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SYNTHESIS OF HYDROCODE AND FINITE ELEMENT TECHNOLOGY
FOR LARGE DEFORMATION LAGRANGIAN COMPUTATION*
G. L. Goudreau and J. O. Hallquist

University of California, Lawrence Livermore Laboratory
Livermore, California, USA 94550

ABSTRACT

Large deformation engineering analysis at Lawrence Livermore
Laboratory has benefited from a synthesis of computational technology
from the finite difference hydrocodes of the scientific weapons community
and the structural finite element methodology of engineering. Two- and
three~dimensional explicit and implicit Lagrangian continuum codes have
been developed exploiting the strengths of each. The explicit
methodology primarily exploits the primitive constant stress (or one
point integration) brick element. Similarity and differences with the
integral finite difference method are discussed. Choice of stress and
finite strain measures, and selection of hour glass viscosity are also
considered. The implicit codes also employ a Cauchy formulation, with
Newton iteration and a symmetric tangent matrix. A 1library of finite
strain material routines includes hypoelastic/plastic, hyperelastic,
viscoelastic, as well as hydrodynamic behavior. Arbitrary finite element
topology and a general slide-line treatment significantly extends
Lagrangian hydrocode application. Computational experience spans weapons

and non-weapons applications,

*This work was performed under the auspices of the U.S. Department of
Energy by the Lawrence Livermore Laboratory under contract number
W-7405~-ENG-48.



Introduction

Large deformation engineering analysis at Lawrence Livermore
Laboratory has benefited from a synthesis of computational technology
from the hydrocode/finite difference codes on the scientific side of the
house, and the structural/finite element codes available to the
engineering community. Since our engineering efforts span the nuclear
explosives, conventional munition, and nuclear reactor fields, the
similarities and differences, strengths and weaknesses of each
methodology became apparent. Given the broad applications base of a
large laboratory, in-house methods development activities have
concentrated on providing a flexible architecture to exploit the two
technologies for 1) spatial discretization, 2) explicit and implicit time
integration, 3) slide-line/void treatment 4) and "equation of state" or

"constitutive" material libraries.

The prototypes which spawned the multitude of hydrocodes are the well
known HEMP of Wilkins [1], "and the lesser known LLL contemporary
TENSOR [2]. Non-linear, finite element technology is characterized by
the explicit HONDO [3], the implicit MARC [4] and NONSAP/ADINA [5].
Neither the overall field nor these codes will be surveyed in detail, but
our developments will be discussed in the context of the strengths and
weakness of this base. A valuable contributor arriving during the early
part of our work was HONDO, by Key. This explicit finite element code
helped bridge the finite difference/finite element, explicit/implicit
gap. A survey paper of Belytschko helps focus this discussion [6].

Lagrangian Formulation

The key to our treatment, which is characteristic of Lagrangian
hydrocodes, is the simple statement of local momentum balance in the

current configuration.

Veg+b=py (1)

with Cauchy stress, divergence derivatives per current configuration, and
body force per unit current volume. If the current configuration X were
considered the independent variable, then the total derivative of

particle velocity would involve the advective chain rule derivative, and



we would have an Eulerian formulation. What establishes a Lagrangian
formalism despite the current configuration is the expression of the
current configuration x in terms of the initial configuration through the
spatial discretization into nodal motions which track material points

through time.

x (X,t) = x 25,(,5).1:] -sz(g):gm(t) (2)
m

The motion can evolve through time in terms of the fixed basis 2' which

can be used to project eq. (1) for its approximate solution.

