h e  Cl inch R iv e r  may e x i s t .

S u r f a c e  w a t e r  f low  m o n i t o r i n g  s u g g e s t s  t h a t  s i g n i f i c a n t  s u b s u r f a c e  

f low  o c c u r s  a t  some of  t h e  f low  m o n i t o r i n g  p o i n t s .  Low f low and peak 

f low  m easu rem en ts  have been o b t a i n e d  and f l  ow r a t i n g  c u rv e s  have been 

d e v e lo p e d  f o r  each m o n i t o r i n g  s t a t i o n . P r e c i p i t a t i o n  d a t a  f o r  t h e  s i t e  

a r e  v e r y  s i m i l a r  to  t h o s e  o b t a i n e d  a t  t h e  Wal k e r  Branch W a te r s h e d . A 

w a te r  bud g e t  e s t i m a t e  s u g g e s t s  t h a t  t h e  Ish Creek downstream m o n i t o r i n g  

s t a t i o n  does no t  l o s e  s i g n i f i c a n t  f low  to  deep g roundwa te r  f l  ow or  to
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i n t e r b a s i n  f l o w .  S u b s t a n t i a l  s u r f a c e  f low  l o s s e s  t o  t h e  g roundw a te r  

systOT a ppe a r  t o  occu r  a t  s u r f a c e  w a te r  m o n i t o r i n g  s t a t i o n s  i n  two o t h e r  

s m a l l e r  d r a i n a g e s .



ABSTRACT

T h is  r e p o r t  summarizes  t h e  r e s u l t s  o f  i n v e s t i g a t i o n s  pe rfo rmed  t o  

d a t e  on t h e  West C h e s tn u t  Ridge  S i t e ,  on t h e  Depar tm ent  of  Energy (DOE) 

Oak Ridge R e s e r v a t i o n .  The i n v e s t i g a t i o n s  performed i n c l u d e  geomorphic  

o b s e r v a t i o n s ,  a r e a l  g e o l o g i c  m app ing , s u r f i c i a l  s o i l  mapp ing,  s u b s u r f a c e  

i n v e s t i g a t i o n s ,  s o i l  geochemica l  and m i n e r a l o g i c a l  anal  y s e s ,  g e o h y d r o l o ­

g i c  t e s t i n g ,  g ro u n d w a te r  f l u c t u a t i o n  m o n i t o r i n g ,  and s u r f a c e  w a te r  

d i s c h a r g e  and p r e c i p i t a t i o n  m o n i t o r i n g .
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1 . INTRODUCTION

This  r e p o r t  p r e s e n t s  r e s u l t s  and an i n t e r p r e t a t i o n  of  e x t e n s i v e  

i n v e s t i g a t i o n s  t h a t  have been performed on t h e  West C h e s tn u t  Ridge S i t e .  

The s i t e  i s  under  s t u d y  f o r  deve lopm en t  of  a c e n t r a l i z e d  l o w - l e v e l  

r a d i o a c t i v e  w a s te  d i s p o s a l  s i t e  t o  a c c e p t  w a s te s  from t h e  t h r e e  

Depa r tment  of  Ene rgy (DOE) f a c i l i t i e s  l o c a t e d  on t h e  DOE Oak Ridge 

R e s e r v a t i o n  (ORR).

The p u rpose  of  t h i s  r e p o r t  i s  to  summarize and i n t e g r a t e  t h e  

r e s u l t s  of  a m u l t i f a c e t e d  s i t e  i n v e s t i g a t i o n  which i n c l u d e s  a r e a l  g e o l o ­

gy and geomorphology ,  s o i l  and bedrock  i n v e s t i g a t i o n s ,  geochemica l  and 

m i n e r a l o g i c a l  a s p e c t s  o f  s i t e  s o i l s ,  and s u r f a c e  w a te r  and g roundw a te r  

f l  ow s t u d i e s .  The o b j e c t i v e  o f  t h i s  r e p o r t  i s  to  p r e s e n t  a s y n t h e s i s  of 

t h e  a v a i l  a b l e  i n f o r m a t i o n  r e g a r d i n g  t h e  s i t e  t o  p r o v id e  an u n d e r s t a n d i n g  

o f  t h e  o v e r a l 1 s i t e  g e o l o g i c  and g e o h y d ro l o g i c  s y s te m s .  For  t h i s  

r e a s o n ,  t h e  most  s i g n i f i c a n t  a s p e c t s  of  t h e  ongoing s i t e  i n v e s t i g a t i o n s  

a r e  h i g h l i g h t e d  in  t h i s  document .

The s i t e  i n v e s t i g a t i o n s  were i n i t i a t e d  in  1980 w i t h  s e l e c t i o n  of  

t h e  s i t e  in a r e s e r v a t i o n  wide s i t e  s u r v e y  ( A l le n  e t  a l . 1980;  Lee e t  

a l . 1 9 8 3 ) .  In t h e  1980 s u r v e y ,  10 e x p l o r a t o r y  b o r i n g s  were made and a 

15-cm ( 6 - i n .) o b s e r v a t i o n  wel l  was i n s t a l l e d  in each b o r e h o l e .  In 1982 

a d d i t i o n a l  p r e l i m i n a r y  g e o l o g i c  i n v e s t i g a t i o n s ,  i n c l u d i n g  a r e a l  g e o lo g i c  

mapping of  t h e  s i t e  and a p r e l i m i n a r y  s e i s m ic  r e f r a c t i o n  s u r v e y ,  were 

c o m p l e t e d . Temporary s u r f a c e  w a te r  d i s c h a r g e  m o n i t o r i n g  s t a t i o n s  were 

i n s t a l l e d ,  and s t r e a m  d i s c h a r g e  measurement  was i n i t i a t e d .

In 1983 a d d i t i o n a l  s i t e  c h a r a c t e r i z a t i o n  i n v e s t i g a t i o n s  were 

p e r f o r m e d ,  i n c l u d i n g

0 s u b s u r f a c e  i n v e s t i g a t i o n s ,  s o i l  t e s t i n g ,  f i e l d  h y d r o l o g i c  

t e s t i n g ,  and o b s e r v a t i o n  wel l  i n s t a l l a t i o n  by Woodward-Clyde 

C o n s u l t a n t s  ( 1 9 8 4 ) ;

0 s e i s m i c  p r o f i l i n g  of  t h e  bedrock  s u r f a c e  by t h e  Tennessee  

V a l l e y  A u t h o r i t y  (S ta u b  and Hopkins 1984) ;

0 geochemica l  s t u d i e s  of  s i t e  s o i l s  to  d e t e r m i n e  r a d i o n u c l i d e  

a d s o r p t i o n  p r o p e r t i e s  ( S e e l e y  and Kelmers 1 9 8 4 ) ;  and

0  i n s t a l l a t i o n  and c a l i b r a t i o n  of  permanent  s u r f a c e  w a te r  

d i s c h a r g e  m o n i t o r i n g  f a c i l i t i e s .
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In 1984 s i t e  c h a r a c t e r i z a t i o n  a c t i v i t i e s  have c o n t i n u e d ,  i n c l u d i n g  

0  a c q u i s i t i o n  o f  s u r f a c e  w a te r  d i s c h a r g e  d a t a ,

0  a c q u i s i t i o n  o f  w a te r  l e v e l  f l u c t u a t i o n  d a t a  in m o n i t o r i n g  w e l l s ,

0  m i n e r a l o g i c  c h a r a c t e r i z a t i o n  o f  s i t e  s o i l s ,

0  t r a c e r  t e s t i n g  o f  g r oundw a te r  f l o w ,  and

0  a q u i s i t i o n  and i n t e r p r e t a t i o n  of  a e r i a l  the rm al  s e n s i n g  d a t a .

A d d i t i o n a l  a c t i v i t i e s  t h a t  a r e  s c h ed u le d  f o r  1984 i n c l u d e  

i n i t i a t i o n  o f  b a s e l i n e  w a t e r  q u a l i t y  a n a l y s e s  and c o m p le t io n  o f  s e v e r a l  

deep  bedrock  e x p l o r a t o r y  b o r i n g s .  R e s u l t s  of  t h e s e  i n v e s t i g a t i o n s  w i l l  

be r e p o r t e d  a t  a 1 a t e r  d a t e .



2.  TOPOGRAPHY, PHYSIOGRAPHY, AND GEOMORPHOLOGY OF THE SITE

The West C h e s t n u t  Ridge S i t e  i s  l o c a t e d  nea r  t h e  s o u th w e s t  end o f  

t h e  DOE ORR. The s i t e  i s  g e n e r a l l y  bounded to  t h e  e a s t  by Tennessee  

Highway 95 ,  t o  t h e  n o r t h  by Bear  Creek V a l l e y  Road,  and t o  t h e  sou th  and 

w es t  by New Zion P a t r o l  Road,  which i s  a r e s t r i c t e d - a c c e s s  DOE p a t r o l  

r o a d .  Th is  s e c t i o n  p r e s e n t s  d i s c u s s i o n  of  s i t e  t o p o g r a p h y ,  p h y s i o g r a p h y ,  

and geomorphology.

2 .1  SITE TOPOGRAPHY

The West C h e s tn u t  Ridge S i t e  o c c u p ie s  upland t e r r a i n  on C hes tnu t  

R id g e .  The g e n e r a l  s i t e  l o c a t i o n  i s  shown in F i g .  2 . 1 .  A t o p o g r a p h i c  

map of  t h e  s i t e  i s  shown in  F i g . 2 . 2 .  The s i t e  a r e a  encompasses  appro­

x i m a t e l y  460 ha (1150 a c r e s ) . Not a l l  o f  t h e  s i t e  i s  u s a b l e  f o r  was te  

d i s p o s a l  b e c a u s e  of  t o p o g r a p h i c  c o n s t r a i n t s ,  g roundw a te r  c o n d i t i o n s ,  and 

t h i n  s o i l s  i n  p o r t i o n s  of  t h e  s i t e .  A pp ro x im a te ly  60 ha (150  a c r e s )  a r e  

u nde r  s tu d y  f o r  use as  d i s p o s a l  a r e a .  C h e s tn u t  Ridge i s  a com pos i te  

f e a t u r e  t h a t  t y p i c a l l y  i n c l u d e s  t h r e e  d i s c o n t i n u o u s  r i d g e  1 i n e s :  t h e  

n o r th w e s t e r n n i o s t  i s  t h e  h i g h e s t  w i th  c r e s t  e l e v a t i o n s  of  a p p r o x i m a t e ly  

320 m (1050 f t ) , t h e  c e n t r a l  r i d g e  1 in e  i s  o f  i n t e r m e d i a t e  c r e s t  h e i g h t  

[285  m (940 f t ) ] ,  and t h e  s o u t h e a s t e r n m o s t  and l o w e s t  of  t h e  t h r e e  r i d g e  

1 i n e s  t y p i c a l l y  has c r e s t  e l e v a t i o n s  o f  a p p r o x i m a t e l y  280 m (920 f t ) . 

Major  v a l l e y s  t h a t  c a r r y  p e r e n n i a l  s u r f a c e  s t r e a m s  d r a i n i n g  C h e s tn u t  

Ridge o c c u r  t o  t h e  n o r t h  (Bear  Creek V a l le y )  and s o u th  ( B e th e l  V a l l e y ) . 

E l e v a t i o n s  f o r  t h e  m ajo r  val  l e y s  in  t h e  s i t e  v i c i n i t y  a re  a p p r o x i m a t e ly  

245 m (800 f t ) . T y p ic a l  r e l i e f  between  v a l 1ey f l o o r s  and t h e  c r e s t  o f  

C h e s t n u t  Ridge i s  a p p r o x i m a t e l y  100 m (300 f t ) .

S u r f a c e  r u n o f f  f rom t h e  West C h e s tn u t  Ridge S i t e  d r a i n s  p r i m a r i l y  

i n t o  I s h  Creek and an unnamed ephemeral  s t r e a m .  S m a l l e r  p o r t i o n s  of  the  

s i t e  r u n o f f  e n t e r  Raccoon Creek t o  t h e  s o u t h ,  and Grassy  Creek and Bear  

Creek t o  t h e  n o r t h . The s u r f a c e  d r a i n a g e  sys tem on t h e  s i t e  i s  a weakly 

d e v e lo p e d  t r e l l i s  d r a i n a g e  p a t t e r n  t y p i c a l  of  s u r f a c e  d r a i n a g e  p a t t e r n s  

in  a r e a s  u n d e r l a i n  by d i p p i n g  bedrock  s t r a t a  of  a l t e r n a t i n g  l i t h o l o g i e s  

hav ing  v a r i a b l e  r e s i s t a n c e  t o  w e a t h e r i n g .  I n t e r n a l  d r a i n a g e  v i a  k a r s t



O R N L -D W G  82-12547R 3

C A R L  -  C O M P A R A T I V E  A N I MA L  
R E S E A R C H  
L A B O R A T O R Y  

EG CR -  E X P E R I M E N T A L  GAS-  
C O O L E D  R E A C T O R  

Q R G D P  -  O A K  R I D GE  G A S E O U S  
D I F F U S I O N  P L A N T  

O R N L  ~  O AK  RI DGE N A T I O N A L  
L A B O R A T O R Y  

TS F  -  T O WE R  S HI E L D I N G  
F ACI L I TY

C l i n t o n

S p r i n g s

R I D G E

P E L L I S S I P P I
P A R K W A Y K N O X V I L L E

H a r n m a n

K i n g s t o n

L e n o i r  C i t y

To Olivof Sp rings

To K tngsion

I D G E

CARL
StMm Plant

PRIMARY HIGHWAYS AND ROADS 
PATROL ROADS

To Knoxviilo

K I L O M E T E R S

F i g .  2 . 1 .  L o c a t i o n  o f  t h e  West C h e s t n u t  Ridge S i t e .



ORNLDWG 84-10359

BEAR CREEK ROAD

BEAR CREEK ROAD

CAGtE J R O a o
1050

NORTH

^ R O t ^ROAO

m

F i g .  2 . 2 .  Topography o f  t h e  West C h e s t n u t  Ridge  S i t e ,



f e a t u r e s  o c c u r s  in s e v e r a l  zones on t h e  s i t e .  The d i s t r i b u t i o n  of  k a r s t  

zones i s  d i s c u s s e d  in a 1 a t e r  s e c t i o n .

S lope  a n g le s  on t h e  s i t e  a re  v a r i a b l e ,  r a n g i n g  from a few p e r c e n t  

to  more t h a n  40%, Areas  under  i n v e s t i g a t i o n  f o r  use  in  w a s te  d i s p o s a l  

o p e r a t i o n s  have s l o p e s  of l e s s  t h a n  15%. A t o p o g r a p h i c  p r o f i l e  th ro u g h  

t h e  s i t e  ( F i g .  2 . 3 )  shows t h a t  t h e  i n d i v i d u a l  r i d g e  1 i n e s  which make up 

C h e s t n u t  Ridge have asym m etr ica l  geom et ry .  The n o r t h w e s t - f a c i n g  s l o p e s  

o f  t h e  n o r t h e r n  and m id d le  r i d g e  1 i n e s  a r e  s t e e p  ( s l o p e s  r an g e  from 20 

t o  40%) w h i l e  t h e  s o u t h e a s t  f a c i n g  s l o p e s  a re  g e n t l e r  ( s l o p e s  r an g in g  

from <15 t o  abou t  20%). Ridge c r e s t s  t e n d  to  be b road  and g e n t l y  

s l o p i n g . The s o u t h e r n  r i d g e  1 ine  shows a r e v e r s a l  o f  t h i s  t r e n d , wi th  

t h e  s o u t h e a s t - f a c i n g  s l o p e  on t h i s  r i d g e  be ing  t h e  s t e e p e r  s l o p e .

2 .2  PHYSIOGRAPHY AND GEOMORPHOLOGY

The ORR is  l o c a t e d  w i t h i n  t h e  A ppa lach ian  High land  P h y s i o g r a p h i c  

D i v i s i o n  o f  t h e  e a s t e r n  U n i t ed  S t a t e s .  With in t h e  d i v i s i o n ,  a r e a s  o f  

d i s t i n c t i v e  bed rock  l i t h o l o g y ,  s t r a t i g r a p h y ,  g e o l o g i c  s t r u c t u r e ,  and 

geomorph ic  h i s t o r y  a r e  d i v i d e d  i n t o  p h y s i o g r a p h i c  p r o v i n c e s .  A p h y s i o ­

g r a p h i c  map of  T e n n e s se e  i s  shown in  F i g . 2 . 4 .  The s i t e  i s  l o c a t e d  in 

t h e  w e s t e r n  p o r t i o n  of  t h e  V a l l e y  and Ridge  P h y s i o g r a p h i c  P r o v i n c e .  The 

Val l e y  and Ridge  P r o v i n c e  i s  c h a r a c t e r i z e d  by a l t e r n a t i n g  v a l l e y s  and 

r i d g e s  t h a t  have been formed by t h e  combined i n f l u e n c e s  of  t h e  r e g i o n a l  

g e o l o g i c  s t r u c t u r e  and w e a t h e r i n g  and e r o s i o n a l  p r o c e s s e s .

The West C h e s t n u t  Ridge S i t e  o c c u p i e s  an up land  r i d g e  a r e a  u n d e r ­

l a i n  by s o u t h e a s t e r l y  d i p p i n g  c a r b o n a t e  b e d roc k .  As d i s c u s s e d  in  S e c t .

2 . 1 ,  C h e s tn u t  Ridge t y p i c a l l y  c o n s i s t s  of  t h r e e  d i s c o n t i n u o u s  r i d g e  

1 i n e s  s e p a r a t e d  by v a l l e y s  c o n t a i n i n g  t h e  l o ca l  s u r f a c e  d r a i n a g e  system 

of  f i r s t - o r d e r  and s e c o n d - o r d e r  s t r e a m s .

A c t iv e  geomorphic  p r o c e s s e s  which a re  o c c u r r i n g  on t h e  s i t e  i n c l u d e  

s h e e t  e r o s i o n ,  l o c a l i z e d  g u l l y  e r o s i o n ,  s o i l  c r e e p  on s t e e p e r  s l o p e s ,  

and s u b s i d e n c e  r e l a t e d  t o  d i s s o l u t i o n  of  t h e  c a r b o n a t e  bed rock  which i s  

l o c a l l y  accompanied by s u b s u r f a c e  s e d im e n t  t r a n s p o r t  t h r o u g h  open s o l u ­

t i o n  c a v i t i e s  n e a r  t h e  bed rock  s u r f a c e .  A map showing geomorphic  

f e a t u r e s  of  t h e  s i t e  i s p r e s e n t e d  in F i g .  2 . 5 .  The s u r f a c e  d r a i n a g e
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sys tem  f o r  t h e  s i t e  i s  shown, i n c l u d i n g  p e r e n n i a l  and ephemeral  or  wet 

s e ason  f low  c h a n n e l s .  Areas  in  which g u l l y  e r o s i o n  has  r e s u l t e d  i n  

i n c i s i o n  of  l o c a l  r u n o f f  c h a n n e l s  a r e  i n d i c a t e d  as  a r e  r e c o g n i z e d  

a l l u v i a l  and c o l l u v i a l  d e p o s i t s .  The l o c a t i o n  o f  k a r s t  f e a t u r e s  t h a t  

were o b se rve d  in  f i e l d  mapping a r e  i n d i c a t e d  and f i v e  zones of  k a r s t  

o c c u r r e n c e  a r e  i d e n t i f i e d .

S h e e t  e r o s i o n  r e s u l t s  in a g e n e ra l  low e r in g  o f  t h e  land  s u r f a c e  by 

t h e  g r a d u a l  removal o f  r e s i d u a l  s o i l  p a r t i c l e s  t h ro u g h  o v e r l a n d  f l o w .  

S i t e  s o i l s  a r e  wel l  d r a i n e d  and t y p i c a l l y  do not  e x h i b i t  s h e e t  r u n o f f  in 

t h e i r  n a t u r a l  c o n d i t i o n .  S hee t  r u n o f f  and s h e e t  and r i l l  e r o s i o n  a r e  

1 i k e l y  t o  occur  on s i t e  s o i l s  t h a t  a re  e x t e n s i v e l y  d i s t u r b e d  by t h e  

removal of  v e g e t a t i o n  and t o p s o i l . E r o s io n  r a t e  e s t i m a t e s  a r e  i n c l u d e d  

in  S e c t .  4 . 4 .

G u l l y  e r o s i o n  i s  caused  by c o n v e rg e n c e  of  r u n o f f  i n t o  r i l I s  on 

s u f f i c i e n t l y  s t e e p  s l o p e s  and has  o c c u r r e d  in  s e v e r a l  a r e a s  of  t h e  s i t e .  

Some g u l l y i n g  may be a t t r i b u t e d  t o  a g r i c u l t u r a l  p r a c t i c e s  in t h e  a r e a  

p r i o r  t o  government  o w n e r s h ip ,  a l t h o u g h ,  s e v e r a l  o f  t h e  ephemera l  r u n o f f  

channel  s occupy l a r g e  r a v i n e s  of  n a t u r a l  o r i g i n .  One gul l y  t h a t  c a r r i e s  

an ephemera l  s t r e a m  n e a r  New Zion Cemete ry has  d e p o s i t e d  i t s  s e d im e n t  

load  as an al 1u v i a l  f an  which s p r e a d s  a c r o s s  t h e  v a l l e y  b o t t o m .

I n c i s i o n  of  t h e  d e e p e r  d r y  v a l l e y s  may r e f l e c t  n a t u r a l  g u l l y  e r o s i o n  

c aused  by g r e a t e r - t h a n - p r e s e n t  p r e c i p i t a t i o n  d u r in g  p r e h i s t o r i c  c l i m a t i c  

v a r i a t i o n s .

K a r s t  f e a t u r e s  of  s e v e r a l  v a r i e t i e s  occur  on t h e  s i t e  in  f i v e  zones 

t h a t  g e n e r a l l y  p a r a l  l e i  t h e  l o c a l  and r e g i o n a l  g e o l o g i c  s t r i k e .  The 

c o r r e l a t  ion of  t h e s e  zones w i th  bed rock  g e o lo g y  i s  d i s c u s s e d  in  S e c t .

3 . 2 .  S o l u t i o n  pan f e a t u r e s  have been o b s e rv e d  in  s e v e r a l  a r e a s .

S o l u t i o n  pans a r e  g e n t l e  sunken a r e a s  which have l i t t l e  or  no a c t u a l  

t o p o g r a p h i c  c l o s u r e .  D o l in e s  a r e  t o p o g r a p h i c  d e p r e s s i o n s  which have 

d e f i n i t e  t o p o g r a p h i c  c l o s u r e .  S e ve ra l  t y p i c a l  d o l i n e s  occur  on t h e  

s i t e .  One o f  t h e  ephemera l  s u r f a c e  s t r e a m s  on t h e  s i t e  f lo w s  i n t o  a 

swal low h o l e  t h a t  i s  an open k a r s t  t h r o a t .  Seasona l  s u r f a c e  f lo w s  from 

t h i s  s t r e a m  a re  conduc ted  i n t o  t h e  g ro u n d w a te r  s y s t o n  t h ro u g h  t h i s  k a r s t  

f e a t u r e .  In a d d i t i o n  t o  t h e s e  t h r e e  c l a s s i c  t y p e s  of  k a r s t  f e a t u r e s ,  a 

f o u r t h  geomorphic  f e a t u r e  r e l a t e d  t o  k a r s t  p r o c e s s e s  has  been o b s e r v e d .



11

The n o r t h w e s t  f a c e  of  t h e  m idd le  r i d g e  l i n e  has deve loped  a hummocky 

s l o p e  s h a p e ,  p o s s i b l y  by t h e  r a v e l  1 ing o f  s o i l  i n t o  bed rock  c a v i t i e s .

An i n t e r e s t i n g  j u x t a p o s i t i o n  of  s e v e r a l  r i d g e  c r e s t  d o l i n e s  and s o l u t i o n  

pans w i th  g u l l y  e r o s i o n  f e a t u r e s  has been  o b s e r v e d .  L a t e r a l  s h a l l o w  

f lo w  in t h e  s o i l s  a p p a r e n t l y  al 1ows a p o r t i o n  of  t h e  w a te r  i n f i l t r a t i n g  

t h e  k a r s t  f e a t u r e s  t o  r eem erge  as  s u r f a c e  r u n o f f  nea r  t h e  heads o f  t h e  

g u l 1 i e s . The s i g n i f i c a n c e  of  t h e  k a r s t  zones to  s i t e  g e o h y d ro lo g y  i s  

d i s c u s s e d  in S e c t .  5 . 3 . 3 .

A e r i a l  p h o t o g ra p h s  from s e v e r a l  d a t e s  have been rev iewed  d u r in g  t h e  

s i t e  i n v e s t i g a t i o n s  t o  g a t h e r  i n f o r m a t i o n  on s i t e  g e o lo g y .  P h o t o l i n e a r  

f e a t u r e s  and p h o t o g e o l o g i c  i n f o r m a t i o n  a r e  p i o t t e d  on t h e  s i t e  t o p o ­

g r a p h i c  b a s e  map in F i g .  2 . 6 .  The pho to  f e a t u r e s  i n c l u d e  1 i n e a r  v e g e t a ­

t i o n  p a t t e r n s ,  v i s i b l e  1 i n e a r s ,  s o i l  t o n a l  p a t t e r n s ,  and s e v e r a l  

c r e s c e n t - s h a p e d  f e a t u r e s  which o c c u r  in  a k a r s t  zone and a r e  a s s o c i a t e d  

w i t h  s u b s i d e n c e  on s t e e p  s i  o p e s .
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3. GEOLOGY

T h i s  s e c t i o n  p r e s e n t s  g e o l o g i c  d a t a  and i n t e r p r e t a t i o n  of  s i t e  

c o n d i t i o n s  based  on t h e  a v a i l  a b l e  i n f o r m a t i o n .  The scope of  s i t e  i n v e s ­

t i g a t i o n s  which c o n t r i b u t e  t o  t h i s  s e c t i o n  i n c l u d e

0 g e o l o g i c  f i e l d  mapping of  t h e  s i t e ,

0 a p r e l i m i n a r y  s e i s m i c  r e f r a c t i o n  s t u d y ,

0 b ed rock  p r o f i l i n g  by s e i s m i c  r e f r a c t i o n ,  and 

0 s u b s u r f a c e  i n v e s t i g a t i o n s  by e x p l o r a t o r y  d r i l l i n g .

3 .1  REGIONAL GEOLOGIC SETTING

Bedrock u n d e r l y i n g  t h e  ORR i s  compr ised of i n t e r b e d d e d  c l a s t i c  and 

c a r b o n a t e  rock  u n i t s  o f  P a l e o z o i c  a g e .  A g e o l o g i c  map o f  t h e  r e s e r v a -  

t i o n  i s  shown in F i g .  3 . 1 .  The r e g i o n a l  s t r u c t u r e  i s  p redom ina ted  by an 

i m b r i c a t e  a r r a n g e m e n t  o f  t h r u s t  f a u l t s  which t r e n d  n o r t h e a s t  and d i p  

s o u t h e a s t .  In t h e  w e s t e r n  p o r t i o n  of  t h e  Val l e y  and Ridge P r o v i n c e  t h e  

Rome f o r m a t i o n  t y p i c a l l y  forms t h e  hang ing wal l  ( u p t h r u s t  b lock )  o f  t h e  

m ajo r  t h r u s t  s h e e t s .

A t y p i c a l  g e o l o g i c  c r o s s  s e c t i o n  showing th e  g e o l o g i c  s t r u c t u r e  on 

a n o r t h w e s t  t o  s o u t h e a s t  t r a n s e c t  a c r o s s  t h e  ORR i s  shown in F i g .  3 . 2 .  

The West C h e s tn u t  Ridge S i t e  i s  l o c a t e d  in t h e  Whiteoak Mountain t h r u s t

s h e e t ,  so named b e c au s e  movement a long  t h e  Whiteoak Mountain f a u l t  ( F i g .

3 . 1 )  c a r r i e d  t h e  bedrock  b e n e a th  t h e  s i t e  i n t o  t h e  p r e s e n t  c o n f i g u r a t i o n .

3 .2  STRATIGRAPHY AND AREAL GEOLOGY

The bedrock  u n i t s  which u n d e r l i e  t h e  West C h e s tn u t  Ridge S i t e  a re  

p red o m in a t e d  by c a r b o n a t e  r o c k s  in  t h e  Conasauga and Knox Groups.  A 

s t r a t i g r a p h i c  column,  i n c l u d i n g  t h e  f o r m a t i o n s  t h a t  occur  on t h e  s i t e ,  

i s  p r e s e n t e d  in F i g .  3 . 3 .  E s t i m a t e d  f o r m a t i o n  t h i c k n e s s e s  and bedrock  

d e s c r i p t i o n s  based on l i m i t e d  sample a v a i l a b i l i t y  a re  i n c l u d e d . The 

s t r a t i g r a p h i c  n o m e n c la tu r e  adop ted  in  t h i s  s t u d y  uses  t h e  r e c o g n i z e d  

f o r m a t i o n  names f o r  t h e  a r e a  (Rodgers  1953;  H e l l e r  1959;  Swingle  19 6 4 ) .  

D e p a r t u r e s  f rom o t h e r  s t r a t i g r a p h i c  d e s c r i p t i o n s  a p p ly  in  t h e  c a s e s  o f

13
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Fig.  3 .3.  S t r a t i g r a p h i c  Column of Bedrock Formations on the West Chestnut Ridge S ite

System Group Formation Estimated
thickness

Desc rip t ion

Ordovician Chlckamauga Undivided Thin- to  medium-bedded, 
che r ty  carbonate l l t h o lo -  
g le s .  Maroon mudstone and 
a rg111aceous 1Imestones.

