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Abstract 

The basic physical problem of NMR spatial localization is considered. A practical use of 

NMR in biomedicine is the in vivo spectroscopic study of various "biological" nuclei located 

in diseased tissues in the body. In order to quantitatively study these diseased sites, one 

must first solve the problem of adequately localizing the NMR signal at the diseased region 

of interest. We formulate this as an inverse problem, in which the achievement of localized 

excited spin populations is the "known" goal, and one seeks to "invert" these data to find 

the appropriate magnetic field configurations to yield this desired result. 

As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic 

fields, a theoretical study is undertaken to answer the question of how to design magnetic 

field configurations to achieve these localized excited spin populations. Because of physical 
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constraints in the production of the relevant radiofrequency fields, the problem factors into 

a temporal one and a spatial one. 

We formulate the temporal problem as a nonlinear transformation, called the Bloch 

Transform, from the rf input to the magnetization response. In trying to invert this trans­

formation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) 

modes of radiofrequency excitation are constructed. The spatial problem is essentially a 

statics problem for the Maxwell equations of electromagnetism, as the wavelenths of the 

radiation considered are on the order of ten meters, and so propagation effects axe negligi­

ble. In the general case, analytic solutions are unavailable, and so the methods of computer 

simulation are used to map the if field spatial profiles. 

Numerical experiments are also performed to verify the theoretical analysis, and ex­

perimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging 

Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is con­

structed to "solve" this problem, the combined theoretical/numerical analysis is validated 

experimentally, justifying the approximations made. 
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1. Introduction 

T/ic goal to be put above everything else is an open world 
where each nation can assert itself solely by the extent to which 
it can contribute to the common culture and help others with 
experience and resources." 

N.Bohr 

An important problem in NMR medical imaging, now that the first generation of 

machines has proven so successful, is to extend the diagnostic value of NMR in medicine 

to in vivo spectroscopic studies. A prerequisite to quantitative selective region NMR 

spectroscopy is the achievement of reasonable spatial localization. We consider, as a model, 

a patient with a small tumor deep inside his parietal cortex (Figure 1.1). The medical 

community would like to use NMR not only to locate the site of the diseased tissue, but 

also, using spectroscopic techniques, to infer the severity of the diseased state (by perhaps 

studying the time course of the tissue metabolism). In order to successfully apply NMR 

imaging methods in this case, we must first solve the problem of knowing that the NMR 

signal we detect really comes from the region we wish to study. 

1 
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Tumoix 

Surface Coil 

Figure 1.1: 

Surface coil measurement of a brain tumor. 

The quantum mechanical nature of NMR is most evident in the microscopic description 

of nuclear magnetic moments (spin angular momentum). It is these moments in the pa­

tient's brain tumor we wish to excite, while leaving the spins outside the region of interest 

at equilibrium. Thus, the problem of spatial localization in NMR comes down ultimately 

to the basic question: What are the nuclear spins doing? 

To answer this question, we must consider the Bloch equations, a set of three coupled 

first order ordinary difierential equations (ODE) written down by Felix Bloch in 1946[lj. 

These equations phenomenologically describe the motion of a magnetization vector M, 



3 

a macroscopic sum of these elementary nuclear spin moments, under applied magnetic 

fields. In the context of present-day NMR medical imaging equipment, we CPJI therefore 

consider what possible magnetic field configurations will produce for us, in solving the 

Bloch equations, the desired localized excited spin populations. 

As we have now stated the problem in basic physical terms, it is appropriate to consider 

a clever solution to a problem of a similar kind, which enabled the development of NMR 

biomedical image formation to begin in. earnest. This problem is the one of selecting a two-

dimensional planar surface through the patient in which to perform imaging experiments, 

and is usually referred to as the problem of slice selection (or selective excitation). A 

truncated TT/2 sine amplitude modulated rf pulse in the presence of a main field gradient 

is the well-known solution[2], and it serves well as point of departure for the present, 

investigation. 

The two assumptions made in "solving" that problem, that 

(1) although the sine function lives on the line R and not an interval [-T,T], 

the tails of the sine don't matter much 

and that 

(2) for a 7r/2 pulse in a main field gradient, solving the Bloch equations is 

basically equivalent to performing a Fourier Transform[3] 

are removed in this analysis. Not only does this lead to a solution of the problem for -K 
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pulses, but in fact leads to a clear formulation of the problem in full generality. Loosely 

speaking, we can phrase the problem in the following way: 

Is it physically possible, in a given time tp 

(experimentally on the order of a ttw milliseconds) to achieve any desired 

final configuration of spins as a function of the relevant field strengths? 

The field strengths considered are the "standard" ones of current NMR. biomedical imagers, 

namely linear main field gradients and the rf coil field. 

The ways out of (1) and (2) above both require rigourous mathematical care, but both 

are too "pretty" not to comment. The use of prolate spheroidal wave functions as rf field 

modulations is, on the one hand, just another example that demonstrate;, their tremendous 

versatility and practical importance[4]. On the other hand, as in (2), the Bloch equations 

are not the Fourier Transform, and their utility in this nonlinear analogue is somewhat 

puzzling. Likewise, the use of the rotation group, while not surprising if one accepts the 

Bloch equations, still poses some deep questions about symmetry and natural phenomena. 

A second consideration in Figure 1.1 is the use of surface coils as rf field generators. 

While such coils provide a gross, first order spatial localization to the region of interest, 

there are also problems with such coils. In particular, in reference to the rf field contours 

from which one excites the spins, they are not only stronger near the coil, but also close back 

on the coil. Thus measurements resulting from the use of these coils are contaminated by 

significant surface skin and subcutaneous tissue, and so quantitative in vivo spectroscopy 



5 

suffers as a result. Ideally (i.e., neglecting S/N considerations), we would like to excite 

only nuclei at the diseased site, so that the use of localized coil? clearly must be combined 

with other techniques, if we are to reasonably attain our goal. 

The structure of our approach is now clear: after a brief description of the Bloch 

equations (suitably adapted for medical NMR), we treat both the problems of main field 

strength linear inhomogeneity and rf field strength inhomogeneity from theoretical and 

numerical points of view, keeping in mind that we "know" what final configurations for 

the in vivo spin populations are needed, and we wish to design the magnetic fields both 

temporally and spatially to achieve these goals. After constructing two set of linear modes 

of rf excitation, an exploration of a full answer to the question asked above will lead to the 

discovery of true "nonlinear modes of rf excitation" with remukable properties. Finally, 

the results are then experimentally verified at the LBL NMR Medical Imaging Facility. 



2. The Medical Imaging Bloch 

Equations (MIBE) 

2 (a) An application of N M R to biomedical imaging 

"Profundity is the next word after the Torah.n 

E.L. Halm 

We are concerned with the Bloch equations in the context of medical imaging. Since 

we desire to only prepare localized excited spin populations for imaging/spectroscopic 

experiments, we shall not be concerned with the relaxation parameters T\ and T 2. We 

justify neglecting these relaxation parameters on two grounds: the time required to exite 

the spins in the region of interest had better not take too much time, as we then wish to 

perform imaging and spectroscopic measurements (and so still want to have enough of a 

signal left to do so). The second reason is one of mathematical expediency: by neglecting 

the relaxation parameters, the orbit of the undamped precesing magnetization lies on the 

6 
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surface of the unit sphere S 2 in R 3, and so precession can be described by rotation group 

operators. We therefore specifically address the physical problem of how (in theory and 

practice) to excite only those spins in the spatial region of interest. 

We begin with a brief derivation, froir quantum mechanical first principles, of the Bloch 

equations of NMR, as written down by Felix Bloch in 1946[l] in the component form: 

M x ( t ,x) = 7 (M„ BM - M, Bv) - ^ 

Mv{t,x) = <7(M, Bx - Mx B.) - % (2-1) 

M,(t,x) = q(Mx Bv - Mv Bt) + Zt*^ 

Our derivation will recover the undamped motion of M, as the relaxation phenomena axe 

irreversible, and thus not explicable in terms of a Hamiitoiuan describing free, noninter-

acting spins. This derivation is of interest for two reasons: 

1. The behavior of nuclear spins in applied magnetic fields is 

indeed governed by the laws of quantum mechanics. 

2. The rotation group plays a central role. 

The classical energy E of a magnetic moment y. in a magnetic field B is 

E = -ii-B (2.2) 

The quantum mechanical treatment of spin angular momentum[5,6] begins with a similar 

Hamiltonian 

M = -fi-B (2.3) 



but where U and \i are now operators and B is the scalar magnetic field. 

In computing the time rate of change of the expectation value of the spin magnetic 

moment 

< / x > = / V mi> (2.4) 

we use the fact that ib satisfies the Schrodinger equation 

ihib = Xrb = {-fi-B)ib (2.5) 

so that tb* satisfies 

-iKij>' = ib*M = V*(-M-B) (2.6) 

We thus compute (using (2.5) and (2.6)) 

= i / 0 * [ ( / * - B ) M _ M ( M . B ) ] V 

But the spin magnetic moment n is proportional to the angular momentum J 

(2.7) 

ft = -yJ = ihl (2.8) 

(if is the gyromagnetic ratio). The dimensionless angular momentum operators I generate 

the rotation group SO (3), and so satisfy the commutation relations 

[h,Iv] = t l . (cyclic) (2.9) 
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In this way, the calculation for the components (say /*«) in (2.7) becomes 

= S J ^* (lM..M.]B« + (M.,My]By) V» 
(2.10) 

= ^ / 0*(*'S«/iy - t i V * ) ^ 

= 7 < M x B > , 

This equation has precisely the same form as the Bloch equations (2.1) (neglecting relax­

ation), when we realize that the bulk magnetization M is realy just a "sum" of these small 

moments 

M = ^ £ > + - # 0 (2.11) 

where N is the total number of nuclei, and (/i + , fi~) are the number in the (ground, 

excitea) states, respectively. 

A brief historical comment is relevant here. By neglecting the relaxation parameters 

Ti and T2, the undamped Bloch equations are really Euler's equations[7] going back at 

least to the 1770's, and so our tradition of calling them the Bloch equations is somewhat 

of a misnomer. That is not to slight Felix Bloch; but his principal contribution in 1946 

in developing these equations was precisely to describe the exponential decay of the NMR 

signal observed. It is more our analysis, in neglecting Ti and T2 (and so describing the 

evolution in terms of rotation operators), that is to blame. 

While the basic magnetic field configuration of a large DC z-field B0 and an oscillat­

ing rf x-y plane field B\ are standard components of an NMR medical imaging system[8], 
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there are two principal differences in medical NMR compared to the usual experimental 

configurations. The first is the imposition of linear gradients G in the large DC field B0. 

The second difference is in the use of specially designed rf coils to produce B\ fields with 

spatial inhomogeneity (we shall soon describe their purpose). We illustrate this experi­

mental arrangement in Figure 2.1. 

Figure 2.1: 

Experimental configuration of the biomedical NMR experiment. 

Therefore, from the Bloch equations (2.1), we make the modifications as follows. In 

addition to neglecting the relaxation terms T\ and T 3 in (2.1), we consider a total applied 

field B of the form 

B = {B0 + G-x) z + B^x) [ cos (wt + <f>{t))x + sin (u/r + #(*)) y] (2.12) 
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(for x € R 3) to reflect the imposition of linear gradients and the spatial modification of 

the rf field, assuming Bj to be a slowly varying function of time t. 

We briefly remark that the laboratory to rotating reference frame transformation[9] is 

equivalent to the change of variables[lO] 

M. — m- cos ut my sin ut 
(2.13) 

Mv = mx sin ut + mv cos ut 

bringing us from the lab to our preferred rotating frame picture, where now the magnetic 

field has the form 

7B = (u — u0 + 7G • x) z + ui [ cos (f> x + sin <£ y] (2.14) 

and wi = 7.B1. With these modifications, and the imposition of the resonance condition 

(w = —-7Be = w„), the medical imaging Bloch equations (MIBE) are written 

M = M x 7 B = A M (2.15) 

or, in components, 

dt 

Mx 

M„ 

M, 

( ( \ 
Mx 

My 

M, 

(2.16) 

0 Aw —Wi sin <f> 

—Aw 0 wi cos </> 

Wi sin <f> —Ui cos (j> 0 

where Aw = 7G • x is the frequency offset. What makes this set of equations not trivially 

solvable is the fact that the matrices in (2.16) do not commute except in special cases, 

such as the following. 
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We now explain the purpose of linear gradients in the main field B0. If we consider the 

application of only the static z field B0, we solve the Bloch equations (2.1) in this trivial 

case (neglecting relaxation) as 

M s ( i) = Ml cos u0t - M° sin u0t 

Mv{t) = Ml sin ui0t + Ml cos u0t (2-17) 

MM{t) = Ml 

We see therefore that the magnetization M precesses at the angular frequency w„ = — iB0, 

so that frequency of precession is proportional to applied field strength. The application 

of linear gradients in B0 allows for spatial differentiation by the proportionality of distance 

to field (along the applied gradient direction), and thus to frequency. One is then able 

to determine the relative quantity of spins at a given position by examining the signal 

strength at the appropriate frequency. 