/2T(2°2+£'Pi)dv=o (3)
v
or

M1{v} = {p} - {F} (4)

with the stress divergence vector

{F}'IBTQGV / (5)
'

B = V¢ is the usual linearized gradient tensor, but at the current

configuration,

Explicit Codes with Primitive Elements

Consider the right hand side of eq. (4) a function evaluation. That
evaluation involves a strain/deformation computation, a material routine
to evaluate or update the stress, and finally the stress divergence force
calculation. For the explicit simple centered difference scheme and

lumped mass

[M]{Av}n_l/z - At[{p}n - {F}n]
(6)

{Ad}n = At {V}n+l/2 ’ zn '5 + 'gn



and cost is proportional to function evaluation cost which increases with
the order of the element. Choice of basis function between primitive and
higher order isoparametric elements trades function evaluation cost
against direct solution cost for implicit time integration schemes. The
stability criterion for higher order elements also becomes more

restrictive.

In keeping with our finite difference analog, we seek a primitive

element with constant stress. Then at the element level, eq. (5) becomes
T
F =
{Fl, {fB W}% (7)
Ve

For triangles, tetrahedra, and the 2D and 3D linear isoparametric, this
integral is exactly computed with one-point quadrature (axisymmetric
geometry is an exception and will be discussed later). It is interesting

to see this for the linear isoparametric [7].
BlaV = f—l—-§+ﬁs |J[ds=4ﬁ
[Forlrigpie-s, o
e

For the two-dimensional Cartesian case, with zij=zi-zj,z=x,y and a

counterclockwise element nodal connectivity
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which 1is equivalent to the integral difference representation of

Wilkins [1] for a stress derivative at node "k"
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where contributing constant stress elements are accumulated. This
contour is always expressed as a diamond through four gquadrilaterals
attached to a point (with d&egenerate special cases for free edge and
corner points). It just as easily assembles an arbitrary finite element

topology (Fig. 1).

Axis etr

It's been known that the one point brick is equivalent to the
integral finite difference method in Cartesian coordinates, but a

non~-trivial difference occurs in the axisymmetric case.

- 90 90, 4 rr %00
pr = or + 9z + r
(10)
. 90, 90,, Org
pz = or + 9z t r

The typical hydrocode (HEMP,TENSOR) differences the derivative terms by
the contour integrals discussed, but the final, axisymmetric term is
simply arithmetically averaged at a node. 1In fact, since the equation is

first divided by the density, a common mass vector is lost
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where "f" is the force per unit circumference identical to the Cartesian
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where PV is the conserved element mass, but A is the time dependent

area.

In the usual finite element method, the volume weighted integral of

(3) leads to a conserved mass vector, and the stress divergence (7) leads

to
{F}e ={fBT r dA Sa (13)

A

This constant stress form Key uses in HONDO, integrating the element by
numerical quadrature. Inspection of (8) shows that cancellation of the

Jacobian permits exact integration. We found one point integration

equally accurate. ~

{F}e = 4By To g (14)
We do not f£find any difference in accuracy for problems of small
deformation, but in large spherical deformation, the radial bias of the
volume weighted finite element method introduces significant asymmetries,
which was in fact the reason for the historical choice for the area

integral method.

We pay the small price of a time dependent "mass" vector, but avoid

the problem of the hoop term by a straight area Galerkin form.

Hourglass Modes

The nemesis of the primitive brick element is the hourglass zero
energy mode, which is a singularity at equilibrium and a growing error in
transient problems, especially for contact problems where surface
smoothness is important. Proper stabilization should be directed at
global rather than local modes, but constraint counts are difficult to
automate in general, and so far, all have attempted element wise
artificial hourglass forces. Explicit hydrocodes use a viscous restoring
force based on angular velocities of zone edges. All seem equivalent for
rectangular zones, but generalize in ad hoc manner. We have found both
the "triangle Q" of Wilkins and the isoparametric form of Key [3] to be
both computationally expensive and unreliable. We have been using the

“rotational Q" of TENSOR [2], with good results. Koslov and Frazier [8]



present a stiffness treatment, seeking an exact quadratic hourglass
amplitude. Both the idea of a stiffness (perhaps critically damped), and
that of creating a proper energy mode (rather than a trace stabilization),
have merit. However, we find their generalization to the non-rectangular
case to be incorrect. Their modes, while orthogonal in the sense
defined, do not lead to zero gradients at the strain computation point
(see Appendix). We have successfully experimented with the mode
orthogonal to the rigid body and zone centered strain modes. The key
result is that the nodal weights of the mode are independent of element
shape, i.e., the same as for the rectangle. Hourglass computations can
be expensive; about ten percent of the total cost in 2D and forty percent

in 3D. The new method is cheap, and we await more experience in 3D.

