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ABSTRACT 

Large deformation engineering analysis at Lawrence Livermore 

Laboratory has benefited fran a synthesis of computational technology 

from the finite difference hydrocodes of the scientific weapons community 

and the structural finite element methodology of engineering. Two- and 

three-dimensional explicit and implicit Lagrangian continuum codes have 

been developed exploiting the strengths of each. The explicit 

methodology primarily exploits the primitive constant stress (or one 

point integration) brick element. Similarity and differences with the 

integral finite difference method are discussed. Choice of stress and 

finite strain measures, and selection of hour glass viscosity are also 

considered. The implicit codes also employ a Cauchy formulation, with 

Newton iteration and a symmetric tangent matrix. A library of finite 

strain material routines includes hypoelastic/plastic, hyperelastic, 

viscoelastic, as well as hydrodynamic behavior. Arbitrary finite element 

topology and a general slide-line treatment significantly extends 

Lagrangian hydrocode application. Computational experience spans weapons 

and non-weapons applications. 

*This work was performed under the auspices of the U.S. Department of 
Energy by the Lawrence Livermore Laboratory under contract number 
W-7405-ENG-48. 



Introduction 

Large deformation engineering analysis at Lawrence Livermore 

Laboratory has benefited from a synthesis of computational technology 

from the hydrocode/finite difference codes on the scientific side of the 

house, and the structural/finite element codes available to the 

engineering community. Since our engineering efforts span the nuclear 

explosives, conventional munition, and nuclear reactor fields, the 

similarities and differences, strengths and weaknesses of each 

methodology became apparent. Given the broad applications base of a 

large laboratory, in-house methods development activities have 

concentrated on providing a flexible architecture to exploit the two 

technologies for 1) spatial discretization, 2) explicit and implicit time 

integration, 3) slide-line/void treatment 4) and "equation of state" or 

"constitutive" material libraries. 

The prototypes which spawned the multitude of hydrocodes are the well 

known HEMP of Wilkins [l], "and the lesser known LLL contemporary 

TENSOR [2]. Non-linear, finite element technology is characterized by 

the explicit HONDO [3], the implicit MARC [4] and NONSAP/ADINA [5]. 

Neither the overall field nor these codes will be surveyed in detail, but 

our developments will be discussed in the context of the strengths and 

weakness of this base. A valuable contributor arriving during the early 

part of our work was HONDO, by Key. This explicit finite element code 

helped bridge the finite difference/finite element, explicit/implicit 

gap. A survey paper of Belytschko helps focus this discussion [6]. 

Lagrangian Formulation 

The key to our treatunent, which is characteristic of Lagrangian 

hydrocodes, is the simple statement of local momentum balance in the 

current configuration. 

V a + b •/) V (1) 

with Cauchy stress, divergence derivatives per current configuration, and 

body force per unit current volume. If the current configuration x were 

considered the independent variable, then the total derivative of 

particle velocity would involve the advective chain rule derivative, and 



we would have an Eulerian formulation. What establishes a Lagrangian 

formalism despite the current configuration is the expression of the 

current configuration x in terms of the initial configuration through the 

spatial discretization into nodal motions which track material points 

through time. 

£ (£'t) - X [x(8),tj -2;^(j£)7^(t) (2) 

m 

The motion can evolve through time in terms of the fixed basis ^, which 

can be used to project eq. (1) for its approximate solution. 

j i <S-2 + Jfe- P X ) dv = o (3) 

or 

[M]|^[- |P| - {F| (4) 

with the stress divergence vector 

M - / B^ £ dV , (5) 

V 

B = V<|) is the usual linearized gradient tensor, but at the current 
0^ — 

configuration. 