The effect of inhomogeneous B\ fields is best visualized in Lhe case of the on-resonance 

rotating frame for a constant amplitude B\ field (i.e., (2.16) with Aw = <j>=0 and wx(f) = 

u>i), another case that is trivially solved. The magnetization vector rotates in the y-z 

plane about the x-axis effective field Bi, and the total accumulated phase (flip angle) in 

a time t0 is just Wi*0. In this way, we see that the flip angle achieved is proportional to 

the strength of the B\ field. As only the x-y magnetization produces observable signal, in 

an inhomogeneous Bx field, one can adjust the pulse duration to achieve a 7r/2 flip angle 

in the desired spatial region (equivalently region of 2?i field strength) to obtain maximum 
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signal strength there. 

In equation (2.12), there is a further simplification in the B\. field dependence, which 

factors 

£i(*,x) = g(i) f(x) (2.18) 

The factor g(t) is called amplitude modulation, and appropriate choices here will bring 

us into the special class of "time/band limited" functions. The term f(x) is due to the 

spatial configuration of the coil windings in the if coil, and because NMR imagers operate 

at MHz frequencies (so that the correspording wavelength is roughly ten meters), the 

problem of designing appropriate inhomogeneous B\ fields becomes a problem in static 

electromagnetism. 

2(b) The (relevant) theory of the rotation group 

"It seems best to fix the underlying general concepts with 
some precision beforehand, and to that end a little mathe­
matics is needed, for which I ask your patience" 

H. Weyl 

We begin with a brief account of the quantum mechanics of a spin 1/2 system in 

a static magnetic field B. The Hamiltonian (equation (2.3)) is easily "solved": the two 

eigenstates ($ i ,$ j ) correspond to the (lower.higher) energies (-fiB, +(iB) where the spins 

axe aligned (along.against) the direction of B . In this way, an arbitrary state of the system 
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$ is described by a (complex) linear combination 

$ = Ci $1 + C2 $2 = (a + 6t) $ i + (c + di) $2 (2.19) 

restricted by the normalization 

* I2 = I ci | 2 + I c 3 | 2 = a 2 + b2 + c2 + d2 = 1 (2.20) 

The quantum mechanical states of the system are thus naturally put in one-to-one corre­

spondence with the points of the unit sphere S 3 in R 4 . 

The mathematical fact of the one-to-one correspondence between a set of four real 

numbers satisfying (2.20) and the group STJ(2) of unitary unimodular 2 x 2 (complex) 

matrices 
/ \ 

a •+- bi e + di 
(2.21) u = 

a •+- bi e + di 

—c + di a — bi 

is well known[ll], as are the Pauli matrices 

( \ 
0 1 

1 0 
<7« = 

V 

0 - » 
1 Ov = 

I i 0 
, 0, -

1 0 

0 - 1 
(2.22) 

(the three orthonormal basis vectors for the Lie algebra su(2) of traceless hermitian 2 x 2 

matrices which generate SU(2) are \a). 

A further elementary fact of quantum mechanics is the physical reality not of the wave 

function $ but rather of its absolute square (2.20) (as the probability of the spin system 

to be found in the state $) . But this implies that the state u (2.21) and the state -u both 
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have the same observable consequences. Hence, while the Lie group SU(2) (the quantum 

mechanical rotation group), and its corresponding Lie algebra su(2), are the natural choice 

as representation for a spin 1/2 system, it is really the group SO(3), obtained from SU(2) 

by identifying antipodal points on S s , that is the rotation group of consequence in NMR. 

The rotation group SO(3) is also generated by a three-dimensional Lie algebra, and this 

algebra is precisely the set of real skew-symmetric 3 x 3 matrices [ll]. 

We exhibit a standard basis for this algebra 

( \ 
0 0 0 

( \ 
0 0 - 1 

( \ 
0 1 0 

0 0 1 ,Iy = 0 0 0 , I. = - 1 0 0 

. ° - 1 °> ^ 1 0 0 j w o o 0 j 

and immediately draw attention to equations (2.16), the MIBE. 

We have now a very simple picture of the MIBE. Equations (2.16) state that the 

infinitesmal time rate of change of the magnetization in applied magnetic fields is just a 

sum of the generators of the rotation group SO(3) for the imposed field directions applied 

to the magnetization itself 

M = [Au J, + wi cos <j> Is + Wi sin <j> Iy] M (2-24) 

The integrated motion of this spin vector M is thus a rotation about the instantaneous 

applied magnetic field. 

The powerful insight that this viewpoint (2.24) provides is best illustrated with a brief 

example, which exploits the knowledge of rotations of rigid bodies in three dimensions. 
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We choose this example not only to illustrate the usefulness of the rotation group point 

of view, but also because we shall, in a later section, be interested in understanding phase 

modulation of the rf field. 

2(c) Phase modulation is frequency modulation 

In considering the possibilities of phase modulation, it is important once again to 

review the situation vis-a-vis the Bloch equations. The rotating frame MIBE read 

M = M X 7 B = A M (2.25) 

or, in components, 

L 
dt 

M, 

Mu 

M„ 

0 Au — u>i s in <f> 

—Aw 0 w x co3 <j> 

wi s in <f> —uii cos 0 0 

Mx 

Ma 

(2.26) 

We notice, however, that since the resonance offset term Au is only a function of position 

x, we can write 

where 

M = A M 

= C(x)M(r,x) + D(t ,x)M(t ,x) 

C(x) = Aw I, 

D(t,x) = W!(t,x) [cos <j>{i) Ix + sin <j>(t) Iv] 

(2.27) 

(2.28) 
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By v.*riting the matrix A as a sum in this way, we can immediately integrate the time-

independent piece C. By defining a pseudo-magnetization 

N = e - ° M (2.29) 

we see that N satisfies 

N = [-Ce~Ct + e - C f (C + D)] M 

= e - c ' D e C t N (2-30) 

= K K 

But it is easily seen that 

< T C t = RM{Aut) (2.31>. 

(J2,(a) is the operator of rotation around the z axis by angle a) so that K is in fact jusL 

conjugation of D by Rz 

K = e~Ct D eCt 

(2.32) 
= R, D R;1 

Hence, because D is a linear combination of Ix and J v 

D = u>i(t,x) [cos <j>(t) Ix + sin <f>{t) Iv] (2.33) 

the conjugation by Rz merely produces a phase shift 

A<f> = Aut (2.34) 

Thus, the constant (in time) frequency modulation Au produces a linear phase shift (2.34) 

so that 

K = u / i&x) [cos(<f> + A<j>) Ix + sin{(f> + A<1>) /„] (2.35) 
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The general case is now clear. An arbitrary phase modulation <j>(t) is the result of a 

frequency modulation Aw(t) 

4>{t) = [ Aw(t') dt' (2.36) 

(i.e., to phase modulate by 4>(t) one frequency modulates by d^(t)/dt). One comment 

about the experimental relevance of frequency modulation: in medical NMR there are 

two types, one space-dependent and the other independent of position. As seen above, the 

imposition of linear gradients (the on-resonance MIBE) produces the linear phase distortion 

(2.34) at any point in the sample. The second type of frequency modulation comes from 

off-resonance rf irradiation (the (a/—w„) term in (2.14) obtained in the transformation from 

lab to rotating frame) and is independent of position (neglecting rf attenuation effects). 



3. Slepian-Hasenfeld-rotation 

group-pulses (SHARP) 

3(a) The "time/band limited" problem 

"Band-limited functions possess many properties that stem 
from their analytieity. However, as analytieity is fragile, not 
all of these persist under small perturbation. If we require that 
our conclusions remain stable when functions are determinable 
only with given precision, we are led to problems in which the 
time-and'frequency-limiting operator enters naturally." 

H.J. Landau 

The true paradox in the "time/band limited" problem arises out of a simple contra­

diction: on the one hand, using a square-integrable function f(t) to describe the behavior 

of real physical systems, one is necessarily led to believe that f is of finite duration (f has 

compact support) as there is no physical response when the system is inactive. On the 

other hand, its square-integrable Fourier Transform 

F[U) = 4rfTdt e~iwt / W t 3 - 1 ) 
V2TT J-T 

19 
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should also be frequency limited, as physical devices - vocal chords, membranes, oscillators 

- all have upper limits on the rate at which they vibrate[12]. The inverse for (3.1) is thus 

/ ( ' ' = ^ / > ' ' " ' F M ( 3 - 2 ) 

The contradiction arises in considering the mathematics of the Fourier Transform, where 

extending t to the complex plane in (3.1), the requirement that F(u/) be bandlimited 

(F(w) = 0 when | w | > fi) implies that f is analytic (actually entire) and hence camut 

vanish on any open set without being trivially zero everywhere. 

This contradiction is well known to physicists, and has been reformulated as the Heisen-

berg Uncertainty Principle of quantum mechanics. An elegant resolution was found by 

some clever people - Slepian, Pollak, and Landau - at Bell Labs in the 1960's[13-16]. 

Specifically, let f be an arbitrary function supported on some interval [-T,T] on the real 

line R. To handle the problem of concentrating its Fourier Transform Ft on the interval 

[-ft,n], one needs the singular value decomposition of the map 

E = OFT (3.3) 

(where ft,T are the operators of restriction to their respective intervals in R). To analyze 

this problem, the eigenvectors of 

E*E = T F ^ O F T 
(3.4) 

EE* = nFTF- i f l 

are needed. The heuristic picture is 
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-F-~ JX 
t — I 1 0) 

-T T - Q Q 

Sketch 3.1 

The operator E*E is an integral operator of convolution type 

E-E/ = / _ r / l n

i r ( ^ 7 )

3 ) / M ^ = A/M (3.5) 

and is the time-and-frequency-limiting operator referred to above. A mathematical "acci­

dent" occurs: a second-order differential operator 

(with simple spectrum) commutes with E*E, making the computation of the eigenvectors 

feasible. As the differential operator arises from separating the Helmholtz scalar wave 

equation in prolate spheroidal co-ordinates, the eigenfunctions are appropriately named 

prolate spheroidal wave functions (pswf). 

This accident is very useful for explicitly evaluating the eigenfunctions, a task which 

we shall soon be concerned with. Since E*E commutes with D in (3.6), and D has simple 

spectrum, they share the same eigenfunctions. The computation of the eigenfunctions of 

£Q 
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D, however, is possible. When we discretize the problem, this will amount to numerically 

computing the eigenvectors of a particular tridiagonal matrix, and a simple numerical 

routine exists for precisely this task[17]. 

We now consider an NMR analogue to this problem, in which the two domains of time 

and frequency are present, although the map connecting them is no longer the Fourier 

Transform F, but 8, the Bloch Transform. One notices that the above prolate spheroidal 

wave functions satisfy two properties of real rf pulses 

(1) they live on a finite interval ([-T,T] in this case) 

(2) an analogue exists for a discrete version of the left side of 

Sketch 3.1, and uo the pswf can be found in discrete form 

so that in trying to idertify a class of functions to be used as amplitude and phase mod­

ulations in g(t) in equation (2.18), one should not be too suprised to find that the pswf 

appear[lO]. 

3(b) The Bloch Transform 

" We had answered questions we had not meant to ask in optics, 
detection and estimation theory, quantum mechanics, laser 
modes - to name a few." 