Newal a 275 m (900 f t ) Medium-bedded dolostones and 
l imestones with va r iab le  
ch e r t  con t en t ,  s ca t t e red  
che r t  matr ix sandstones.  
Abundant maroon mot t l ing In 
ca rbonates .  Thin soil  
development.

Knox

"Longview" 15 m (50 f t ) Dense massive ch e r t ,  bedded 
c h e r t ,  and dolomoldic cher t  
observed In residuum.

ChepuUepec
Dolomite

215 m (700 f t ) Fine- to  medium-grained, 
l i g h t  to medium gray,  
c r y s t a l l i n e  dolos tone,  
medium- to  thick-bedded 
where observed,  sandy In 
p a r t ,  p a r t i c u l a r l y  near 
base.  Minor maroon mot t l ing 
appears near top.  Thin to 
th i c k  soi l  developwient.

Cambrian
Copper Ridge 

Dolomite
300 to  400 m 

(1000 to  1300 f t )
Medium- to  thick-bedded,  f ine 
to coarse c r y s t a l l i n e  dolo­
s tone ,  medium to dark gray 
che r t  va r i e s  from massive 
porce l l anous  near base to 
b lue -g ray  o o l i t i c  In upper 
1/3 o f  the un i t .  Thin to 
th i ck  soi l  development.

Conasauga Maynardv in ie
Limestone

50 to  90 m 
(200 to  300 f t )

Medium-bedded, l i g h t  to dark 
gray,  f in e  c r y s t a l l i n e  to 
o o l i t i c  l imestone.  
Moderately th ick  soil  
development.
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t h e  Longview Dolom ite  and t h e  Newala F o r m a t io n .  In t h e  C h e s tn u t  Ridge 

s t r i k e  b e l t  t h e  Longview i s  a bedded c h e r t  zone a p p r o x i m a t e l y  10 m 

t h i c k ,  which i s  l o c a l l y  exposed by road  c u t s  in t h e  r e s id u u m .  The 

Longview h o r i z o n  i s  d i s c o n t i n u o u s  and i s  no t  r e c o g n i z e d  as  a mappable  

f o r m a t i o n  by t h e  T e n n e s se e  D i v i s i o n  of  Geology (B r e n d t  1 9 8 4 ) .  However, 

t h e  heavy c h e r t  zone in  s o i l s  i s  r e a d i l y  t r a c e a b l e  f o r  use in  s u r f a c e  

mapping and p r o v i d e s  a c o n t r o l  h o r i z o n  a t  t h e  top  of  t h e  C he pu l te pe e  

D o lo m i t e .  E l s e w h e re ,  t h e  Newala Form a t io n  i s  r e c o g n i z e d  as t h e  

K i n g s p o r t  and Mascot  F o r m a t i o n s . General  l y  t h i c k  s o i l  deve lopment  over  

t h e  be d ro c k  hampers  e x t e n s i v e ,  d e t a i l e d  s t r a t i g r a p h i c  s t u d y .  I n s p e c t i o n

o f  rock  c h i p  samples  from r o t a r y  d r i l  1 h o l e s  in bedrock  i n d i c a t e s  t h a t

wide 1 i t h o l o g i c  v a r i a t i o n s  o c c u r  w i t h i n  each f o r m a t i o n .

An a r e a l  g e o l o g i c  map of  t h e  s i t e  i s  shown in F i g .  3 . 4 .  The f i g u r e

a l s o  shows l o c a t i o n s  o f  e x p l o r a t o r y  b o r e h o l e s .  Fo rmat ion  c o n t a c t s  a r e  

a p p r o x i m a t e l y  l o c a t e d  based on t h e  i d e n t i f i c a t i o n  of  marker  l i t h o l o g i e s  

in r es iduum  and rock  c h i p s  from b o r e h o l e s .  The t r a c e s  o f  t h e  k a r s t  

zones  i d e n t i f i e d  in  S e c t .  2 .3  a r e  a l s o  pi o t t e d  on F i g .  3 . 4 .  The k a r s t  

zones g e n e r a l l y  p a r a l l e l  t h e  r e g i o n a l  s t r i k e .  The app rox im a te  l o c a t i o n  

and o r i e n t a t i o n  (N10“W) of  a c r o s s  c u t t i n g  s t r u c t u r a l  f e a t u r e  i d e n t i f i e d  

on a e r i a l  p h o t o g r a p h s  and in s o i l  mapping i s  shown. T h i s  f e a t u r e  may be 

a t e a r  f a u l t  o r  f r a c t u r e  zone r e l a t e d  t o  d i f f e r e n t i a l  movement of

s t r u c t u r a l  b l o c k s  w i t h i n  t h e  Whiteoak Mountain t h r u s t  s h e e t .

3 . 3  STRUCTURAL GEOLOGY

O u t c ro p s  a r e  s p a r s e  on t h e  s i t e ;  how ever ,  abou t  a dozen s t r i k e  and

d i p  m easu rem en ts  were o b t a i n e d  d u r i n g  f i e l d  mapping .  The mean bedd ing

s t r i k e  i s  N57°E ( r a n g e  N45“E t o  N70°E) and t h e  mean bedrock  d i p  i s  31° 

t o  t h e  s o u t h e a s t  ( r a n g e  17° t o  3 7 ° ) .  The s c a r c i t y  of  rock  o u t c r o p s  on­

s i t e  makes measurement  of  j o i n t  and f o l d  o r i e n t a t i o n s  and o t h e r  

s t r u c t u r a l  e l e m e n t s  v i r t u a l l y  i m p o s s i b l e .

S in c e  d i r e c t  measurement  of  t h e  o r i e n t a t i o n  of  s t r u c t u r a l  f e a t u r e s  

i s  no t  p o s s i b l e  on t h e  s i t e ,  an a l t e r n a t i v e  approach  has been used t o  

i n f e r  t h e  o r i e n t a t i o n s  of  bedrock  s t r u c t u r a l  f e a t u r e s .  The method used 

i n c l u d e s  t h e  c o m p i l a t i o n  of  bed rock  d a t a  from o t h e r  a r e a s ,  o r i e n t a t i o n
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d a t a  f o r  l i n e a r  e r o s i o n a l  f e a t u r e s  in  t h e  Knox r e s id u u m ,  s t r a i g h t  s t r e a m  

a l i g n m e n t s ,  and t h e  e l o n g a t i o n  of  k a r s t  f e a t u r e s  and p h o t o l i n e a r  

f e a t u r e s .  The u n d e r l y i n g  p rem ise  of  t h i s  a n a l y t i c a l  approach  i s  t h a t  

p e n e t r a t i v e  f a u l t s ,  f r a c t u r e s ,  and j o i n t s  in  t h e  c a r b o n a t e  bed rock  

p r o v i d e  l o c a t i o n s  f o r  enhanced g ro u n d w a te r  f low and a re  t h e  f e a t u r e s  

t h a t  c o n t r o l  s u b s u r f a c e  f low in t h e  b e d r o c k .  Where s t r u c t u r a l  o r  1 i t h o ­

l o g i c  w e a kne sse s  a re  widened by d i s s o l u t i o n  of  t h e  r o c k ,  t h e  o v e r l y i n g  

res iduum  can r a v e l  or  p i p e  i n t o  t h e  f low  c o n d u i t .  Over p ro lo n g e d  t im e  

p e r i o d s  t h e  p r o g r e s s i v e  underm in ing  of  re s iduum by th e  u nde r f low  can 

c a r r y  s u b s t a n t i a l  volumes o f  s o i l  away, t h u s  c r e a t i n g  t o p o g r a p h i c  

e x p r e s s i o n  a long  t h e  t r a c e  of  t h e  f e a t u r e  ( P a r i z e k  19 7 6 ) .  S u p p o r t i n g  

s t u d i e s  in  t h e  a n a l y s i s  i n c l u d e  work pe rfo rmed  by Smith and G i l b e r t  

(1983)  and C r i d e r  ( 1 9 8 1 ) .  T h e i r  s t u d i e s  a r e  summarized below.

Bedding and j o i n t  o r i e n t a t i o n s  were measured by Smith and G i l b e r t

(1983)  a t  t h e  K e r r  Hollow q u a r r y ,  which i s  e x c av a t ed  in t h e  Newal a For ­

m a t ion  a p p r o x i m a t e l y  14 km ( 8 . 5  m i l e s )  n o r t h e a s t  o f  t h e  West C h e s t n u t  

Ridge  S i t e .  E i g h t y - t h r e e  p l a n a r  o r i e n t a t i o n s  were m e a s u r e d , and t h e  

r e s u l t s  i n d i c a t e  t h a t  t h e  bedd in g  o r i e n t a t i o n  i s  f a i r l y  c o n s i s t e n t  a t  

N48°E w i th  a 35° d ip  t o  t h e  s o u t h e a s t .  J o i n t  o r i e n t a t i o n s  a t  t h e  Ker r  

Hollow q u a r r y  showed a wide s c a t t e r  o f  n o r t h w e s t - d i p p i n g  s t r i k e  s e t  

j o i n t s  and c o n j u g a t e  n o r t h e a s t -  and s o u t h w e s t - d i p p i n g  d ip  j o i n t s .  J o i n t  

and f r a c t u r e  o r i e n t a t i o n  maxima from Smith and G i l b e r t  (1983) a r e  

t a b u l a t e d  in  T a b le  3 . 1 .

C r i d e r  (1981)  c o l l e c t e d  bedrock  j o i n t  and f r a c t u r e  o r i e n t a t i o n  d a t a  

in t h e  Walker  Branch W a te r she d ,  which 1i e s  on C h e s tn u t  Ridge a p p r o x i ­

m a t e l y  7 km ( 4 . 4  mi) n o r t h e a s t  of  t h e  West C h e s tn u t  Ridge S i t e .  He 

ccxnpared j o i n t  and f r a c t u r e  o r i e n t a t i o n s  w i th  p h o t o l i n e a r  d a t a  and 

d e r i v e d  h y p o t h e t i c a l  o r i e n t a t i o n s  f o r  p r e f e r r e d  g roundw a te r  f l  ow p a t h s .  

J o i n t  and f r a c t u r e  o r i e n t a t i o n  maxima from C r i d e r  (1981) a r e  1 i s t e d  in  

T a b le  3 . 1 .

Comparison  of t h e  maxima p r e s e n t e d  in T a b le  3 . 1  shows t h a t ,  a t  t h e  

two s t u d y  a r e a s ,  d i f f e r e n t  j o i n t  s e t s  a r e  p r o m in e n t .  However, i f  d a t a  

g ro u p s  a r e  d e l i n e a t e d  from h i s t o g r a m  p l o t s ,  s i m i l a r i t i e s  in  t h e  o v e r a l 1 

j o i n t  and f r a c t u r e  o r i e n t a t i o n s  a ppe a r  between  t h e  two d a t a  s e t s .  

P rom ine n t  j o i n t  s e t s  occu r  in  g roups  o r i e n t e d  a p p r o x i m a t e ly  p a r a l l e i  to



20

T a b l e  3 - 1 .  Comparison o f  be d ro c k  j o i n t  and f r a c t u r e  o r i e n t a t i o n s  
in  two s t u d y  a r e a s  on C h e s tn u t  Ridge

Maxima

O r i e n t a t i o n  r a n g e s

Smith and G i l b e r t C r i d e r

P r im a ry

S e c onda ry

T e r t i a r y

N70“ -8Q“E

N 4 0 ' - 5 0 “W

N30‘ -40"E
N60*-70*E

J o i n t  and f r a c t u r e  o r i e n t a t i o n  g roups

N60“E-N110“E

N30°E-N50'E

N20°W-N20*E

N40“ -50 ' ’W

N20 '-25 'W
N30°-35‘’W

N 55°-60‘’E
N40'’- 4 5 “W
N25°-30'W

N10"-15*E
N50“- 5 5 'E
N75‘’-85°E
NIO' -IS 'W
N60’’- 6 5 ’ W
N 7 5 ' - 8 5 “W

N75“E-N105'E

N40*E-N60'’E

N15“W-N20‘’E

N20*-45” W
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S t r i k e ,  a p p r o x i m a t e l y  n o r t h - s o u t h ,  a p p r o x i m a t e l y  p e r p e n d i c u l a r  to  

s t r i k e ,  and a p p r o x i m a t e l y  e a s t - w e s t .

O r i e n t a t i o n s  o f  p h o t o l i n e a r  f e a t u r e s  on t h e  West C h e s tn u t  Ridge 

S i t e  a r e  g rouped in  f o u r  s e t s  as f o l l o w s :  N20“W t o  N30*E, N70° t o  110“ E,

N50° t o  s e w ,  N30° t o  5 0 ° E . C r i d e r ' s  d a t a  on pho to l  i n e a r  o r i e n t a t i o n  

f o r  C h e s t n u t  Ridge  s u g g e s t  g ro u p s  w i th  o r i e n t a t i o n s  as  f o l l o w s :  NZO” t o

3 0 “E, N40 t o  55°E ,  N80“ t o  l l O ' E ,  N40' t o  50'W. The major  d i f f e r e n c e  

between  t h e  two d a t a  s e t s  i s  t h a t  C r i d e r ' s  d a t a  do no t  show a s t r o n g  

n o r t h - s o u t h  g ro u p ,  as does t h e  West C h e s tn u t  Ridge S i t e  s t u d y .  Th i s  

v a r i a t i o n  may be due t o  d i f f e r e n c e s  in  imagery used or  t o  t h e  d i f f e r e n c e  

in  r e s u l t s  o b t a i n e d  by d i f f e r e n t  o b s e r v e r s .  A compar ison  of  C r i d e r ' s  

d a t a  on f r a c t u r e  o r i e n t a t i o n  based  on s t r a i g h t  s t r e a m  segment  a n a l y s i s  

and an anal  y s i s  of  e r o s i o n a l  t o p o g r a p h i c  f e a t u r e s  on C h e s tn u t  Ridge 

be tween  th e  Cl inch R iv e r  and Walker  Branch shows s t r o n g  s i m i l a r i t i e s

w i th  maxima o c c u r r i n g  in  g r o u p s ,  as shown in F i g . 3 .5  and summarized as

f o l l o w s :  N10° t o  40*W, N60° t o  80'W, NO' t o  lO 'E ,  N30' t o  6 0 'E ,  N80' t o

9 0 'E .

S y n t h e s i s  of  t h i s  i n f o r m a t i o n  l e a d s  to  t h e  f o l l o w i n g  c o n c l u s i o n s  

r e g a r d i n g  bedrock  f r a c t u r e  o r i e n t a t i o n s .

1.  O r i e n t a t i o n  measurem ents  f o r  bedrock  j o i n t s  and f r a c t u r e s  can be 

d i v i d e d  i n t o  f o u r  g roups  o r  f a m i l i e s  (T a b le  3 . 1 ) .

2 .  Measurements  of  p h o t o l i n e a r  f e a t u r e s  i n t e r p r e t e d  to  be f r a c t u r e

t r a c e s  y i e l d  g e n e r a l l y  s i m i l a r  i n f o r m a t i o n ,  though t h e  r e s u l t s  

a r e  v a r i a b l e  between d i f f e r e n t  s t u d y  a r e a s .

3.  E r o s i o n a l  f e a t u r e s  and s t r a i g h t  s t r e a m  segments  y i e l d  com parab le  

o r i e n t a t i o n  d a t a  when a n a l y s e s  f o r  a d e t a i l e d  s tu d y  a r e a  and a 

g e n e r a l  s t u d y  a r e a  a r e  com pared .

4 .  C r o s s - c u t t i n g  s t r u c t u r a l  f e a t u r e s  in t h e  C h e s tn u t  Ridge s t r i k e  

b e l t  g e n e r a l l y  occu r  in  f o u r  o r i e n t a t i o n  g r o u p s ,  as  f o l l o w s :

a p p r o x i m a t e l y  p a r a l l e i  t o  bedd ing s t r i k e  (N30° t o  6 0 ' E ) , 

a p p r o x i m a t e l y  p e r p e n d i c u l a r  t o  s t r i k e  (N20° t o  50°W), 

a p p r o x i m a t e l y  N or th -S o u th  (N10°-20°W-N20°E), and 

a p p r o x i m a t e l y  East-WeSt  (N 6 0 ° -7 0 'E -N 1 1 0 °E ) .

5.  The p rominence  of  a p a r t i c u l a r  s t r u c t u r a l  f e a t u r e  v a r i e s  a re a l  l y .
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(b) s t r a i g h t  s t r e a m  segment o r i e n t a t i o n s .
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6.  The d e t e c t i o n  o f  s t r u c t u r a l  f e a t u r e s  in t h e  r e s i d u a l  s o i l s  by 

imagery  i n t e r p r e t a t i o n s  and t o p o g r a p h i c  anal  y s e s  p r o v i d e s  v a r i ­

a b l e  r e s u l t s ,  d e pe nd ing  on t h e  d a t a  qual i t y ,  bu t  does p r o v id e  a 

u s e f u l  t o o l  in  a r e a s  1a ck ing  bedrock  o u t c r o p .

3 . 4  BEDROCK CHARACTERISTICS

Bedrock i n v e s t i g a t i o n s  on t h e  West C h e s tn u t  Ridge S i t e  have been 

o r i e n t e d  toward  e v a l u a t i n g  th e  c o n d i t i o n  of  bedrock  and t h e  e x t e n t  o f  

w e a t h e r i n g . Bedrock i n v e s t i g a t i o n s  com ple ted  t o  d a t e  i n c l u d e

0 c o m p l e t i o n  o f  20 e x p l o r a t o r y  b o r e h o l e s  u s ing  t h e  a i r  r o t a r y  

d r i l 1 ing t e c h n i q u e  to  e x p l o r e  t h e  wea the red  bedrock zone 

( g e o p h y s i c a l  l o g s  were o b t a i n e d  from t h e  bedrock  e x p l o r a t o r y  

b o r e h o l e s ) , and

0  a s e i s m i c  r e f r a c t i o n  p r o f i l i n g  t e c h n i q u e  which p rov ide d  d a t a  on 

bedrock  c o n d i t i o n s  between  b o r e h o l e  l o c a t i o n s .

The c r i t e r i a  used in  d e t e r m i n i n g  t h e  d r i l  1 ing d e p th s  f o r  t h e  e x p l o r a t o r y  

b o r i n g s  were t o  p e n e t r a t e  9 m (30  f t )  o f  c o n t i n u o u s  " sound" b e d ro c k ;  

however ,  i f  c o n t i n u o u s  ro ck  was no t  e n c o u n te re d  w i t h i n  30 m (100 f t )  of  

t h e  f i r s t  rock  p e n e t r a t e d ,  t h e  b o r in g  was t e r m i n a t e d .  Of t h e  20 bedrock  

e x p l o r a t o r y  b o r i n g s  c o m p l e t e d ,  c o n t i n u o u s  rock  was o b t a i n e d  in  13 

b o r i n g s ,  and more t h a n  30 m (100 f t )  of  c a v i t o s e  ro ck  was e n c o u n te r e d  in  

7 b o r i n g s .  D r i l l e r ' s  l o g s  f o r  t h e  bedrock  b o r i n g s  a r e  i n c lu d e d  as an 

appendix  of  t h e  Woodward-Clyde r e p o r t  on s u b s u r f a c e  c h a r a c t e r i z a t i o n

( 1 9 8 4 ) .

S e i sm ic  r e f r a c t i o n  p r o f i l i n g  of  t h e  bedrock  s u r f a c e  was performed 

by p e r s o n n e l  o f  t h e  T e n n e s s e e  V a l l e y  A u t h o r i t y .  A d e t a i l e d  r e p o r t  o f  

t h e i r  work i s  in  p r e s s  ( S t a u b  and Hopkins 1 9 8 4 ) .  The s e i s m ic  r e f r a c t i o n  

s u rv e y  showed t h e  e l e v a t i o n  of  t h e  t o p  of  t h e  r e f r a c t i v e  1aye r  on 7 .6  m 

(25 f t )  s p a c i n g s .  The a c c u r a c y  of  t h e  el ev a t  ions  i s  a p p r o x i m a t e ly  j^3 m 

(10 f t ) . In g e n e r a l , t h e  d a t a  i n t e r p r e t a t i o n  s u g g e s t s  t h a t  t h e  w ea th ­

e re d  bedrock  s u r f a c e  a p p r o x i m a t e l y  c o i n c i d e s  w i th  t h e  r e f r a c t i v e  s u r ­

f a c e .  Over s h o r t  i n t e r v a l s  [40 m (130 f t ) ] ,  r e l i e f  on t h e  r e f r a c t i v e  

s u r f a c e  up to  10 m (30 f t )  was measured in  s e v e r a l  a r e a s .  One of  t h e  

p r o f i l e  1 i n e s  which c r o s s e d  t h e  f r a c t u r e  t r a c e  ( S e c t .  3 . 2 )  where i t
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c r o s s e s  t h e  Copper  Ridge  D o lom ite  showed d e e p e r  w e a t h e r i n g  of  b e d ro c k .

In g e n e r a l , t h e  s e i s m i c  p r o f i l i n g  shows r a t h e r  c o n s i s t e n t  e l e v a t i o n  o f  

t h e  r e f r a c t i v e  s u r f a c e  w i t h i n  t h e  s tu d y  a r e a s .

On t h e  b a s i s  of  d a t a  o b t a i n e d  d u r i n g  e x p l o r a t o r y  d r i l l i n g  a c t i v i ­

t i e s  and s e i s m i c  p r o f i l i n g ,  t h e  s i t e  bedrock  c o n d i t i o n s  a r e  d e f i n e d  as 

f o l l o w s .  R e s id u a l  s o i l s  of  v a r i a b l e  t h i c k n e s s  t y p i c a l l y  o v e r l i e  a zone 

o f  c a v i t o s e  c a r b o n a t e  bed rock  w i th  mud- and g r a v e l - f i l l e d  c a v i t i e s .  The 

t h i c k n e s s  o f  t h i s  c a v i t o s e  zone r a n g e s  from 0 t o  >30 m (0  t o  >100 f t ) . 

V e r t i c a l  c a v i t y  d im e n s io n s  r e p o r t e d  by' t h e  d r i l  l e r  r an g e  from 0 . 3  m to  

5 m (1 t o  16 f t ) . The c o n f i g u r a t i o n  of  t h e  to p  o f  t h e  zone o f  c a v i t o s e  

be d ro c k  i s  approx im ated  by t h e  c o n t o u r s  shown on F i g . 3 . 6 .  Res idua l  

s o i l s  above t h i s  zone a r e  e s s e n t i a l l y  devo id  o f  c a r b o n a t e  m i n e r a l s ,  so 

i t  a l s o  r e p r e s e n t s  t h e  a p p ro x im a te  s u r f a c e  of  c a r b o n a t e  r o c k .

As p r e v i o u s l y  m e n t io n e d ,  i n  13 of  t h e  e x p l o r a t o r y  b o r e h o l e s  a t  

l e a s t  9 m (30 f t )  o f  c o n t i n u o u s  bedrock  was e n c o u n t e r e d . While 9 m of 

c o n t i n u o u s  rock  d r i l l e d  does n o t  p r e c l u d e  t h e  e x i s t e n c e  o f  u n d e r l y i n g  

c a v i t i e s ,  i t  s u g g e s t s  t h a t  t h e  most  a c t i v e  w e a t h e r i n g  zone has  been 

p e n e t r a t e d .  F i g u r e  3 .7  shows t h e  app ro x im a te  c o n f i g u r a t i o n  o f  t h e  to p  

o f  t h e  c o n t i n u o u s  rock  based  on d r i l l i n g  r e s u l t s .  The s t r a t i g r a p h i c  

d i s t r i b u t i o n  of  b o r e h o l e s  t h a t  p e n e t r a t e d  more t h a n  30 m (100  f t )  o f  

c a v i t o s e  bed rock  and t h e  c o n f i g u r a t i o n  of  t h e  bedrock  s u r f a c e  i n d i c a t e s  

t h a t  w e a t h e r i n g  i s  d e e p e s t  in  t h e  C h e p u l t e p e e  Dolom ite  and in  t h e  uppe r  

1 / 3  t o  1 / 2  o f  t h e  Cooper Ridge D o lo m i t e .  F i g u r e  3 . 8  shows a g e n e r a l i z e d  

g e o l o g i c  p r o f i l e  a c r o s s  t h e  s i t e .  The f i g u r e  i n c l u d e s  t h e  r a n g e s  

o b t a i n e d  f o r  t h e  t o p  of  w e a the re d  and c o n t i n u o u s  bedrock  zones  and 

a p p ro x im a te  f o r m a t i o n a l  c o n t a c t s .
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4. SOILS

Soi l  I n v e s t i g a t i o n s  pe r fo rmed  in  t h e  s i t e  c h a r a c t e r i  z a t i o n  i n c l u d e  

0  s o i l  mapping ,

0  d r i l l i n g  and sampl ing  to  o b t a i n  samples  f o r  t e s t i n g  and to  d e t e r ­

mine s o i l  t h i c k n e s s ,

0 p h y s i c a l  t e s t i n g  o f  s o i l s ,

0  m i n e r a l o g i c  t e s t i n g ,  and 

0 r a d i o n u c l i d e  a d s o r p t i o n  t e s t i n g .

Voluminous amounts of  d a t a  have been o b t a i n e d  and a r e  r e p o r t e d  e l s e ­

where (Woodward-Clyde 1984;  Lee e t  a l . 1984;  S e e le y  and Ke lmers  1984;  

Geotek 1 9 8 1 ) .  The o b j e c t i v e  of  t h i s  s e c t i o n  i s  t o  p r e s e n t  t h e  s a l i e n t  

a s p e c t s  of  t h e  s i t e  s o i l  c h a r a c t e r i s t i c s .

4 . 1  PHYSICAL PROPERTIES OF SITE SOILS

T h i s  s e c t i o n  summarizes  t h e  p h y s i c a l  c h a r a c t e r i s t i c s  of  Knox Group 

r e s i d u u m .  The d i s c u s s i o n  w i l l  i n c l u d e  t h e  mapping and c l a s s i f i c a t i o n  o f  

s u r f i c i a l  s o i l s ,  c l a s s i f i c a t i o n  o f  s u b s u r f a c e  s o i l s ,  g r a i n  s i z e  c h a r a c ­

t e r i s t i c s ,  m o i s t u r e  and w e igh t  c h a r a c t e r i s t i c s ,  and s o i l  s t r e n g t h  

c h a r a c t e r i s t i c s .

4 . 1 . 1  C h a r a c t e r i s t i c s  of  S u r f i c i a l  S o i l s

S u r f i c i a l  s o i l s  on t h e  s i t e  were mapped (Lee e t  a l . 1984)  as shown 

in F i g .  4 . 1 .  T a b l e  4 . 1  i d e n t i f i e s  t h e  s o i l  t y p e s  shown on t h e  s o i l s  map. 

S o i l s  mapped on t h e  s i t e  a r e  p r e d o m i n a n t l y  P a l e u d u l t s ,  though  a r e a s  of 

E n t i s o l s  and I n c e p t i s o l s  were mapped where r e c e n t  a l l u v i a t i o n  has  

o c c u r r e d . S o i l  g e n e t i c  c l a s s e s  i d e n t i f i e d  du r ing  s i t e  mapping i n c l u d e  

s o i l s  formed by a n c i e n t  a l 1u v i a l  p r o c e s s e s ,  s o i l s  formed by r e s i d u a l  

w e a t h e r i n g  o f  b e d ro c k ,  s o i l  s  formed by P l e i s t o c e n e  a l l u v i a l / c o l l u v i a l  

p r o c e s s e s  in  t h e  r e s id u u m ,  and r e c e n t  a l 1uviurn. The r a n g e  of  t h e  age o f  

s o i l  f o r m a t i o n  o n - s i t e  e x t e n d s  from l a t e  T e r t i a r y  or  e a r l y  P l e i s t o c e n e  

[10® y r  ( s o i l  No. 3 ) ]  t o  Holocene  o r  R ecen t  [ P o s tE u r o p e a n  s e t t l e m e n t  

( s o i l  No. 6 ) ]  (Lee e t  a l . 1 9 8 4 ) .  So i l  fo rming  and e r o s i o n a l  p r o c e s s e s
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Table 4 .1 . C la ss ifica tio n  of so ils  in the proposed Central Waste Disposal Area

So i 1 No. C l a s s i f i c a t i o n S e r i e s

1 Fine  loamy,  s i l i c e o u s ,  t h e r m i c ,  F r a g i c  P a l e u d u l t Shack

2 Clayey  s k e l e t a l , m ixe d ,  t h e r m i c ,  Typic  P a l e u d u l t a

3 F in e  loamy,  o x i d i c ,  t h e r m i c ,  Typ ic  and Rhodic  P a l e u d u l t s Dewey and D e c a tu r  
v a r i a n t s

4 C la y e y ,  m ixed ,  t h e r m i c ,  P a l e u d u l t s a

5 ,  5a C la y e y ,  m ix e d ,  t h e r m i c ,  P a l e u d u l t s a

6 E n t i s o l s  and I n c e p t i s o l s  -  u n d i f f e r e n t i a t e d a

7 F in e  loamy,  s i l i c e o u s  and c l a y e y ,  k a o l i n i t i c  Typic  
P a l e u d u l t a

8 F ine  loamy, s i l i c e o u s  t h e r m i c ,  P a l e u d u l t s H o ls ton

9 Fine  loamy,  s i l i c e o u s ,  t h e r m i c ,  P a l e u d u l t s Etowah

3 -  S e r i e s  i s  no t  d e t e r m i n e d .