Explicit Codes with Primitive Elements 

Consider the right hand side of eq. (4) a function evaluation. That 

evaluation involves a strain/deformation computation, a material routine 

to evaluate or update the stress, and finally the stress divergence force 

calculation. For the explicit simple centered difference scheme and 

lumped mass 

M | A V | „ . , / 2 - At[|P|^ - |F} 1 

(6) 
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and cost is proportional to function evaluation cost which increases with 

the order of the element. Choice of basis function between primitive and 

higher order isoparametric elements trades function evaluation cost 

against direct solution cost for implicit time integration schemes. The 

stability criterion for higher order elements also becomes more 

restrictive. 

In keeping with our finite difference analog, we seek a primitive 

element with constant stress. Then at the element level, eq. (5) becomes 

i^\, IF "K (7) 

For triangles, tetrahedra, and the 2D and 3D linear isoparametric, this 

integral is exactly computed with one-point quadrature (axisymmetric 

geometry is an exception and will be discussed later). It is interesting 

to see this for the linear isoparametric [7]. 

/
s'̂ d̂v = / r-rr-rr (^ + ̂ i S\|J| ds ^ I J(s) I \ o 1 ~ j I 1 ~ = 4B (8) 

For the two-dimensional Cartesian case, with z..=z.-z.,z=x,y and a 
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counterclockwise element nodal connectivity 
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which is equivalent to the integral difference representation of 

Wilkins [1] for a stress derivative at node "k" 

ilk-f- /£•£ di (9) 



where contributing constant stress elements are accumulated. This 

contour is always expressed as a diamond through four quadrilaterals 

attached to a point (with degenerate special cases for free edge and 

corner points). It just as easily assembles an arbitrary finite element 

topology (Fig. 1). 

Axisymmetry 

It's been known that the one point brick is equivalent to the 

integral finite difference method in Cartesian coordinates, but a 

non-trivial difference occurs in the axisymmetric case. 

do 9a a -a„Q 
pr = + + 

dr dz r 
(10) 

9a 9a a rz , zz , rz 
PZ = —S + —K + 

9r 9z r 

The typical hydrocode (HEMP,TENSOR) differences the derivative terms by 

the contour integrals discussed, but the final, axisymmetric term is 

simply arithmetically averaged at a node. In fact, since the equation is 

first divided by the density, a common mass vector is lost 

(11) 

'k %ui #k 

where "f" is the force per unit circumference identical to the Cartesian 

term, 

m = /p^- = iE f^ 

e = iZ(<'rr-ee)(^) 

e*—' rz ypvy 

(12) 



where pv is the conserved element mass, but A is the time dependent 

area. 

In the usual finite element method, the volume weighted integral of 

(3) leads to a conserved mass vector, and the stress divergence (7) leads 

to 

|p|^.j/B-rdAJ£^ (13) 

This constant stress form Key uses in HONDO, integrating the element by 

numerical quadrature. Inspection of (8) shows that cancellation of the 

Jacobian permits exact integration. We found one point integration 

equally accurate. / v ^ 

Vfe = 4B̂  r̂  â  ^̂^̂  
We do not find any difference in accuracy for problems of small 

deformation, but in large spherical deformation, the radial bias of the 

volume weighted finite element method introduces significant asymmetries, 

which was in fact the reason for the historical choice for the area 

integral method. 

We pay the small price of a time dependent "mass" vector, but avoid 

the problem of the hoop term by a straight area Galerkin form. 

Hourglass Modes 

The nemesis of the primitive brick element is the hourglass zero 

energy mode, which is a singularity at equilibrium and a growing error in 

transient problems, especially for contact problems where surface 

smoothness is important. Proper stabilization should be directed at 

global rather than local modes, but constraint counts are difficult to 

automate in general, and so far, all have attempted element wise 

artificial hourglass forces. Explicit hydrocodes use a viscous restoring 

force based on angular velocities of zone edges. All seem equivalent for 

rectangular zones, but generalize in ad hoc manner. We have found both 

the "triangle Q" of Wilkins and the isoparametric form of Key [3] to be 

both computationally expensive and unreliable. We have been using the 

"rotational Q" of TENSOR [2], with good results. Koslov and Frazier [8] 