D. Slepian 

In attempting to spatially localize the NMR signal, one must take account of the finite 

duration of the rf signal {ui,(j>). By applying a linear gradient in B0, a linear spatial axis 
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(along the applied gradient direction) is made equivalent to a linear frequency axis, so that 

the NMR signal is spatially decoded by examining its frequency components. The gradient 

field defines a resonance offset 

Aw = ^G • x (3.7) 

so that in localizing the signal, one desires a certain response M(Aw) in some given region 

(or bandwidth), while in other regions (ranges of Aw), the magnetization should be unaf­

fected, thereby not contributing to the detected signal. Since the rf input which disturbs 

the equilibrium magnetization is a finite time signal, we have the following (heuristic) pic­

ture when a linear gradient is imposed 

8 

-T T -QLJQ 

M(Aco) 
ACQ 

Sketch 3.2 

where S stands for the Bloch Transform[l8] (the nonlinear transformation from Bi(i) to 

M(Aw)), and the desired response of M is localized in space (equivalently frequency). Two 

points here: the first is that one desires a sharply localized response in order to achieve 

sharp spatial localization. The second point is that the linear part of the transformation 

8 at 0 is F[l8], so that the coincidence in Sketches 3.1 and 3.2 is more than accidental. As 
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the question of the invertibility of 8 is still an open one[18], we now proceed to describe a 

particular choice of wx(t) and <£(t). 

3(c) Modulations 

In the rotating frame on resonance (Aw=0), the rf input can be written 

- / B e f f = wi(f) [cos <f>[t)x +sin <f>{t) y] (3.8) 

where Ui{t),(j>[t) are arbitrary finite time signals (called amplitude and phase modulations, 

respectively). Froia the analogy made above between Sketches 3.1 and 3.2, we tried pswf 

as input to the rf field wi(t) and <f>{t), and numerically solved the Bloch equations to deter­

mine the response as a function of Aw. As the rf field experimentally is a digitally sampled 

function, and the numerical simulations are finite step ODE solvers (described below), we 

needed a discrete version of the pswf. Fortunately, one exists[19]. In this discrete case, the 

simultaneous concentration of a function defined on the integers Z and its dual the circle 

S 1 is considered, and again a heuristic picture looks like 

Sketch 3.3 
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This time a symmetric tridiagonal NxN matrix[l9] D replaces the commuting second 

order differential operator in (3.6) 
* 

D(N,W)4j = • 

j = » - l 

(Zf±-i)2cos2irW j = i 
(3.9) 

l(i + l)(N-l-i) j = i+l 

0 | j - i |> 2 

(ij=0,l,...,N-l) and its eigenfunctions are obtained by a fast QR diagonalization[l7]. 

For a choice of wi(t) in the Bloch equations ODE solver (see chapter 5), we began with 

the eigenvector of [19] with the largest eigenvalue (the eigenvalues measure simultaneous 

concentration). The original plan was to use the pswf to design improved TT/2 pulses, since 

the map B is not too nonlinear there, and so "close to" F. The surprising results for ir pulses 

are shown in Figure 3.1. These simulations, while of real practical value in displaying the 

final position of the magnetization M(Aw), offer little insight into the dynamics of the 

"slice" formation. In Figure 3.2, we also show some interesting simulations of the time 

development of the evolving magnetization. 



90° phase modulated pulses compared to sine an-
plitude modulated pulse 
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Figure 3.1: The three simulations shown (read vertically as input followed by response) 
compare discrete prolate spheroidal wave function (dpswf) amplitude modulated (<£(t)=0) 
ir pulses to a "standard" pulse[20j. 
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Figure 3.2: The two simulations shown compare the time development of the "slice" se­
lected in a constant amplitude TT pulse (top) and a discrete prolate spheroidal amplitude 
modulated ir pulse (bottom). tp is the pulse duration, and the z component of the magne­
tization for various times and resonance offset values is plotted, with the equilibrium value 
+1 at the bottom of each diagram. 
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Strengthened by this success, we proceed to another (looser) analogy based on the 

preceeding Sketches 3.1, 3.2, and 3.3. According to the Bloch equations (neglecting re­

laxation) , the path described by the evolving magnetization under the influence of mag­

netic iields lies on the surface of the sphere S 2 in R 3 . One application for the appro­

priately designed rf modulation is a narrowband ir/2 pulse with constant phase response 

(arctan(M y/Af z)). From the viewpoint of evolving paths on S 2 , the desired response is for 

all the paths to terminate around a point in the x-y plane. The one-parameter family of 

paths is indexed by the resonance offset Aw, whereas all the paths start at the north pole 

(identified with the equilibrium configuration, independent of Au). 

The results of Slepian, Landau, and Pollak have been extended to the sphere[21]. For 

our case, we take the "frequency domain" space to be the rotation group SO('?, nth 

the sphere S 2 sitting inside) while the "time domain" becomes the non-negative integers 

Z+. The domains of concentration are [0,...,L] and the polar cap in S 2 of "radius" b 

(i.e., b< cos 8 <1). The analogue for NMR is not quite orthodox, in that while we do 

take [0,...,L] to be the domain of a finite time rf digital signal, we do not consider the 

simultaneous concentration of a corresponding function on S 2. Instead, the polar cap 

is viewed as the locus of the end-points of the paths mentioned earlier (an equivalent 

description is to consider the polar cap as an c-ball in SO(3) around the fixed rotation of 

7r/2 around the x axis Rx(7r/2)). We have the following (heuristic) picture 
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<P 8 
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[0, .... ,L] S2e SO (3) 

Sketch 3.4 

Again a tridiagonal matrix D is exhibited 

ctib i = j = 1,..., L + 1 

D{L,b)a = 7, j = l,...,X 

0 | j - i | > 2 

(3.10) 

where 

on = - t ' ( t - 1 ) , nr* = » 
t 2 - ( L + i ) 5 

(3.11) 
V4t'2 - 1 

and the eigenvectors are taken as the phase modulation <f>{t) (wi(f) = constant) in (3.8). 

The eigenvector with largest eigenvalue produces the desired constant phase magnetization 

response shown in Figure 3.3. 
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180° amplitude modulated pulses compared to rec­
tangular amplitude modulated pulse 
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Figure 3.3: The three simulations shown (read vertically as input followed by response) 
compare discrete rotation group prolate spheroidal wave function (drg/pswf) phase mod­
ulated (wi(t)=constant) ir/2 pulses to a "standard" pulse[20]. 
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3(d) A geometric picture of the Fourier Transform 

For the preceeding example Sketches, there is a rigourous mathematical treatment that 

justifies these heuristic analogies. We briefly describe this group representational point of 

view for Sketch 3.3, to illustrate the mathematics behind these simple pictures. 

Considering the (square-integrable) function f denned on the circle S 1 (i.e., f € I^fS 1)), 

we can Fourier decomposs it into the sum 

/(*)= £ f(m)eime (3.12) 
m=—oo 

where f[m) are the Fourier coefficients in the usual way[22]. The function f is thus de­

composed into its one-dimensional "pieces" /(m)e , m *, each "piece" lying in the subspace 

spanned by e , m ' , ai d so labeled by the integer m. In mathematical language, the circle 

group S 1 is said to have unitary irreducible representations labeled by the m in Z (the in­

tegers), where e,mS form the basis functions for the vector spaces on which f is represented. 

Thus this geometric view of the Fourier Transform (that it takes functions in L s into its 

unitary irreducible pieces) is basically a fact about the geometry of L 2 , which is a separable 

Hilbert space. In Sketch 3.3, then, the other side of the diagram (i.e., the integers Z) are 

precisely these integers m, so that sitting above the mth "dot" is really a projection oper­

ator onto the irreducible subspace spanned by the mth eigenfunction. In the case of S 1, all 

of these representations are one-dimensional, but for example, for S 2 in Sketch 3.4, these 

subspaces are 2L+l-dimensional, corresponding to the subspaces spanned by the spherical 
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harmonics (i.e., the Yj m , for m unrestricted and fixed 1=L). 

The paradox of "time/band limiting" thus has a very natural geometric interpretation: 

restricting the Fourier Transform of a function f to live in a subspace of L 2 spanned by only 

a finite number of unitary irreducible representations (by setting /(m) = 0 for | m | > M, 

how well can one concentrate f ? For example, in order to absolutely concentrate a function 

on the circle S 1 , we want 

f(e)=6(0)= f ) eimS (3.13) 

so that we need all the integers m in Z. But how well can we do if we only allow | m \ < 

M=50? The answer is given by the prolate spheroidal wave function in Sketch 3.3 with 

the largest eigenvalue, which is the only eigenvector of the 50x50 matrix supplied in (3.9) 

with no changes in sign (and which we numerically compute using the QR algorithm in 

[17])-

3(e) On gaussian pulses 

a Gaussian pulses should prove useful for the majority of 
applications of frequency-selective excitation." 

C. Bauer, et. al. 

In considering amplitude modulation in the rotating frame, a tempting relationship 

between the Fourier Transform and the Bloch equations (with regard to the amplitude 

of Bi(t)) is usually constructed. A major motivation for the development here of prolate 
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spheroidal modulated pulses is indeed based on this fact. Nevertheless, one should not 

rely solely on this (assumed) Fourier conjugacy between time and frequency, as in fact, 

the NMR system is inherently nonlinear, and these linear attempts towards approaching 

a solution to the modulation problem obscure its true nature. 

In particular, there are some simple realities of pulse NMR that conspire to force a 

re-evaluation of the relevance of the linear and continuous approaches. Recall that the rf 

pulses used in the laboratory are finite digital signals, not infinite continuous ones. If the 

modulation problem really was time/band limiting in the Fourier sense, then gaussians[23] 

(in the infinite interval case) and prolate spheroidal wave functions (in the finite interval 

case) would be the right functions to use. The virtue of the use of prolate spheroidal 

functions over gaussians is to be found in specifically answering two of these restrictions, 

namely finiteness and discreteness of the rf temporal waveforms. We are still left at this 

point with addressing the nonlinearity. 

In the actual use of these functions in NMR, the simulations and experiments are 

ultimately the deciding factor. As the time development obeys the Bloch equations, and 

is not the Fourier Transform, one should not expect that either the gaussian or the prolate 

spheroidal functions should work optimally, if at all. The fact that they both do well in 

simulation, however, suggests that the prolate spheroidal functions would be preferred, as 

no additional problems of sampling and truncation are introduced. 

We illustrate the comparison in Figure 3.4. We use a nonlinear x 2 fit[24] of a gaussian 
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to the top prolate spheroidal N=32 wave function, and compare the inversions obtained. 

One can see that the dpswf (discrete pswf) offer a slightly sharper response, and so the 

considerations of finiteness and digital nature of the rf temporal waveforms are meaningful. 

We also invite the reader to compare the experiments in Figure 5.3 on page 59. 
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Figure 3.4: A comparison of N=32 point temporal waveforms. The gaussian obtained using 
the Marquardt algorithm is compared to the discrete prolate spheroidal wave function both 
as a time domain signal and as an rf amplitude modulated ir pulse, where M, is plotted 
versus ~ . 



4. Inhoniogeneous rf Fields 

4(a) Basic physics according to Maxwell 

aIt required the genius of J.C* Maxwell, spurred on by Fara­
day's observations, to set the inconsistency in [the staticJ 
equations and to modify them into a consistent set which implied 
new physical phenomena, at that time unknown but subsequently 
verified in all details by experiment/' 

J.D. Jackson 

We consider here the factor f(x) in equation (2.18), the spatial dependence of the Bi 

field. The purpose of this chapter is to design rf coils which produce a small volume of 

homogeneous field, and a rapidly divergent field in other regions. In this way (recalling 

the argument given in section 2(a)), one can obtain a spatially selective region of optimal 

IT/2 flip angle, while other regions of the sample placed in the coil will not contribute 

significantly to the acquired signal. However, there are two important considerations to 

be kept in mind here: one is the reciprocity argument[25] stating that the signal produced 

in the coil from a given region is proportional to the Bi field in that region (so that, by 

36 
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scaling 9 = ^Bitp, the signal scales like 6 sin 0, where the factor sin 9 is due to the sinusoidal 

dependence of the signal on flip angle). The other is that the source-free Maxwell equations 

do not support local maxima for the static fields E and B used in this approximation. 