Note :  S o i l s  2 ,  5 ,  5 a ,  and t h e  c l a y e y  p a r t  o f  7 would have been in c lu d e d  in  t h e  F u l l e r t o n  S e r i e s
o f  p a s t  m app ing .  They a r e  now v a r i a n t s  b e c a u s e  o f  mixed cl  ay m i n e r a l o g y ,  1ack of  s u f f i c i e n t  
c h e r t  in t h e  f a m i l y  c o n t r o l  s e c t i o n ,  o r  y e l l o w  m o t t l i n g  in  t h e  s u b s o i l  to o  c l o s e  to  t h e  s u r f a c e .  
These s o i l s  were a l s o  k e p t  s e p a r a t e  in o r d e r  t o  e v a l u a t e  w he the r  i n d i v i d u a l  d o l o m i t e  f o r m a t i o n s  
gave  r i s e  t o  s i m i l a r  or  d i s s i m i l a r  s o i 1 s .
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a r e  d i s c u s s e d  in  S e c t .  4 . 4 .  Residuum d e r i v e d  from each g e o l o g i c  forma­

t i o n  on t h e  s i t e  I s  d i s t i n c t ,  as shown In F i g . 4 .1  (Lee e t  a l . 1 9 8 4 ) .

So i l  mapping c o r r o b o r a t e d  t h e  e x i s t e n c e  of  a l i n e a r  d i s c o n t i n u i t y  

t r e n d i n g  n o r t h - s o u t h  a c r o s s  t h e  s i t e .  The f e a t u r e  I d e n t i f i e d  In so l  1 

mapping c o i n c i d e s  wi th  t h e  p o s s i b l e  f r a c t u r e  t r a c e  I d e n t i f i e d  on 1939 

a e r i a l  p h o to g ra p h y  and d i s c u s s e d  In S e c t .  2 . 2 .

4 . 1 . 2  C h a r a c t e r i s t i c s  of  S u b s u r f a c e  S o i l s

P a r t i c l e  s i z e  d i s t r i b u t i o n  a n a l y s e s  were pe rformed on 115 s u b s u r ­

f a c e  s o i l  samples  (Woodward-Clyde 1 9 8 4 ) .  S i t e  s o i l s  a r e  f i n e  g r a i n e d  

w i th  30 t o  100% p a s s i n g  t h e  No. 200 s i e v e  (0 .0 7 4  mm). The c l a y - s l z e  

p a r t i c l e  c o n t e n t  (<0 .002  mm) o f  s o i l s  t e s t e d  ranged  from a b o u t  10 t o  

70%. The sand and g r a v e l  c o n t e n t  of  res iduum samples  t e s t e d  ranged  from 

0 t o  50%. Some samples  o b t a i n e d  from k a r s t  f e a t u r e s  t e n d e d  t o  be sa n d y ,  

w i th  sand and g r a v e l  c o n t e n t s  r e a c h i n g  as  much as 80% In two such 

s a m p l e s .

The s i t e  s o i l s  c l a s s i f y  ( U n i f i e d  So i l  C l a s s i f i c a t i o n  System) p r e ­

d o m in a n t l y  as  h i g h l y  p i a s t i c  c l  ays  (CH) w i th  t r a c e s  t o  some f i n e  t o  

c o a r s e  sand and t r a c e s  of  c h e r t  g r a v e l . The second most  common c l a s s i ­

f i c a t i o n  e n c o u n t e r e d  I s  l o w - p l a s t l c l t y  c l  ays  (CL) . Minor amounts  o f  

s i l t s  (ML, MH) and c l a y e y  sands  and g r a v e l s  (SC, GC) were e n c o u n t e r e d . 

S u r f  I d  al s o i l  samples  commonly c l a s s i f y  as l o w - p l a s t l c l t y  c l  a y s .  

C o n s i s t e n t  r e l a t l o n s h l p s  be tween  s o i l  c l a s s i f I c a t i o n  and bed rock  s t r a t i ­

g raphy  a re  no t  r e a d i l y  a p p a r e n t  In s o i l s  t e s t e d .  The sandy  be d ro c k  zone 

In t h e  b a s a l  C h e p u l t e p e e  Form a t ion  d id  seem to  r e s u l t  In a sandy  s o i l  a t  

one of  t h e  t e s t  l o c a t i o n s .

P h y s i c a l  p r o p e r t i e s  o f  s o i l s  a r e  summarized In T a b l e s  4 . 2  and 4 . 3 .  

So i l  e n g i n e e r i n g  p a r a m e t e r s  a r e  I n c l u d e d  In t h e  r e p o r t  on s u b s u r f a c e  

I n v e s t i g a t i o n s  (Woodward-Clyde 1 9 8 4 ) .  E n g i n e e r in g  t e s t s  In c lu d e d  con­

sol  I d a t l o n ,  c o m p a c t io n ,  t r i a x i a l  s h e a r ,  and unc o n f in e d  c o m p r e s s i v e  

s t r e n g t h .

S i t e  s o i l s  have v e r y  h igh  m o i s t u r e  r e t e n t i o n  p r o p e r t i e s  ( D a n i e l s  

and B r o d e r i c k  1 9 8 4 ) .  The p e r c e n t  s a t u r a t i o n  of  s o i l s  vs d e p th  below t h e  

ground s u r f a c e  I s  p i o t t e d  In F i g . 4 . 2 .  T h i s  p l o t  shows t h a t  t h e  de p th



Table 4 .2 . Summary of index and physical properties fo r Shelby tube samples

Index or  p h y s i c a l  p r o p e r t y ^ U n i t s

Depths  l e s s  t h a n  
3 . 0  m (10 f t )

Range Average

Depths g r e a t e r  t h a n  
3 . 0  m (10 f t )

Range Average

I n i t i a l  w a t e r  c o n t e n t P e r c e n t 1 5 .0 t o 36 .6 25 .9 1 9 .0 t o 47 .8 3 3 .5

I n i t i a l  v o l u m e t r i c  w a te r  c o n t e n t P e r c e n t 2 7 .8 t o 4 8 . 2 38 .5 32 .7 t o 56 .1 4 6 .2

L iq u id  1 i m i t P e r c e n t 41 t o 87 66 46 t o  101 69

P l a s t i c i t y  index P e r c e n t 21 t o 53 39 15 t o 69 41

I n i t i a l  1 i q u i d i t y  index - 0 . 2 5 t o 0 .0 3 - 0 . 0 6 - 0 . 1 1 t o 0 .84 0 .1 9

P e r c e n t  c h e r t P e r c e n t 0 . 0 t o 2 1 .1 5 . 8 0 . 0 t o 26 2 4 . 6

P e r c e n t  f i n e s P e r c e n t 5 8 .0 t o 9 9 . 0 8 0 .2 5 9 .5 t o 99 4 8 5 . 3

S p e c i f i c  g r a v i t y g/cm3 2 .66 t o 2 .82 2 .73 2 .68 t o 2 84 2 .7 4

I n i t i  al t o t a l  u n i t  w e igh t^ l b / f t 3 104 .0 t o 12 9 .9 119 .2 108.5 t o 127 9 1 1 7 . 5 b

I n i t i a l  d e g r e e  o f  s a t u r a t i o n P e r c e n t 7 3 .0 t o 9 9 .7 8 7 . 8 8 9 .8 t o 100 0 9 6 .5

Ca>

s  E x c lu d in g  d a t a  on samples  from s in k  h o le  b o r i n g s ,  
b Average v a lu e  f o r  a l l  samples  = 117 .9  I b / f t ^  (1 8 .5 2  k g / m ^ ) .



Table 4 .3 . Summary of index and physical properties from the engineering property te s t series

Index o r  p h y s i c a l  p r o p e r t y ^ U n i t s
Com­

p a c t i o n
C o n s o l i -  

d a t i o n
S t r e n g t h  
UU CIU

S a t .
Perm.

s e r i e s

M/S & 
P a r t .  

S a t .  
Perm, 

s e r i e s

P a r t .
S a t .

Perm.
s e r i e s

I n i t i a l  w a te r  c o n t e n t P e r c e n t 2 1 .3 3 5 .4 3 2 .6 33 .6 3 4 .0 2 9 .5 2 2 .5

I n i t i a l  v o l u m e t r i c  w a te r  c o n t e n t P e r c e n t 4 8 .0 4 5 .8 4 6 .0 4 6 .8 4 1 .1 ^ 4 0 .4

L iqu id  1 i m i t P e r c e n t 59 62 71 65 62 71 60

P I a s t i c i t y  index P e r c e n t 36 35 43 37 36 43 34

I n i t i a l  1 i q u i d i t y  index - 0 . 0 5 0 .2 6 0 .0 9 0 .1 3 0 . 2 6 0 . 0 1 0 .0 7

P e r c e n t  c h e r t P e r c e n t 11 .5 7 .0 8 . 2 3 .2 4 .5 5 . 1 5 .1

P e r c e n t  f i n e s P e r c e n t 6 6 .9 8 2 .2 8 2 .3 8 6 . 0 8 6 .7 8 4 . 4 7 2 .2

S p e c i f i c  g r a v i t y g /  cffl3 2 .7 5 2 .7 4 2 .76 2.73 2 .7 4 2.71

In i  t i  al t o t a l  u n i t  w e igh t^ l b / f t 3 11 6 .0 11 8 .6 117 .6 116.9 115 .8b 1 2 2 . 4 b

I n i t i a l  d e g r e e  o f  s a t u r a t i o n P e r c e n t 96 .7 9 6 .9 9 7 .0 9 6 .7 87 .1 b 9 4 .7

I n i t i a l  vo id  r a t i o 0 .9 9 0 .9 7 0 . 9 6 0 . 9 l b 0 . 7 4 b

Average de p th^ f t 51 .1 17 .7 20 .5  152 .8 9 . 9

^ E x c lud ing  d a t a  from s in k  h o l e  b o r i n g s .  
^ M/S t e s t  d a t a  i s  e x c l u d e d .
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of  s i g n i f i c a n t  d e s i c c a t i o n  of  t h e  s o i l s  i s  a p p r o x i m a t e l y  3 m (10 f t ) . 

Samples used  in  t h i s  a n a l y s i s  were o b t a i n e d  d u r i n g  t h e  d r y  s e as o n  

(Sep tem ber  1 9 8 3 ) .  Below d e p t h s  of  3 m (10 f t ) , t h e  s o i l s  a r e  t y p i c a l l y  

>905^ s a t u r a t e d .

So i l  s t r e n g t h  and t h e  l i q u i d i t y  index  f o r  s i t e  s o i l s  show an 

i n v e r s e  c o r r e l a t i o n .  F i g u r e  4 . 3  shows t h e  g e n e r a l  t r e n d s  f o r  t h e  

l i q u i d i t y  index  (Ii_) and u n d r a in e d  s h e a r  s t r e n g t h  ( S u ) .  The l i q u i d ­

i t y  index  i s  an e x p r e s s i o n  of  t h e  s o i l ' s  n a t u r a l  m o i s t u r e  c o n t e n t  when

sam p led ,  compared t o  t h e  m o i s t u r e  r a n g e  under  which t h e  s o i l  e x h i b i t s  

p i a s t i c  b e h a v i o r .

T W -  PL
I I  = ----------- >

PI

where

W = t h e  n a t u r a l  m o i s t u r e  c o n t e n t  of  t h e  s o i l ,

PL = t h e  pi a s t i c  1 i m i t  f o r  t h e  s o i l ,

PI = t h e  pi a s t i c i t y  index f o r  t h e  s o i l .

A 1 i q u i d i t y  index  v a l u e  o f  0 i n d i c a t e s  t h a t  t h e  n a t u r a l  m o i s t u r e  

c o n t e n t  i s  below t h e  p i a s t i c  l i m i t  by an amount equal t o  t h e  m o i s t u r e  

r ange  over  which t h e  s o i l  e x h i b i t s  p i a s t i c  b e h a v i o r .  A l i q u i d i t y  index  

v a l u e  of 1 i n d i c a t e s  t h a t  t h e  n a t u r a l  m o i s t u r e  c o n t e n t  of  t h e  s o i l  i s  

e q u i v a l e n t  t o  t h e  1 i q u i d  l i m i t  -  t h e  p o i n t  a t  which t h e  s o i l  be h a v es  as 

a l i q u i d .  Wide s c a t t e r  o c c u r s  in  t h e  d a t a  as a r e s u l t  o f  v e r t i c a l  and 

1 a t e r a l  h e t e r o g e n e i t y  however ,  a p p r o x i m a t i o n s  o f  t h e  v a r i a t i o n  o f  mean 

1 i q u i d i t y  index and u n d r a in e d  s h e a r  s t r e n g t h  w i t h  sample d e p th  a r e  

shown in F i g .  4 . 3 .

4 . 2  GEOCHEMICAL CHARACTERISTICS OF SITE SOILS

Geochemical  s t u d i e s  o f  Knox r e s i d u a l  s o i l s  have i n c l u d e d  

0  p h y s i c a l  c h a r a c t e r i s t i c s  of  t e s t  s p e c im e n s ,

0  s o i l  chemica l  a n a l y s i s ,

0 1 i m i t e d  a n a l y s e s  o f  ground and s u r f a c e  w a t e r s ,

0  measurem ent  o f  r a d i o n u c l i d e  s o r p t i o n  and d e s o r p t i o n  c h a r a c t e r i s ­

t i c s  f o r  so i 1 s , and 

0  column s o r p t i o n  t e s t s .
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D e t a i l s  of  t h e  s o i l  geochemica l  t e s t i n g  a r e  p r e s e n t e d  in  S e e l e y  and 

Kelmers  ( 1 9 8 4 ) ,  and Lee e t  a l . ( 1 9 8 4 ) .  R e s u l t s  o f  s e l e c t e d  p o r t i o n s  o f  

t h e  s o i l  geochemica l  s t u d y  a r e  summarized in  t h i s  s e c t i o n .  Samples were 

o b t a i n e d  from Copper  Ridge  Dolomite  and Newala Form a t ion  r e s id u u m .

4 . 2 . 1  P h y s i c a l  C h a r a c t e r i s t i c s  of  T e s t  Specimens

Samples  o b t a i n e d  f o r  geochemica l  s t u d y  were t e s t e d  to  d e t e r m i n e  t h e  

s o i l  m o i s t u r e  c o n t e n t ,  p a r t i c l e  s i z e  d i s t r i b u t i o n ,  p a r t i c l e  d e n s i t y ,  

s u r f a c e  a r e a ,  and m i n e r a l o g y .

G r a v i m e t r i c  m o i s t u r e  c o n t e n t s  ranged  from a p p r o x i m a t e l y  18 t o  31%, 

which a r e  s i m i l a r  t o  t h o s e  r e p o r t e d  in S e c t .  4 . 1 .  P a r t i c l e  s i z e  d i s t r i ­

b u t i o n s  f o r  t h e  s t u d y  spec im ens  i n d i c a t e  t h a t  t h e  t e s t e d  m a t e r i a l s  a re  

f i n e  s i l t s  and c l a y s .  P a r t i c l e  d e n s i t i e s  ranged  from 2 . 7  t o  3 . 1  g/cm3.  

One sample t h a t  had a s u r f a c e  a r e a  of  9 . 8  m^/g was a p p a r e n t l y  a f i n e  

s i l t  composed p r i m a r i l y  o f  q u a r t z .  The o t h e r  samples  had s u r f a c e  a r e a s  

r a n g i n g  from 32 .7 1  t o  4 6 . 5 4  m^/g and were composed, in  des ce n d in g  

abundance ,  o f  q u a r t z ,  i l l i t e ,  and k a o l i n i t e  ( S e c t .  4 . 4  p r e s e n t s  a d d i ­

t i o n a l  d i s c u s s i o n  o f  s o i l  m i n e r a l o g y ) .

4 . 2 . 2  Chemical  C h a r a c t e r i s t i c s  o f  Knox Residuum

R e s id u a l  s o i l s  d e r i v e d  from w e a t h e r i n g  of  t h e  Copper Ridge Dolom ite  

and t h e  Newala Form a t ion  a r e  h e a v i l y  l e a c h e d .  They have c a r b o n a t e  

c o n t e n t s  r a n g i n g  from 0 . 1 2  t o  0.35% in  t h e  upper  10 m and d e c r e a s i n g  to  

0 . 0 3  t o  0.04% w i th  g r e a t e r  d e p t h .  The pH o f  w a te r  in  e q u i l i b r i u m  w i th  

r e s iduum  i s  m i l d l y  a c i d i c .  E lementa l  a n a l y s e s  of  s ix  s o i l  samples  a re  

p r e s e n t e d  in  T a b l e  4 . 4 .  Uranium and rad ium  v a l u e s  in  t h e  s o i l s  r a n g e  

from 3 . 9  t o  8 . 0  Mg/g and 2 . 2 8  t o  4 . 7 1  p C i / g ,  r e s p e c t i v e l y ,  w i th  av e ra g e  

v a l u e s  o f  5 .5  +_ 2 .5  Mg/g and 3 .4  1 . 3  p C i / g ,  r e s p e c t i v e l y .

4 . 2 . 3  Chemical C h a r a c t e r i s t i c s  of  So i l  Water and S u r f a c e  Water

Data  r e g a r d i n g  t h e  chemical  c o n s t i t u e n t s  of  s o i l  w a t e r s  in  Knox 

res iduum  a re  based  on a n a l y s e s  o f  s o i l  w a t e r s  r e c o v e r e d  from a b o r e h o l e
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T a b le  4 . 4 .  E lem en ta l  A na ly ses  of  Knox Residuum from West C hes tnu t  
Ridge S i t e  by ICP s p e c t r o m e t r y  ( c o n c e n t r a t i o n s  are Mg/g, e x c e p t  S i )

Element

Newala Formation Copper Ridge Dolomite

3 m 
(1 0  f t )

9 m 
(30 f t )

12  m 
(40  f t )

6 m 
( 2 0  f t )

9 m 
(30 f t )

18 m 
(60 f t )

Ag <4 .5 <4.5 <4.5 <4.5 <4.5 <4.5

Al 80 ,000 1 1 0 ,0 0 0 95 ,000 97 ,000 26,000 99 ,000

B 37 31 40 <19 21 21

Ba 78 160 240 76 55 84

Be 1 .9 5 .1 8 . 3 2 1 .8 3 .9

Ca 150 1 ,4 00 2 ,2 0 0 350 96 1 ,1 0 0

Cd 7 7 .3 7 . 8 7 .1 4 .6 5 .6

Co 8 48 21 12 36 9 . 3

Cr 73 64 78 37 15 58

Cu 24 36 30 43 43 49

Fe 35 ,000 47 ,0 0 0 48 ,0 00 45 ,0 00 28,000 38,000

Gd 21 <18 <18 20 <18 22

Hf 25 34 34 27 19 28

K 18 ,000 2 0 ,0 0 0 2 ,900 1 1 ,0 0 0 6 ,1 0 0 14,000

Mg 7 ,000 8 ,2 0 0 9 ,7 0 0 3 ,7 00 2 ,1 0 0 5 ,000

Mn 140 1 ,8 0 0 1 ,2 0 0 330 2 ,0 0 0 540

Mo 33 51 41 23 27 35

Na <1 ,0 0 0 <1 ,0 0 0 <1 ,0 0 0 <1 ,0 0 0 <1 ,0 0 0 <1 ,0 0 0

Ni 37 77 71 42 74 58

P <83 <83 <83 <83 <83 <83

Pb <65 <65 <65 <65 <65 <65

Sb <35 <35 <35 <35 <35 <35

Se < 110 < 110 < 110 <110 <110 <110

Si{%) 32 28 27 31 40 31

Sr 15 24 28 19 6 .3 16

Ti 3 ,7 00 3 ,300 2 ,300 3 ,000 1,300 3,100

V 80 65 86 8 8 31 93

Zn 250 480 410 310 26 360

It 120 120 120 120 120 120

Source: Seeley and Kelmers 1984.
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in  Knox res iduum  a t  a n o t h e r  s i t e  on C h e s t n u t  Ridge and on s y n t h e t i c  s o i l  

w a te r  e x t r a c t e d  from a c o m p o s i t e  s o i l  sample o f  West C h e s t n u t  Ridge  

s o i l  s .  P r e o p e r a t i o n a l  g ro u n d w a te r  qual i t y  i s  be ing  m o n i to re d  and w i l l  

be p u b l i s h e d  under  s e p a r a t e  c o v e r .

So i l  pH m easured  on 1 : 1  s o i l - w a t e r  m i x t u r e s  r anged  from 4 . 1  t o  6 . 7  

f o r  s u r f i c i a l  s o i l s  and from 5 . 0  t o  6 . 7  f o r  r e s iduum  sam ples  (Lee e t  a l . 

1 9 8 4 ) .  The pH o f  ground w a te r  o b t a i n e d  from a s a t u r a t e d  zone in  Copper 

Ridge  Dolomite  r es iduum  a t  a s i t e  a p p r o x i m a t e l y  6 . 6  km (4 m i l e s )  n o r t h ­

e a s t  o f  t h i s  s t u d y  a r e a  ranged  from 5 . 7  t o  6 . 0  0 . 2 .  The pH o f  a

s y n t h e t i c  s o i l  w a te r  p r e p a r e d  by m ix ing  a c o m p o s i t e  s o i l  sample w i th  

d e i o n i z e d  w a te r  was 6 . 6 5 .  Anion and e le m e n ta l  a n a l y s e s  of  s o i l  w a t e r s  

show v e r y  low v a l u e s  f o r  b i c a r b o n a t e ,  c h l o r i d e ,  c a l c i u m ,  r ad iu m ,  and 

s i l i c o n .  Values  f o r  most  o t h e r  p a r a m e t e r s  were below d e t e c t i o n  l i m i t s  

f o r  t h e  method u s e d .  T a b l e  4 . 5  shows t h e  a n a l y t i c a l  r e s u l t s  o f  s o i l  

w a t e r  a n a l y s e s .  The r e s u l t s  f o r  n a t u r a l  and s y n t h e t i c  s o i l  w a te r  a re  

s i m i l a r .

S u r f a c e  w a t e r s  on t h e  s i t e  were low in d i s s o l v e d  c o n s t i t u e n t s  on 

t h e  d a t e s  sam pled .  T e m p e r a tu r e ,  s p e c i f i c  c o n d u c t a n c e ,  and pH a r e  shown 

in T a b l e  4 . 6 .  ( S u r f a c e  w a te r  sample s t a t i o n s  c o r r e s p o n d  t o  gaging  

s t a t i o n s  -  S e c t .  6  c o n t a i n s  a map showing t h e s e  l o c a t i o n s . )  Data  in  

T a b le  4 . 6  f o r  September  s u g g e s t  t h a t  under  low f low  c o n d i t i o n s  w a t e r s  a t  

s t a t i o n s  1,  2 ,  3,  and 7 r e c e i v e  w a t e r  which has  c i r c u l a t e d  t h ro u g h  

w e a t h e r i n g  bedrock  ( h i g h e r  pH and c o n d u c t a n c e ) , v*i ile  w a t e r  a t  s t a t i o n s  

4 ,  5 ,  and 6 a p p a r e n t l y  emana te  from s o u r c e s  in  t h e  r e s i d u u m .  Under t h e  

h i g h e r  f low  c o n d i t o n s  of  Apr i l  t h e r e  i s  lower c o n t r a s t  between most  

s t a t i o n s ,  w i th  t h e  e x c e p t i o n s  of  s t a t i o n s  1 and 7,  which r e t a i n  h igh  pH 

and c o n d u c ta n c e  val u e s .  E lementa l  anal  y s e s  show t h a t  c a lc iu m  and

magnesium c o n c e n t r a t i o n s  a r e  h i g h e r  in  s u r f a c e  w a t e r s  t h a n  in  s o i l

w a t e r s  on t h e  s i t e .  The r e a s o n  f o r  t h i s  and t h e  h i g h e r  pH i s  t h a t  two

of  t h e  t h r e e  s u r f a c e  s t r e a m s  on t h e  s i t e  r e c e i v e  a p o r t i o n  of  t h e i r  f low

from a bed rock  a q u i f e r  t h a t  c o n t r i b u t e s  ca lc ium  and magnesium from t h e  

g r a d u a l  d i s s o l u t i o n  o f  d o l o m i t e  and r e s u l t s  in  t h e  n e u t r a l  t o  s i i g h t l y  

a l k a l i n e  pH o f  t h e  w a t e r .
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T a b l e  4 . 5 .  D i s s o lv e d  c o n s t i t u e n t s  in  Knox res iduum s o i l  w a t e r s  
( c o n c e n t r a t i o n s  a r e  in M g / m l )

O f f s i t e  
b o r e h o l e

S y n t h e t i c  
s o i l  w a te r

Anions
SO4 - 2 <4 1
NO3 - 3 <4 1
NO2 " <2
F- <1 <1
c i - 2-24 1
Br- <5 <1
PO4 - 3 <4 <1

HCO3 - 9 -12 0 .152
CO3 - 0 0

C a t io n s

Ag <0.018 0.0407
Al <0.058 0 .1 0 4
As <0.64
B <0.076 <0.076
Ba 0 .0 2 9 - 0 . 0 9 4 0.009
Be <0.0013 <0.0013
Ca 0 . 5 - 2 . 1 <4
Cd 0 .0 2 9 <0.009
Co <0.013 <0,013
Cr < 0 .023 <0.023
Cu <0.032 <0.032
Fe <0 .0 2 <0 .0 2
Sa <0.07 <0.07
Hf 0 .0 4 3 <0.04
K < 4 ,< 0 .5 <4
Mg 0 . 1 7 - 1 . 1 0 .1 62
Mn 0 . 1 4 - 1 . 5 0 .008
Mo < 0 .0 2 7 - 0 .0 3 4 <0.027
Na 2 . 8 - 1 5 0 .678
Ni <0 .1 1 <0 .1 1
P <0.33 <0.33
Pb <0.26 <0.26
Se <0.43 <0.43
Si 3 . 3 - 3 . 5 2 .33
Sr <0.016 <0.016
Ti 0 .0 2 4 - 0 . 0 2 6 0 .056
V <0.015 <0.015
Zn <0 .0 1 0
Zr 0 . 0 6 4 - 0 . 0 6 5 <0.016

Source: Seeley and Kelmers 1984.
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Table 4 .6 . Surface water physiochemical parameters

Sample s t a t i o n

1 2 3 4 5 6 7

Water t e m p . C C )

4 / 1 8 / 8 3 9 . 6 1 0 .1 11 .7 10 .5 1 1 .1 1 0 .5 1 0 .6

9 / 1 1 / 8 3 21 .5 20 .5 2 3 .4 2 1 .3 21 .7 2 2 .3 18 .4

S p e c i f i c  Conductance  
MS/cm

4 / 1 8 / 8 3 125 92 50 63 66 26 195

9 / 1 1 / 8 3 282 229 164

pH

27 54 41 288

4 / 1 8 / 8 3 7 .5 6 .7 6 . 3 6 .5 6 . 5 5 .9 8 . 4

9 / 1 1 / 8 3 7 .1 7 . 3 7 . 2 6 . 3 7 . 0 6 . 0 7 .4

S o u r c e : S e e l e y  and Kelmers  1984.
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Based on t e s t i n g  performed t o  d a t e , t h e  Knox s o i l , r o c k ,  and w a te r  

sys tem  seems t o  be d i v i s i b l e  i n t o  zones  s i m i l a r  t o  t h o s e  used in  t h e  

s o i l  and bed rock  c h a r a c t e r i z a t i o n .  A c o n c e p tu a l  model of  t h e  s i t e  geo­

c hemica l  c h a r a c t e r  i n c l u d e s  two z o n e s : t h e  r e s i d u a l  s o i l s  which have

been d e e p l y  l e a c h e d ,  have m i l d l y  a c i d i c  pH and low c a r b o n a t e  c o n t e n t ;  

and a zone i n f l u e n c e d  by t h e  p r e s e n c e  of  w e a t h e r in g  c a r b o n a t e  rock  t h a t

has  g e n e r a l l y  n e u t r a l  t o  a l k a l i n e  pH and h i g h e r  Ca, Mg, and s o l u b l e

c a r b o n a t e s .  The c o n t r a s t  be tween  t h e  two zones i s  e x p re s s e d  by t h e  pH 

and s p e c i f i c  c o n d u c ta n c e  v a l u e s  measured  a t  s u r f a c e  w a te r  s t a t i o n s

( T a b l e  4 . 6 ) .  The two zones u n d o u b t e d l y  i n t e r f i n g e r  e x t e n s i v e l y  in  t h e

w e a t h e r i n g  bed rock  zone .

4 . 3  RADIONUCLIDE SORPTION AND DESORPTION CHARACTERISTICS OF KNOX 
RESIDUUM

Two v a r i a t i o n s  of  t h e  c o n v e n t i o n a l  b a tc h  c o n t a c t  method were used 

t o  m easu re  r a d i o n u c l i d e  s o r p t i o n  i s o t h e r m s  and a p p a re n t  c o n c e n t r a t i o n  

1 i m i t s  in  s i t e  s o i l / g r o u n d  w a t e r  sy s te m s  ( S e e l e y  and Kelmers  1 9 8 4 ) .  The 

two a p p ro a c h e s  were used b e c a u s e  o f  t h e  u n b u f fe r e d  n a t u r e  o f  t h e  Knox 

r e s iduum  s o i l / w a t e r  s y s te m ,  which al 1 owed s i g n i f i c a n t  pH c hanges  to  

occu r  d u r i n g  t h e  t e s t .  A few d e s o r p t i o n  t e s t s  were pe rformed t o  e x p l o r e  

s o r p t i o n - d e s o r p t i o n  e q u i l i b r i u m .  Two column s o r p t i o n  t e s t s  were 

pe r fo rm ed  t o  p r o v i d e  a p r e l i m i n a r y  e v a l u a t i o n  of  r a d i o n u c l i d e  m u l t i p l e  

s p e c i a t i o n  e f f e c t s  on t h e  s o r p t i o n  c h a r a c t e r i s t i c s .