present a stiffness treatment, seeking an exact quadratic hourglass 

amplitude. Both the idea of a stiffness (perhaps critically damped), and 

that of creating a proper energy mode (rather than a trace stabilization), 

have merit. However, we find their generalization to the non-rectangular 

case to be incorrect. Their modes, while orthogonal in the sense 

defined, do not lead to zero gradients at the strain computation point 

(see Appendix). We have successfully experimented with the mode 

orthogonal to the rigid body and zone centered strain modes. The key 

result is that the nodal weights of the mode are independent of element 

shape, i.e., the same as for the rectangle. Hourglass computations can 

be expensive; about ten percent of the total cost in 2D and forty percent 

in 3D. The new method is cheap, and we await more experience in 3D. 

Finite Strain Measures and Constitutive Modeling 

We offer nothing new in constitutive theory or stress point 

algorithmic implementation. The radial return method goes back to 

Wilkins [l] for the case of isotropic hardening. Finite deformation 

plasticity is treated by the Jaumann form of the Cauchy stress 

increment. Krieg and Key made a significant extension of kinematic 

hardening to finite rotation [9]. 

Deformation gradients are computed for Green-St. Venant or Almansi 

strain measures. Where constititive models are given in terms of Piola 

stresses, they are transformed to Cauchy stress for stress divergence 

calculations. In addition, we include hydrodynamic and crush models, as 

well as high explosive burn. 

Explicit Experience 

Three years ago the challenge of large deformation inelastic dynamic 

response problems taxed the capabilities of HEMP with its limited logical 

• mesh topology, and primitive one way slide treatment. The complex 

layered structures, with slip and contact impact, left HONDO also of 

4 limited use to us. We launched an algorithm development for 

contact/impact in 2D 10 which dramatically improved our capability 

(Fig. IB) . The requirement for 3D response led to a developmental 3D 

explicit code, DYNA3D 11,12 . We battled the primitive element where 
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hourglass problem unsuccessfully, and resorted to a 20 node brick with 8 

point quadrature. Figure 2 shows a successfull large deformation elastic/ 

plastic impact. Such brute force explicit dynamics is expensive,ten 

hours of CDC 7600 time. A 2D version, with higher order elements, the 

HEMP difference scheme and a synthesis of the material routines of HEMP 

and HONDO led to our own DYNA2D [l3]. Experience found that our nodal 

constraint contact method [9] which worked well for solid structures, 

exacerbated the primitive element hourglass problems in hydrodynamics and 

problems of large plastic flow. So a new theory, based on hydrocode 

techniques of surface stress averaging, was extended to the general 

slide-line finite element topology [14]. 

Implicit Method 

Our recent 2D implicit large deformation code, NIKE2D, is also built 

around the Cauchy formulation, but will not be reviewed here. The 

rotational terms of the Jaumann rate are treated explicitly, leading to a 

symmetric tangent matrix. Newton iteration, with accurate right hand 

side evaluation has lead to excellent results [15,16]. A penalty 

function slide-line treatment and vectorized large capacity equation 

solver provides efficient 7600 and CRAY-1 computation. 

REFERENCES 

[l] M.L. Wilkins, "Calculation of Elastic Plastic Flow," Methods in 
Computational Physics, V3, (Academic Press, 1964). 

[2] G. Maenchen and S. Sack, "The Tensor Code," Methods in Computational 
Physics, V3, (Academic Press, 1964). 

[3] S.W. Key, HONDO - A Finite Element Computer Program for the Large 
Deformation Dynamic Response of Axisymmetric Solids, Sandia 
Laboratory, Albuquerque, N.M., Report 74-0039 (1974). 



[4] MARC-CDC, "General Purpose Finite Element Analysis Program," Marc 
Analysis Corporation, Providence, Rhode Island. 