The demonstration of these two facts is made by simple application of the Maxwell 

equations[26,27]. For the reciprocity argument, we want to show that the flux induced in 

a coil from a precessing moment m is proportional to the magnetic field at the moment's 

location due to a unit current in the coil 

/ B m ( x ) . n A . ~ / i ^ S i (4.!) 
Js Jc I x — xi I s 

where XI=(XJ,J/J,ZJ) labels the coil describing curve C and the curve C spans a surface S. 

But the vector potential for the magnetic moment m is just 

A(x) = / " ^ - ^ (4.2) 
V ' Jc | X - X! | 3 K ' 

so that, using Stokes' Theorem, 

Is B m ( x ) -nda = fsV x A(x) • n da 

= Jc A(x)-1 
f mx(x-X]) . 

- ic |x-x,|s' • 1 

lx(x-X|) 

(4.3) 

This computation shows that the closer the spins are to the coil, the more they couple to 

it (i.e., induce a larger current), as would be expected from intuition. 
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The second fact, that the Maxwell equations do not support local maxima in B (away 

from currents), comes from another feature of the Maxwell equations, namely that they 

lead to inhomogeneous wave equations; for example 

^ B - ? 3 ? B = T J (4.4) 

For source-free regions, we thus obtain a homogeneous wave equation 

V 2 B = - ^ B (4.5) 

However, the right hand side vanishes, since we make the quasi-static approximation (recall 

that the wavelengths of interest are an order of magnitude larger than the objects of 

interest, and so propagation is neglected). Thus B is a harmonic function in the source-free 

region, and hence obeys the maximum principle[28], namely that B attains its maximum 

value on the boundary of the source-free region. Thus away from the current sources, no 

local maxima can exist. 

As a result of these two important considerations, only a small region of homogeneity in 

which Bx has a local minimum can be expected. Thus we must use other techniques, such as 

designing pulse sequences sensitive to rf inhomogeneity or using phase-cycling to eliminate 

high flux signals, to cancell regions in which the magnetic field Si although divergent is 

larger in magnitude. In addition, although the Maxwell equations completely describe the 

magnetic fields produced by current sources, in general there will be no analytic formula for 

the magnetic fields produced from a given configuration of coil windings, so that numerical 
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methods must be used to map out the fields. 

4(b) Coils 

"'Let that sucktr flyT 
T.F. Budinger 

The basic calculation used to determine the magnetic field produced by a wire with 

constant current j (recall propagation effects are neglected since the relevant wavelengths 

are long) is beased on the Biot-Savaxt Law 

where C is the loop of wire containing the current j = | J |. There are some coils for which 

this integral can be done analytically, but for reasons of both computational simplicity and 

practical utilty, we have used digital computations. 

The simplest example is one of a single turn loop. While an analytic solution exists (in 

terms of K and E, complete elliptic integrals of the first and second kind[29]), not only are 

these functions typically unavailable in digital form, but also, given the finite resolution 

of the display screen used to show the two-dimensional slices, the discrete line element 

approximation to the loop works just as well. There is another simplifying feature in the 

calculation of the B\ field profiles, which is that there is a cross-product in the Bloch 

equations, so that one is only interested in the components of Bx perpendicular to the B0 

field. 
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Again, we emphasize here that, as a result of the physical limitations imposed in order 

to be in agreement with the Maxwell equations, the best we can achieve in coil design is 

a resonably well defined region of minimum B field. This then has the disadvantage that, 

as the signal scales linearly with field strength, the signal will be low. Moreover, the "hot" 

spots in the field will necessarily be close to the current sources, and as the coil is placed 

close to the body surface, a means to eliminate these regions of high surface signal must 

be found. 

4(c) Pulse sequences 

We illustrate the simulations developed with some examples. In particular, we simulate 

the three-dimensional spatial sensitivity of three coil geometries, represented by slices taken 

at several displacements from the coil axis. The three geometries depicted in Figure 4.1 

are: 

(1) a circular surface coil[30,3l] 

(2) a pair of coils 

(3) a coil constructed of straight wire segments called a "baseball" [32] 

(due to its similarity in shape to the seam on a baseball). 



Figure 4.1: The three coil geometries, as well as the planes on which the B\ field is 
evaluated are diplayed. The one-turn coil is at the top left, the pair of coils is at the top 
right, and the "baseball" coil is below. 

itk 
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The calculation of the components of Bi perpendicular to the B0 field in free space 

uses the quasi-static approximation of the Biot-Savart Law (it is obvious from the Bloch 

equations that only the perpendicular components matter). The circular current loop was 

approximated by 360 current elements and the field computed using the Biot-Savart law. 

The integral was evaluated once on a two dimensional rectangular grid containing the coil 

axis and the result stored, allowing maps through any plane to be constructed by simple 

rotation and interpolation. The Bi field for the straight sided "baseball" is easily evaluated 

analytically. The projection of the S i field vector onto the x-y plane was evaluated on a 

101x101 point grid for display and calculation of sensitivity maps. 

As mentioned previously, one cannot violate the Maxwell equations, and therefore the 

signal induced in the pickup coil will be strongest on the boundary of the source-free 

region, namely at the coil windings. One way to eliminate the high signals produced near 

the coil currents is to use pulse sequences sensitive to rf field strength. In the rf field 

strength-sensitive phase-cycled pulses of Bendall and Gordon[33], the "high flux" signals 

are cancelled by averaging a number of NMR experiments, each performed with a different 

rf phase (the <f> in equation (2.16)). 

Once one has the effective rf field strength on a co-ordinate grid for the slice of interest, 

one can simulate various pulse sequences sensitive to such rf inhomogeneities. The exam­

ple of the Bendall-Gordon phase-cycled method is suitable to modification using SHARP 

(chapter 3), while another family of rf sensitive "composite" phase pulses[34] has been 
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simulated, but cannot be implemented with SHARP[20], as we shall soon see. 

To illustrate some of the potential of depth pulses in the three coil geometries, we show 

in Figure 4.2 maps of the Bi field, the response to a single wide bandwidth pulse, and the 

response to one of the pulse sequences developed by Bendall[35]. The depth pulse sequence 

simulated is denoted: 

29 [±x]; (20 [±x,±y]) 2; acquire . (4.7) 

[± x] and [± x,± y] denote phase cycling and the subscript 2 indicates that the last pulse 

is repeated. The acquired signals are summed (or subtracted in the case of an odd number 

of ± phases) until the entire phase cycle is complete. The response to the depth pulse is 

proportional to 

2 4 
- 6 cos 20 sin* 9 [ 2sin -9 + sin -0] /3 . (4.8) 

This rather complicated sequence provides excellent suppression of signals from regions 

having flip angles near 270 degrees. Useful results with less complete suppression of the 

270 degree region may be obtained with shorter sequences. 



Circular Call Pair or Circular Colli • tubal 1 Cod 

Figure 4.2: Simulations of the three representative geometries chosen are shown[36]. The 
Bi field is scaled to produce a flip angle of 90" one radius away from the surface coil on its 
axis. The signal induced in the coil from each volume element after a simple hard pulse 
is proportional to 0sin0„ (Volume elements contributing positive and negative signals are 
coded with solid and dotted lines, respectively). 
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4(d) Bi and AB0 together 

The two (temporal and spatial) aspects of the problem so far have been separated 

by some simple restraints concerning the production of the rf field (see equation (2.18)). 

In addition, the relevant field strengths in this approach to these two parts of the spatial 

localization problem are distinct (i.e., for the temporal problem, one is interested in the 

behavior of the magnetization as a function of the linear main field strength B0 inhomo-

geneity, while the spatial problem is one of coil geometry to provide rf field inhomogeneity). 

It is thus quite natural to ask whether the "solutions* i- these two problems can be com­

bined. The particular division of the problem we have chosen makes the combination 

possible. 

In particular, recall that in our approach to the temporal problem, we ask that a certain 

response be achieved in a single rf pulse. On the other hand, for the coil problem, we 

find that one can improve the rf inhomogeneity sensitivity profile by averaging a number 

of experiments. We can therefore combine these two approaches by tailoring the rf pulses 

in a given experiment, and then averaging. We can thus see the difficulty of combining 

SHARP with other, "composite" pulse schemes, since these methods rely on a single, 

phase-modulated pulse. 

But the interesting feature here is that the two different pulse schemes, SHARP and 

phase-cycled depth pulses of Bendall and Gordon, are sensitive to different field strengths, 

main field B0 linear inhomgoneity for SHARP and B\ rf inhomogeneity for depth pulses. 



46 

Hence the natural combination of these two, provided that the experiments take place in 

the combined fields of linear BQ gradients and an inhomogeneous B\ if field. 

The imposition of gradients in the B0 field and use of rf coils producing Bi field inho-

mogeneity provide two "degrees of freedom" for the spatial sensitivity problem. A class of 

amplitude and phase modulated pulses called SHARP (chapter 3) have been designed for 

narrowband excitation in the presence of a gradient. We simulate the signal obtained from 

an inversion-recovery T\ measurement, in which the FIDs from the experiments #2-acquire 

and 0i — T — 02-acquire are subtracted, where 9\ is an amplitude modulated selective inver­

sion pulse and 0 2 is a simple pulse. A gradient is applied during Bi so that inversion occurs 

at the same point as 02=90 degrees. Away from the region of interest the 0\ pulse has little 

effect, so that the signals cancel in subtraction. If the purpose is not a T\ measurement, 

r may be made as close to zero as the gradient settling time will allow. (Ordidge has 

proposed a similar method[37]). 

The method utilizes the spatial B\ field maps developed above, but now, at each point 

in the spatial domain of the coil, values for both the main field strength and rf field strength 

are calculated (Au> and wi, respectively) \ signal surface table is generated on a grid of 

Aw and ux values with the Bloch ODE .solver, and this table is then correlated with the 

particular pair of magnetic field strength values at each site in the spatial AB0-Bi map 

by linear interpolation to produce the selective slice sensitivity maps. The signal surface 

table for an amplitude modulated ir pulse is shown in Figure 4.3, and the sensitivity maps 
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are presented in Figure 4.4 with a linear Ba gradient imposed along the axis of a surface 

coil and for the two coil case; the coil diameter is 10 cm and the gradient is 1 gauss/cm 

for all cases. The simulations assume r=0. 
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Figure 4.3: The spin signal surface produced by subtracting the FID obtained from selective 
7T pulse followed by a broadband JT/2 pulse from the FID obtained from a broadband 7r/2 
pulse (i.e., we compute s=sind - M,sin0). M, is the final z component after the selective 
7r pulse. The true signal is then by reciprocity proportional to 0-s. Both rf and gradient 
values are in gauss. 



Figure 4.4: Selective excitation in the presence of a gradient: the response from a selective 
amplitude modulated K pulse is simulated (bottom- row} for the two geometries shown (top 
row) [36]. 

CO 
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In the depth pulse case, the rf (flip angle) selectivity is achieved by phase cycling 

a number of repeated experiments. SHARP, however, achieves frequency selectivity by 

temporally profiling a single pulse. The two methods can thus be combined, as is shown 

in Figure 4.5 for the baseball coil with a linear B0 gradient in the z direction. We subtract 

the accumulated FID's from the experiments: 

Bx\±x\\ (2 x §02 + |0 2 ) ; [202[±x,±y})3] acquire 
(4.9) 

(2 x \02 + | 0 2 ) ; {292[±x,±y])2; acquire 

where the gradient is turned off after the amplitude modulated selective inversion pulse 

0i and the 02 pulses are broadband and scaled so that 02 is 90 degrees in the region of 

interest. The simulations indicate that the combination of selective excitation and depth 

pulses allows an isolated sensitive region to be defined, which is not possible with depth 

pulses alone for these coil designs. 
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Figure 4.5: Combination of SHARP with depth pulses: the resulting sensitivity maps 
should be compared to Figure 4.1, in which a simple broadband pulse is simulated[36]. 
Significant improvement in spatial localization is seen. 



5. Experiments 

5(a) Numerical simulations 

"Scientific laws are now being viewed as algorithms." 
S. Wolfram 

The numerical simulations concern basically two physical calculations: the first is the 

step-wise integration of the Bloch equations (2.16), while the second is a finite-element Biot-

Savart computation (equation (4.1)). In both cases, the approximation of the continuous 

problem is checked with analytical results evaluated at the same (x,y,z) points. 