D e t a i l s  o f  t h e s e  s t u d i e s  a r e  r e p o r t e d  in S e e l e y  and Kelmers  (1984) 

and t h e  r e s u l t s  a r e  summarized h e r e .  S o r p t i o n  r a t i o s  (Rg) o b t a i n e d  

f o r  s i t e  s o i l s  u s i n g  5 mg/L i n i t i a l  s o l u t i o n  c o n c e n t r a t i o n s  a r e  summa­

r i z e d  in  T a b le  4 . 7 .  An i n c r e a s e  in  t h e  i n i t i a l  s o l u t i o n  c o n c e n t r a t i o n  

r e s u l t s  in a d e c r e a s e  in t h e  s o r p t i o n  r a t i o  f o r  each r a d i o n u c l i d e  

t e s t e d . The r a n g e s  in  s o r p t i o n  r a t i o  v a r i a t i o n s  f o r  each r a d i o n u c l i d e  

t e s t e d  under  ambient  pH c o n d i t i o n s  (pH was a l 1 owed t o  v a r y  as  r a d i o ­

nuc l  i d e  c o n c e n t r a t i o n  was i n c r e a s e d )  a r e  shown in F i g s .  4 . 4  t h r o u g h  

4 . 1 1 .  S o l u t i o n  pH v a l u e s  r anged  from 7 t o  4 ,  and pH d e c r e a s e d  as  i n i ­

t i  al r a d i o n u c l i d e  c o n c e n t r a t i o n  i n c r e a s e d .  The s o r p t i o n  d a t a  o b t a i n e d  

under  ambien t  c o n d i t i o n s  g i v e  some i n d i c a t i o n  of  how s o i l s  in  t h e



Table 4 .7 . Summary of radionuclide sorption data

R a d i o n u c l i d e  
( v a l e n c e ) p H

Rg v a lu e s ®

Range L/Kg

U (+6 ) 5 .6  + 1 . 0 Average 3.2E3
(U0 2 +2 ) High 2.5E4

Low 2.5E2

Sr (+ 2) 6 .0  + 0 .6 Average 6.9E2
High 1.6E3
Low 2.0E2

Cs(+1) 5 .4  + 0 .7 Average 3.3E3
High 1.1E4
Low 1.1E2

Co(+2) 6 .0  + 1 .0 Average 1 .6E3
High 7.9E3
Low 7.1E1

Eu(+3) 5 .0  + 0 . 7 (one o n ly )
High 6.1E4
Low 6.4E1

Th(+4) 4 .0  + 0 . 7 (one o n ly )
High 1.1E4
Low 5.4E0

T c ( - l ) 5 .1  + 0 . 2 (one on ly )
High 1.6E0
Low l.OEO

K - l) 5 .8  +_ 0 . 6 Average l . B E - l
High 1.8E0
Low 1 .4 E - 2

®Rs v a l u e s  a r e  d e r i v e d  from c o n t a c t s  wi th  low i n i t i a l  
c o n c e n t r a t i o n s  o f  t h e  r a d i o n u c l i d e  (5 m g /L ) .
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n a t u r a l  c o n d i t i o n  may r e s p o n d  to  chemica l  changes induced by was te  

l e a c h a t e  i n f i l t r a t i o n .

S o r p t i o n - d e s o r p t i o n  c h a r a c t e r i s t i c s  f o r  U(VI) in  t h e  s o i l / s y n t h e t i c  

g r o u n d w a te r  sys tem i n d i c a t e  t h a t  s t e a d y  s t a t e  c o n d i t i o n s  e x i s t  and t h a t  

Rs v a l u e s  o b t a i n e d  a r e  a c l o s e  a p p ro x i m a t io n  t o  d i s t r i b u t i o n  c o e f f i ­

c i e n t s  (Kd) f o r  s i t e  s o i l s .

T e s t s  pe r fo rm ed  t o  e v a l u a t e  t h e  i n f l u e n c e  of  system pH on r a d i o ­

nuc l  i d e  s o r p t i o n  r a t i o s  showed t h a t ,  in  g e n e r a l , s o r p t i o n  r a t i o s  f o r  

c a t i o n i c  r a d i o n u c l i d e s  i n c r e a s e  w i th  i n c r e a s e s  in pH f o r  g iven  r a d i o ­

nuc l  ide  c o n c e n t r a t i o n s .

S o r p t i o n  r a t i o s  de te rm in e d  u s ing  t h e  s o i l  wa te r  and s o i l  system 

r e f l e c t  t h e  b e h a v i o r  of  r a d i o n u c l i d e s  d i s s o l v e d  in  t h e  c l e a n  n a t u r a l  

s y s t e m .  L e a c h a t e s  which a r e  g e n e r a t e d  from was te  m a t e r i a l s  a re  v e ry  

1 i k e l y  t o  c o n t a i n  a broad s pec t rum  o f  a n i o n i c  and o r g a n i c  s u b s t a n c e s  as 

m a jo r  d i s s o l v e d  c o n s t i t u e n t s .  Very l i m i t e d  t e s t i n g  has  been pe rfo rmed 

t o  e v a l u a t e  t h e  e f f e c t s  o f  c o m p l e x a t i o n  and c h e l a t i o n  of  r a d i o n u c l i d e s  

in  t h e  Knox r e s i d u u m .  The e f f e c t  o f  s u l f a t e  on s t r o n t i u m  s o r p t i o n  was 

t e s t e d  and can be summarized as  f o l l o w s .  At low i n i t i a l  s t r o n t i u m  co n ­

c e n t r a t i o n s  and sodium s u l f a t e  c o n c e n t r a t i o n s  of  0 . 5  and 5 _M, Rg va l  ues 

were d e c r e a s e d  by f a c t o r s  of  1Q2 and 1 q 3 ,  r e s p e c t i v e l y ,  due in  p a r t  to  

c o m p e t i t i o n  between  Na and Sr  f o r  exchange  s i t e s .  Fo rm a t io n  of  SrS04 

a p p a r e n t l y  e s t a b l i s h e s  maximum Sr c o n c e n t r a t i o n  1 i m i t s  o f  90 and 800 

mg/L,  r e s p e c t i v e l y ,  f o r  0 . 0 5  and 0 . 5  ^  s u l f a t e  c o n c e n t r a t i o n s  in  t h e  

s o l u t i o n .  W ithou t  t h e  s u l f a t e  t h e  s o l u b i l i t y  1 i m i t  f o r  Sr was 68 ,000  _+ 

12 ,0 0 0  mg/L.

The e f f e c t  o f  o r g a n i c  complexing  o r  c h e l a t i n g  a g e n t s  on r a d i o ­

nuc l  i d e  s o r p t i o n  c h a r a c t e r i s t i c s  was e v a l u a t e d  u s in g  0 . 0 1  and 0 .0 5  _M 

EOTA o r  c i t r i c  a c id  in s o l u t i o n s  f o r  uranium s o r p t i o n  t e s t s .  Both com­

p l e x i n g  a g e n t s  r e s u l t e d  in  t h e  r e d u c t i o n  of  Rg va l  ues  by a p p r o x i m a t e ly  

two o r d e r s  o f  m ag n i tu d e  a t  low i n i t i a l  uranium c o n c e n t r a t i o n s ,  and by 

one o r d e r  o f  m ag n i tu d e  a t  h igh  i n i t i a l  uranium c o n c e n t r a t i o n s .  T r a n s ­

p o r t  o f  r a d i o n u c l i d e s  in c h e m i c a l l y  complexed forms can r e s u l t  in  m i g r a ­

t i o n  r a t e s  much h i g h e r  t h a n  t h o s e  e x p e c t e d  based on t h e  r e s u l t s  of  t e s t s  

u s in g  r a d i o n u c l i d e s  in  s o l u t i o n  as d i s s o c i a t e d  i o n s .  T h i s  f a c t  enpha-  

s i z e s  t h e  im p o r ta n c e  of  m in im iz in g  complexing compounds in  t h e  was te  

s t r e a m  and keep ing  w a s te s  d r y  t o  m in im ize  d i s s o l u t i o n  and m i g r a t i o n .
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Two column s o r p t i o n  t e s t s  have been pe rformed u s in g  Knox r e s id u u m .  

Each column was loaded  w i t h  3 . 0  g o f  a co m p o s i t e  s o i l  s a m p le .  The s o i l  

o c c u p ie d  a p p r o x i m a t e ly  10 cm (4 i n )  o f  t h e  t o t a l  column l e n g t h ,  had a 

vo id  volume o f  a p p r o x i m a t e l y  3 .5  m l , and a f low o f  a p p r o x i m a t e l y  0 .1  

ml/H was e s t a b l i s h e d  th r o u g h  t h e  s o i l .

In one co lumn, a uranium s o l u t i o n  was p l a c e d  on to p  o f  t h e  column 

o f  s e t t l e d  s o i l  and a downflow of  s y n t h e t i c  g r oundw a te r  was appl i ed  f o r  

10 days  ( a p p r o x i m a t e l y  7 vo id  volumes t h ro u g h  t h e  s o i l ) .  No a lp h a  

a c t i v i t y  was coun ted  in  t h e  e f f 1 u e n t  s a m p le s ,  and upon e x t r u s i o n  and 

s a m p l ing  of  t h e  s o i l  a lp h a  a c t i v i t y  was found in  o n ly  t h e  t o p  1 cm o f  

s o i l . T h i s  r e s u l t  c o n f i r m s  h igh  Rg v a l u e s  f o r  uranium as  d e te r m in e d  

by b a t c h  t e s t i n g .

In t h e  o t h e r  column,  a s o l u t i o n  c o n t a i n i n g  s t r o n t i u m ,  c e s i u m ,  and 

i o d i n e  was p i a c e d  on t h e  to p  o f  t h e  s o i l . D i f f i c u l t y  was e n c o u n t e r e d  in  

m a i n t a i n i n g  a c o n s t a n t  f low  r a t e ,  however ,  t h e  f o l l o w i n g  o b s e r v a t i o n s  

were made.  S t r o n t i u m  and cesium a c t i v i t y  was d e t e c t e d  in  e f f l u e n t  w a te r  

a f t e r  one void volume of  f lo w .  A f t e r  a p p r o x i m a t e l y  one week of  f lo w ,  

i o d i n e  a c t i v i t y  was d e t e c t e d  in  t h e  e f f l u e n t  s o l u t i o n .  Upon e x t r u s i o n  

o f  t h e  s o i l  column,  t h e  m ajo r  f r a c t i o n  of  t o t a l  a c t i v i t y  ( S r  and Cs) was 

l o c a t e d  in t h e  t o p  25% o f  t h e  co lumn;  t h e  second  25% o f  t h e  column 

c o n t a i n e d  s m a l1 amounts of  S r , Cs,  and I ;  and t h e  bot tom 50% c o n t a i n e d  

on ly  I a c t i v i t y .  The i n i t i a l  a r r i v a l  of  Sr  and Cs i s  p o s s i b l y  due t o  

t h e  f o r m a t i o n  of  c o l l o i d s ,  which were t r a n s p o r t e d  w i th  t h e  f i r s t  void 

volume o f  f l o w .  The t e s t  c on f i rm e d  weak r e t a r d a t i o n  b e h a v i o r  f o r  I and 

s t r o n g  r e t a r d  a t i o n  f o r  most  of  t h e  Sr and Cs.

4 . 4  SOIL MINERALOGY

P r e l i m i n a r y  i n f o r m a t i o n  on t h e  m in e r a l o g y  of  Knox res iduum  i s  p r e ­

s e n t e d  in S e e l e y  and Kelmers ( 1 9 8 4 ) ,  based  on powder X- ray  d i f f r a c t i o n  

(XRD) a n a l y s e s  w i t h o u t  the rm al  t r e a t m e n t s  or  s e l e c t i v e  c a t i o n  and p o l a r  

o r g a n i c  s a t u r a t i o n  of  t h e  s a m p l e s .  The r e s u l t s  o f  t h e  a n a l y s e s  pub­

l i s h e d  by S e e l e y  and Kelmers  (1984)  a r e  p r e s e n t e d  in  T a b le  4 . 8  In t h i s  

a n a l y s i s  t h e  p redom inan t  m i n e r a l s  p r e s e n t  in  t h e  r es iduum  a r e  q u a r t z  and 

i l l i t e ,  w i th  l e s s e r  amounts of  k a o l i n i t e .  One sample was p r e d o m i n a n t l y
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T a b le  4 . 8 .  P r e l i m i n a r y  m i n e r a l o g i c a l  d a t a

P a r e n t
m a t e r i a l

Sample
de p th

(m)

S u r f a c e
a r e a

(m2 / g )

C r y s t a l l i n e  p h a s e s

Major In te rm e d i  a t e Minor

K i n g s p o r t 3 37 .1 3 Q uar tz 1 1 1 i t e
Fo rm a t ion 9 4 6 .5 4 Quar tz 111 i t e K a o l i n i t e

12 43 .7 6 Quar tz I l l i t e

Copper Ridge 6 33 .56 Quar tz 111 i t e K a o l i n i t e
Dolomite 9 9 .8 0 Q uar tz I l l i t e

18 32 .71 Quar tz I l l i t e K a o l i n i t e
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q u a r t z  s i l t  and had a much lower s u r f a c e  a r e a  th a n  t h e  o t h e r  samples  

which c o n t a i n e d  l a r g e r  p e r c e n t a g e s  of  c l a y .

A more d e t a i l e d  s tu d y  o f  s o i l  m i n e r a l o g y  has  been p r e p a r e d  by Lee 

e t  a l . ( 1 9 8 4 ) ,  i n c l u d i n g  a n a l y s e s  of  s u r f i c i  al s o i l s  and r e s i d u u m .  The 

f o l l o w i n g  d i s c u s s i o n  i n c l u d e s  e x c e r p t s  from t h e  r e p o r t  p r e p a r e d  by Lee 

e t  a l . ( 1 9 8 4 ) .  T h re e  d i a g n o s t i c  h o r i z o n s  from each of f o u r  s o i l  p r o ­

f i l e s ,  and s i x  r es iduum  c o r e  s a m p l e s ,  were s e l e c t e d  f o r  m i n e r a l o g i c a l  

a n a l y s e s . The l o c a t i o n  of  s o i l  p r o f i l e s  and c o re  samples  t e s t e d  a re  

shown in F i g .  4 . 1 .  The c o a r s e  f r a c t i o n s  ( g r a v e l  and sand)  of  t h e  

samples  were compr ised  of  d i f f e r e n t  t y p e s  of  c h e r t s ,  i r o n /m a n g a n e se  

o x ide  n o d u l e s ,  and q u a r t z .

The samples  had h igh c l a y  c o n t e n t s  ( e x c e p t  s u r f i c i  al A and E 

ho r i  zons)  and low pH and b a se  s a t u r a t i o n s .  The c l  ay f r a c t i o n s  were 

composed of  v a r y i n g  amounts of  k a o l i n i t e ,  m i c a ,  v e r m i c u l i t e ,  hydroxy-  

i n t e r l a y e r e d  v e r m i c u l i t e ,  amorphous i ron / a lu m in u m  o x i d e ,  g i b b s i t e ,  and 

q u a r t z .  The aluminum h y d r o x y - i n t e r l a y e r e d  v e r m i c u l i t e  i s  t h e  major  

component  in s u r f a c e  ho r i  z o n s ,  b u t  k a o l i n i t e  becomes dominan t  in  s u b s u r ­

f a c e  ho r i  zons of  t h e  so i 1 s . The d e g r a d a t i o n  of  kaol  i n i t e  and t h e  

f o r m a t i o n  o f  aluminum h y d r o x y - i n t e r l a y e r e d  v e r m i c u l i t e  and i ro n / a lu m in u m  

o x i d e s  a re  pronounced chemical  w e a t h e r in g  p r o c e s s e s  in t h e  s u r f a c e  

s o i l s .  The aluminum i n t e r l a y e r i n g  of  v e r m i c u l i t e  r e d u c e s  c a t i o n  

exchange  and t h e  s e l e c t i v e  s o r p t i o n  c a p a c i t i e s  of  s o i 1 s .

S t a n d a r d  m ethods  of  c l  ay m in e r a l  anal  y s i s  were u s e d ,  and d e t a i l e d  

d i s c u s s i o n  of  t h e  methods i s  i n c lu d e d  in  Lee e t  a l . ( 1 9 8 4 ) .  The r e s u l t s  

of  s t u d i e s  pe r fo rm ed  on s u r f i c i  al s o i l  p r o f i l e s  and on re s iduum a r e  

summarized below.

4 . 4 . 1  S u r f a c e  So i l  H or izons

So i l  h o r i  zons deve loped  in t h e  Knox a re  q u i t e  compi ex be c ause  of 

t h e  f a c t  t h a t  t h e s e  s o i l s  were no t  s im p ly  d e v e lo p e d  on top  of  s t a b l e  

Knox r e s i d u u m .  The re  i s  s u b s t a n t i a l  e v id e n c e  t h a t  m a t e r i a l  d e r i v e d  from 

t h e  Knox group  has  been t r a n s p o r t e d  1a t e r a l l y  by r u n n in g  w a t e r ,  d o w n h i l 1 

by g r a v i t y  ( as  c o l l u v i u m ) , washed i n t o  f r a c t u r e s  in the  r o c k ,  d i s r u p t e d  

by f a r m i n g ,  e t c .  The c h a r a c t e r  o f  Knox s o i l s  i s  1 i k e l y  t o  change
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abrupt ly ,  b o th  v e r t i c a l l y  and h o r i z o n t a l l y .  Such d i f f e r e n c e s  can be 

observed even in the walls of a s ingle  p i t .  Surface soil  sa'Dples were 
o b t a i n e d  from t e s t  p i t s  e x c a v a t e d  in  f o u r  l o c a t i o n s .

The s o i l  in p r o f i l e  I has  d e v e lo p e d  on o ld  a l l u v iu m  over  re s iduum 

o f  t h e  Copper  Ridge  D o l o m i t e .  The s o i l  has a dark  r e d d i s h -b r o w n  c o lo r  

in  s u r f a c e  h o r i z o n s  and a d a rk  red  c o l o r  in  d i a g n o s t i c  s u b s u r f a c e  

h o r i z o n s .  The t e x t u r e  o f  t h e  s o i l  v a r i e s  from c l a y  loam to  s i l t y  c l a y  

loam ( T a b l e  4 . 9 ) .  The p r o p o r t i o n  o f  c h e r t  f r a g m en t s  i s  low (1 t o  1%) i n

t h e  p r o f i l e .  The s o i l  i s  r e l a t i v e l y  porous  down to  120 cm (48 i n )  w i th

many 1 t o  2 mm Fe/Mn n o d u l e s .

The s o i l  in  p r o f i l e  I I  has  deve lo ped  on old s i l t y  al 1 uvium over  

sandy res iduum  t h a t  i s  p r o b a b l y  w e a th e re d  from s a n d s t o n e  s t r a t a ,  which 

s t a r t  a t  80 cm ( 3 1 .5  i n )  below t h e  s o i l  s u r f a c e .  The mixed zone of  t h e  

two 1 i t h o l o g i e s  c o n t a i n s  1 ag g r a v e l  o f  wea thered  c h e r t .  The s u r f a c e  

h o r i z o n s  have a da rk  brown c o l o r  and t h e  s u b s u r f a c e  h o r i z o n s  have a dark 

red  c o l o r  w i th  many b l a c k i s h  Fe/Mn n o d u l e s .  The t e x t u r e  o f  t h e  s o i l  

changed from loam to  c l a y  loam and sandy  c l a y  loam, r e f l e c t i n g

t r a n s l o c a t i o n  of  c l  ays and d i f f e r e n c e s  in 1 i t h o l o g y  w i t h i n  t h e  s o i l

p r o f i l e .

P r o f i l e  I I I  was t a k e n  from a low f o o t s l o p e  between two d r a i n a g e -  

w a y s ; t h e  s o i l  has  d e v e lo p e d  on a c h e r t y  colluvium p a r e n t  m a t e r i a l . The 

s o i l  v a r i e s  from g r a y i s h  brown to  y e l l o w i s h  r e d ,  and f r a g i p a n  i s  d e v e l ­

oped n e a r  a f l u c t u a t i n g  pe rched  w a t e r  zone (2 Btx/Ex h o r i z o n ) .  The s o i l  

has  a loam to  c l a y  loam t e x t u r e  and c o n t a i n s  12 t o  30% c o a r s e  c h e r t  

f r a g m e n t s .

The s o i l  in p r o f i l e  IV has  deve loped  on c h e r t y  d o l o m i t e  res iduum 

w e a t h e r e d  from t h e  Longview Dolomite  f o r m a t i o n .  The s o i l  i s  brown in  

s u r f a c e  h o r i z o n s  and y e l l o w i s h  red t o  red in  s u b s u r f a c e  h o r i z o n s .  A 

d r a s t i c  i n c r e a s e  o f  c l  ay c o n t e n t  and d e c r e a s e  of  c h e r t  c o n t e n t  were 

o b s e r v e d  from t h e  s u r f a c e  h o r i z o n s  t o  t h e  s u b s u r f a c e  h o r i z o n s .

So i l  pHs ranged be tw een  5 . 3  t o  4 . 1 ,  e x c e p t  t h e  A and 2Bt3  h o r iz o n  

o f  p r o f i l e  I , where t h e  pHs were 6 . 0  and 6 . 7 ,  r e s p e c t i v e l y .  The h i g h e r  

pHs a r e  p o s s i b l y  t h e  r e s u l t  o f  1 ime a p p l i c a t i o n s  in  t h e  p a s t .  The pHs 

in  1 ^  KCl s o l u t i o n  were lower  t h a n  in  H2 O be c ause  of  t h e  e x c h a n g e a b le  

a c i d i t y ,  Al p lu s  H, in t h e  s o i l s .



Tab le 4 . 9 .  P h y s i c a l  and >chemical  p r o p e r t i e s  of s e l e c t e d  samples  from s u r f a c e  s o i l p r o f i l e s

P r o f i l e Horizon
Depth

cm
Color

Wet 1:
ph

1 H^O

Gravel
f r a c t i o n
(< 2  mm) 

{%)

S iz e
Sand

d i s t r i b u t i o n
S i l t
{%)

of  <2 mm 
Clay

A 0-15 5YR3/2 6 .0 3 20 52 28
I B t l 46-69 2.5YR3/6 4 .9 7 15 53 32

2Bt3 92-120 2.5YR4/5 6 .7 5 15 49 36

A 0-15 7.5YR3/2 5 . 2 6 27 47 26
I I Bt2 58-80 2.5YR3/6 4 . 4 3 24 41 35

2Bt4 110-150 2.5YR3/6 4 .1 <1 60 17 23

I I I E 0-15 10YR4/2 5 .3 12 34 46 20
Bt2 39-60 7.5YR4/4 4 . 3 19 34 37 29
2B t l 115-150 7.5YR5/6 4 . 6 13 42 43 15

A 0-15 10YR4/3 5 .1 27 30 51 19
IV E 15-48 10YR5/4 4 .5 45 55 27 18

Btz 80 -150 2.5YR4/8 4 . 8 3 27 14 58

cnm
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I

E xchangeab le  A1 c o n c e n t r a t i o n  v a r i e d  from 1 t o  2 0 .2  mmol/Kg and was 

r e l a t i v e l y  lower  in  s u r f a c e  h o r i z o n s  o f  t h e  p r o f i l e s  ( F i g .  4 . 1 2 ) .  A 

s u b s u r f a c e  h o r i z o n  of  p r o f i l e  IV had t h e  h i g h e s t  c o n c e n t r a t i o n  of  t h e  

1a b i l e  A1. The A1 c o n c e n t r a t i o n  i n c r e a s e d  wi th  d e c r e a s i n g  e x c h a n g e a b le  

Ca in  t h e  s o i 1 s . The Mg c o n c e n t r a t i o n  showed a s i m i l a r  t r e n d  w i th  Ca 

b u t  v a r i e d  l e s s  d r a s t i c a l l y  w i t h i n  s o i l  p r o f i l e s .

4 . 4 . 1 . 1  Gravel  and Sand Morphology

C h e r t  c o m p r i se s  t h e  dominant  g r a i n s  found in t h e  c o a r s e r - t h a n - s a n d  

s i z e  f r a c t i o n .  S e v e ra l  c h e r t  t y p e s  were o b s e r v e d ,  i n c l u d i n g  m a s s i v e ,  

o o l i t i c ,  d o l o m o l d i c ,  p o r o u s ,  and a few banded g r a i n s .  In many c a s e s  t h e  

c h e r t  showed e v i d e n c e  o f  e x t e n s i v e  a l t e r a t i o n  t o  c l a y  a n d /o r  Fe/Mn 

n o d u l e s .  In most  c a s e s ,  more t h a n  one c h e r t  type  was found in a s i n g l e  

h o r i z o n .  C h e r t  g r a i n s  up t o  4 . 0  cm ( 1 . 6  in )  a c r o s s  were o b s e r v e d ;  

however ,  some of  t h e s e  had o b v i o u s l y  been broken and l a r g e r  g r a v e l s  and 

c o b b l e s  a r e  1 i k e l y  t o  be e n c o u n te r e d  a t  t h e  s i t e .

I ro n /m a n g a n e se  n o d u le s  a re  an i m p o r t a n t  c o n s t i t u e n t  of  t h e  s o i l s  in 

s e v e r a l  s p e c i m e n s ,  i n  some c a s e s  c o m p r i s i n g  more t h a n  50% of  t h e  s p e c i ­

men. I n c l u d e d  in t h i s  c a t e g o r y  a r e  t h o r o u g h l y  s t a i n e d  c h e r t  and rock 

f r a g m e n t s .  An i n t e r e s t i n g  f e a t u r e  o f  a s i g n i f i c a n t  number o f  t h e s e  

Fe/Mn n o d u l e s  i s  t h e  f a c t  t h a t  t h e y  a r e  m a g n e t i c .  These m agne t ic  g r a i n s  

a r e  shown by  (XRD) t o  c o n t a i n  t h e  m i n e r a l s  maghemite  and h e m a t i t e .  In 

g e n e r a l , t h e  amount of  maghemite  i s  g r e a t e s t  in  t h e  uppermost  h o r i z o n s  

of  each  p i t .  L e s s e r  amounts o f  maghemite  were d e t e c t e d  w i th  a hand 

magnet  in some of  t h e  lower s o i l  h o r i z o n s ,  bu t  u s u a l l y  o n ly  in  t r a c e  

amounts .

4 . 4 . 1 . 2  C lay  and S i l t  M ine ra logy

In t h e  s e l e c t e d  s o i l  p r o f i l e s  from t h e  West C h e s tn u t  Ridge S i t e ,  

t h e  cl  ay f r a c t i o n s  a r e  composed o f  v a r y i n g  amounts o f  k a o l i n i t e ,  

h y d r o x y - i n t e r l a y e r e d  v e r m i c u l i t e  (HIV) , v e r m i c u l i t e ,  m ic a ,  i r o n  o x i d e s ,  

g i b b s i t e ,  and q u a r t z  ( T a b le  4 . 1 0 ) .  K a o l i n i t e  i s  t h e  most  abundant  c l a y  

m in e r a l  in  t h e  s u b s u r f a c e  h o r i z o n s  and HIV i s  t h e  most  abundant  c l a y  in
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F i g . 4 . 1 2 .  D i s t r i b u t i o n  of  KCL (1^)  e x c h a n g e a b l e  A1, Mg, and Ca 
in  t h e  s o i l  p r o f i l e s .



T a b le  4 . 1 0 .  M i n e r a l o g i c a l  c a n p o s i t i o n  of  t h e  c l a y  f r a c t i o n s  (<2Mm) from s e l e c t e d
h o r i z o n s  o f  s u r f a c e  s o i l  p r o f i l e s ^

P r o f i l e Horizon

Fe^Oj ' ’ G i b b s i t e K a o l i n i t e  

{%)

Mica V e r m i c u l i t e HIV^ O t h e r s ^

A 6 . 5 1 .9 1 . 0 20 5 11 30 Qtz
I B t l 8 . 3 1 . 1 2 . 0 30 5 10 25 Qtz

2Bt3 8 . 4 0 . 8 t r a c e 35 6 13 15 Qtz

A 5 . 8 1 .5 2 . 0 20 11 10 25 Qtz
I I Bt2 7 .2 0 . 7 0 . 2 35 12 9 20 Qtz

2Bt4 9 . 2 0 . 9 0 40 13 9 10 Q t z .C .

E 4 . 0 1 . 6 1 . 0 10 10 9 25 Qtz
I I I Bt2 5 .1 0 . 8 1 . 0 2 0 14 10 10 Qtz

2 B t l 4 . 0 0 . 8 0 .7 20 13 13 15 Qtz

A 5 . 0 1 .7 3 .5 10 10 9 40 Qtz
IV E 4 . 5 1 .3 3 . 0 10 12 9 40 Qtz

Bt2 6 . 0 0 . 7 0 40 18 10 5 Qtz

3105°C o v e n d ry  w e ig h t  b a s i s .
^CBD e x t r a c t a b l e  f r e e  o z i d e s .
CHIV = Aluminum h y d r o x y - i n t e r l a y e r e d  v e r m i c u l i t e  e s t i m a t e d  from XRD i n t e n s i t y .  
^Qtz  = q u a r t z ,  C. = c r i s t o b o l i t e .
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t h e  s u r f a c e  h o r i z o n s  (A and E ) . Mica ,  v e r m i c u l i t e ,  and q u a r t z  a r e  t h e  

n e x t  mos t  common m i n e r a l s .  Amorphous i r o n  and aluminum o x i d e s ,  g i b b ­

s i t e ,  and c r y s t a l  1 i n e  i r o n  o x i d e s  ( h e m a t i t e  and maghemite)  and minor  

(<1 0 %) component s .