Finite Strain Measures and Constitutive Modeling

We offer nothing new in constitutive theory or stress point
algorithmic implementation. The radial return method goes back to
Wilkins [1] for the case of isotropic hardening. Finite deformation
plasticity is treated by the Jaumann form of the Cauchy stress
increment. Krieg and Key made a significant extension of kinematic

hardening to finite rotation [9].

Deformation gradients are computed for Green-St. Venant or Almansi
strain measures. Where constititive models are given in terms of Piola
stresses, they are transformed to Cauchy stress for stress divergence
calculations. 1In addition, we include hydrodynamic and crush models, as

well as high explosive burn.

Explicit Experience

Three years ago the challenge of large deformation inelastic dynamic
response problems taxed the capabilities of HEMP with its limited logical
mesh topology, and primitive one way slide treatment. The complex
layered structures, with slip and contact impact, left HONDO also of
limited wuse to |us. We launched an algorithm development for
contact/impact in 2D 10 which dramatically improved our capability
(Fig. 1B). The requirement for 3D response led to a developmental 3D
explicit code, DYNA3D 11,12 . We battled the primitive element where

- -



hourglass problem unsuccessfully, and resorted to a 20 node brick with 8
point quadrature. Figure 2 shows a successfull large deformation elastic/
plastic impact. Such brute force explicit dynamics is expensive,ten
hours of CDC 7600 time. A 2D version, with higher order elements, the
HEMP difference scheme and a synthesis of the material routines of HEMP
and HONDO led to our own DYNA2D [13]. Experience found that our nodal
constraint contact method [9] which worked well for solid structures,
exacerbated the primitive element hourglass problems in hydrodynamics and
problems of large plastic flow. So a new theory, based on hydrocode
techniques of surface stress averaging, was extended to the general

slide~line finite element topology [14].

Implicit Method

Our recent 2D implicit large deformation code, NIKE2D, is also built
around the Cauchy formulation, but will not be reviewed here. The
rotational terms of the Jaumann rate are treated explicitly, leading to a
symmetric tangent matrix. Newton iteration, with accurate right hand
side evaluation has lead to excellent results [15,16]. A penalty
function slide-line treatment and vectorized large capacity equation

solver provides efficient 7600 and CRAY-~-1 computation.
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Appendix

That the hourglass weights are independent of element shape is seen

by examining the velocity gradient (or strain) derivative for the

point element.

0z
X 1 Y31 "Y¥24 2‘24
3z(~ 2aA —x x 2 =0
3y 31 *24 31
where
Y31Xpq T You¥q = 2270,
zZ = X,y OF X,Y, zy =z, - zj
Thus,
Zyp 5231 50 4 2y =2, 25 =2

one

and the rigid body constraint 2: z; = 0 yields the normalized shape

(-1, 1, -1, 1), independent of element shape.
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Figure 1A

Figure 1B
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INITIAL DYNA3D DEVELOPMENT EXPLOITED
20 NODE BRICK ISOPARAMETRIC ELEMENTS

t=00ms t=2.0ms t=40ms t=6.4ms

Figure 2
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DYNA2D COMPUTES THE SELF FORGING FRAGMENT WARHEAD.
SYNTHESIS OF THE BEST OF HEMP AND FINITE ELEMENTS ALLOWS
MULTIPLE SLIDE-LINE HE EXPANSION AND CLOSURE CONTACT.
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