As mentioned in chapter 3, the prolate spheroidal wave functions of interest are repre­

sented as discrete point values. To generate them, an efficient QR algorithm[l7] is used, 

which specifically handles the eigenvalue/eigenvector computation for symmetric tridiag-

onal matrices. As the matrices provided in [19,21] are of this special form, we have the 

waveforms of interest as the eigenvectors of these matrices. We then assume that the mod­

ulations are these piece-wise constant functions, so that a fixed step ordinary differential 
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equations (ODE) integrator is needed. 

We briefly describe the ODE solver for the Bloch equations. Neglecting relaxation, the 

Bloch equations (2.16) are written as a set of three first order coupled ordinary differential 

equations 

M(i) = A(t)M(t) (5.1) 

where A(t) is the matrix of time-varying magnetic field components, containing the rf 

modulations of interest. If we approximate the time variation of the rf as a series of broken 

piece-wise constant steps h,, over a given time step A.(hj) is constant. We immediately 

integrate (5.1) 

M(fc y +i) = <A A M M[hj) (5.2) 

The ODE solver for the Bloch equations is then a subroutine which computes the matrix 

e at each step and, in applying this matrix to the magnetization position at the start of 

the step h, obtains the position of M at the end of the step. 

The computation of e1^ at each step involves a well-known identity from rotation group 

theory 

^mlHKAf&=SLS. + kA$Li (5.3) 

where 9 is the angle of rotation (about the rotating frame effective magnetic field (2.14)) 

with 

6 = h \](uxy + (-yG • r ) 2 (5.4) 
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In this way, because A=B-I (where B is the applied magnetic field and I are the generators 

of SO (3) (2.23)), it is easy to compute 

/ A 
6? + [% + bl)cos 8 6 1 6 2 ( l - c o s 0 ) - 6 3 s i n 0 6x63(1 - cos 0) + 62 sin 0 

ehA = 6162(1 - c o s 9) + 63 sin 9 bl + (b{ + bf) cos 9 6263(1 - cos 5) - 6 xsin0 

6163(1 - cos 9) - 6 2 sin 9 6263(1 - cos0) + &isin0 6§ + {b\ + 6f) cos 9 
(5.5) 

where 

B = 

( \ 
61 

62 

63 

y/fa)* + (A«)» 

U>i COS <£ 

wi sin 4> 

Aw 

\ 

(5.6) 

and 5 is obtained from (5.4). 

From (5.5) we have an analytical expression for the response to a constant rf pulse. As 

the simulations assume for the initial position 

M. 

My 

MM 

V 

v 1 ; 

(5.7) 

we are able to compare the analytical expression for the (i=3 j=3) element in (5.5) to the 

simulated response for M,(ZW) at the end of a constant amplitude rf pulse. 

For the coil computations, we demonstrate two cases. The simple loop in Figure 5.1 

(of radius a and current j in the x-y plane) ;* approximated by 360 unit-length current 



elements 
—a sin Q{ 

1 = a cos Oi 

V 
so that the integral (4.6) becomes the sum 

360 

B = j £ 
,=i {sj(x - a cos 6i)2 + {y-a sin ^ ) 2 + z2Y 

za cosdi 

za s'm Oi 

a2 — xa cos Oi — ya sin Oi 

where we neglect the z component (along B0). This is to be compared with the ana 

formulas in [29]. 

(x, y, z) 

Figure 5.1: 

The Biot-Savart Law integration for ?. -oil in the x-y plane. 
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In the case where a coil can be constructed of line-segments, the magnetic field from 

a straight line current (of length 2L along x) is easily computed in closed form: we have 

from Figure 5.2 

; r d9 r „ ;_ a 
= J - : — j - y S U l O 

(5.10) 

J r 

so that, with R=Vy 2 + z* and T=\JRZ + {x + L)2, 

B = fdB 

= JiftsmOdO 

— ^(cos 0i — cos O2) 

where cos &i and cos 0 2 a r e the geometric ratios 

(5.11) 

ccs 0i — 
x + L 

: , COS 02 = 
x-L (5.12) 

^(x + LY + yt + z*' ' ^ ( 1 - L) 2 + y 2 + z* 

Notice that the field has only components perpendicular to the wire segment; in this 

example 

B = ^(cos 0\ - c o s 0j)^ 

^ £(C0S ff1 _ c o s Q2)]L 

(5.13) 
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(x, y, z) 

dl = 
rd9 

sin 9 

x axis 

Figure 5.2: 

The Biot-Savart Law integration for a wire segment along the x axis. 

In both computations, a grid is then set up on which these subroutines run: for the 

pswf, one calculates the entire pulse for a range of resonance offset (Aw) values; for the 

spatial Bl maps, a planar grid is placed in a simple geometric relation to the coil. Using 
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the integration (5.9), the values for the single coil were tabulated once on a fine mesh in 

a quarter plane perpendicular to the plane of the coil. Simple rotations of this quarter 

plane produced values near the sites of the desired image planar grid. In cases where the 

tabulated point values did not match the spatial map locations, linear interpolation was 

done on the four nearest point values in the table. 

5(b) N M R phantom measurements 

"Phenomenology is everything? 
M.P. Klein 

Experiments were done on phantom samples to determine the degree of validity of the 

assumptions made above. The first set of experiments was done in collaboration with M.R. 

Bendall at Oxford Research Systems in England. The same experimental ideas were then 

implemented on the 0.5 Tesla NMR imager at LBL. The basic philosophy is to use a simple 

slice phantom to image the sensitive volume of various coil geometries. For the rf temporal 

modulations, a long sample (20 cm .1 mM MgCl2 doped water filled test tube) was placed 

along a static gradient and, after selective excitation, the z component of the magnetization 

was interrogated with a hard (broadband) 50/100 jisec 90°/180° echo combination. 

The measurements for discrete prolate spheroidal wave function amplitude modulated it 

pulses are shown in Figures 5.3 and 5.4. On the IBM/Oxford imager at LBL, the z gradient 

was 0.2 Gauss/cm, and a 5 msec dephasing delay was used prior to echo formation. 
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Figure 5.3: Experimetal comparison of three N=32 point temporal waveforms as TT pulses. 
The use of the discrete pswf as n amplitude modulations, both in simulation and in mea­
surement, is seen to be preferred to the use of either the gaussian on the left or the constant 
on the right (in columns). 
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Figure 5.4: Further verification ior the dpswf theory. As W (the frequency concentration 
variable) varies from .02 (left) to .05 (center) to .08 (right), the inversion bandwidth is 
seen to increase. 
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The sensitive volume of a square "baseball" coil was imaged at S1P frequencies using 

a slice phantom of concentrated H$POi and a procedure employed at Oxford Research 

Systems which may be written schematically 

0 r 29 r (5.14) 

incremented acquisition 
y gradient, 

and x gradient x gradient 

(The x gradient is adjusted to ensure that the top of the spin-echo occurs halfway through 

signal acquisition). The square "baseball" coil was constructed out of 3.2 mm diameter 

copper wire to a side length of 8.7 cm. A round slice phantom of diameter 11.8 cm and 

th :ckness 1.0 cm was used. As the diagonal length of the coil is 12.3 cm, the phantom fits 

just inside the limits of the coil wire. A 9 pulse length in the range of 250 to 450 /xsec was 

used at approximately 100 watts pulse power. 

The scheme above would determine the sensitive volume for the depth pulse 9\ 29 [±x, ±y]. 

The phase-cycling for the 29 refocussing pulse is unnecessary for a homogeneous phantom 

when using pulsed field gradients[38,39]. For the depth pulse 

(2*[±x]),; 9\ 20[±x,±y] , (5.15) 

the sensitive volume was imaged by replacing 8 in the imaging sequence by (26 [±x])2j 8. 

This depth pulse produces a signal from each volume element proportional to 
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6 cos2 20 sin 3 9 , and so does not suppress the 270" signal (as in the simulation shown 

above) [35,38,39]. Simulations and experimental results are shown in Figure 5.5. 



Figure 5.5: The magnitude of the signal induced by each volume element is shown for the 
simulations and experiments[36j. For the depth pulse 20(±x] 2;0;20[±x,±y], the top row 
shows the location of the slice, the middle row the calculated sensitivity, and the bottom 
row the measured sensitivity. The experiments were done at Oxford Research Systems in 
England. 
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A 15 cm X 15 cm x .5 cm H 2 0 square slice phantom was built to map the field of a 

10 cm diameter surface coil in the Oxford/IBM .5 T whole body magnet. 1 The coil was 

wound into a single turn of | inch copper tubing, and the experiment utilized a 2DFT 

imaging sequence similar to (5.14), except that the 20 echo pulse was replaced by an x 

gradient reversal. Figure 5.6 compares the measurement with a simulation. 

1 Thanks to Mirko Hrovat of IBM Instrumenmts, Inc. 



65 

Figure 5.6: Experimental results of spatial maps of surface coil (similar to Figure 5.5) is 
displayed. The geometry is at the top, followed by a contour plot, and finally a photo of 
the 2D experimental image. 
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5(c) Two theorems 

"It all goes back to Gauss." 
F.A. Gr/mbaum •'-•' 

" -. * 

ehA = 

In performing numerical simulations of the MIBE. some regularities in the results were 

apparent. We now state these as theorems in regard to our method of integration. Both 

concern amplitude modulated pulses, so that the matrix in (5.5) simplifies to 

/ \ 

bl + blcosO - 6 3 s i n 0 &i63(l - cos6) 

busmO (b\ + 6|) cos0 -bisinff ( 5 - 1 6 ) 

6x63(1-cos 0) 6!sin0 6| + 6^cos0 

In the first case, we noticed that the response M 2 ( A C J ) is symmetric for 63 = i A w , As 

our simulations approximate u>i(t) by an N-piecewise constant curve, the Bloch evolution 

becomes a product of rotation matrices applied to M(t=0,Acj) in (5.7). The second 

theorem concerns the final position of M x(Aw) obtained from the two pulses u>i(t) and 

Wi(T-t), for t G [0VT], and is called the Backward Pulse Theorem 2 

We now state, and then prove, these two theorems. 

T h e o r e m 1 < e,RflRfl_1...R?e > = < e,RJfR^_1...Rie > 

where e denotes the initial condition (5.7), the bracket <> denotes inner product, and 

ft+ = eM<«{ J»+Aw I.) j j> 7 _ ghjVi / . - A " / .) ( 5 . 1 ' 

2 I am indebted to Arnold Lent of Technicare, Inc. for helpful advice. 
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with u{ the j t h point value of u>i and hj the fh Hime step1 

Theorem 2 < e^R^Rs-i—Rie > = < e,RtfRji-i...Rie > 

where 

R = gMw»(*) *.+**» '») ft. — gfcy("i(r-«) /»+A<j /,) (5.18) 

Proofs of both of these statements follow directly from properties of the rotation ma­

trices R,-. To prove Theorem 1, we notice that 

R+ = X~lRjX (5.19) 

where 

X = 

- 1 0 0 

0 1 0 

v o o i , 

= X - 1 (5.20) 

Thus, we compute 

= < Xe^RjfRjf_i...Ri Xe > 

= K. C, j t jyxl jy_j . . .XLi C > 

For Theorem 2, we first prove a lemma about rotations 

(5.21) 

Q.E.D. 

Lemma 1 Let R(u,Q) be the rotation of angle 0 about u . Let u',u" be any two vectors 

perpendicular to u such that 
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R(u,§) u' = u" 

Then 

R(u,0) = M(u')M(u") 

where M(u')x = x.-2(u'-x)u' (i.e., R can always be expressed as a product of reflections in 

the plane spanned by (u',u' x u") or (u",v! x u"), and denoted by M(u') or M(u")). 

Proof Consider the case u=z. Then u',u" are vectors in the x-y plane 

u' = 

/ ^ 
i 

v°; 
, u " = 

cos(f) 

^ s i n ( l ) , 
so 

M(u') = 

- 1 0 0 

0 1 0 

0 0 1 

, M(u") = 

/ \ 
— cos 9 — sin 9 0 

^ — sin0 cos0 0 

and so that 

M(u')M(u") = 

cos 9 — sin 9 0 \ 

sin 9 cos 0 0 = JZ(M) 

(5.22) 

(5.23) 

(5.24) 

0 0 1 

The general case R(w,0) is now obtained by conjugation of the matrix R(uxw,cos - 1(u-w)). 