The m i n e r a l o g i c a l  c o m p o s i t i o n  o f  t h e  s i l t  (50-2  ^m) f r a c t i o n s  of 

t h e  12 s o i l  samples  from f o u r  s o i l  p r o f i l e s  were d e t e r m i n e d  by XRD. The 

s i l t  f r a c t i o n s  were composed of  >80% q u a r t z  g r a i n s  and <10% m ic a .  There  

were t r a c e  amounts o f  k a o l i n i t e  and i r o n  ox ide  m i n e r a l s  in  t h e  s i l t  

f r a c t i o n s .

4 . 4 . 2  R e s id u a l  S o i l s

Six samples  from f i v e  b o r e h o l e  c o r e s  were s e l e c t e d  f o r  c h a r a c t e r i ­

z a t i o n .  S e l e c t e d  p r o p e r t i e s  and d e p t h s  o f  t h e  r es iduum  s e c t i o n s  t a k e n  

a r e  g iv en  in  T a b le  4 . 1 1 .

The res iduum  sample from b o r e h o l e  A-5 was red c l a y  mixed w i th  a 

smal l  amount o f  y e l l o w i s h  w e a th e r e d  s h a l e ,  s i l t s t o n e  f r a g m e n t s ,  and 

s m a l1 amounts  of  g r a v e l - s i z e  c h e r t .  The r e d d i s h  c l a y  was chosen f o r  

a n a l y s i s  b e c au s e  i t  was t h e  m ajo r  c o n s t i t u e n t  in t h e  s e c t i o n .  The 

sample s e l e c t e d  from c o re  A- 6 was y e l l o w i s h  red and had a c l a y  loam 

t e x t u r e  w i th  a 1a rge  q u a n t i t y  of  g r a v e l - s i z e  c h e r t s .  The A- 6  sample  

a p p e a re d  t o  be c o l lu v iu m  r a t h e r  t h a n  in s i t u  r e s i d u u m .  Two s e c t i o n s  

were chosen  a t  d i f f e r e n t  d e p t h s  from c o re  A-9. The sample ( d e n o t e d  as  

A-9s) f rom t h e  2 3 .6  t o  24 m ( 7 7 .4  t o  7 8 . 7  f t )  s e c t i o n  was a w e a t h e r e d ,  

v e r y  p a l e  brown s h a l e  w i th  c l  ay t e x t u r e ; t h e  o t h e r  sample ( A - 9 d ) , from 

t h e  2 9 .6  t o  3 0 .0  m (97 .1  t o  9 8 . 4  f t )  s e c t i o n ,  was a r e d d i s h - b r o w n  

d o l o m i t e  res iduum wi th  a c l  ay t e x t u r e .

The sample from t h e  A-14 c o r e  had many smal1 [<1 cm ( 0 .4  i n ) ] ,  v e r y  

p a l e  brown,  w e a th e re d  s h a l e  f r a g m e n t s  in  y e l l o w i s h - r e d  res iduum  m a t r i x . 

The t e x t u r e  of  t h e  sample was c l a y  w i th  <15% o f  s i l t  pi us  s a n d . The 

sample  from A-16 had a r e d d i s h  m a t r i x  c o n t a i n i n g  y e l l o w i s h  b rown , 

w e a th e r e d  s i l t s t o n e  f r a g m e n t s  c o a t e d  w i th  b l a c k  manganese o x i d e s  on t h e  

edges  of  t h e  f r a g m e n t s .

The pH o f  t h e  re s iduum ranged  between  5 . 0  t o  6 . 7 ,  which i s  s i i g h t l y  

h i g h e r  t h a n  t h e  pH o f  t h e  s u r f a c e  s o i l s  deve loped  from them ( T a b l e  4 . 9 ) .



T a b le  4 . 1 1 .  P h y s i c a l  and chemical  p r o p e r t i e s  of  s e l e c t e d  samples  from
b o r e h o l e  r es iduum  c o r e s

Core
No.

Depth
(m)

Color
wet

pH
( 1 : 1  HgO)

Gravel  
(> 2  mm)

i%)

S iz e d i s t r i b u t i o n o f  <2  mm KCl (1 M) e x c h a n g e a b le
Sand S i l t

i t )
C lay Ca Mg

m mol/Kg
Al

A-5 1 3 . 2 - 1 3 . 7 2.5YR4/6 5 .0 i <1 26 73 1 .3 0 . 9 1 . 2

A- 6 2 0 . 6 - 2 1 . 0 5YR5/6 6 .7 42 27 40 33 3 .8 3 . 3 0 . 1

A-9s 2 3 . 6 - 2 4 . 0 10YR7/4 6 . 3 14 7 33 60 2 . 8 2 . 2 0 . 1
A-9d 2 9 . 6 - 3 0 . 0 5YR4/4 6 . 6 <1 11 5 84 3 .8 3-1 <0 . 1

A-14 1 1 . 6 - 1 2 . 0 5YR5/5 5 .1 1 4 10 86 0 . 6 0 . 3 1 .3

A-16 2 7 . 0 - 2 7 . 5 5YR4/4 5 . 4 1 5 32 63 1 . 4 1 . 2 0 . 4
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As was s u g g e s t e d  by pHs, t h e  A-6 , A-9s ,  and A-9d samples  had high 

e x c h a n g e a b le  Ca and Mg b u t  v e r y  low e x c h a n g e a b le  Al in  1 ^  KCl s o l u t i o n .  

The o t h e r  samples  had h i g h e r  e x c h a n g e a b le  Al bu t  t h e y  were lower  t h a n  in 

t h e  s u r f a c e  s o i l s  s t u d i e d .

4 . 4 . 2 . 1  Gravel  and Sand Morphology

The dom inant  m ine ra l  in t h e  c o a r s e  f r a c t i o n  i s  c h e r t .  The l a r g e s t  

s i z e  no ted  was a b o u t  2 . 5  cm (1 i n ) ; however ,  much g r e a t e r  d i m e n s io n s  a r e  

t y p i c a l l y  o b se rve d  in t h e  f i e l d .  The c h e r t  o c c u r s  in s e v e r a l  t y p e s ,  

i n c l u d i n g  m a s s iv e  {sometimes p o r c e l a n e o u s ) , o o l i t i c ,  d o l o m o l d i c ,  p o r o u s , 

e t c . More than  one ty p e  of  c h e r t  o c c u r s  in  what appe a r s  to  be a s i n g l e  

g r a i n .  The c h e r t  has been w e a th e r e d  or  a l t e r e d  in d i f f e r e n t  ways,  

somet imes  r e s u l t i n g  in t h e  deve lopm en t  of  c l a y  m i n e r a l s  and v a r i o u s  

Fe/Mn o x i d e s  which d i f f u s e d  i n t o  po rous  zones in  t h e  c h e r t .  In some 

c a s e s ,  t h e  d i f f e r e n t  c h e r t  components  undergo d i f f e r e n t  t y p e s  of 

a l t e r a t i o n . For example,  some o o l i t i c  c h e r t s  t h a t  a ppear  t o  be 

p a r t i  al l y  r e p l a c e d  by Fe/Mn o x i d e s  a l s o  a ppear  t o  be r e l e a s i n g  f r e s h ,  

u n a l t e r e d  g r a i n s  o f  q u a r t z  from w i t h i n  t h e  o o l i t e s .

Most o f  t h e  q u a r t z  g r a i n s  found in  t h e  res iduum a re  in  t h e  sand-  

s i z e  r a n g e ;  however ,  a few l a r g e r  g r a i n s  occur  and c l u s t e r s  o f  a u t h i -  

g e n i c  ( p o s t  d e p o s i t i o n a l - f o r m e d  in pi ace)  q u a r t z  c r y s t a l s  occu r  in  t h e  

g r a v e l  f r a c t i o n s . Numerous da rk  brown t o  a lm os t  b l a c k  g r a i n s  were found 

in  t h i s  f r a c t i o n  and r e p r e s e n t  Fe/Mn o x id e  nod u le s  or  c o a t e d  g r a i n s .

A few p i e c e s  o f  s i l t s t o n e  ( o r  f i n e  s a n d s t o n e ) , which a r e  presumed 

t o  have d e r i v e d  from beds of  t h e s e  l i t h o l o g i e s  in  t h e  d o l o s t o n e s  were 

o b s e r v e d .

In g e n e r a l , m a t e r i a l  o bse rve d  in t h e  s a n d - s i z e  f r a c t i o n  i s  s i m i l a r  

to  t h a t  o b s e rv e d  in  t h e  g r a v e l  f r a c t i o n ; however ,  q u a r t z  and Fe/Mn 

n o d u l e s  a r e  p r e s e n t  in g r e a t e r  amounts  and in some specimens  a r e  t h e  

dominan t  p h a s e s .  Some of  t h e  Fe/Mn n o d u le s  may have o r i g i n a l l y  been 

p a r t  of  l a r g e r  p a r t i c l e s  t h a t  were d i s a g g r e g a t e d  du r in g  sample p r e p a r a ­

t i o n  and h a n d l i n g .

Many q u a r t z  g r a i n s  a r e  r e l a t i v e l y  wel l  r o u n d e d , a l t h o u g h  a c om p le te  

r an g e  of  " r o u n d n e s s , "  from a n g u l a r  t o  wel l  r o u n d e d ,  was o b s e r v e d . Many
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o f  t h e  q u a r t z  g r a i n s  e x h i b i t  f r o s t e d  s u r f a c e s ,  which a r e  i n t e r p r e t e d  as 

a c h a r a c t e r i s t i c  of  windblown m a t e r i a l .

4 . 4 . 2 . 2  Clay  and S i l t  M in e ra lo g y

In t h e  r es iduum  s a m p l e s ,  k a o l i n i t e  i s  the  dominant  m ine ra l  of  t h e  

c l  ay f r a c t i o n s ,  r a n g i n g  from 30% t o  as  much as  55% ( T a b le  4 . 1 2 ) .  O ther  

m in e r a l  components  i n c l u d e  m ic a ,  v e r m i c u l i t e ,  q u a r t z ,  and amorphous 

i r o n / a lu m in u m  o x i d e s .  Amorphous i r o n / a l  uminum oxide  c o a t i n g s  c o n s t i ­

t u t e d  l e s s  th a n  8 % o f  t h e  cl  a y s , b u t  t h e y  e f f e c t i v e l y  r educed  t h e  c a t i o n  

exc hange  c o e f f i c i e n t  (CEO) o f  t h e  cl  a y s .  A f t e r  removal  of  t h e  o x id e s  by 

c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e  (CBD) t r e a t m e n t ,  t h e  CEO of  t h e  c l a y s  

i n c r e a s e d  more t h a n  50% ( T a b l e  4 . 1 3 ) .

The c l a y  m in e r a l  a s sem b lage  found in  samples  from res iduum c o re s  

was l e s s  complex th a n  t h e  s u r f a c e  s o i l  m in e r a l  a s s e m b la g e . The p r im a ry  

m i n e r a l s  p r e s e n t  i n c lu d e d  k a o l i n i t e ,  m i c a ,  and v e r m i c u l i t e  w i th  l e s s e r  

amounts  o f  Fe and Al o x i d e s ,  q u a r t z ,  and HIV was found in  o n ly  two 

sam p les  of  t h e  s i x  samples  t e s t e d .

M in e r a lo g y  of  s i l t  f r a c t i o n  (50 t o  2 m) of  the  re s iduum c o re  

samples  i s  v e r y  s i m p l e ,  c o n s i s t i n g  o f  >90% q u a r t z  and <10% m ic a .

4 . 5  SOIL PROCESSES

A c t i v e  s o i l  p r o c e s s e s  on t h e  West C hes tnu t  Ridge S i t e  i n c l u d e  s o i l  

f o r m a t i o n ,  by c o n t i n u e d  w e a t h e r i n g  of  t h e  d o lo m i te  b e d r o c k ,  and s o i l

movement by e r o s i o n ,  s o i l  c r e e p  on s t e e p e r  s l o p e s ,  and s u b s i d e n c e  in

zones  of  k a r s t  f o r m a t i o n .

4 . 5 . 1  C a rb o n a te  Rock W eathe r ing  R a t e s

R e s id u a l  s o i l s  a r e  formed by chemica l  a l t e r a t i o n ,  d i s s o l u t i o n ,  and 

t h e  removal o f  s o l u b l e  c o n s t i t u e n t s  o f  t h e  p a r e n t  rock  m a t e r i a l , l e a v i n g  

t h e  i n s o l u b l e  m ine ra l  c o n s t i t u e n t s .  The r a t e  of  c a r b o n a t e  rock  d i s s o l u ­

t i o n  has been found t o  be n e a r l y  c o n s t a n t  In t i m e ,  w i th  v a r i a t i o n  due t o

c l i m a t i c  v a r i a t i o n s  (Colman 1 9 8 1 ) .  C a rbona te  rock  w e a t h e r in g  r a t e s  have



T a b le  4 . 1 2 .  M i n e r a l o g i c a l  c o m p o s i t i o n  of  t h e  c l a y  f r a c t i o n s  (Zum) of  s e l e c t e d
sam ples  of  r e s iduum  cores®

Core No. Fe 0 Al 0 K a o l i n i t e Mica Vermicul  i t e O th e r s ^

A-5 7 .1 0 . 8 35 20 26 Qtz HIV

A- 6 5 .6 0 . 7 35 19 20 Qtz HIV

A-9s 2. 7 0 . 4 30 26 a Qtz
A-9d 5 . 4 0 . 6 55 17 6 Qtz

A-14 5 .3 0 . 8 35 20 12 Qtz

A-16 5 .6 0 . 6 45 14 15 Qtz

®105" o v e n - d r y  w e ig h t  b a s i s .
I^Qtz = q u a r t z , ;  HIV = aluminum h y d r o x y = i n t e r l  aye re d  ve rm icu l  i t e  e s t i m a t e d  from 

XRD i n t e n s i t y .

O i
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T a b le  4 . 1 3 .  C a t ion  exchange  c a p a c i t i e s  of  t h e  c l a y  f r a c t i o n s  
o f  res iduum b e f o r e  and a f t e r  c i t r a t e - b i o c a r b o n a t e "  

d i t h i o n i t e  (CBD) t r e a t m e n t s

Residuum A-5 A- 6 A-9s A-9d A-14 A-16
(m mol Ca/kg)

B e fo re  CBD 85 70 40 45 75 65

A f t e r  CBD 225 180 80 70 115 140
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been measured  i n d i r e c t l y ,  in o t h e r  r e g i o n s ,  by l o n g - t e r m  m o n i t o r i n g  of  

chemica l  c o n s t i t u e n t s  l e a v i n g  a w a t e r s h e d  in s t r eam  d i s c h a r g e  o r  by use 

of  m i c r o e r o s i o n  m e t e r s  ( J e n n i n g s  1 9 8 3 ) .  U n c e r t a i n t i e s  r e s u l t  from 

e i t h e r  a p p ro a c h .  A tk in son  and Smith (1976)  d e m o n s t r a t e d  a c o r r e l a t i o n  

between  c a r b o n a t e  rock  removal r a t e  and annual w a t e r s h e d  r u n o f f .  T a b l e  

4 .1 4  shows some c a r b o n a t e  rock  w e a t h e r i n g  r a t e  d a t a  and i n d i c a t e s  t h a t  

t h e  r a n g e  in  e s t i m a t e s  f o r  t e m p e r a t e  c l i m a t e s  ap p ro a c h e s  t h e  o r d e r  o f  

m ag n i tu d e  [25  t o  200 mm/1000 y r  (1 t o  8  i n / 1000 y r ) ] .

Using d a t a  f rom A tk inson  and Smith (1976)  and Schmidt  ( 1 9 8 2 ) ,  t h e  

p r e s e n t  r a t e  of  c a r b o n a t e  rock  w e a t h e r i n g  f o r  e a s t  Te nne sse e  i s  e s t i ­

mated t o  1 i e  in t h e  range  o f  30 t o  40 mm/1000 yr ( 1 . 2  t o  1 . 6  i n / 1 0 0 0  y r ) .

An i m p o r t a n t  unknown f o r  e s t i m a t i n g  t h e  age of  r e s i d u a l  s o i l  masses  

i s  p r e h i s t o r i c  c l i m a t e  changes  which may have i n c r e a s e d  o r  d e c r e a s e d  t h e  

r a t e  o f  s o i l  f o r m a t i o n .  Consensus has  no t  been reached  on t h e  v a r i a n c e  

o f  a v e ra g e  annual p r e c i p i t a t i o n  d u r i n g  t h e  P l e i s t o c e n e  epoch from 

p r e s e n t  p r e c i p i t a t i o n  p a t t e r n s .  E s t i m a t e s  range  from e s s e n t i a l l y  

p r e s e n t  a v e ra g e  p r e c i p i t a t i o n  ( S e l l e r s  1965) t o  2 t o  3 t im e s  t h e  p r e s e n t  

a v e ra g e  p r e c i p i t a t i o n .  A 2- t o  3 - f o l d  i n c r e a s e  in  r u n o f f  f o r  t h e  s i t e  

a r e a  would i n d i c a t e  a r a n g e  of  c a r b o n a t e  removal f o r  t h e  s i t e  o f  60 t o  

90 mm/1000 y r  ( 2 . 4  t o  3 . 5  i n /1 0 0 0  y r ) . I f  t h e  h i g h e r  w e a t h e r i n g  r a t e s  

a re  used t o  e s t i m a t e  t h e  age o f  Knox res iduum  f o r m a t i o n ,  one would e s t i ­

mate  t h a t  f o r m a t i o n  of  t h e  t h i c k e r  masses  of  res iduum of  > 30 m (100 f t )  

e n c o u n t e r e d  on t h e  C h e s tn u t  Ridge S i t e  has  o c c u r r e d  ove r  a p e r i o d  o f  a t  

l e a s t  3 . 3  x 10^ t o  3 . 3  x 10^ y e a r s . I f  t h e  p r e s e n t  e s t i m a t e d  r a t e

of  ro ck  w e a t h e r i n g  i s  u s e d ,  t h e  e s t i m a t e  of  s o i l  f o r m a t i o n  o f  30 m (100

f t )  of  r e s iduum  i s  7 . 5  x 1 0 ^ t o  1 x 10^ y e a r s .

4 . 5 . 2  So i l  E ro s io n  R a te s

S o i l  is  removed from th e  land  s u r f a c e  p r i m a r i l y  by w a te r  e r o s i o n  in

Eas t  T e n n e s s e e .  The t y p e s  o f  w a te r  e r o s i o n  i n c l u d e  s h e e t  and r i l l

e r o s i o n  and g u l l y  e r o s i o n .  The U n i v e r s a l  So i l  Loss  E q u a t ion  (ULSE) was 

d e v e lo p e d  t o  e s t i m a t e  t h e  q u a n t i t y  o f  s o i l  l o s t  t o  s h e e t  and r i l l  

e r o s i o n .  F a c t o r s  i n c lu d e d  in e s t i m a t i n g  s o i l  e r o s i o n  by t h e  USLE a r e ;  

the  r a i n f a l l  e r o s i v i t y  i n d e x ,  t h e  s o i l  e r o d i b i l i t y  i n d e x ,  s l o p e  l e n g t h  

and g r a d i e n t ,  and s o i l  management f a c t o r s .
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T a b l e  4 . 1 4 .  R a t e s  of  chemica l  w e a th e r in g  of  l i m e s t o n e  in  t e m p e r a t e
c l i m a t e s  (mm/lO^ y r s )

Region R a te Source

F l o r i d a 35 Atk in son  & Smith 1976

N. Engl and 25-45 Sw ee t in g  1960

Engl and 51-106 Goodchi ld  1890

Mammoth Cave, Ky. 40-100 Schmidt  1982

Tem pera te  r e g i o n  
av e ra g e 57 Embleton & T hornes  1979



70
t

Major  s l o p e s  on t h e  s i t e  a re  o c c u p ie d  by s o i l s  o f  t h e  F u l l e r t o n  

s e r i e s  v a r i a n t s  ( s o i l  t y p e s  2 ,  4 ,  5 ,  and 7 ) ,  w i th  l e s s e r  a r e a s  occup ied  

by s o i l  o f  t h e  Shack s e r i e s  ( s o i l  t y p e  1 ) .  N o r t h w e s t - f a c i n g  s l o p e s  a r e  

s t e e p e r  (30 t o  40%) t h a n  s o u t h e a s t - f a c i n g  s l o p e s  (15 t o  20%) and the  

a r e a s  under  c o n s i d e r a t i o n  f o r  use as  d i s p o s e d  t r a c t s  have s l o p e s  o f  

<15%.

T a b le  4 . 1 5  shows annual  s o i l  e r o s i o n  e s t i m a t e s  f o r  P u l l e r t o n ,

Shack,  and Dewey and D e c a te r  v a r i a n t  s o i l s  in  t h e i r  n a t u r a l  wooded 

c o n d i t i o n ,  and f o r  t h e  F u l l e r t o n  and Dewey and D e c a t e r  s o i l s  unde r  

g r a s s l a n d  c o n d i t i o n s .  These a r e  used t o  e s t i m a t e  t h e  e r o s i o n  p o t e n t i a l  

o f  t h e  d e ve lope d  a r e a  o f  t h e  s i t e  a f t e r  r e v e g e t a t i o n .  F a c t o r  K was 

o b t a i n e d  from t h e  So i l  Survey  of  Anderson County ( 1 9 8 1 ) ,  and a l l  o t h e r  

f a c t o r s  were o b t a i n e d  from t a b l e s  in  Dunne and Leopold ( 1 9 7 8 ) .  I t  i s  

a l s o  no ted  t h a t  t h e  v a l u e s  used f o r  s l o p e  g r a d i e n t  and l e n g t h  l i e  in  t h e  

r a n g e  of  e x t r a p o l a t i o n  beyond t h e  r an g e  of  d e m o n s t r a t e d  a p p l i c a b i l  i t y  

b e c au s e  of  t h e  l o n g ,  s t e e p  s l o p e s  which o c c u r  on p a r t s  o f  t h e  s i t e .

The e s t i m a t e s  shown in T a b le  4 . 1 5  show t h e  e f f e c t s  of  v e g e t a t i o n  

t y p e  on s o i l  e r o d i b i l i t y .  The e s t i m a t e d  annual  s o i l  e r o s i o n  from t h e  

Ful l e r t o n  v a r i a n t  s o i 1 s  on a 15% s l o p e  i n c r e a s e s  by a f a c t o r  of  13 ,  

depend in g  on w he the r  t h e  c o v e r  i s  woodland or  g r a s s l a n d .  T h i s  f a c t  

i n d i c a t e s  t h a t  t o  m in imize  t h e  impact  on s o i l  s t a b i l i t y  f o r  t h e  o v e r a l 1 

s i t e  a minimum o f  a r e a  c l e a r i n g  s hou ld  accompany s i t e  d e v e lo p m e n t .  

T e r r a c i n g  t o  r e d u c e  s l o p e  l e n g t h  i s  al so an e f f e c t i v e  approach  to  r ed u c e  

e r o s i o n .  S t e e p e r  s l o p e s  on t h e  s i t e  s hou ld  remain  wooded.

The c r e d i b i l  i t y  o f  t h e  USLE e s t i m a t e s  f o r  t h e s e  s o i l s  i s  q u e s t i o n ­

a b le  b e c a u s e  of  t h e  wel l  d e ve lope d  i n t e r n a l  d r a i n a g e  sys tem  of  t h e  

s o i l  s .  M o n i to r in g  of  a sm a l1 w a te r s h e d  on t h e  n o r t h e r n  s lo p e  of  

C h e s tn u t  Ridge f o r  a p e r i o d  o f  3 y e a r s  d e t e c t e d  o n l y  1 r u n o f f  e v e n t ,  

which was produced  by a p r e c i p i t a t i o n  e v e n t  of  5 cm ( 1 .9 6  i n )  in  24 h r  

(West & Mann 1 9 8 2 ) .

C onve r s ion  of  t h e  e r o s i o n  r a t e  d a t a  t o  e r o s i o n a l  d o w n c u t t i n g  y i e l d s  

e s t i m a t e s  as  f o l l o w s .  For  t h e  F u l l e r t o n  v a r i a n t  s o i l s  i n  15% s l o p e s  

w i th  woodland c o v e r ,  t h e  USLE e s t i m a t e s  e r o s i o n a l  d o w n c u t t i n g  on t h e  

o r d e r  o f  30 mm/1000 y e a r s  ( 1 . 2  i n / 1 0 0 0  y r ) . For  40% s l o p e s  t h e  r a t e  o f  

e r o s i o n a l  d o w n c u t t i n g  i s  e s t i m a t e d  a t  230 mm/1000 y e a r s  ( 9 . 1  i n / 1000 y r ) .
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T a b le  4 . 1 5 .  E s t im a t e d  Annual So i l  E r o s io n  P o t e n t i a l  of  West 
C h e s t n u t  Ridge S i t e  S o i 1s

R K LSa C P A
m e t r i c  t o n s / h a

annual

Woodland Cover

F u l l e r t o n  v a r . 
(75-100% Canopy)

15% s l o p e
152 m long 200 0 .2 8 5 .5 .0 0 1 0 . 8 0 .55

40% s l o p e  
152-183 rn 200 

long
0 .2 8 35 .0 0 1 1 . 0 4 .39

Shack s e r i e s  
30-35% s l o p e  
92 m long 200 0 .2 8 15 .0 0 1 0 .9 1 .69

Dewey and 
D e c a t e r  v a r i a n t s  

15% s l o p e  200
152 m long

0 .2 4 5 .5 ,0 0 1 0 . 8 0.47

20  % s l o p e  200 
105 m long

0 .2 4 7 .5 .0 0 1 0 . 8 0 .6 5

G r a s s l a n d  Cover

F u l l e r t o n  v a r .
15% s l o p e
152 m long 200 0 .2 8 5 .5 0 .013 0 . 8 7.18

Dewey and 
D e c a t e r  v a r i a n t s  

15% s l o p e  200 
152 m long

0 .2 4 5 .5 0 .013 0 . 8 6 .15

s  V a lue s  a re  e x t r a p o l a t e d  beyond t h e  d e m o n s t ra t ed  r e l i a b l e
r an g e ,
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These  e s t i m a t e s  a r e  no t  c o n s i d e r e d  h i g h l y  r e l i a b l e  though  th e y  t e n d  t o  

compare f a v o r a b l y  w i th  t h e  e s t i m a t e s  of  r e s i d u a l  s o i l  f o r m a t i o n  based on 

c a r b o n a t e  rock  w e a t h e r i n g  r a t e s .

4 . 5 . 3  K a r s t  P r o c e s s e s

O the r  a c t i v e  s o i l  p r o c e s s e s  i n c l u d e  s o i l  c r e e p  and f r o s t  heave 

movements on t h e  s t e e p e r  s l o p e s ,  and s o i l  movement t h r o u g h  k a r s t  

p r o c e s s e s . The r a t e s  of  s o i l  c r e e p  and f r o s t  heave  a r e  s low .  The p ro ­

c e s s  of  k a r s t  s o i l  movement can be s low downwarping a t  t h e  s o i l  s u r f a c e  

by p i a s t i c  d e f o r m a t i o n  of t h e  s o i l  mass or  r a p i d  motion accompanying 

s h e a r  f a i l u r e  of  t h e  s o i l  over  open c a v i t i e s .

K a r s t  f e a t u r e s  o bse rve d  on t h e  s i t e  t y p i c a l  l y  have v e r y  g e n t l e  

s l o p e s  a s s o c i a t e d  w i th  them, which s u g g e s t  t h a t  t h e y  have e i t h e r  formed 

by g ra d u a l  downwarping o r  t h a t  t h e y  a re  v e r y  o ld  f e a t u r e s .  The excep­

t i o n  t o  t h i s  c o n d i t i o n  on t h e  s i t e  i s  in  t h e  k a r s t  zone of  t h e  m id d l e  

C he p u l t e p e e  D o l o m i t e ,  which c o n t a i n s  s e v e r a l  s t e e p  s i d e d ,  o b v i o u s l y  

r e c e n t  f e a t u r e s .  All t h e  k a r s t  f e a t u r e s  on t h e  s i t e  have some h y d r o l o ­

g i c  f u n c t i o n  b e c au s e  t h e y  a r e  i n f i l t r a t i o n  a r e a s  f o r  p r e c i p i t a t i o n .

So i l  c h a r a c t e r i s t i c s  in  t h e  k a r s t  f e a t u r e s  were i n v e s t i g a t e d  in  

b o r e h o l e s  in  t h r e e  k a r s t  f e a t u r e s .  So i l  s t r e n g t h  c h a r a c t e r i s t i c s  w i t h i n  

t h e  k a r s t  f e a t u r e s  do no t  1 i e  o u t s i d e  t h e  r an g e  o f  v a r i a t i o n  f o r  l o c a l  

s o i l s  l y in g  o u t s i d e  o f  t h e  k a r s t  f e a t u r e s .

The deve lopm en t  o f  t h e  k a r s t  zones o n - s i t e  r e s u l t s  from d i s s o l u t i o n  

o f  t h e  d o l o m i t e  bed rock  accompanied by downward d i s p l a c e m e n t  of  t h e  

o v e r l y i n g  s o i l  mass t o  f i l l  v o i d s .  Under n a t u r a l  c o n d i t i o n s ,  m e t a s t a b l e  

c o n d i t i o n s  can devel  op ,  w i th  open v o i d s  o c c u r r i n g  in t h e  zone of 

w e a t h e r in g  r o c k . Extreme w e a the r  c o n d i t i o n s  ( a l t e r n a t i n g  d r o u g h t s  and 

e x t r em e  p r e c i p i t a t i o n  e v e n t s )  or  t e c t o n i c  e v e n t s  ( e a r t h q u a k e s )  may cause  

t h e  m e t a s t a b l e  s o i l s  t o  move downward i n t o  v o i d s .  Extreme w a te r  t a b l e  

f l u c t u a t i o n s  can ca use  b r id g e d  s o i 1s to  c o l l a p s e .  Most s i n k h o l e  

c o l l  a pses  t h a t  a r e  i n v e s t i g a t e d  a r e  a t t r i b u t e d  t o  h y d r o l o g i c  c a u s e s .