[s] Klaus-Jurgen Bathe, et al., "Finite Element Formulations for Large 
Deformation Dynamic Analysis," V9, pp 353-386, (Int. J. Numerical 
Methods in Engineering 1975). 

[e] T. Belytschko, "A Survey of Numerical Methods and Computer Programs 
for Dynamic Structural Analysis," Nuclear Engineering and Design, V37 
(1976). 

[7] O.C. Zienkiewicz, "The Finite Element Method," (McGraw-Hill, 1977). 

[8] D. Koslov, and G.A. Frazier, "Treatment of Hourglass Patterns in Low 
Order Finite Element Codes," Int. J. Numerical and Analytical Methods 
in Geomechanics, V2, (1978). 

[9] R.D. Krieg and S.W. Key, "Implementation of a Time Independent 
Plasticity Theory in Structural Computer Programs," Constitutive 
Equations in Viscoplasticity, AMD-20, ASME Winter Meeting (1976). 

[10] J.O. Hallquist, A Procedure for the Solution of Finite Deformation 
Contact-Impact Problems by the Finite Element Method, Rept. 
UCRL-52066, Lawrence Livermore Laboratory, Livermore, California 
(1976). 

[11] J.O. Hallquist, Preliminary Users Manual for DYNA3D and DYNAP, Rept. 
UCID-17268, Lawrence Livermore Laboratory, Livermore, California 
(1976). 

[12] J.O. Hallquist, A Numerical Procedure for Three-Dimensional Impact 
Problems, Rept. UCRL-78765, Lawrence Livermore Laboratory, Livermore, 
California, (1977). 

[13] J.O. Hallquist, DYNA2D - An Explicit Finite Element and Finite 
Difference Code for Axisymmetric and Plane Strain Calculations (Users 
Guide), Rept. UCRL-52429, Lawrence Livermore Laboratory, Livermore, 
California (1978). 

[14] J.O. Hallquist, "A Numerical Treatiment of Sliding Interfaces and 
Impact," 1978 ASME Winter Annual Meeting, San Francisco, California. 

[15] J.O. Hallquist, NIKE2D - An Implicit, Finite Deformation, Finite 
Element Code for Analyzing the Static and Dynamic Response of 
Two-Dimensional Solids, Rept. UCRL-52678, Lawrence Livermore 
Laboratory, (1979). 

[16] J.O. Hallquist, "Implicit Treatment of the Large Deformation Response 
of Inelastic Solids with Slide Lines," SMiRT-5 (1979). 



Appendix 

That the hourglass weights are independent of element shape is seen 

by examining the velocity gradient (or strain) derivative for the one 

point element. 

where 

Thus, 

^31^^24/ ̂ 24̂ 3̂1 = 2 A ^ 0 , 
z = x,y or x,y, z = z. - z. 

'•" y 1 ] 

^24 = ^31 = ° ' ^2 = ^4' "3 = "l 

and the rigid body constraint ^ z. = 0 yields the normalized shape 

(-1, 1, -1, 1), independent of element shape. 
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Figure lA 

F igure IB 
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INITIAL DYNA3D DEVELOPMENT EXPLOITED 
20 NODE BRICK ISOPARAMETRIC ELEMENTS 

F i g u r e 2 



TIME = 200/is 

TIME = 150 ;is 

TIME = 100/iS 

STEEL CYLINDRICAL 
OUTER SHELL 

F i g u r e 3 

TIME = 50 MS 

DISC TO BE FORMED jNTO 
A COHESIVE FRAGMENT 

TIME = 0ys 

-HIGH EXPLOSIVE 

INITIATION POINT 

DYNA2D COMPUTES THE SELF FORGING FRAGMENT WARHEAD. 
SYNTHESIS OF THE BEST OF HEMP AND FINITE ELEMENTS ALLOWS 
MULTIPLE SLIDE-LINE HE EXPANSION AND CLOSURE CONTACT. 
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