Q.E.D. 



69 

We can now use this lemma to prove Theorem 2. Since in (5.18) the matrix R ? is a 

rotation about an axis in the x-z plane, we can always choose u'=y so that 

But as (M 2 ) 2 =I, 

and 

Rj = M(u")M(y) = MiMj 

RJ1 = M%Mx{Mzf = MiRjMz 

I \ 

Af, = 

so that 

'S - 1 _ 

1 0 0 

0 - 1 0 

1 0 0 

0 - 1 0 

V° ° x) 
f \ 

1 0 0 

Ri 

v 0 0 1 j \^0 0 1 y 

0 - 1 0 = M2R,M2 

We thus compute 

< e, RtfRii-i...Rie > = < iZj ...Rjf_lRj^e,e > 

but as Rj is unitary 

< i i j ...Rjq_iRjyt,& > 

= < Af2^iM2...M2JfE^_iM2M2jRArM2e,e > 

= < Ri...Rpf-iRtfM2e,M2e > 

= < RffRpf„i...Rxe,e > 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

Q.E.D. 



6. Is the Bloch Transform Invertible? 

6(a) Motivation 

One of the essential features of biomedical NMR is the use of linear gradients in the main 

field B0 to encode spatial information. In chapter 3, we have formulated a transformation 

(the Bloch Transform, denoted 8) that, under conditions of an applied linear gradient, 

relates the rf waveform in the time domain to the final position of the magnetization after 

the pulse. As the final desired position of M( Au>) is known a priori, if we could invert the 

Bloch Transform, we would be able to find the needed rf modulation. 

The basic problem, however, is that the Bloch Transform represents integration of 

the nonlinear Bloch equations (2.16), and so is a nonlinear mapping. We therefore try to 

reformulate the inversion problem for the Bloch Transform in terms of a better studied one. 

Specifically, we will attempt to turn this NMR inverse problem for the Bloch Transform into 

an inverse problem in the quantum theory of scattering. We choose to study a particular 

nonlinear evolution equation called the Korteweg-de Vries equation (KdV), in which a 

70 



71 

series of mathematical arguments leads to the solution of this nonlinear problem[40]. The 

relevance to the Bloch inverse problem is then found by rewriting the Bloch equations in 

a form similar to the time-independent Schrodinger equation, which enters in the solution 

of the KdV equation. 

An important complementary aspect of this Bloch inverse problem should be men­

tioned. We have already noted that real rf pulses are finite digital signals. In developing a 

general theory of rf excitation for in vivo NMR, it would be useful to generate the pulses 

from a suitable family of functions (preferably spanning L 2([0,t p]) - the space of square 

integrable functions on the interval [0, tp]) representing the harmonics present. Indeed, we 

have devoted section 3(e) to this topic, and in that comparison of gaussians to the pswf, 

one of the strengths of the prolate spheroidal wave functions is this property. But the 

pswf come from linear Fourier theory, whereas the problem really deals with the nonlin­

ear Bloch equations, and so one would really like to find the appropriate nonlinear modes 

within which to express the desired localized response. Since solitons are naturally non­

linear modes, one should not be surprised to find solitons appearing in the solution, as 

discussed later. 
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6(b) The inverse scattering transform 

uAs a working physicist, I am acutely aware of the fact that 
the marriage between mathematics and physics, which was so enormously 
fruitful in past centuries, has recently ended in divorce.1' 

F.J. Dyson 

The recent revolution in mathematics known as soliton (or inverse scattering) theory, 

in addition to having inspired the development of some sophisticated and elegant tools for 

theorists, offers some real insights into the nonlinear behavior of simple physical systems. 

This series of discoveries has been paralleled by many observations of physical phenomena 

that are well described by these nonlinear evolution equations. We face here a nonlinear 

evolution problem, called the Bloch Transform inverse problem, and it is natural to ask 

whether these recent developments are applicable to our biomedically motivated inverse 

problem. In particular, the phenomenon of self-induced transparency[41], which involves 

the coupled Bloch-Maxwell equations, can be well described by some of this machinery[42]. 

The purpose of this section is to give a quick review of the inverse scattering transform 

which will be adequate for our purposes. For more detailed accounts one can consult [43-

45]. In the next section we will indicate how the inversion of the Bloch Transform can be 

expressed in terms of the material in this section. We will be using only the Korteweg-de 

Vries equation in an exploration of the properties of the direct Bloch Transform. For this 

reason we limit our discussion below to the way in which the inverse scattering transform 

handles the KdV equation. 
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The solution of the KdV equation 

qt + 6gg z + qsxx = 0 (6.1) 

involves treating the function q as the potential in a time-independent Schrodinger equation 

tf« + (A2 + fl(x,*))0 = 0 (6.2) 

(the time variable in the Schrodinger equation is a separate parameter from the time t in 

the KdV equation) with stationary potential V(x)=-q(x,t) and energy E=A 2 . One asks 

the question: how do the eigenvalues A(t) and eigenfunctions ^ (x , t ) evolve if the potential 

satisfies the KdV equation (6.1)? By explicit computation, the discrete eigenvalues 

(-A2 < 0, n=l,. . . ,N) for the bound eigenstates (A„ = —tA so tha t A„ > 0 is real and 

positive) 

0 n ~ e A n X as x —• - c o 
(6.3) 

~ bn(t)e~XnX as x —» oo 

are constants of the motion, and imposing on the scattering states $ (i.e., A2 > 0) the 

boundary conditions 

x(j ~ e~tXx as x —* —oo 
(6.4) 

~ a{\,t)e-iXx + b{\,t)eiXx as x -* co 

one finds that a(A,t) and b(A,t) obey the trivial evolutions 

o(A,t)i = 0 , b{X,t)t = 8iA36(A,«) (6.5) 
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The boundary conditions (6.4) have a standard interpretation in quantum physics as 

corresponding to a scattering problem in which a wave of amplitude a is incident from 

x=oo on the potential V(x). The wave is transmitted to —oo with an amplitude of unity, 

and is reflected with amplitude b. The reflection and transmission coefficients for this 

scattering problem (6.4) are just 

Mx) = m, T r ( i ). _̂  (M) 

(the subscript r denotes an incident wave from the right) so that using (6.5) we find that 

the transmission coefficient is a constant of the motion and the reflection coefficient evolves 

by merely changing its phase linearly with time. The solution of the KdV equation at time 

t is then found by inverting the scattering data to find the potential /(x) at time t, a 

problem which involves a linear integral equation (the Gel'fand-Levitan-Marchenko equa­

tion). Schematically, we denote this "change of variables" from potential to scattering 

data S={(A„,6n)i r;iZ r(A),A real} and back as 

q ( 3 C , 0 ) d i r e c t t " ' n s f o n n » S ( 0 ) 
one evolution 
oftc. data 

. inverse trinsfonn C / . \ 
q(x, t) « MO-

We shall rewrite the Bloch equations in (quasi)-Schrodinger form, and so, by relating 

the final position of the magnetization M(Aw,T) to the reflection and transmission coeffi­

cient 1,6.6), would like to use this set-up to invert the Bloch Transform. Other nonlinear 
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evolutions besides the KdV can be handled in the same way, by an appropriate change of 

the time evolution of the scattering data. 

One point on notation: from here on, we shall overscore the KdV variables (x,t) to 

remind the reader to separate the KdV evolution from the Schrodinger evolution in (x,t). 

6(c) Reformulating the Bloch Transform as a scatter­

ing problem 

"Nonlinear ordinary and partial differential equations do not, 
in general, admit explicit solutions, because the solutions of the 
typical nonlinear equation are so wildly irregular that they could 
not possibly be represented by known functions. Conversely, nonlinear 
equations with very well-behaved solutions should be expected to have 
uncommon properties.71 

H. Flaschka and A.C. Newell 

From the MIBE for pure amplitude modulation 

d_ 
dt 

I \ 

Mv 

MM 

( 
0 Aw 0 

—Aw 0 wi(f) 

0 -ui{t) 0 

Mx 

Af„ 

Ms 

describing the motion of a 3-vector M under the applied magnetic field 

Bv 

B, 

( \ 
w x 

v A w ; 

(6.7) 

(6.8) 
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and with M(AtJ,0)=(0,0,-l) T, we would like to find the appropriate rf waveform w^t) to 

achieve a given final configuration of M(Aw,T), after a finite pulse (i.e., t 6 [0,T]). In 

particular, one would like to explain the phenomenon observed using the complex secant 

pulse of Silver, Joseph, and Hoult[46|. An explanation might be possible by generalizing 

the results of this chapter, which considers only amplitude modulation, to frequency-

modulated pulses. 

Because the length of M is preserved 

Ml + Ml + Ml = 1 (6.9) 

the time development of M is a path on the sphere S2. By defining <j> to be the stereographic 

projection of M onto the y-z plane from the positive x-axis (1,0,0), we find using (6.7) that 

, , A ., Mx + t'M„ , . 

^(Aw,i) = _ " (6.10) 

satisfies a Riccati equation[47] 

4, = i u i < f t + l^L y* _ i) (6.11) 

where wx is the unknown rf field amplitude modulation. 

The change of variables[48] 
g(Aw,t) = eTS'—lW"*) + "»<«'» dt' (6.12) 

in (6.11) yields the second order differential equation 

g + - ( Aw2 + u\ + 2*wi ) g = 0 (6.13) 
4 
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in Schrodinger (Liouville) form. 

By viewing t as a position variable 3:, equation (6.13) has the form of a "time-independent" 

Schrodinger equation 

^ 9 + (A2 - V)g = 0 (6.14) 

where the potential V contains the unknown field modulation ux and its first derivative 

4 2 

The formulation is now clear from the standpoint of inverse scattering: the conditions 

under which the potential V in (6.14) can be reconstructed from asymptotic scattering 

data of g (i.e., reflection and transmission coefficients plus bound states and normalization 

constants) are known, starting from the work of Gel'fand-Levitan; for a recent account see 

[49]. Our original problem of finding u>i to yield a desired M(Aw,T) can thus be solved 

using the techniques of inverse scattering if the asymptotic scattering data of g can be 

related to the known desired response M(Aw,T), as we can then reconstruct V in (6.15), 

and thus obtain u)\. 

We therefore consider g in (6.12). (NB: we identify the Bloch evolution variable t in 

(6.7) with the spatial parameter x in the KdV equation (6.1). We further overscore the 

KdV parameters to remind the reader, and state that we are replacing the interval [0,T] 

here with [-00,00].) The initial condition is that the spin population is at equilibrium, 

Af»=-1, and so, using (6.9) and (6.10), <j>=l. Consequently, since the potential V —*• 0 as 

S[=z t) -* —00, g~ e~,M. Likewise, as t —* 00 again V —> 0, so that the passage of the 
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pulse Wi(t) amounts to g from (6.12) becoming a linear combination 

g{X,t) ~ a(X)e'iXt + 6(A) eat (6.16) 

and so, in general, the NMR observables will be left ringing at frequency A. Hence, the 

inverse problem for the Bloch Transform is closely related to the scattering problem for ip 

in (6.4). 

But as t —• oo, 

g(\,t) ~ e-*SL«We?fZ,»W ( 6 J 7 ) 

The second factor is known, as /f^ wx is just the total desired flip angle (i.e., typically a 

n/2 or it pulse). 

Therefore the asymptotics of g(A,t) for large t can be obtained from the function 

T 4>{\,t') dt' (6.18) 

One could thus use (6.16) to recover a(A) and b(A) if one knew <£(A,t) for all t. However, 

since only M(Au/,T) is available, it is clear that this approach cannot be used directly to 

achieve the inversion of the Bloch Transform. See, however, section 6(f). 

6(d) 2'7rN-solitons 

Although this formulation of the inverse problem for the Bloch Transform would appear 

useless in view of the comments at the end of the previous section, we can use it to suggest 
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interesting inputs to the direct problem. In particular, we notice from (6.9) and (6.10) that 

the condition M«=-l is equivalent to <f>=l (independent of t!). Thus, using (6.12) g~ t~lXl 

even as t —• oo, implying from (6.16) that b(A)=0. Thus in this case of reflectionless 

potentials[50], one can use the ansatz (assumption arising from (6.15)) 

W l ( t ) = y/V(3) (6.19) 

and take for V a "pure soliton potential". We proceed to numerically integrate equations 

(6.7) according to the procedure introduced in section 5(a). The results shown in Figures 

6.1-6.3 display some remarkable properties. 