Human a c t i v i t i e s  have al so been a t t r i b u t e d  w i th  induc ing  s i n k h o l e  

deve lopm en t  (Newton 1 9 7 6 ) .  The t y p i c a l  human a c t i v i t i e s  t h a t  i n d u c e  

s i n k h o l e  deve lopm en t  a re  e x c e s s i v e  wel l  pumping o r  d e w a te r in g  which



73 hM-

c a u s e  e x t r em e  d e p r e s s i o n  o f  t h e  w a t e r  t a b l e  and induced  r e c h a r g e  t h ro u g h  

t h e  s o i l  mass by o v e r i r r i g a t i o n  or  ponding  o f  w a te r  a t  t h e  land  s u r f a c e .  

The i m p l i c a t i o n s  o f  t h i s  i n f o r m a t i o n  w i th  r e g a r d  t o  t h e  West C h e s t n u t  

Ridge  S i t e  a r e  t h a t  s i t e  deve lo pm en t  a c t i v i t i e s  s hou ld  min imize  a q u i f e r  

drawdown and t h e  ponding o f  w a te r  a t  t h e  ground s u r f a c e .

In view o f  t h e  a p p a r e n t  age and t o p o g r a p h i c  c h a r a c t e r  o f  t h e  Knox 

r e s id u u m ,  one must  c o n c lu d e  t h a t  d u r i n g  r e c e n t  g e o l o g i c  t im e  t h e  s o i l s  

have been s t a b l e  or  t h a t  k a r s t  movement has been l a r g e l y  by p i a s t i c  

d e f o r m a t i o n .  J u s t  as  t h e r e  a p p e a r s  t o  be  an i n h e r e n t  s t a b i l i t y  t o  mos t  

o f  t h e  r e s i d u u m ,  t h e r e  i s  an i n h e r e n t  u n c e r t a i n t y  in p r e d i c i t i n g  when 

k a r s t  p r o c e s s e s  may a c c e l e r a t e .





5. SITE GEOHYDROLOGY

C h a r a c t e r i z a t i o n  s t u d i e s  pe r fo rm ed  t o  d e f i n e  g e o h y d r o l o g i c  p a r a ­

m e t e r s  f o r  t h e  West C h e s tn u t  Ridge S i t e  i n c l u d e :

0 f i e l d  and 1 a b o r a t o r y  t e s t i n g  o f  s o i l  p e r m e a b i l i t y ,

0  f i e l d  measurement  of  bedrock  p e r m e a b i l i t y ,

0  1 a b o r a t o r y  measurement  of  s o i l  m o i s t u r e  c h a r a c t e r i s t i c s  and 

p e r m e a b i l i t y  under  u n s a t u r a t e d  c o n d i t i o n s ,

0 m o n i t o r i n g  o f  w a te r  t a b l e  f l u c t u a t i o n s  in o b s e r v a t i o n  w e l l s ,  and 

0  a e r i a l  therm al  s e n s i n g  t o  i d e n t i f y  g roundwa te r  e m a n a t i o n s .

5 .1  PERMEABILITY OF SOIL AND ROCK

5 . 1 . 1  So i l  P e r m e a b i l i t y

The s o i l  p e r m e a b i l i t y  d e t e r m i n e s  t h e  r a t e  of  w a te r  m i g r a t i o n  from 

t h e  1 and s u r f a c e  t o  t h e  w a te r  t a b l e  and d e t e r m i n e s  w a te r  movement w i t h i n  

s a t u r a t e d  zones in  t h e  s o i l  m ass .  So i l  p e r m e a b i l i t y  can be measured in 

t h e  f i e l d  or  in  t h e  1a b o r a t o r y .  L a b o r a t o r y  t e s t  v a l u e s  t y p i c a l l y  y i e l d  

much lower  p e r m e a b i l i t y  v a l u e s  t h a n  f i e l d  t e s t s  be cause  in t h e  f i e l d  t h e  

mac ropore  sys tem can be t e s t e d ,  w h i l e  t h e  small  s i  ze of  1 a b o r a t o r y  t e s t  

spec im ens  usua l  l y  r e s u l t s  in t e s t s  of  f i n e - g r a i n e d  sam p les ,

A t o t a l  o f  39 f a l l i n g  head f i e l d  p e r m e a b i l i t y  t e s t s  were p e r fo rm e d .  

Each t e s t  i n t e r v a l  was 0 .6 1  m (2 f t )  l o n g . At each of  20 t e s t  s i t e s  

c o i n c i d i n g  w i th  t h e  t e s t  b o r in g  l o c a t i o n s ,  two t e s t s  were p e r f o r m e d ;  one 

a t  a dep th  of  a p p r o x i m a t e l y  2 . 5  t o  3 m (8 t o  10 f t ) , and t h e  o t h e r  a t  

d e p t h s  r a n g i n g  from 6 t o  12 m (20 t o  40 f t ) . At one s i t e  a t e s t  was no t  

p o s s i b l e  in  t h e  d e e p e r  t e s t  r a n g e  b e c a u s e  of t h e  s h a l lo w  bedrock  

c o n d i t i o n .

The p e r m e a b i l i t y  t e s t s  were pe rformed by Woodward-Clyde C o n s u l t a n t s  

(1984)  and t h e  f o l l o w i n g  summary i s  e x c e r p t e d  from t h e i r  r e p o r t .  T a b le

5 .1  c o n t a i n s  a summary of  al 1 t h e  f i e l d  permeab i l  i t y  t e s t  d a t a  and al 1 

t h e  1a b o r a t o r y  s a t u r a t e d  p e r m e a b i l i t y  t e s t  d a t a .  The f i e l d  and

1a b o r a t o r y  d a t a  a re  c o n c e n t r a t e d  a t  t h r e e  t y p i c a l  d e p t h s : 3 m (10 f t ) ,

12 m (40  f t ) , and 21 t o  30 m (70  t o  100 f t ) . These d e p th s  were s e l e c t e d
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d u r i n g  t h e  d e s ig n  phase  of  t h e  f i e l d  and l a b o r a t o r y  i n v e s t i g a t i o n s  and 

do no t  r e f l e c t  a change  in  e i t h e r  s o i l  c o m p o s i t i o n  or  d e p o s i t i o n a l  

h i s t o r y .  An i n s p e c t i o n  o f  T a b le  5 . 1  r e v e a l s  a g e n e r a l  t e n d e n c y  f o r  

p e r m e a b i l i t y  t o  d e c r e a s e  w i th  d e p t h ,  and a l s o  a g e n e r a l  t e n d e n c y  f o r  a 

r e d u c t i o n  in  t h e  s c a t t e r  o f  p e r m e a b i l i t y  d a t a  w i th  d e p t h .

T a b l e  5 , 1 .  Summary of  f i e l d  and l a b o r a t o r y  s o i l  
p e r m e a b i l i t y  t e s t  r e s u l t s

T yp ica l  Mean Mean +_ 1 s t d .
d e p th  and t y p e  p e r m e a b i l i t y  d e v i a t i o n

o f  t e s t  (cm/s )  ( cm /s)

3 m ( 1 0  f t )
-  f i e l d  t e s t s 6 . 1  X 1 0 - 6 7 . 9  X 1 0 - 6 t o 5 . 0 X 1 0 - 7

-  l a b  t e s t s 3 . 2  X 1 0 - 6 7 . 9  X 1 0 - 5 t o 1 . 3 X 1 0 - 7

1 2  m ( 4 0  f t )

-  f i e l d  t e s t s 2 . 0  X 1 0 - 6 2 . 0  X 1 0 - 5 t o 2 . 0 X 1 0 - 7

-  l a b  t e s t s 1 . 0  X 1 0 - 7 2 . 5  X 1 0 - 7 t o 4 X 1 0 - 8

2 1 - 3 0  m ( 7 0 - 1 0 0  f t )
-  f i e l d  t e s t s  no d a t a no d a t a

-  l a b  t e s t s 6 . 3  X 1 0 - 8 5 . 0  X 1 0 - 8 t o 7 . 9 X 1 0 - 8

The v a l u e s  of  mean and s t a n d a r d  d e v i a t i o n  were c a l c u l a t e d  by assuming 

t h e  log  o f  p e r m e a b i l i t y  i s  a n o r m a l ly  d i s t r i b u t e d  random v a r i a b l e .

Depth of  3 m (10 f t ) . The f o l l o w i n g  o b s e r v a t i o n s  can be drawn from 

d a t a  o b t a i n e d  in t h e  uppe r  6 m ( 2 0  f t ) .

0 Twelve l a b o r a t o r y  t e s t  and 21 f i e l d  p e r m e a b i l i t y  t e s t s  were 

conduc ted  w i t h i n  t h i s  d e p th  r a n g e .

0  The r an g e  of  t h e  l a b o r a t o r y  and f i e l d  d a t a  i s  a p p r o x i m a t e l y  t h e  

same and c o v e r s  a p p r o x i m a t e l y  f o u r  o r d e r s  o f  m a g n i t u d e .

0  The a v e ra g e  l a b o r a t o r y  v a l u e  of  p e r m e a b i l i t y  i s  3 . 2  x 1 0 " 6  cm/s  

and compares  w i th  t h e  a v e ra g e  f i e l d  v a lue  of  6 . 1  x 1 0 "® c m / s .
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0  T h e re  does not  a ppear  t o  be any s t a t i s t i c a l  c o r r e l a t i o n  between 

1 ab and f i e l d  p e r m e a b i l i t y  d a t a  a t  a g iven  s i t e ,  even a t  a p p r o x i ­

m a t e l y  t h e  same d e p t h .

The l a s t  o b s e r v a t i o n  s u g g e s t s  t h a t  l a r g e  v a r i a t i o n s  in p e r m e a b i l i t y  

o c c u r  ove r  s h o r t  d i s t a n c e s .  The 1 a b o r a t o r y  t e s t i n g  program i n d i c a t e s  

t h a t  t h e  o b se rve d  v a r i a t i o n s  in  p e r m e a b i l i t y  cannot  be c o r r e l a t e d  wi th  

index  p r o p e r t i e s .  Thus ,  t h e  d i f f e r e n c e s  in p e r m e a b i l i t y  a r e  p r o b a b l y  

a s s o c i  a t e d  w i th  d i f f e r e n c e s  in  s o i l  s t r u c t u r e .

Depth o f  12 m (40 f t ) . The r an g e  o f  t h i s  f i e l d  d a t a  i s  somewhat 

smal l e r  t h a n  t h a t  f o r  t h e  f i e l d  d a t a  from th e  shal  lower  d e p t h s ,  and t h e  

a v e r a g e  v a l u e  of  2 . 0  x 1 0 ”^ cm/s  i s  abou t  o n e - t h i r d  of  t h e  av e ra g e  

v a l u e  from s h a l l o w  d e p t h s .  The r ange  o f  t h e  t h r e e  1a b o r a t o r y  p e r m e a b i l ­

i t y  d e t e r m i n a t i o n s  i s  v e r y  smal1 compared to  t h e  range  of  f i e l d  d a t a .  

T h i s  may be t h e  r e s u l t  of  t h e  1 i m i t e d  number of  t e s t s ,  and of  t h e  b i a s  

i n  t h e  l a b o r a t o r y  t e s t s  a t  t h i s  dep th  and deeper  caused by choos ing  

samples  a t  or  c l o s e  t o  t h e  g r o u n d w a te r  l e v e l .

Depth o f  21 t o  30 m (70 t o  100 f t ) . These d a t a  i n c l u d e  e i g h t  

1 a b o r a t o r y  t e s t s  wi th  p e r m e a b i l i t i e s  r a n g i n g  from 4 x 1 0 “ 8  cm/s  to  

1 X 10” 7 c m / s ,  w i th  an a v e ra g e  v a lu e  of  6 . 3  x 10~8 c m /s .  These  v e ry  low 

v a l u e s  a r e  b e l i e v e d  r e p r e s e n t a t i v e  o f  t h e  more p l a s t i c ,  f i n e r ,  l e s s  

c h e r t y  s o i l s  c l o s e  to  or  below t h e  w a t e r  t a b l e .  S o i l s  in  t h i s  dep th  

i n t e r v a l  a r e  e x p e c t e d  t o  have lower  p o r o s i t y  than  o v e r l y i n g  s o i l s  

b e c a u s e  of  t h e  g r e a t e r  o v e rb u r d e n  p r e s s u r e s  a t  d e p t h .

5 . 1 . 2  P e r m e a b i l i t y  o f  Weathered Rock

Weathered  rock  was g e n e ra l  l y  s u p p o r t e d  by s t e e l  c a s i n g  in  t h e  

b ed rock  e x p l o r a t o r y  b o r i n g s ,  and no p a c k e r  t e s t s  or  f a l l i n g  head permea­

b i l  i t y  t e s t s  were conduc ted  in  t h e  w ea the red  r o c k .  The p e r m e a b i l i t y  of 

t h e  w e a th e r e d  rock  zone was d e t e r m i n e d  from t h e  well  pumping t e s t  in t h e  

w e a th e r e d  bed rock  zone a q u i f e r  in  t h e  Chepu l tepee  D o lo m i t e .

At t h e  t im e  o f  t e s t i n g  t h e  a q u i f e r  t h i c k n e s s  was a p p r o x i m a t e l y  10 m 

(30 f t ) , t h e  t r a n s m i s s i v i t y  was a p p r o x i m a t e l y  9 . 3  x 10“^ m^/min 

( 0 . 0 1  f t 2 / m i n ) ,  and t h e  p e r m e a b i l i t y  of  t h e  zone was 1 . 7  x 10"^ c m /s .
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5.1.3 Perm eability of Unweathered Rock

T w e n t y - t h r e e  pa c ke r  p e r m e a b i l i t y  t e s t s  were perfo rmed  in  unweath­

e re d  r o c k .  The p e r m e a b i l i t i e s  were ze ro  (no f low  m easured )  i n  10 o u t  o f  

23 t e s t s .  The r em a in in g  13 t e s t s  gave r e l a t i v e l y  high  p e r m e a b i l i t y  

va l  ues  r a n g i n g  from 8 . 5  x 10"® cm /s  t o  > 1 .0  x 1 0 “ 3 c m / s .  A

r e p r e s e n t a t i v e  v a l u e  o f  p e r m e a b i l i t y  f o r  t h o s e  t e s t s  which had a

p e r m e a b i l i t y  g r e a t e r  t h a n  z e ro  was abou t  1 x 10"^  c m / s .  The 

pe rm e ab i l  i t y  e s t i m a t e s  f o r  t h e  w e a the re d  rock  were abou t  2 x 1 0 "'^ 

c m /s ,  which i s  a v a l u e  v e r y  c l o s e  t o  t h a t  e s t i m a t e d  from t h e  p a c k e r  

t e s t s  on sound r o c k .  I t  i s  e v i d e n t  t h a t  t h e  sound r o c k ,  as  d e f i n e d  

h e r e i n ,  i s  no t  n e c e s s a r i l y  im perm eab le .  The p e r m e a b i l i t y  m easured  in  

t h e  unwea thered  ro ck  i s  a t t r i b u t e d  to  f low  in f r a c t u r e s  a n d /o r  open 

bedd ing  p i a n e s .

5 . 2  MOISTURE-SUCTION AND PERMEABILITY-SUCTION CHARACTERISTICS OF 
RESIDUUM SAMPLES

M o i s t u r e - s u c t i o n  and p e r m e a b i l i t y - s u c t i o n  c h a r a c t e r i s t i c s  of  

s e l e c t e d  res iduum  samples  were d e t e r m i n e d  by D a n i e l s  and B r o d e r i c k  

( 1 9 8 3 ) .  D e t a i l s  o f  t h e  method used a re  c o n t a i n e d  in  t h e i r  r e p o r t .  The

scope  of  t h e i r  work and r e s u l t s  a r e  summarized as  f o l l o w s :

0 t w e lv e  m o i s t u r e - s u c t i o n  t e s t s  were pe rfo rmed to  d e v e lo p  p l o t s  of  

s o i l  s u c t i o n  vs  p e r c e n t  s a t u r a t i o n ,

0 two pe rm eab i l  i t y  t e s t s  on u n s a t u r a t e d  samples  were pe r fo rmed  to  

d e v e lo p  c u r v e s  r e l a t i n g  p e r m e a b i l i t y  t o  s o i l  s u c t i o n ,

0 two p e r m e a b i l i t y  t e s t s  on s a t u r a t e d  samples  of  s o i l  were a l s o  

pe r fo rmed  t o  p r o v id e  d a t a  on t h e  p e r m e a b i l i t y  of  t h e  s o i l s  a t  

1 0 0 % s a t u r a t i o n ,  and 

0 p i o t s  of  p e r m e a b i l i t y  vs  s o i l  s u c t i o n  were p r e p a r e d  u s ing  (1 ) 

m o i s t u r e - s u c t i o n  c u r v e s , ( 2 ) measured  p e r m e a b i l i t i e s  a t  f u l 1 

s a t u r a t i o n ,  and (3) t h e o r e t i c a l  r e l a t i o n s h i p s  t h a t  r e l a t e  

p e r m e a b i l i t y - s u c t i o n  c u r v e s  t o  m o i s t u r e - s u c t i o n  c u r v e s .
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5 . 2 . 1  R e s u l t s  of  M o i s t u r e - S u c t i o n  T e s t s

Da ta  g iven  f o r  s o i l  s u c t i o n s  >10 m (30 f t )  o f  w a te r  were o b t a i n e d  

u s in g  th e rm o co u p le  p s y c h r o m e t e r s .  S o i l  s u c t i o n s  o f  <10 m (30  f t )  o f  

w a t e r  were measured w i th  t e n s i o m e t e r s .  There  i s  c o n s i d e r a b l e  s c a t t e r  in 

t h e  d a t a  f o r  t h e  s o i l s  t e s t e d . The m o i s t u r e - s u c t i o n  t e s t  r e s u l t s  a r e  

summarized in  F i g .  5 . 1  a s  a r a n g e  of  b e h a v io r  f o r  t h e  s o i l s  t e s t e d , The 

s o i l  s u c t i o n  a t  e q u i v a l e n t  p e r c e n t  s a t u r a t i o n s  can v a ry  by abou t  one 

o r d e r  of  m agn i tude  n ea r  s a t u r a t i o n  and by more t h a n  t h r e e  o r d e r s  of 

m a g n i tu d e  a t  70^ s a t u r a t i o n .

5 . 2 . 2  R e s u l t s  of  Pe rmeabi l  i t y  T e s t s  Perfo rmed a t  <100% S a t u r a t i o n

P e r m e a b i l i t y  t e s t s  were pe r fo rmed  on two samples  a t  l e s s  th a n  t o t a l  

s a t u r a t i o n  c o n d i t i o n s .  The s o i l  samples  were i n i t i a l l y  d r i e d  t o  r ed u c e  

t h e  d e g r e e  of  s a t u r a t i o n  and th e n  were m ois tened  when t h e  p e r m e a b i l i t y  

t e s t s  b e g a n . I n i t i a l l y ,  t h e rm o co u p le  p s y c h ro m e te r s  were used t o  m easure  

t h e  s o i l  s u c t i o n s  a t  v a r i o u s  p o i n t s  in t h e  s o i l  co lumns .  When t h e  s o i l  

s u c t i o n s  c ou ld  no lo n g e r  be measured  w i th  p s y c h r o m e te r s ,  t h e  p s y c h r o ­

m e t e r s  were removed and t e n s i o m e t e r s  were i n s e r t e d . More th a n  usual  

s c a t t e r  in t h e  d a t a  was o b s e r v e d ,  and c o n s i d e r a b l e  smoothing of  r e s u l t s  

was r e q u i r e d . The v a r i a b l e  n a t u r e  of  t h e  s o i l , and p a r t i c u l a r l y  t h e  

v a r i a t i o n s  in g r a v e l  c o n t e n t  from one p a r t  o f  t h e  sample t o  a n o t h e r ,  a r e  

t h o u g h t  to  be t h e  cause  of  t h e  s c a t t e r  in  m easu rem en ts .  The p e r m e a b i l i -  

t i e s  measured  on s a t u r a t e d  samples  f o r  t h e  two t e s t s  were 7 . 2  x 10"7 cm/s  

and 2 . 8  x 1 0 “ 8  c m / s .

The t e s t  r e s u l t s  showed c o n s i d e r a b l e  v a r i a b i l i t y  in m o i s t u r e -  

s u c t i o n  and p e r m e a b i l i t y - s u c t i o n  b e h a v i o r  of  s i t e  s o i l s .  For  t h i s  

r e a s o n  D a n i e l s  and B r o d e r i c k  (1983)  recommended u p p e r ,  m i d - r a n g e ,  and 

low er-bound  c u r v e s  f o r  m o i s t u r e - s u c t i o n  and p e r m e a b i l i t y - s u c t i o n .

1.  The t h r e e  m o i s t u r e - s u c t i o n  c u r v e s  p l o t t e d  in F i g .  5 . 1  p r o v i d e  a 

good r e p r e s e n t a t i o n  f o r  most  o f  t h e  t e s t  r e s u l t s .  Because t h e  

s o i l s  a t  t h i s  s i t e  a r e  a l r e a d y  c l o s e  t o  s a t u r a t i o n  below a
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de p th  of  a few m e t e r s ,  i t  m igh t  be a p p r o p r i a t e  t o  assume ze ro  

s u c t i o n  a t  100% s a t u r a t i o n .  However, d r y  s o i l s  w i l l  n o t  r e a c h  

f u l 1 s a t u r a t i o n  a t  z e ro  s u c t i o n  i f  t h e y  a re  g r a d u a l l y  m o is tened  

( h ig h  p o s i t i v e  w a te r  p r e s s u r e ,  o r  back p r e s s u r e ,  i s  r e q u i r e d  t o  

a c h i e v e  f u l 1 s a t u r a t i o n ) .

2 .  The r e l a t i v e  p e rm e a b i 1 i t y - s u c t i o n  r e l a t i o n s  t a b u l a t e d  in  Tab le

5 . 2  a r e  recommended f o r  use in  anal y s i s .  The r e l a t i v e  permea­

b i l  i t y  a t  any s u c t i o n  i s  m u l t i p l i e d  by th e  p e r m e a b i l i t y  a t  fu l  1 

s a t u r a t i o n  t o  o b t a i n  t h e  p e r m e a b i l i t y  a t  a p a r t i c u l a r  s u c t i o n . 

The p e r m e a b i l i t y  a t  f u l 1 s a t u r a t i o n  i s  b e s t  de te rm ined  from a 

c o m b in a t io n  o f  1 a b o r a t o r y  t e s t s ,  f i e l d  t e s t s ,  and g e o h y d r o l o g i ­

cal  s t u d i e s .

5 . 3  GROUNDWATER FLUCTUATIONS AND FLOW PATHS

Groundwater  f l u c t u a t i o n s  were measured  p e r i o d i c a l l y  in  w e l l s  

com p le ted  in  r e s i d u a l  s o i l s  and b e d ro c k .  Groundwater  f low p a th s  and 

app ro x im a te  r a t e s  were t e s t e d  in one f low  zone by dye t r a c e r  t e s t i n g .

5 . 3 . 1  Groundwate r  F l u c t u a t i o n s

At each of  19 l o c a t i o n s ,  p a i r e d  o b s e r v a t i o n  w e l I s  were i n s t a l l e d  to  

a l low  measurement  o f  w a t e r  l e v e l s  in  s o i l s  and b e d ro c k .  At one s i t e  t h e  

s u b s u r f a c e  c o n d i t i o n s  al 1 owed i n s t a l l a t i o n  of  t h e  s o i l  o b s e r v a t i o n  wel 1 

o n l y .  The d e p th  t o  t h e  w a te r  was measured  in  each wel l  w i th  v a r y i n g  

f r e q u e n c y  b e g in n in g  O c to b e r  5 ,  1983.  E i g h t  w a te r  l e v e l  r e c o r d e r s  were 

i n s t a l l e d  d u r i n g  e a r l y  A p r i l  198A t o  p r o v i d e  c o n t i n u o u s  r e c o r d s  o f  w a te r  

l e v e l s  a t  e i g h t  s e l e c t e d  l o c a t i o n s .  The w e l1 hyd rog raphs  a re  in c lu d e d  

in Appendix A.

S e v e ra l  g e n e ra l  o b s e r v a t i o n s  can be made upon i n s p e c t i o n  of  the  

h y d r o g r a p h s .  These a r e  s t a t e d  be low.

0 Seasona l  f l u c t u a t i o n s  of  <1 t o  15 m (15 t o  45 f t )  have been 

o b se rve d  in  some o f  t h e  w e l l s .

0 Not al 1 of  t h e  w e l l s  show s e as o n a l  f l  u c t u a t i o n s .
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T a b le  5 . 2 .  Recommended r an g e  of  v a l u e s  f o r  c u r v e s  of  r e l a t i v e  
p e r m e a b i l i t y  v e r s u s  s o i l  s u c t i o n

R e l a t i v e  p e r m e a b i l i t y

S o i l  s u c t i o n  Upper Lower
( m e t e r s  of  w a t e r )  bound M id- range  bound

0 1 1 1

0 . 1 5 X 1 0 - 1 2 X 1 0 - 1 4 X 1 0 - 1

0 . 2 5 X 1 0 - 1 1 X 1 0 - 1 8 X 1 0 - 2

0 . 5 3 X 1 0 - 1 4 X 1 0 - 2 1 X 1 0 - 2

1 2 X 1 0 - 1 2 X 1 0 - 2 3 X 1 0 - 3

2 1 X 1 0 - 1 1 X 1 0 - 2 9 X 1 0 - 4

5 4  X 1 0 - 2 4 X 1 0 - 3 1 X 1 0 - 4

1 0 2 X 1 0 - 2 1 X 1 0 - 3 4 X 1 0 - 5

20 1 X 1 0 - 2 5 X 1 0 - 4 1 X 1 0 - 5

5 0 6 X 1 0 - 3 1 X 1 0 - 4 2 X 1 0 - 5

1 0 0 3 X 1 0 - 3 8 X 1 0 - 5 5 X 1 0 - 7

2 0 0 8  X 1 0 - 4 2 X 1 0 - 5 1 X 1 0 - 7

5 0 0 1 X 1 0 - 4 5 X 1 0 - 6 2 X 1 0 - 8

Note:  These d a t a  c o r r e s p o n d  t o  t h e  c u r v e s  shown in F i g .  5 . 1 .
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0  W ell s  s c r e e n e d  in  t h e  r es iduum  t e n d  to  respond  more r a p i d l y  t o  

p r e c i p i t a t i o n  e v e n t s  t h a n  do t h e  bedrock w e l l s .

0 Bedrock and re s iduum w e l l s  l o c a t e d  in t o p o g r a p h i c  low a r e a s  

r e s p o n d  t o g e t h e r  and t y p i c a l l y  show v e r y  r a p i d  f l u c t u a t i o n s .

These  w e l l s  show small  s e a s o n a l  f l u c t u a t i o n s  -  t h e i r  h y d r o g ra p h s  

a r e  a s e r i e s  of  p r e c i p i t a t i o n  e v e n t  r e s p o n s e s .

0 Water l e v e l s  in  s e v e r a l  o f  t h e  w e l l s  a r e  s t r o n g l y  c o n t r o l l e d  by 

t h e  p r e s e n c e  of  d i s c r e t e  pe rm eab le  zones in t h e  w ea the red  bedrock 

o r  s o i l  z o n e s .

0 M o n i to r in g  r e c o r d s  i n d i c a t e  t h a t  benea th  the  upland  p o r t i o n s  of  

t h e  s i t e  two s a t u r a t e d  zones  e x i s t :  one in  s o i l  and one in  t h e  

w e a th e r e d  bedrock  and bed rock  z o n e s . The s i m i l a r i t y  in  f l u c t u a -  

t i o n s  in t h e  two zones  v a r i e s  w i d e l y .

0  Hydrographs f o r  bedrock  w e l I s  l o c a t e d  in  t h e  same g e n e ra l  l i t h o -  

s t r a t i g r a p h i c  i n t e r v a l  t e n d  t o  show s i m i l a r  b e h a v i o r .

0  The major  f e a t u r e  on a l 1 t h e  w e l 1 hydrographs  was t h e  r e s p o n s e  to  

a s e r i e s  o f  1 a rge  p r e c i p i t a t i o n  e v e n t s  which o c c u r r e d  d u r i n g  l a t e  

A pr i l  and e a r l y  May 1984.

5 . 3 . 2  Maximum Water Tab le  E l e v a t i o n s

In t h e  lower e l e v a t i o n  a r e a s  of  t h e  s i t e  t h e  w a te r  t a b l e  r i s e s  to  

w i t h i n  <lm o f  t h e  ground s u r f a c e .  F i g u r e s  5 . 2  and 5 . 3  show t h e  r e l a -  

t i o n s h i p  be tween  t h e  t o p o g r a p h i c  l o c a t i o n  of  w e l l s  and t h e  maximum 

o b s e rv e d  w a t e r  e l e v a t i o n .  These  p l o t s  i n c l u d e  t h e  wel l  r e s p o n s e s  o f  

e a r l y  May 1984.

5 . 3 . 3  Groundwate r  Flow P a th s

The t r a n s m i s s i o n  of  w a te r  t h r o u g h  s i t e  s o i l s  and bedrock  o c c u r s  

r a p i d l y ,  as  shown by t h e  r a p i d  we l l  r e s p o n s e s  t o  p r e c i p i t a t i o n  e v e n t s .  

P r e c i p i t a t i o n  t h a t  f a l l s  a t  r a t e s  below the  v e r t i c a l  i n f i l t r a t i o n  c a p ac ­

i t y  o f  t h e  r es iduum  i n f i l t r a t e s  t h r o u g h  th e  res iduum i n t o  t h e  bed ro c k  

a q u i f e r .  When t h e  v e r t i c a l  i n f i l t r a t i o n  c a p a c i t y  of  t h e  re s iduum i s  

exceeded  d u r i n g  a p r e c i p i t a t i o n  e v e n t ,  1 a t e r a l  q u i ck f lo w  o c c u r s  in  t h e
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upper  s o i l  h o r i z o n s  and ephemeral  s u r f a c e  f low o c c u r s  where t h e  q u i c k ­

f lo w  emerges  t o  t h e  s u r f a c e . Th i s  phenomenon may o c c u r  s e v e r a l  t im e s  

d u r i n g  t h e  w i n t e r  and s p r i n g  s e a s o n s .  These e v e n t s  a l s o  c a u s e  t h e  

i n f i l t r a t i o n  of  s a t u r a t e d  p u l s e s  t h ro u g h  th e  r e s id u u m .  At l e a s t  t h r e e  

such e v e n t s  a re  a p p a r e n t l y  r e c o r d e d  in w e l1 h y d ro g ra p h s  f o r  w e l I s  on th e

c r e s t  o f  t h e  r i d g e .  The 1 a t e  Apri ' ’ and e a r l y  May r a i n s  c aused  w ide­

s p r e a d  s a t u r a t i o n  of  t h e  s u r f a c e  s o i l s  accompanied by r a p i d  r i s e s  of  t h e  

w a te r  t a b l e s  a t  d e p t h .  During wel l  m o n i t o r i n g ,  a i r  was o b s e rv e d  b lowing

from s e v e r a l  of  t h e  w e l1 s com ple ted  in t h e  r e s id u u m ,  i n d i c a t i n g  t h a t  a

vapor  lock  c o n d i t i o n  had formed w i th  a s a t u r a t e d  i n f i l t r a t i o n  p u l s e  

t r a p p i n g  a i r  in t h e  r e s id u u m .

Water  movement in  t h e  w e a the re d  bedrock  and bed rock  a q u i f e r  i s  

s t r o n g l y  c o n t r o l l e d  by t h e  l o c a t i o n s  and o r i e n t a t i o n s  o f  c a v i t i e s .  The 

p r im a r y  o r i e n t a t i o n s  of  cav i t y  sys tem s  a re  c o n t r o l  l e d  by t h e  lo c a l  

bedd ing  o r i e n t a t i o n  and t h e  o r i e n t a t i o n  of  p e n e t r a t i v e  j o i n t s  and f r a c ­

t u r e s ,  which a re  widened by d i s s o l u t i o n .  The i n f l u e n c e  of  s t r a t i g r a p h i c  

c o n t r o l s  on g roundw a te r  movement has  been d e m o n s t r a t e d  on t h e  s i t e  by 

p e r f o r m a n c e  of  a t r a c e r  t e s t  in t h e  ephemeral  s t r eam  l o c a t e d  in t h e  

m id d le  p o r t i o n  of  the  C h e p u l t e p e e  D o lom ite .  The dye t r a c e r  t e s t  i s  

r e p o r t e d  in  d e t a i l  in Appendix B. Dye t r a c e r  was i n t r o d u c e d  i n t o  t h e  

a q u i f e r  by way of  a d i s a p p e a r i n g  s t r e a m  and was d e t e c t e d  in  s u r f a c e  

w a t e r  a p p r o x i m a t e l y  1 .5  t o  3 km ( 0 .9  t o  1 . 9  mi)away.  The f low  pa th  

a p p a r e n t l y  f o l l o w e d  a n a r r o w l y  c o n f i n e d  c a v i t y  sys tem s o u th w e s t  from t h e  

p o i n t  of  i n j e c t i o n  to  a c r o s s - c u t t i n g  v a l l e y .  From t h e r e  t h e  f low pa th  

a p p a r e n t l y  f o l l o w e d  t h e  c r o s s - c u t t i  ng f e a t u r e  s o u th  toward  t h e  Cl inch  

R i v e r . A p o r t i o n  of  t h e  d i s c h a r g e  from t h i s  f low sys tem e n t e r s  t h e  

Cl inch R i v e r  a t  t h e  w a t e r s h e d  o u t l e t .  I n c o n c l u s i v e  ev id e n c e  was found 

s u g g e s t i n g  f low s o u th w e s t  a long  s t r i k e  a p p r o x i m a t e l y  3 km ( 1 .9  m i) to  

t h e  Cl inch  R i v e r . A t t em p ts  t o  p u l l  t h e  dye t r a c e r  i n t o  an o b s e r v a t i o n  

w e l 1 by pumping t h e  w e l 1 were u n s u c c e s s f u l . The i n a b i l i t y  t o  pump 

t r a c e r  i n t o  t h e  n e a rb y  wel l  may be due to  1 ack of  h y d r a u l i c  c o n n e c t i o n  

be tween  t h e  w e l1 and a c o n f i n e d  cav i t y  or  due to  i n s u f f i c i e n t  pump 

c a p a c i t y .  The t r a v e l  r a t e  w i t h i n  t h e  t r a c e d  f low p a th  i s  on t h e  o r d e r  

o f  240 t o  380 m/d (780 t o  1250 f t / d ) . Flow in t h i s  p o r t i o n  of  t h e  s i t e  

i s  t h o u g h t  t o  r e p r e s e n t  t h e  upper  bound of  g r oundw a te r  movement f o r  t h e  

s i t e .
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W ith in  bo th  t h e  s o i l  and bed rock  a q u i f e r s ,  f low i s  from t h e  h i g h e r  

t o p o g r a p h i c  a r e a s  toward  t h e  lower a r e a s . G r a d ie n t s  i n d i c a t e  f low  

to ward  t h e  n e a r e s t  p e r e n n i a l  s u r f a c e  w a te r  f e a t u r e s .  Apparen t  w a te r  

d i v i d e s  a r e  l o c a t e d  b e n e a t h  t h e  r i d g e s  on the  s i t e .  In t h e  Copper Ridge 

D o lom ite  o u t c r o p  b e l t ,  t h e  g ro u n d w a te r  d i v i d e  a ppear s  to  c o i n c i d e  wi th  

t h e  t o p o g r a p h i c  d i v i d e .  In t h e  Longview/Newala R idge ,  t h e  g ro u n d w a te r  

d i v i d e  does  not  c o i n c i d e  w i th  t h e  t o p o g r a p h i c  d i v i d e  bu t  t e n d s  to  occur  

a p p r o x i m a t e l y  100 m (300 f t )  s o u t h e a s t  of  t h e  r i d g e  c r e s t .

Groundwater  from t h e  Longview Format ion  a p p a r e n t l y  f low s  down d ip  

a n d / o r  t h ro u g h  f r a c t u r e s  i n t o  t h e  upper  C h e p u l t e p e e  Do lom i te .  Flows 

f rom t h e  m idd le  and upper  Copper  Ridge  Dolomite  ( t h e  s o u t h e a s t  f a c e  of 

t h e  r i d g e )  a p p a r e n t l y  f lo w  down d i p  and down g r a d i e n t  t o  t h e  C h e p u l t e p e e  

D o lo m i t e .  The a c t u a l  g ro u n d w a te r  f low  pa th s  in t h e  bedrock  and wea th­

e re d  bed rock  zones a r e  e x p e c t e d  t o  r esem b le  r e c t a n g u l a r  or  t r e l l i s  

d r a i n a g e  p a t t e r n s . Flow p r o b a b l y  f o 11ows long runs  p a ra l  l e i  t o  s t r i k e  

and i s  d i v e r t e d  by s h o r t h e r  c r o s s - s t r i k e  c h a n n e l s  t o  o t h e r  s t r i k e -  

c o n t r o l l e d  zones or  t o  em ana t ion  in a s u r f a c e  s t r e a m .  L a t e r a l  f lo w  in 

s o l u t i o n  c h a n n e l s  be n e a th  C h e s t n u t  Ridge may f o l l o w  d i s c r e t e  zones f o r  

d i s t a n c e s  > 0 .5  km. Th i s  o b s e r v a t i o n  i s  based on t h e  ge n e ra l  al ignment 

o f  k a r s t  f e a t u r e s  a long  s t r i k e ,  and t h e  l o c a l l y  w e l l - d e v e l o p e d  k a r s t  

f e a t u r e s  a p p a r e n t l y  r e l a t e d  t o  d i s c r e t e  zones [12  k a r s t  f e a t u r e s  a l i g n e d  

a lo ng  s t r i k e  in  650 m (2100 f t ) ]  on t h e  West C h e s tn u t  Ridge S i t e  and 

f u r t h e r  n o r t h e a s t  on C h e s t n u t  R idge .  The a p pearance  of  t h e  dye t r a c e r  

in  a s u r f a c e  s t r e a m  d e m o n s t r a t e s  t h a t  t h e  f low system t e s t e d  d i s c h a r g e s  

t o  s u r f a c e  w a t e r .

L a t e r a l  f l  ow p a t h s  may al so occur  in  res iduum where p r e d o m i n a n t l y  

g r a v e l l y  zones  have formed by t h e  w e a t h e r i n g  of  bedded c h e r t s  or  where 

sandy  zones in  bed rock  p e r s i s t  in  t h e  r e s iduum .  The l a t e r a l  e x t e n t  of 

such f low  has not  been d e m o n s t r a t e d .

On t h e  West C h e s tn u t  Ridge S i t e ,  t h e  k a r s t  zone in  t h e  upper  

C h e p u l t e p e e  Dolomite  shows t h e  mos t  r e c e n t  a c t i v i t y  ( s t e e p - s i d e d  s i n k ­

h o l e s )  and a c t s  as  a c o l l e c t o r  and d i s c h a r g e  pathway f o r  g r o u n d w a te r ,  

which f low s  down d i p  o u t  o f  t h e  Copper Ridge Do lom i te .  E l e c t r o m a g n e t i c  

(EM) t e r r a i n  c o n d u c t i v i t y  has been used in  p o r t i o n s  of  t h i s  zone to  

l o c a t e  p r e f e r e n t i a l  g ro u n d w a te r  f lo w  p a t h s  (P in  and K e t e l l e  1 9 8 3 ) .
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S t r i k e - p a r a l l e l  and s t r i k e - p e r p e n d i c u l a r  c o n d u c t i v i t y  anom a l ie s  were 

mapped a t  t h e  w e s t e r n  end of  t h e  West C h e s t n u t  Ridge S i t e .  The s t r i k e -  

p e r p e n d i c u l a r  p o r t i o n  of  the  EM c o n d u c t i v i t y  anomaly c o i n c i d e s  w i th  the  

d i s c h a r g e  pa thway of  t h e  dye t r a c e r  t e s t .  The s t r i k e - p a r a l l e l  p o r t i o n  

o f  t h e  EM c o n d u c t i v i t y  anomaly was i n i t i a l  l y  t h o u g h t  to  r e p r e s e n t  t h e  

d i s c h a r g e  pa th  which t h e  dye t r a c e r  would f o l l o w ;  however ,  t h e  dye was 

n o t  d e t e c t e d  in a w e l1 p i ac e d  in t h a t  f e a t u r e .



6. SURFACE WATER HYDROLOGY

The p r im a ry  o b j e c t i v e  o f  h y d r o l o g i c  s t u d i e s  e m pha s iz ing  s u r f a c e  

w a t e r s  i s  t o  s u p p o r t  a n a l y s i s  of  t h e  w a te r  budge t  f o r  t h e  West C hes tnu t  

Ridge S i t e  and t o  p r o v i d e  a b a s i s  f o r  t e s t i n g  and a n a l y z i n g  h y d r o l o g i c  

s i m u l a t i o n s  in  s u p p o r t  o f  pathways a n a l y s e s .  The d a t a  t h a t  have been 

c o l l e c t e d  i n c l u d e  b i w e e k ly  measurement  of  f low s  a t  t e m p o r a r y  m o n i t o r i n g  

s i t e s  between J u l y  1982 and September  1983;  c o n t i n u o u s  p r e c i p i t a t i o n  

m easu rem en ts  b e g in n i n g  i n  December 1982;  and c o n t i n u o u s  s t r e a m  f lo w  

m o n i t o r i n g ,  i n s t r u m e n t e d  and o p e r a t e d  s i n c e  Oc tober  1983 ,  a t  f i v e  

l o c a t i o n s  where e i t h e r  a f lume or  w e i r  has  been c o n s t r u c t e d .  In  

a d d i t i o n ,  l i m i t e d  w a te r  q u a l i t y  a n a l y s e s  have been made f o r  a few 

s u r f a c e  w a te r  s a m p l e s .  R e s u l t s  of  t h e s e  s t u d i e s  a r e  r e p o r t e d  in  d e t a i l  

by Huff  e t  a l . ( 1 9 8 4 ) ,  Elmore e t  a l . ( 1 9 8 4 ) ,  and Huff  and F r e d e r i c k

( 1 9 8 4 ) ,  b u t  f o r  t h e  s ake  o f  b r e v i t y  a r e  summarized h e r e  t o  p r o v id e  a 

g e n e r a l  c h a r a c t e r i z a t i o n  of  t h e  s u r f a c e  wa te r  hy d ro lo g y  of  t h e  s i t e .  A 

map o f  t h e  i n i t i a l  h y d r o l o g i c  s t u d y  s i t e s  i s  p r e s e n t e d  in  F i g .  6 . 1 ,  

which i s  t a k e n  from H uf f  e t  a l . ( 1 9 8 4 ) .  The p r e s e n t  h y d r o l o g i c  s tu d y  

s i t e s  a r e  shown in F i g .  6 . 2 ,  which i s  t a k e n  from Huff  and F r e d e r i c k  

( 1 9 8 4 ) .

6 . 1  PRECIPITATION

There  a r e  t h r e e  g e n e r a l  s o u r c e s  o f  i n f o r m a t i o n  a v a i l a b l e  t o  c h a r a c -  

t e r i z e  p r e c i p i t a t i o n  a t  t h e  West C h e s tn u t  Ridge S i t e :  d a t a  from t h e  Oak

Ridge w e a th e r  s t a t i o n ,  which i s  13 km (8 mi) t o  t h e  e a s t  and i s  o p e ra t e d  

by t h e  N a t io n a l  Oceanic  and A tm ospher ic  A d m i n i s t r a t i o n ;  r e c o r d s  t a k e n  a t  

Walker  Branch W a te r s h e d ,  which i s  5 km ( 3 .1  mi)  t o  t h e  e a s t  of  t h e  s i t e ;  

and d a t a  c o l l e c t e d  s i n c e  December 1982 a t  a c e n t r a l  l o c a t i o n  on t h e  s i t e  

( F i g .  6 . 2 ) .  Normal annual  p r e c i p i t a t i o n  a t  t h e  Oak Ridge w ea ther  

s t a t i o n  i s  1336 mm ( 5 2 . 6  i n ) . During t h e  p a s t  14 y e a r s ,  annual p r e c i p i ­

t a t i o n  has  ave raged  1456 mm ( 5 7 .3  i n )  a t  t h e  w ea the r  s t a t i o n  and 1398 mm 

( 5 5 . 0  i n )  a t  Walker  Branch W a te r s h e d .  P r e c i p i t a t i o n  a t  t h e  West 

C h e s t n u t  Ridge r a i n  gage i s  a p p r o x i m a t e l y  t h e  same as  t h a t  a t  Walker 

Branch ,  and t h u s  bo th  t h e s e  s i t e s  appear  t o  a ve ra ge  abou t  ^% l e s s  p r e c i ­

p i t a t i o n  th a n  t h e  Oak Ridge w e a th e r  s t a t i o n .  A compar ison  of  month ly
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t o t a l s  among t h e  t h r e e  s i t e s  f o r  c a l e n d a r  y e a r  1983 i s  g iv en  in  Tab le  

6 , 1 .  G e n e r a l l y ,  p r e c i p i t a t i o n  i s  e v e n ly  d i s t r i b u t e d  d u r i n g  t h e  y e a r ,  

a l t h o u g h  Oc tobe r  i s  n o r m a l ly  t h e  d r i e s t  month.  A summary of r a i n f a l 1 

f r e q u e n c y  f o r  v a r i o u s  d u r a t i o n s  i s  p r e s e n t e d  in T a b l e  6 . 2 .  These v a l u e s  

may be used t o  d e s i g n  r u n o f f  c o n t r o l  and m o n i t o r i n g  i n s t a l 1a t i o n s  f o r  

t h e  small  a r e a s  p ianne d  f o r  use  in t h e  s i t e .

6 . 2  SURFACE WATER FLOWS

Flow m easurem en ts  were made a t  a p p r o x i m a t e l y  b iw e e k ly  i n t e r v  al s 

be tween  J u l y  1982 and Sep tember  1983.  D e t a i l s  a r e  r e p o r t e d  by Elmore 

e t  al . (1984)  and Huff  e t  a l , ( 1 9 8 4 ) .  Measurements  were summarized in 

e s t i m a t e d  t i m e - w e i g h t e d  annual f low a t  each of  t h e  seven s i t e s  shown in  

F i g . 6 . 1 ,  and a r e  g iven  in  T a b le  6 . 3 .  However , i t  s hou ld  be no ted  t h a t  

t h e  e s t i m a t i o n  p r o c e d u r e  i g n o r e s  t h e  t r u e  dynamic n a t u r e  of  t h e  sys tem  

and p r o b a b l y  b i a s e s  t h e  r e s u l t s  toward u n d e r e s t i m a t i o n . Thus,  t h e  

va l  ues shou ld  be used o n ly  t o  e v a l u a t e  r e l  a t i v e  d i f f e r e n c e s  among s i t e s  

and no t  as an a b s o l u t e  m easure  of  t h e  w a te r  b u d g e t .  Given t h i s  qual i f i -  

c a t i o n ,  i t  a p p e a r s  t h a t  s i t e  1 r e p r e s e n t s  an a r e a  where f low i s  h i g h e r  

p e r  u n i t  a r e a  t h a n  a t  t h e  o t h e r  s i t e s . T h i s  may r e s u l t  from t h e  d i f f e r ­

e n t  g e o l o g i c  u n i t  u n d e r l y i n g  s i t e  1 ,  as  compared t o  t h o s e  a t  o t h e r  

l o c a t i o n s .  I t  i s  l i k e l y  t h a t  more of  t h e  s u b s u r f a c e  f l  ow i s  f o r c e d  to  

t h e  s u r f a c e  in  t h i s  a r e a  th a n  a t  t h e  o t h e r  s i t e s ,  t h u s  making i t  more 

s u i t a b l e  f o r  a pe rm anen t  l o n g - t e r m  m o n i t o r i  ng p o i n t  f o r  f l  ow and w a te r  

q u a l i t y .  Al though t h e  maximum o b se rve d  f lo w  r a t e s  shown in T a b l e  6 . 3  

a r e  no t  r e p r e s e n t a t i v e  of  s torm e v e n t  c o n d i t i o n s ,  t h e  low f l  ow val  ues 

a re  p r o b a b l y  good m easu res  o f  minimum f low s  to  be e x p e c t e d  a t  t h e  s i t e .  

The v a r i a b i l  i t y  of  f low per  u n i t  a r e a ,  t o g e t h e r  w i th  t h e  f a c t  t h a t  some 

of  t h e  c a t c h m e n t s  e x h i b i t  z e ro  f low  f o r  e x te n d e d  p e r i o d s ,  i s  i n d i c a t i v e  

o f  u n d e r l y i n g  s o l u t i o n  f e a t u r e s  t h a t  c a p t u r e  and t r a n s m i t  f lo w .  Work by 

Hoi 1yday and Goddard (1979)  has  shown t h i s  t o  be t r u e  in  t h e  same g e o l o ­

g i c  f o r m a t i o n  in a n o t h e r  l o c a t i o n  ( D a n d r i d g e ,  T e n n e s s e e ) , which i s  about  

80 km (50 mi) n o r t h e a s t  of  t h e  s i t e .

Beg inn ing  in  O c to b e r  1983 ,  c o n t i n u o u s  f low  m o n i t o r i  ng a t  t h e  f i v e  

l o c a t i o n s  shown in F i g . 6 . 2  was i n i t i a t e d .  Each o f  t h e s e  s i t e s  has  a
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T a b le  6 . 1 .  Comparisons of  m on th ly  p r e c i p i t a t i o n  a t  t h e  
West C h e s t n u t  Ridge  S i t e  (WCRS), Walker Branch 

W ate rshed (WBW) and Oak Ridge Tow nsi t e  (CRT) 
w e a th e r  s t a t i o n s  f o r  c a l e n d a r  y e a r  1983.

Al l  v a l u e s  a r e  in  m i l l i m e t e r s

Month WCRS WBW ORT Normal

J a n . 40 .8 2 3 7 . 9 2 a 44.45 133.35

Feb. 111 .71 1 1 0 . 30a 111.25 133 .10

March 57 .84 53 .71 65 .28 138 .43

A p r i l 163 .05 162 .24 162.56 106.93

May 150 .61 163 .48 175.26 89 .4 1

June 56 .15 6 7 .0 8 64.26 100 .08

J u l y 68 .12 4 1 .7 8 61.21 144 .02

Aug. 25 .88 37 .6 4 32.51 97 .79

Sep. 34 .8 0 48 .0 1 52 .58 8 4 .8 4

O c t . 1 2 5 . 7 4 a 113 .4 4 116.33 69 .09

Nov. 136.87 135.17 148.59 102 .87

Dec. 170 .783 173 .0 3 176.53 136 .14

T o ta l 1142 .4 1143 .8 1210 .8 1336 .0

3 M iss in g  d a t a  e s t i m a t e d  from n e a rb y  r e c o r d s .
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T a b l e  6 . 2 .  R a i n f a l l  ( i n c h e s )  vs f r e q u e n c y  on a r e a s  up to  10 m i l e s ^  
in Anderson and Knox c o u n t i e s ,  T e n n e s se e

Frequency
(y rs )

f

Minutes® Hours^

5 10 15 30 60 2 3 6 12 24

2 0 .4 3 0 .65 0 .8 0 1 .14 1 .5 1 . 8 2 . 0 2 . 4 2 . 8 3 . 3

5 0 .5 0 0 .7 8 0 .9 8 1 .43 1.9 2 .4 2 ,5 3 .0 3 .6 4 . 2

10 0 .5 6 0 .8 9 1 . 1 2 1 .65 2 . 2 2 .7 2 .9 3 .5 4 . 1 4 . 8

25 0 .6 4 1 .03 1 .30 1.89 2.5 3 .0 3 .4 3 .9 4 . 7 5 .5

50 0 .71 1 .15 1.45 2 . 1 1 2 . 8 3 .4 3 .7 4 . 7 5 . 3 6 . 1

100 0 .77 1 .26 1 .60 2.36 3.1 3 .8 4 . 0 4 . 9 5 .7 6 . 6

^ 2 y r  and 100 y r ;  5 m in ,  15 m in ,  and 60 min d a t a  from maps in  NWS 
HYDRO-35 ( 1 9 7 7 ) .  All o t h e r  "m inu te "  d a t a  c a l c u l a t e d  u s in g  a p p r o p r i a t e  
e q u a t i o n  from t h e  p u b l i c a t i o n  i s  l i s t e d  as f o o t n o t e  b .

10 min :  ( 0 . 5 9 )  (15 min)  + ( 0 . 4 1 )  (5 min)  
30 min :  ( 0 . 4 9 )  (60 min)  + ( 0 . 5 1 )  (15 min)

5 y r  
10  y r  
25 y r  
50 y r

(0 .2 7 8 )  (100 y r )  + ( 0 . 6 7 4 )  (2  y r )
( 0 .4 4 9 )  (100 y r )  + ( 0 .4 9 6 )  (2 y r )
(0 .6 6 9 )  (100 y r )  + ( 0 .2 9 3 )  (2  y r )
( 0 .8 3 5 )  (100 y r )  + ( 0 .1 4 6 )  (2 y r )

b I n t e r p o l a t e d  from maps in USWB TP 40 ( 1 9 6 1 ) .
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T a b l e  6 . 3 .  Summary of  i n t e r m i t t e n t  f low measurement  d a t a  f o r  
J u l y  15 ,  1982,  t o  J u l y  11,  1983

S t a t i o n C o n t r i b u t i n g  
a r e a  (km^)

Flow r a t e

Annual
( L / s )

mean
(cm)®

Maximum 
( L / s )  (cm/d)b

Minimum 
( L / s )  (cm/d)*^

1 2 .44 38 .9 5 0 .3 139.0 0 .49 1 .3 3 0 .0 0 5
2 1 .94 2 1 . 8 35 .4 78.7 0 .35 0 .82 0 .0 04
3 1 .45 14 .0 30 .4 4 9 .7 0 .3 0 0 .3 3 0 . 0 0 2
4 0 .5 4 3 .2 18 .7 10 .9 0 .17 0 . 0 0 0 . 0 0 0
5 0 .25 1 .9 24 .0 6 . 8 0 .2 4 0 .3 2 0 . 0 1 1
6 0 .5 2 3.9 2 3 .6 14.9 0 .25 0 . 0 0 0 . 0 0 0
7 0.14C 1 . 6 36 .0 4 .4 0 .27 0 .39 0 .0 24

3 Flow r a t e  computed as  c e n t i m e t e r s  of  r u n o f f  from t h e  c o n t r i ­
b u t i n g  w a t e r s h e d  a r e a .

D Flow r a t e  computed as cm/d r u n o f f  from th e  c o n t r i b u t i n g  
w a t e r s h e d  a r e a .

c The a r e a  f o r  s i t e  7 has  been r e v i s e d  from e a r i l i e r  e s t i m a t e s  
by Elmore ,  e t  a l . (1984)  and H u f f ,  e t  al . ( 1984 ) .
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f lume or  w e i r  t h a t  has been c a l i b r a t e d  by d i r e c t  f i e l d  measurement  of  

c o r r e s p o n d i n g  s t a g e  h e i g h t  and f low  ove r  a broad  r an g e  o f  c o n d i t i o n s .  A 

b r i e f  s y n o p s i s  of  t h e  m on th ly  r e s u l t s  of  a l l  f i v e  s i t e s  i s  g iv en  in  

T a b l e  6 . 4 ,  which i n c l u d e s  v a l u e s  o f  r e c o r d e d  d a i l y  maximum and minimum 

f lo w s  as w e l 1 as mean m on th ly  v a l u e s .  The p e r i o d  r e p r e s e n t e d  in t h e  

summary i s  November 1983 t o  A p r i 1 1984,  a l t h o u g h  d a t a  c o l l e c t i o n  i s  

o n g o i n g .  Note t h a t  some d a t a  a r e  m i s s in g  a t  s i t e s  4 ,  7 ,  and 8 . More 

c o m p re h en s iv e  and d e t a i l e d  d a t a  a r e  a v a i l a b l e  and a r e  summarized by Huff  

and F r e d e r i c k  ( 1 9 8 4 ) ,  bu t  a re  t o o  vo luminous  to  i n c l u d e  h e r e .

Peak f low  r a t e s  f o r  s e l e c t e d  r e c u r r e n c e  i n t e r v a l s  have been e s t i -  

mated f o r  t h e  s i t e  by Huff  e t  a l . ( 1 9 8 4 ) ,  and v a l u e s  a r e  summari zed in  

T a b l e  6 . 5 .  For compar ison  p u r p o s e s ,  t h e  peak i n s t a n t a n e o u s  f low  a t  s i t e  

1 on May 7 ,  1984 was e s t i m a t e d  a t  5 , 9 0 0  L/s  (193 ,515  G/min) (by r a t i n g  

c u r v e ) . Flow a t  o t h e r  s i t e s  on t h a t  d a t e  a r e  no t  a v a i l a b l e .  The May 7 

v a l u e  a t  s i t e  1 c o r r e s p o n d s  t o  a r e c u r r e n c e  i n t e r v a l  o f  a p p r o x i m a t e l y  7 

y e a r s  f o r  peak f l o w ,  based  on t h e  f l o o d  f r e q u e n c y  c u rv e  shown in F i g . 

6 . 3 ,  assuming t h e  g e n e ra l  r e g i o n a l  r e l a t i o n s h i p  a p p l i e s .

6 . 3  WATER BUDGET ESTIMATES

C on t in u o u s  r e c o r d s  o f  s u r f a c e  w a te r  d a t a  c o l l e c t e d  t o  d a t e  a r e  of  

i n s u f f i c i e n t  l e n g t h  t o  a l low  d i r e c t  c a l c u l a t i o n  of a s i t e  w a te r  b u d g e t .  