The surprising feature of the simulations is that in this case of N-soliton pulses one 

has control over the inverting properties obtained, even though the Bloch Transform is 

nonlinear in the regime where population inversions are effected. In the cases when the 

flip angle (6.26) are 2ir and 67r, ont achieves localized inversions for different ranges of Aw, 

and in the 4ir case, complete return to equilibrium is obtained independent of Aw! One 

can say that these N-soliton pulses are thus nonlinear modes of rf excitation. 

We briefly outline the computation of the N-soliton potential. We begin by computing 

the determinant of the matrix 

An = Sti + T ^ h - e - ( A ' + * ' , B (6-20) 
A; + A; 
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The potential V(x) is then computed from 

V(x) = ${a& - (£) 2) 
_ 0 d a I n det(A) 
- ~l—sr1-1 

(6.21) 

where a=det(A). The time dependence is then put in using (6.5). For the case N=2, we 

find 

Vup = Xl cosh(2Ai3f - 8X\t + fa- fa) + A? cosh(2A2x- - 8A t̂ + fa + fa) + A| - X\ (6.22) 

and 

V*i«n = r i : ^cosh((A2+A 1 )z-4(A*+A?)t+^ 1 )+cosh((A2-A 1 )x-4(A^-Af)?+02) (6.23) 
A2 + Ai 

so that 

[*2 + AlJ^down 

where #1,^2 are the (free) parameters 

1 A1A2 , -A1 + A2 , 1. A162 , „ „ . , 
Z 0i«2 Ax — A2 * O1A2 

See [40] for details. 
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Nar ra t ive for Figures 6.1, 6.2, and 6.3 

We begin with the top diagram in each Figure. From (6.24), we have an explicit form 

for the N=2 soliton potential. We evaluate this expression for V on a 50x50 (x,t) grid, 

thus computing the 50 vectors V(3),t=constant. 

According to the ansatz (6.19), we then use each of these 50 wave profiles in a Bloch 

ODE solver[20], numerically integrating (6.7). As the output of the ODE simulation is the 

vector M after the pulse, we display in the bottom figure the excited z component as a 

function of Aw. For convenience we display -M«. The 50 waveforms are each separately 

scaled so that the flip angle is 

P u^t) dt = 2xk (A: = 1,2,3) (6.26) 
J-oo 

The bottom figure therefore simulates the result of 50 independent NMR. experiments 

labelled by the parameter t. 

The only differences between Figures 6.1, 6.2, and 6.3 are: 

1. In Figures 6.2 and 6.3, we run in KdV time out to t = ± .4, and 

2. we scale the waveforms in Figures 6.1, 6.2, and 6.3 using (6.26) to be 2TT, 4-TT, and 6w, 

respectively. 
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Figure 6.1: The case N=2. Each of the 50 wave profiles in the two soliton solution 
V(3f), ?=constant in the top plot is used as an amplitude modulated 27T pulse in the 
bottom plot, where the z component of the magnetization is displayed as a function of ^ 
after the pulse[5l]. 
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Figure 6.2: The case N=2. Each of the 50 wave profiles in the two soliton solution 
V(l) , f=constant in the top plot is used as an amplitude modulated 47r pulse in the 
bottom plot, where the z component of the magnetization is displayed as a function of ^£ 
after the pulse[5l]. 
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Figure 6.3: The case N=2. Each of the 50 wave profiles in the two soliton solution 
V(l) , F=constant in the top plot is used as an amplitude modulated 6jr pulse in the 
bottom plot, where the z component of the magnetization is displayed as a function of ^ 
after the pulse[5l]. 
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6(e) On a connection between the Bloch Equations and 

the KdV equation 

Computer simulations have been a useful tool in developing rf temporal waveforms, by 

determining their performance in numerical integrations of the Bloch equations. In chapter 

3, we described not only a specific input to the Bloch Transform (I.e., prolate spheroidals), 

but also an algorithm for computing the time development of the magnetization in the 

presence of time-varying rf magnetic fields. In this chapter, we have uti'ized that algorithm 

to compute what happens if we use N-soliton amplitude-modulated rf pulses. In this 

section, we will further explore the connection between the undamped Bloch equations 

and the KdV equation. By varying two parameters in the solution (6.19), we shall find a 

deep connection between solutions of the KdV equation and the Bloch equations. 

One way of seeing the KdV phenomenon is to return to the derivation of V in (6.20) and 

(6.21). Observe that the pure soliton potential V depends in general on 2N parameters 

(the eigenvalues A,- and the normalization constants b,), while the energy levels depend 

only on A,-. Hence, one obtains the N-parameter iso-spectral (i.e., constant eigenvalue) 

deformation of the KdV solution as the b* move along t according to (6.5). 

In the last section, we made a specific choice, namely A,= i and <&=0, to generate a 

particular solution of the KdV equation (6.1). As there is no a priori reason to make this 

choice (from which we obtained the V used in Figures 6.1-6.3), the eigenvalues A,- would 
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appear to be unconstrained parameters. The justification for the choice A,=i for the KdV 

potential is based on the fact that these specific potentials have the property that 

V(Z,0) = JV(JV + l) sech2{x) (6.27) 

so that in view of (6.19), the £=0 1-n pulse is the miraculous pulse of self-induced trans­

parency^!.], and so produces the response M, =-1, as is seen in Figure 6.1 on page 80. 

Having computed in (6.24) the N=2 soliton potential for arbitrary values of the A,, 

we next evaluate V allowing these values to vary. Starting from the Figures 6.4, 6.5, and 

6.6, one is tempted to believe that the excited spin population can be moved around in 

the field of a linear main field gradient simply by changing the eigenvalues in the N=2 2-K 

exitation pulse off of the special values A,=i (1=1,2). In particular, one is struck by the 

smooth excitation contours in these three Figures. 

This suggests a method might be developed for simultaneously selecting multiple re­

gions, which can be varied in position, for acquisition of chemical shift or image data. 

These data form a set similar to that obtained from coded apersture imaging. The image 

restoration process involves another inversion consisting of simple subtraction or recon­

struction imaging[52]. 
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Figure 6.4: The case N=2. Each of the 50 wave profiles in the two soliton solution 
V(s), t=constant in the top plot is used as an amplitude modulated 2?r pulse in the bottom 
plot, where the z component of the magnetization is displayed as a function of ^ r after 
the pulse. The eigenvalues for V in this case are A^O.5 and A 2=2. (Consult the Narrative 
on page 81)[53]. 
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Figure 6.5: The case N=2. Each of the 50 wave profiles in the two soliton solution in 
the top plot is used as an amplitude modulated 2TT pulse in the bottom plot, where the 
z component of the magnetization is displayed as a function of ^pr after the pulse. The 
eigenvalues for V in this case are Ai=l and Aj=2[53]. 
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Figure 6.6: The case N=2. Each of the 50 wave profiles in the two soliton solution in 
the top plot is used as an amplitude modulated 2n pulse in the bottom plot, where the 
z component of the magnetization is displayed as a function of ^j? after the pulse. The 
eigenvalues for V in this case are Ai=1.5 and A2=2[53]. 

i 
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This is indeed the case. In Figures 6.7-6.9, we show both numerical and experimental 

results that indicate one aspect of the special relationship between the Bloch equations 

and the KdV equation. In using the N=2 solutions of the KdV equation as 2n amplitude 

modulated rf pulses, we see from (6.24) that an apparent 2-parameter set of free variables 

in these solutions, at least as far as NMR amplitude modulations is concerned, is given by 

letting the A« float. Experimentally we find good agreement with these numerical -isults, 

and conclude that one can use these soliton amplitude modulations to reduce the nonlinear 

excitation problem to a linear geometric one, using the intersection of "planar" volumes 

perpendicular to the applied gradient in order to image a given spatial volume. 
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2x amplitude modulated pulses 
Input 

=? 50LITCN m«50, 0 2 . 2 . 01=0.51 

20. i r . 

T IME 

Response (Mz) 

S imula t ion 
M.2 SOL I TON IN.SQ. a j .2 . ni-O.SI 

I. Jf l 

-ISCD. -1DC0. -500^ . 0 

H E R T Z 

Experiment 

• \ | -SBB -1BBB -15B8 

11=2 SOLITOH moJECTION (H=SB. « 1 = B 5 . «2-Z> 

Figure 6.7: Experimental measurements and numerical simulations are compared. The 
comparison is read vertically as ;nput followed by response. The larger eigenvalue A2 is 
kept constant, while the smaller eigenvalue Ai has the value 0.5 [53]. In these three Figures 
6.7-6.9, a* = A,-. 



2JT amplitude modulated pulses 
Input 

N-2 S O L P O N :N = 5 C , 02 = S. R | « l l 

0 . 2 0 . 140. BO. 

Response (Mz) 

S imulat ion 
Um2 5BL1TOM IN-50 n ? . 2 . « l ' I 
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-*s - * -
-1500. -1000. -50Dv - 0 SBO. ten: . ISCG 

MERTZ 

Experiment 

tSM IMI 

"=2 SOU TON PROJECTION (N=SB. > U 1 . .2=2) 

Figure 6.8: Experimental measurements and numerical simulations are again compared. 
The only difFerence with Figure 6.7 is the choice of the lower eigenvalue Xi for V, which is 
now 1[53]. 
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2* amplitude modulated pulses 
Input 

N.J 5C-1T3N '«l»50. H2 -S . R l . 1 . 5 ! 

C. 2 0 . i)D. 6 0 . 

T]HE 

Response (M z) 

S i m u l a t i o n 
h>2 5OLIT0N IH-5Q. H2-2. H l . t .51 

- lS n O. -1000. • -50C. ." 0 • 500- - 1030- 1600. 

HEHTZ 

Experiment 

\ / 

i i i • > • i / • ' • i i i i • i v 7 1 • i i i i i i i i 
issa nit \ saa • -saa/ -laaa -isaa 

N--Z SOLITOH MOJCCTIOH (H»SB, . l i l . S . . 2 = 2 ) 

Figure 6.9: Experimental measurements and numerical simulations are again compared. 
The only difference with Figures 6.7 and 6.8 is the choice of the lower eigenvalue Ax for V, 
which is now set to 1.5[53]. 
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We return to the first parametric variation (6.26), only now using the N=3 soliton 

solution (obtained using the procedure given in (6.20)-(6.25)). Explicitly, by clioosing 

A»=i and again <f>i=0 (i=l,2,3), we find that 

180 cosh(6z - 72*) + 480 cosh(4z - 208?) + 120 cosh(8x - 224i) 

+ 1620 cosh(2z - 56l) + 300 cosh(2x - 152?) + 960 cosh(4x - 64?) 
Vup = (6.28) 

+ 360cosh(6Z - 216?) + 12 cosh(10Z - 280?) + 600 cosh(2z" - 8f) 

+ 1512 

and 

Vdô n = cosh(6x - 144?) + 10 cosh(72t) + 15 cosh(2x - 80t) + 6 cosh(4z - 136?) (6.29) 

so that 

K(x\F) = - 6 0 - ^ 2 - (6.30) 
v dovjn 

Exactly analogous to Figures 6.1-6.3, we show in Figures 6.10-6.12 the response ob­

tained from 2TT, 4TT, and 6TT N=3 soliton amplitude modulated rf pulses. We begin to see, 

by using these Afi=i (i=l,...,N) solutions of the KdV equation as 2TTN amplitude modulated 

rf pulses, a second feature of this connection between the KdV equation and rotations. 
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Figure 6.10: The case N=3. Each of the 50 wave profiles in the three soliton solution 
V(s), ?=constant in the top plot is used as an amplitude modulated 22L pulse in the 
bottom plot, where the z component of the magnetization is displayed as a function of ^ 
after the pulse[53]. 
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Figure 6.11: The case N=3. Each of the 50 wave profiles in the three soliton solution 
V(7), 7=constant in the top plot is used as an amplitude modulated 4?r pulse in the 
bottom plot, where the z component of the magnetization is displayed as a function of ^§-
after the pulse[53]. 
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Figure 6.12: The case N=3. Each of the 50 wave profiles in the three soliton solution 
V(^), F=constant in the top plot is used as an amplitude modulated §TT_ pulse in the 
bottom plot, where the z component of the magnetization is displayed as a function of gr­
after the pulse[53|. 



In case you have any doubts about all this, we continue with the N=4 soliton potential. 

A laborious computation 1 yields 

980 cosh(18S - 792?) + 17640 cosh(163J - 736?) 

+ 61740 cosh(l4x" - 584?) + 88200 cosh(14x - 728?) 

+ 548800 cosh(l22 - 576?) + 54880 cosh(l2x" - 288?) 

+ 196000 cosh(l2T - 720?) + 326200 cosh(102 - 280?) 

+ 326200 cosh(10x - 520?) + 1543500 cosh(10x - 568?) 

+ 220500 cosh(l02" - 664?) + 123480U cosh(8x - 224?) 

+ 3322480 cosh(8x - 512?) + 112000 cosh(8x - 272?) 

+ 480200 cosh(6S - 72?) + 5078640 cosh(6S - 216?) 

vuP = + 283500 cosh(6x" - 456?) + 1200500 cosh(6S - 360?) (6-31) 

+ 1715000 cosh(6x - 504t) + 2242240 cosh(4x - 64?) 

+ 12348000 cosh(4Z- 160?) + 2609600 cosh(4x" - 208?) 

+ 196000 cosh(42 - 304?) + 2609600 cosh(4x" - 448?) 

+ 24500 cosh(22 + 232?) + 16420880 cosh(2x - 8?) 

+ 2283400 cosh(2T - 56?) + 15435000 cosh(2x" - 152?) 

+ 2283400 cosh(2x- - 296?) + 1543500 cosh(2x - 440?) 

+ 2401000 cosh(288?) + 5488000 cosh(144?) 

+ 15934800 

1 Impossible without the help of vaxima, the Vax version of the symbolic manipulation program MACSYMA! 
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so that 

7 cosh(lGx - 400i) + 70 cosh(8x - 392i) 

+ 315 cosh(6S - 3361) + 490 cosh(4S - 184f) 
Vdown = (6.14) 

+ 245 cosh(2z + 1121) + 350 cosh(4z - 328i) 

+ 1225cosh(2x"- 176t) + 50cosh(120i) 

V V{TB,T) = - 4 2 0 0 - ^ - (6.15) 
vdtmin 

This time we will skip all the 2irk (k=l,2,3) pulses, and just show in Figure 6.13 the 

N=4 87r amplitude modulation.3 In case you can't see 4 solitons in the top plot in Figure 

6.13, we compute the N=4 solution out to a longer time (t = ± .1) in Figure 6,14. I hope we 

all agree now that the 27rN amplitude modulation (6.19) is the proper NMR generalization 

of the 2ir hyperbolic secant pulse of self-induced transparency[41]. 

2 The N=3 and N=4 soliton evaluations were performed on a Cray X-MP computer, thanks to helpful 

assistance from Ron Huesman and Bernard Mazoyer. 
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Figure 6.13: The case N=4. Each of the 50 wave profiles in the four soliton solution 
V(s), I=constant in the top plot is used as an amplitude modulated 8]L pulse in the 
bottom plot, where the z component of the magnetization is displayed as a function of gr­
after the pulse. 
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Figure 6.14: The case N=4. Each of the 50 wave profiles in the four soliton solution 
V(x), f=constant is computed out to a longer (KdV) time t — ± .1- One clearly sees four 
solitons. 
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6(f) (Soliton) reflections 

In trying to understand the KdV-Bloch connection, some recent discoveries have been 

made. In particular, one of these discoveries will now be described in detail, since it will 

not only resolve some of the difficulties apparent in the previous sections of this chapter, 

but can also a posteriori help everyone understand how the connection was made in the 

first place. For this, I have to thank all of those who were willing to lend a critical ear to 

my exhortations in the past few months. 

Let us recall the goal. We would like to find an inverse for the Bloch Transform B, 

since we would then be able to specify the necessary temporal rf pulse profile to achieve 

a given final magnetization profile versus resonance offset, and hence, via rotating frame 

arguments, spatial position. In trying to find a suitable candidate for B~x, and simultane­

ously answering the question of why the linear theory worked so well (see chapter 3) for 

this nonlinear map B, a way of rewriting the Bloch equations in second order form (similar, 

by replacing t with 5, to a "time-independent" Schrodinger equation) appeared. At this 

point, the KdV-Schrodinger connection became visible, as well as the hope of using this 

scheme to invert 8. 

A second consideration was the remarkable fact about the 2ir hyperbolic secant pulse 

of self-induced transparency[41], and so eventhough one should really solve the Riccati 

equation implied in (6.15) to get wi from V, one really wants to neglect the imaginary part 

of V because of (6.27). Moreover, neglecting the imaginary part of V side-steps the issue 
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of complex potentials, and so non-conservation of probability, and all that this implies (a 

point we shall soon return to). 

The crucial observation is that one should be looking at | , not g, for t large in (6.17) . s 

Therefore, on the one hand 

£ „ _ - ^ (_!)» (6.34) 

(for u/i a 27rk pulse), but also, from (6.16), one has that 

I tA ... 7' (6.35 

g ae~tXt + betXt v ' 

Hence, using the definition of </> in (6.10), 

_ M + i M , _ «•<»-<*» ( 6 3 6 ) 

and so one really can write the reflection and transmission coefficients in terms of M( Au/,T). 

A moment's reflection reveals that, for large t, the magnetization components obey 

Ms{t) = !^(e*(»**+«) + «-«(»*+•>) 

Mw(t) = ^ (e ' ( 2 A ' + «) - «-*(»»+•)) (6-37) 

M,(t) = m, 

for arbitrary phase factor a. Thus using (6.36) 

, m. + ^H.(e'(3>'-H»)-e-«a»«-H»)) 

(6.38) 
a«-**«-fceat 

31 acknowledge E.H. Wichmann for this observation. 
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Cross-multiplying and identifying terms, one obtains the following set of six consistency 

relations 

^b = - ^ 6 

^a = ^ a 

mMb = b 

mMa, = —a 

" * * = - ^ 

- ^ a = ^ a 

(6.39) 

Moreover, equation (6.9) must also be obeyed. 

There are thus only two consistent cases. 

case 1 a = 0 and m, = M, = 1 

case 2 b = 0 and m, = M s = -1 

We deal with each of these cases in turn. 

Case 1 corresponds to a "super-radiant" potential in the scattering problem above 

(see (6.16)), physically allowed when V is complex. Yet we can eliminate this possibility 

quite easily without having to consider such complex V. Recall that in the rotating frame 

Bloch equations (2.24), the motion of the magnetization is a precession about the effective 

applied field. In case 1, the initial condition M,=-l evolves into M , = + l (infinite population 

inversion bandwidth). However, this is inadmissable for very large values of Au, since both 
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the effective magnetic field and the magnetization M point along the z direction, and so 

the precession is trivial. We can therefore dismiss case 1 as unphysical. 

For case 2, we have exactly the 27rN pulses previously considered. Miraculous as this 

case is, it is now even more so, given that this entire formulation can only work in this 

case. 

This computation serves to close the book on this inverse scattering approach to in­

verting 8. One is simply unable to invert 8 in general this way. However, it still does 

not destroy the author's, and many other people's, conviction that an inverse for 8 exists 

somewhere. Yet these soliton refiectionless potentials have cleared up the special behavior 

observed in self-induced transparency, and in providing an infinite number (the N of 27rN) 

of an infinite number (| t \ < c) of pulse profiles, have demonstrated that, at least in one 

case, albeit perhaps a useless one for medical imaging purposes, one can indeed invert 8. 

Specifically, if one asks that the spins return to equilibrium after the pulse independent of 

resonance offset, one can invert 8 in this particular case to find the 2ffN pulses developed 

here. 



7. Conclusion 

"The miracle of the, appropriateness of the language of 
mathematics for the formulation of the laws of physics is a 
wonderful gift we neither understand nor deserve™ 

E.P. Wigner 

The theoretical analysis in t .a preceeding chapters has been confirmed experimentally 

on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Imaging Facility. 

As the true worth of a theorist's ideas (at least in physics) is in their experimental reality, 

we have been fortunate indeed to have considered a simple physical system, namely that 

of isolated spins in applied magnetic fields. Nevertheless, the quatum nature of these spins 

is a nonlinear one, and so the problem is difficult. We have further been fortunate to have 

had a series of (divine?) inspirations conspire to demonsrate the feasibility of reaching our 

goal of localized NMR measurements. But a difficult problem still remains, that of taking 

the demonstrated principles here and implementing them in a concrete medical imaging 

situation. 

On another level, Wigner's words above well describe the findings in this thesis. We 
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began by asking the question: 

1. What are the nuclear spins doing? 

In answer to that question, we found that the Bloch equations are the fundamental laws 

governing the behavior of nuclear spins in applied magnetic fields. But we are particularly 

interested in a prescribed set of magnetic fields (namely those in current NMR biomedical 

imagers), and wish to achieve sharply localized spin excitation. 

However, the Bloch equations, when viewed as a transformation from rf input to mag­

netization response, are a nonlinear mapping. One manifestation of this nonlinearity is 

easily visualised as follows, by considering the following four experiments: 

(a) Perform a simple one pulse experiment, calibrating the pulse duration to 

yield the maximum signal output (a 90" pulse). 

(b) Double the energy in the pulse (a 180" pulse). No signal!! 

(c) Triple the energy in (a) (a 270" pulse). Again a maximum signal, but 

180° degrees out of phase with the signal detected in (a). 

(d) Quadruple the energy in (a) (a 2n pulse). No signal again! 

The quantum-mechanical explanation is in terms of coherence [54], and in hindsight 

our problem really concerns a basic question in quantum mechanics. This question is the 

one of preparation of desired excited spin states. It is a happy accident that we are able 

to visualize this problem in terms of the trajectory of a classical vector M on the sphere 
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S 2 ; and so in trying to find the nonlinear modes of (localized) rf excitation in biomedical 

NMR, it is no accident that we arrived at a set of linear modes with connections to the 

Uncertainty Principle[l4] and nonlinear modes having many physical manifestations[48]. 

By formulating the Bloch transform, and hueristically solving by finding two sets of rf 

field temporal modulations (prolate spheroidal wave functions) that did the job so well, 

we arrived at a second, deeper question: 

2. Given that the Bloch Transform is a nonlinear transformation, why did the 

linear theory (i.e., pswf) work so well? 

An exploration of the invertibility of the Bloch Transform yielded even more spectac­

ular results. At this step, we attempted to find an inverse for the Bloch Transform by 

reformulating the problem as a inverse scattering problem in one-dimensional quantum 

mechanics. The special solution found here, the N-soliton pulses, have some remarkable 

properties as rf temporal modulations, and given their amazirg behavior in a similar prob­

lem in coherent optics[41,55], one is tempted to say that we have reached a deeper level. 

Yet an inverse for the Bloch Transform still does not exist! 

The analogy here to the stumbling drunk - who drops his key on the way home in the 

dark and searches under the lamppost to find it (it is the only possible place to look!) - is 

unavoidable. Indeed, in stumbling upon this miracle, I am still in awe. Inspired by recent 

results[56] showing a connection between the pswf and the KdV soliton family, we are left 

with a final question: 
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3. What is the connection between KdV, pswf, and the Bloch equations (BE)?, 

or what is the nature of the commutativity of the diagram below? 

PSWF / X 
KdV — — — — - • - • B E 

Simultaneous to these theoretical developments, we have had the pleasure of experi­

mentally realizing some of these results (in collaboration with M. Robin Bendall at Oxford 

Research Systems, Mirko Hrovat at M.I.T./ Francis Bitter Magnet Lab, and at the LBL 

NMR Imaging Facility). NMR is an experimental science, and it has been quite an educa­

tion getting the spectrometer to behave like the equations in my books. It would not have 

been possible without the able assistance of Mark Roos. 

I cannot close without a tribute to my advisor, Alberto Griinbaum. He is truly a giant 

of computation, capable of finding "good* mathematics almost anywhere. It is a credit 

to his practical genius that he chose medical imaging in which to find prolate spheroidal 

wave functions, KdV solitons, and other such miraculous creatures. 
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