However ,  i t  i s  p o s s i b l e  t o  compare p r e c i p i t a t i o n  and r u n o f f  volumes by 

s u b b a s i n  f o r  m o n i t o r i n g  s i t e s  where d a t a  a r e  s u f f i c i e n t .  Such c o m p a r i ­

sons  a l low  e s t i m a t i o n  of  combined e v a p o r a t i v e  l o s s ,  deep s e ep a g e  and 

g r o u n d w a te r  l o s s e s ,  and change  in  s o i l  m o i s t u r e  s t o r a g e .  T a b l e  6 . 6  

p r e s e n t s  m on th ly  com pa r i sons  of  p r e c i p i t a t i o n  volume,  r u n o f f  volume,  and 

r u n o f f  as a p e r c e n t  o f  p r e c i p i t a t i o n .  General  r e l a t i o n s h i p s  and s t u d i e s  

o f  i n t e r c e p t i o n  l o s s e s  f o r  d e c id u o u s  (mixed hardwood) f o r e s t  cove r  sug­

g e s t  t h a t  dormant  s eason  l o s s e s  a r e  e x p e c t e d  t o  be ab o u t  6 t o  11% o f  

p r e c i p i t a t i o n ,  depend ing  on t h e  number of  s torm e v e n t s . Once t h e  b a s i n s  

a r e  f u l l y  r e c h a r g e d  from summer and autumn m o i s t u r e  d e f i c i t s ,  one would 

e x p e c t  most  of  t h e  n e t  p r e c i p i t a t i o n  t o  r e a p p e a r  as r u n o f f .  Using s imu- 

1 a t i o n s  d e v e lo p e d  f o r  o t h e r  n e a r b y  w a t e r s h e d s  (b as e d  on t h e  

T h o r n t h w a i t e - M a t h e r  t e c h n i q u e  f o r  d e t e r m i n i n g  e v a p o t r a n s p i r a t i o n ) ,
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T a b l e  6 . 4 .  Month ly  f low  d a t a  ( L / s )  f o r  m o n i t o r i n g  s t a t i o n s  on 
t h e  West C h e s t n u t  Ridge S i t e

Nov. 1983 Dec. 1983 J a n .  1984 Feb.  1984 Mar. 1984 Apr.  1984

CWDF 1
Monthly mean 23 .7  9 3 . 2  4 5 .4  50 .1  7 3 .2  49 .6
I n s t a n t a n e o u s  1750 1010 132 346 682 281

max.
I n s t a n t a n e o u s  1 . 2  14 9 . 6  9 . 6  14 14

m in .

CWDF 3
Monthly mean 6 .8 2  4 1 .7  21 .8  2 5 .6  3 9 .4  32 .5
I n s t a n t a n e o u s  185 283 71 150 318 e l  30

max.
I n s t a n t a n e o u s  0 . 6  5 .7  4 . 4  3 .2  6 . 4  8 .1

m i n .

CWDF 4
Monthly mean 2 .2 3  1 4 .9  8 .5 5  10 .1  1 2 .0  8 .30
I n s t a n t a n e o u s  >48 >48 22 >48 >48 >48

max.
I n s t a n t a n e o u s  0 .0 3  2 . 8  2 .3  1 .5  2 .7  1 .8

m i n .

CWDF 7
Monthly mean 0 . 6 8  3 .82  2 .5 0  2 .62  4 .0 5  3.33
I n s t a n t a n e o u s  10 21 7 .2  14 31 13

max.
I n s t a n t a n e o u s  0 . 1  0 . 8  0 .7  0 .7  1 . 0  1 .8

m i n .

CWDF 8
Monthly  mean 0 . 8 7  7 .11  4 .1 6  4 .9 7  8 . 5 0  6 .79

Note:  F ra gm e n ta ry  s t a g e  r e c o r d  a t  CWDF 8 i s  ad e q u a te  t o  a l low
r e a s o n a b l e  e s t i m a t e s  o f  mean d a i l y  d i s c h a r g e ,  b u t  e x c e p t  f o r  NO 
FLOW p r i o r  t o  Nov. 27 ,  i n s t a n t a n e o u s  maximum and minimum v a l u e s  
c a n n o t  be r e l i a b l y  d e t e r m i n e d .  Maximum flow p r o b a b l y  exceeded 
48 L / s  on March 28.
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T a b le  6 . 5 .  E s t im a t e d  f r e q u e n c y  of  peak d i s c h a r g e s  on I s h  Creek

R e c u r re n c e
i n t e r v a l

( y e a r )

Peak e s t i m a t e d  f lo w s*  ( L / s )

S t a t i o n  1 S t a t i o n  2 S t a t i o n  3

2 3 ,440 2 ,900 2 ,3 2 0
5 5 ,720 4 ,8 4 0 3 ,890

10 7 ,4 8 0 6 ,3 40 5 ,1 2 0
25 1 2 , 0 0 0 8 ,430 6 ,8 20
50 14 ,200 1 0 , 2 0 0 8 ,2 8 0

s Approx imate  s t a n d a r d  e r r o r  of  e s t i m a t i o n  i s  50%. T a b le  t a k e n  
from Huff  e t  a l . ( 1 9 8 4 ) .
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T a b l e  6 . 6 . P r e c i p i t a t i o n  -  R unof f  com par ison  a t  West 
C h e s tn u t  Ridge f low  m e a s u r in g  s i t e s

Nov. 1983-
Nov. 1983 Dec. 1983 J a n .  1984 Feb.  1984 Mar. 1984 Apr.  1984 Apr.  1984

P r e c i p i t a t i o n ,  mm

136.87  170 .78  62 .91  9 2 .8 4  115 .8 4  102 .6 3  682 .0 7

R u n o f f ,  mm

CWDF 1 2 5 .2 0 102.29 49 .79 5 1 .4 4 80 .35 52 .6 7 361 .7 4

CWDF 3 1 2 , 2 0 77.15 40 .30 44 .2 3 72 .90 58 .1 5 304.93

CWDF 4 10 .53 73 .26 4 2 .1 2 4 6 .3 3 58 .92 39 .53 270 .7 9

CWDF 7 12.61 73 .12 47 .88 46 .93 77.43 6 1 .7 4 319.71

CWDF 8 7 .1 3 60 .48 35.41 39 .55 72.30 5 5 .8 4 270 .7 1

R u n o f f / r a i n f a l 1 r a t i o

CWDF 1 0 .1 8 0 .6 0 0 .79 0 .5 5 0 .6 9 0 .5 1 0 . 5 3

CWDF 3 .09 .45 .64 .48 .63 .57 .45

CWDF 4 .08 .43 .67 .50 .51 .39 .40

CWDF 7 .09 .43 .76 .51 .67 .60 .47

CWDF 8 .05 .35 .56 .43 .62 .54 .40
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e s t i m a t e s  have been made f o r  e v a p o r a t i v e  l o s s e s  f o r  t h e  p e r i o d  of  

November 1983 t h ro u g h  A p r i l  1984.  R e s p e c t i v e  v a l u e s  as  a f r a c t i o n  o f  

r a i n f a l  1 a r e :  0 . 1 6 ,  0 . 1 0 ,  0 . 1 6 ,  0 . 1 1 ,  0 . 4 3 ,  and 0 . 3 5 .  Thus ,  i f  s t o r a g e  

changes  and g r o undw a te r  l o s s e s  were negl  i g i b l e ,  t h e  e x p e c t e d  r u n o f f  

r a t i o s  f o r  t h e  November-Apr11 p e r i o d  would be 0 . 8 4 ,  0 . 9 0 ,  0 . 8 4 ,  0 . 8 9 ,  

0 . 5 7 ,  and 0 . 6 5 .  Comparison o f  t h e s e  e s t i m a t e s  a g a i n s t  o b se rve d  v a l u e s  

g i v e n  in  T a b l e  6 . 6  shows t h a t  o b se rve d  v a l u e s  a r e  c o n s i d e r a b l y  lower 

t h a n  e x p e c t e d  v a l u e s  e x c e p t  f o r  March.  When t h e  r u n o f f  r a t i o s  between  

v a r i o u s  o t h e r  s i t e s  and s i t e  1 a r e  compared ,  t h e  r e s u l t s  s u g g e s t  t h a t  25 

t o  30% of  t h e  r u n o f f  a t  o t h e r  s i t e s  i s  l o s t  t o  deep seepage  or  ground 

w a t e r  f low  a c r o s s  t o p g r a p h i c  b o u n d a r i e s .  Th i s  i s  c o n s i s t e n t  wi th  

e a r l  i e r  r e s u l t s  showing 1 a rg e  v a r i a b i l i t y  in  r u n o f f  pe r  u n i t  a r e a  f o r  

t h e  v a r i o u s  s u b b a s i n s .  However , g iv e n  t h e  s h o r t  p e r i o d  of  r e c o r d s  

a v a i l  a b l e  f o r  a n a l y s i s ,  such c o n c l u s i o n s  must  be c o n s i d e r e d  as  

s p e c u l a t i v e  and u s a b l e  o n l y  w i th  due c a u t i o n .
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APPENDIX B 

GROUNDWATER TRACER TESTS

Rationale and Objectives

In k a r s t  a r e a s ,  where f lo w  pathways can be u n p r e d i c t a b l e ,  i t  i s  

i m p o r t a n t  t o  i d e n t i f y  t h e  pathways and any p o i n t s  where s u b s u r f a c e  f low  

r e t u r n s  t o  t h e  s u r f a c e  w a te r  s y s te m .  A t r a c e r  e x p e r im e n t  can i d e n t i f y  

emergence  p o i n t s  as  wel l  as i n d i c a t e  g e n e r a l  f low d i r e c t i o n s ,  t h u s  

a l l o w i n g  t h e  d e s ig n  o f  m o n i t o r i n g  i n s t a l 1 a t i o n s  t h a t  a re  known t o  sample 

m i g r a t i o n  pathways from d i s p o s a l  a r e a s .  F u r t h e r ,  some i n f o r m a t i o n  on 

t r a v e l  t im e  and d i l u t i o n  can be o b t a i n e d  from r e s u l t s .  Al 1 of  t h e s e  

f a c t o r s  a r e  v a l u a b l e  in d e m o n s t r a t i n g  a knowledge of  g roundw a te r  system 

b e h a v i o r .

The p r e s e n c e  of  a s w a l lo w - h o l e  t h a t  c a p t u r e s  t h e  f l  ow of  t h e  

unnamed t r i b u t a r y  s o u th  of  New Zion Cemetery j u s t  below m o n i t o r i n g  s t a ­

t i o n  8  ( F i g . B . l )  was c o n s i d e r e d  good cause  t o  a t t e m p t  t o  d e t e r m i n e  th e  

s u b s u r f a c e  f lo w  pathway of  t h e  s t r e a m  f low t o  i t s  p o i n t  o f  r e e m erg e n c e .

A dye t r a c e r  t e s t  was d e s ig n e d  to  d e t e c t  t h e  ane rge nc e  p o i n t  and p ro v id e  

ap p ro x im a te  t i m e - o f - t r a v e l  i n f o r m a t i o n .  In a d d i t i o n ,  q u a l i t a t i v e  

i n f o r m a t i o n  on t h e  e x t e n t  of  d i l u t i o n  was al so c o n s i d e r e d  a p o s s i b l e  

r e s u l t  o f  t r a c e r  t e s t s .  The s t u d y  a r e a  s e l e c t e d  f o r  t h e  t e s t i n g  

in c l u d e d  an a r e a  w i t h i n  a r a d i u s  of  abou t  2 km of t h e  s w a l l o w - h o l e ,  bu t  

o n ly  a few s i t e s  e a s t  of  t h e  p o i n t  of  i n j e c t i o n  were m o n i t o r e d .  The 

r e a s o n  was t h a t  t h e  w a te r  t a b l e  g e n e r a l l y  s l o p e s  from e a s t  t o  w e s t ,  and 

g r o u n d w a te r  movement was no t  e x p e c t e d  in  an e a s t e r l y  d i r e c t i o n .

Methods

Two m ajo r  i n j e c t i o n s  of  f l u o r e s c e i n  dye were made. The f i r s t  one 

i n v o l v e d  0 . 5  kg of  dye and was i n i t i a t e d  on J a n u a r y  18,  1984. M o n i t o r ­

ing f o r  t h e  p r e s e n c e  o f  dye ove r  an e i g h t  week p e r i o d  did no t  show any 

p o s i t i v e  r e s u l t s  a t  any of  t h e  s i x  s u r f a c e  wa te r  s i t e s  o r  t h e  s ix  w e l l s  

used in  t h e  f i r s t  t e s t .  Because  a s e c o n d ,  more s u c c e s s f u l  t e s t  was 

c o n d u c t e d ,  d e t a i l s  o f  t h e  f i r s t  t e s t  (which was v e r y  s i m i l a r  t o  t h e  

second  t e s t )  a r e  no t  d i s c u s s e d  h e r e .

131



132

J T ; ' .  i

A E c aor <-t
IfR^^^isiRVATioN', my - {Z, : - A ^

''' ,'■'f3’'■'"' iV 
'- i i S -  ^  =

rrS^' «

, -  _ /  g t'-^  >' . — ^

v ' ' - ' % ' ' ' ~ ' i ^ \ ' ' - - y A y ^ ^

CW0F3

CWDFl

‘̂̂.’ ■3i -’.'/'I

' ! ^ \  '~'̂ \ Z ^ 4 -  ^  „

'^>caa,
1 V 4

■'uSy / ;, 1 f

F i g .  B . l .  M o n i to r in g  l o c a t i o n s  used in  dye t r a c e r  t e s t .



133

The second t r a c e r  t e s t  in v o lv e d  5 . 0  kg of  f l u o r e s c e i n  dye ,  which 

was i n j e c t e d  on A p r i 1 11 ,  1984 be tween  1130 and 1150 h o u r s .  Powdered 

f l u o r e s c e i n  was d i s s o l v e d  in  s t r e a m  w a t e r ,  t hen  poured d i r e c t l y  i n t o  t h e  

s t r e a m  j u s t  ups tr eam  from t h e  s w a l l o w - h o l e .  The d i s c h a r g e  r a t e  was 4 . 3  

L / s  a t  t h e  t im e  of  i n j e c t i o n .  P a c k e t s  of  a c t i v a t e d  c h a rc o a l  e n c lo s e d  in 

a c o a r s e  mesh s c r e e n  had been e n p la c e d  a t  s e v e r a l  l o c a t i o n s  p r i o r  t o  dye 

i n j e c t i o n  to  c a p t u r e  e v id e n c e  of  p a s s a g e  of  t h e  dye .  F i g u r e  B . l  shows 

t h e  l o c a t i o n  map f o r  t h e  sam p l ing  s i t e s  employed.  At each of  t h e  

s u r f a c e  w a te r  s i t e s ,  two c h a r c o a l  p a c k e t s  were in  pi a c e . One was 

changed  1 t o  7 d i n t e r v a l s  and t h e  o t h e r  was changed a t  i n t e r v a l s  o f  up 

t o  13 d .  At s u r f a c e  w a te r  s i t e s  t h e  c h a rc o a l  p a c k e t  was suspended  in 

t h e  f low  from a small  cork  f l o a t  t h a t  was he ld  in  p l a c e  by a w e igh t  and 

1 i n e .  In t h e  w e l I s ,  p a c k e t s  were suspended by a l i n e  t i e d  t o  t h e  wel l 

c a s i n g  a t  t h e  s u r f a c e .

In t h e  i n t e r v a l  be tween  5 and 8  d f o l l o w i n g  i n j e c t i o n ,  a p o s i t i v e  

t e s t  f o r  t h e  p r e s e n c e  o f  f l u o r e s c e i n  dye was found a t  s i t e  S - 1 .  For  

t e s t i n g ,  t h e  c h a r c o a l  was removed from t h e  s c r e e n  p a c k e t  and lea c he d  

w i th  a 70% i s o p r o p y l  a l c o h o l  -  5% p o ta s s iu m  h y d r o x id e  s o l u t i o n ,  which 

was added t o  a c o n t a i n e r  h o l d in g  t h e  c h a r c o a l . P o s i t i v e  r e s u l t s  were 

i n d i c a t e d  by t h e  p r e s e n c e  o f  c l e a r l y  v i s i b l e  dye when a 1 i g h t  beam was 

p a s s e d  th ro u g h  t h e  s o l u t i o n .  A d d i t i o n a l  c o n f i r m a t i o n  of  t h e  p r e s e n c e  of  

dye came when t h e  c h a r c o a l  p a c k e t  a t  s i t e  S-1 t h a t  r e p r e s e n t e d  t h e  8  t o  

12 d i n t e r v a l  a l s o  showed a p o s i t i v e  r e s u l t .  In a d d i t i o n ,  t h e  c h a rc o a l  

t h a t  had been in pi ace a t  s i t e  S-1 be tween  2 d p r i o r  t o  and 12 d f o l l o w ­

ing i n j e c t i o n  a l s o  showed a p o s i t i v e  t e s t  f o r  dye .  No o t h e r  cha rc oa l  

p a c k e t s ,  i n c l u d i n g  t h o s e  c o l l e c t e d  a t  s i t e  S-1 a f t e r  12 d p o s t - i n j e c ­

t i o n ,  gave a p o s i t i v e  t e s t  f o r  dye .

R e s u l t s

The a p p e a r a n c e  of  dye a t  s i t e  S-1 i n  t h e  5 t o  8  d i n t e r v a l  f o l l o w ­

ing i n j e c t i o n  a l l o w s  an e s t i m a t i o n  o f  v e l o c i t y  f o r  w a te r  moving in  t h e  

s u b s u r f a c e  sys tem d r a i n i n g  t h e  n o r t h w e s t e r n  p o r t i o n  of  t h e  proposed  

C e n t r a l  Waste D isposa l  F a c i 1 i t y  s i t e .  S in c e  t h e  t r a v e l  d i s t a n c e  was 

abou t  1500 t o  1800 m, t h e  v e l o c i t y  r a n g e s  between 200 and 360 m /d .  The
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c o n c e n t r a t i o n  o f  dye im m e d ia te ly  f o l l o w i n g  i n j e c t i o n  was abou t  1 0 0 0  ppm, 

which was s i m i l a r  t o  t h e  f i r s t  t e s t .  I t  was not  p o s s i b l e  to  q u a n t i f y  

t h e  d i l u t i o n  t h a t  o c c u r r e d  between t h e  i n j e c t i o n  p o i n t  and d e t e c t i o n  

p o i n t  be c ause  t h e  dye was no t  v i s u a l l y  p r e s e n t .  However,  s i n c e  t h e  dye 

i s  v i s u a l l y  d e t e c t e d  a t  c o n c e n t r a t i o n s  of  abou t  0 . 1  ppm, i t  a p p e a r s  t h a t  

g r e a t e r  t h a n  a 1 0 , 0 0 0 - f o l d  d i l u t i o n  o c c u r r e d .

S ince  t h e  dye was d e t e c t e d  in t h e  d ra in a g e w a y  where i t  was i n j e c ­

t e d ,  i t  i s  r e a s o n a b l e  t o  i n f e r  t h a t  i t  f o l l o w e d  t h e  g e n e ra l  pa th  d e s ­

c r i b e d  by t h e  d r y  s u r f a c e  c h a n n e l . N e a r - f i e l d  e v id e n c e  p r e s e n t e d  by Pin 

and K e t e l l e  (1983)  u s in g  e l e c t r o m a g n e t i c  methods s u p p o r t s  t h e  h y p o t h e s i s  

t h a t  t h e  s u b s u r f a c e  d r a i n a g e  from t h e  s w a l lo w - h o l e  t r a v e l s  a long  t h e  

d r a in a g e w a y  to  t h e  p o i n t  of  emergence above s i t e  S-1 and t h e  Cl inch  

R i v e r .  The key p o i n t  o f  t h e  d e t e c t i o n  o f  dye a t  S-1  i s  t h a t  i t  o f f e r s  

p o s i t i v e  p r o o f  t h a t  one im p o r t a n t  pa thway f o r  s u b s u r f a c e  f low m i g r a t i o n  

from t h e  n o r t h w e s t  a r e a  o f  t h e  p ro p o se d  CWDF s i t e  emerges a t  o r  above 

s i t e  S -1 .  T h i s  s u g g e s t s  t h a t  s i t e  S-1 s h o u l d  be i n s t r u m e n te d  and 

e s t a b l i s h e d  as  a f low  and w a te r  q u a l i t y  m o n i t o r i n g  s i t e  f o r  t h e  p roposed  

CWDF a r e a .

E xam ina t ion  of  t h e  log of  dye t r a c i n g  l e a c h  t e s t s  a l s o  r e v e a l s  t h a t  

t h e  p o s s i b l e  p r e s e n c e  of  dye a t  s i t e s  CR4 and CR5 o c c u r r e d  nea r  t h e  end 

o f  Apri 1 .  While t h e s e  r e s u l t s  a re  q u e s t i o n a b l e ,  t h e  dye a p p e a r a n c e  a t  

t h e s e  s i t e s  i s  c o n s i s t e n t  w i th  t h e  h y p o t h e s i s  t h a t  some o f  t h e  dye may 

move along  g e o l o g i c  s t r i k e  from t h e  p o i n t  of  i n j e c t i o n  to  t h e  C l inch  

R i v e r .  T h i s  p o s s i b i l i t y  r e i n f o r c e s  t h e  f a c t  t h a t  t h e  1ack of  p o s i t i v e  

d e t e c t i o n  of  dye a t  s i t e s  o t h e r  th a n  S-1 doe s  not  p rove  i t  w a s n ' t  

p r e s e n t .  I t  i s  p o s s i b l e  t h a t  dye was p r e s e n t  a t  o t h e r  s i t e s  in  c o n c en ­

t r a t i o n s  t h a t  a r e  below d e t e c t i o n  l i m i t s . The f a c t  t h a t  dye was not  

found in t h e  1 i m i t e d  sam pl in g  o f  w e l l s  ne a r  t h e  i n j e c t i o n  p o i n t  and 

along  t h e  s u s p e c t e d  f low  p a th  may w a r r a n t  f u r t h e r  c o n s i d e r a t i o n . I t  i s  

p o s s i b l e  t h a t  t h e  r a t h e r  1 i m i te d  d u r a t i o n  o f  t h e  pumping and s a m p l ing  

was i n a d e q u a t e .  However , i t  may al so s u g g e s t  a l o c a l i z e d  channel  or

c o n d u i t  f o r  t h e  f low  t h a t  was no t  sampled  by t h e  w e l l s .  I f  s o ,  t h i s

would a rgue  f o r  i n c r e a s e d  emphasi s  on s u r f a c e  w a te r  m o n i t o r i n g  t o  d e t e c t

any c o n ta m in a n t  m i g r a t i o n  from th e  a r e a .
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M e a s u r a n e n t s  o f  f low  a t  s i t e  S-1 were made m an u a l ly  a t  s e v e r a l  

p o i n t s  in t im e  when c h a r c o a l  p a c k e t s  were c hanged .  Table  B . l  p r e s e n t s  

t h o s e  d a t a ,  t o g e t h e r  w i th  c o r r e s p o n d i n g  mean d a i l y  f l  ow r a t e s  a t  o t h e r  

CWDF f lo w  m o n i t o r i n g  s t a t i o n s .  Va lues  a r e  p r e s e n t e d  bo th  as  f low r a t e  

( L / s )  and f low  r a t e  pe r  u n i t  a r e a  ( L / s / k m ^ ) . The l a t t e r  t e rm s  shou ld  

be f a i r l y  com parab le  among s i t e s .  The i n t e r e s t i n g  t h i n g  about  t h e s e  

d a t a  i s  t h a t  on F e b r u a r y  10 and A p r i l  2 3 ,  1984,  u n i t  a re a  f l  ow v a l u e s  

a r e  much lower  a t  s i t e  S-1 than  a t  o t h e r  l o c a t i o n s .  Th i s  s u g g e s t s  t h e  

p o s s i b i l i t y  of  a f l o w - r a t e  dependen t  t h r e s h o l d  f o r  movement of  w a te r  

a long  t h e  r o u t e  t o  s i t e  S - 1 .  I f  t r u e ,  i t  cou ld  e x p l a i n  why dye was n o t  

d e t e c t e d  a t  s i t e  S-1 d u r i n g  t h e  f i r s t  t e s t .  Given t h e  p o s s i b l e  

a p p e a r a n c e  o f  dye a t  s i t e s  CR4 and CRB n ea r  the  end of  A p r i l , one m igh t  

s p e cu l  a t e  t h a t  some f lo w  al ways moves along  s t r i k e  t o  t h e  C l inch  R i v e r ,  

b u t  e x c e s s  d i s c h a r g e  s p i l l s  over  and f o l l o w s  th e  o ld  s t r eam  channel  a t  

h i g h e r  f 1 ows .
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Table B .l.  Comparison of flow  rates at CWDF s ites  during the tracer experiment

S i t e  1

(2.440^km ) .  
L/S L/S/km'

S i t e  3

(1.448^km ) ,  
L/S L/S/km'

S i t e  4

(0.544^km ) ,  
L/S L/S/km'

S i t e  7

(0.140^km )y  
L/S L/S/km'^

S i t e  8

(O.SlB^km )y  
L/S L/S/km'^

S i t e  SI

( 1 . 2 2 0 ^km ) ,  
L/S L/S/km'

2 -1 0 -8 4 9 .55 3 .9 6 .65 4 . 6 2 .32 4 . 3 1 .32 9 . 4 1 .27 4 . 0 0 .9 9 0 . 8
4 - 9 -8 4 48.55 19 .9 7 .32 13 .4 3 .8 5 27 .5 8 .7 6 27 .8 17 .35 14 .2
4 -1 1 -8 4 31.95 13.1 27 .46 1 5 .5 6 .52 1 2 . 0 2 .4 0 17 .1 5 .16 1 6 .4 13 .99 1 1 .5
4 -1 2 -8 4 28 .78 1 1 . 8 17 .39 1 2 . 0 6 . 0 1 1 1 . 0 2 .47 17 .6 4 .2 7 13 .6 11 .45 9 . 4
4 -1 3 -8 4 25 .02 1 0 . 2 15 .98 1 1 . 0 5 .56 1 0 . 2 2.37 1 6 .9 3.95 1 2 .5 9 .9 7 8 . 2
4 -1 6 -8 4 18 .29 7 .5 13 .13 9 .1 4 .3 7 8 . 0 2 .18 15 .6 3 .26 10 .3 8 .1 4 6 .7
4 -1 9 -8 4 14 .00 5 .7 9 .6 0 6 . 6 2 .56 4 .7 1 .53 1 0 .9 2 . 1 2 6 .7 6 . 6 6 5 . 4
4 -23 -84 48 .64 19 .9 30 .92 21 .4 6 .72 12 .4 2 .84 2 0 .3 5 .62 17 .8 4 .7 9 3 .9

ca



' »

INTERNAL DISTRIBUTION

1 . J . S. Baldwin 49 . F, R. Mynatt
2 -- 1 1 . L. D. B a tes 50. T. W. Oakes

1 2 . T. R. Butz 51. D. C. Pa rzyck
13. J . B. Cannon 52. F. G. Pin
14. J . H. Coobs 53. C. R. Richmond
15. N. H. C u t s h a l 1 54. M. W. Rosen tha l
16. E. C. Davis 55. T. H. Row
17. L. R. Dose 56. B. P. Spa ld ing
18. D. E. Ferguson 57. W. P. Staub
19, T, Gr i z z a r d 58. S. H. Stow
2 0 . C. S, Haase 59, L. E. S t r a t t o n
2 1 , F. J . Homan 60. J , Switek

2 2 --27. D. D. Huff 61. E. Takamura
28--40, R. H. K e t e l l e 62. T. Tamura

41, E. M. King 63. W. T. Thompson
42. D. W. Lee 64. S. D. Van Hoesen
43. S. Y. Lee 65 . A. J .  W it te n
44. T. F. Lomenick 6 6 . H. E. Z i t t e l
45. L. W. Long 67. C e n t r a l  R ese a rc h
46. W, E. Manrod 6 8 . ESD L i b r a r y
47. L. J . Mezga 69. Lab Records
48. M. S. Moran 70. Lab Records  -  RC

EXTERNAL DISTRIBUTION

71.  O f f i c e  o f  A s s i s t a n t  Manager ,  Energy Research  and Development ,  
DOE-ORO, P. 0 . Box E, Oak R idge ,  TN 37831.

72. D. R. Brown, DOE-ORO, P.  0 .  Box E, Oak R idge ,  TN 37831.
73. C. L una r ,  Argonne N a t io n a l  L a b o r a t o r y ,  9700 South Cass A v e . ,

Argonne ,  IL 60439.
74. Dr. 0 .  C. Kopp, Depar tm ent  o f  G e o l o g ic a l  S c i e n c e s ,  U n i v e r s i t y  of  

T e n n e s s e e ,  K n o x v i l l e ,  TN 37996 -1410 .
75. E. F. H o i ly d a y ,  U .S .G .S .  Water  R e s o u r c e s  D i v i s i o n ,  A413 F e d e r a l  

B u i l d i n g ,  U.S.  C o u r t h o u s e ,  N a s h v i l l e ,  TN 37203.
76 .  P. E. LaMoreaux, P. 0 .  Box 2310 , T u s c a l o o s a ,  AL 35403.
77. S. M. Gil  1 i s ,  P r o f e s s o r ,  Economics and P u b l i c  Pol i c y ,  Depar tment  o f

Econom ics ,  Duke U n i v e r s i t y ,  Durham, NC 27706.
78.  F.  R. Kalhammer, Vice P r e s i d e n t ,  E l e c t r i c  Power R e s e a rc h  I n s t i t u t e ,  

P. 0 .  Box 10412, P a lo  A l t o ,  CA 94303.
79.  T. R. L a P o r t e ,  P r o f e s s o r ,  P o l i t i c a l  S c i e n c e ,  I n s t i t u t e  o f  

Government  S t u d i e s ,  U n i v e r s i t y  o f  C a l i f o r n i a ,  109 Moses Hal 1, 
B e r k e l e y ,  CA 94720.

80 .  M a r t in  L e s s e n ,  C o n s u l t i n g  E n g i n e e r ,  12 C oun t ry  Club D r i v e ,
R o c h e s t e r ,  NY 14618.

8 1 . W. H. W i l l i a m s ,  D i v i s i o n  Manager ,  AT&T I n f o r m a t io n  S ys tem s ,  B u i ld in g  
83 ,  Room 1B23, 100 S o u t h g a t e  Parkway,  M or r i s tow n ,  NJ 07960.

8 2 -1 0 8 . T e c h n ic a l  I n f o r m a t i o n  C e n t e r ,  Depa r tm en t  o f  Energy ,  P.O.  Box 62 ,
Oak R id g e ,  TN 37831

137


