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Abstract

The basic physical problem of NMR spatial localization is considered. A practical use of
NMR in biomedicine is the tn vivo spectroscopic study of various “biological” nuclei located
in diseased tissues in the body. In order to quantitatively study these diseased sites, one
must first solve the problem of adequately 'ocalizing the NMR signal at the diseased region
of interest. We formulate this as an inverse problem, in which the achievement of localized
excited spin populations is the “known” goal, and one seeks to “invert” these data to find
the appropriate magnetic field configurations to yield this desired result.

As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic
fields, a theoretical study is undertaken to answer the question of how to design magnetic

field configurations to achieve these localized excited spin populations. Because of physical



constraints in the production of the relevant radiofrequency fields, the problem factors into
a temporal one and a spatial one.

We formulate the temporal problem as a nonlinear transformation, called the Bloch
Transform, from the rf input to the magnetization response. In trying to invert this trans-
formation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform)
modes of radiofrequency excitation are constructed. The spatial problem is essentially a
statics problem for the Maxwell equations of electromagnetism, as the wavelenths of the
radiation considered are on the order of ten meters, and so propagation effects are negligi-
ble. In the general case, analytic solutions are unavailable, and so the methods of computer
simulation are used to map the rf field spatial profiles.

Numerical experiments are also performed to verify the theoretical analysis, and ex-
perimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging
Spectrometer at the LB NMR Medical Imaging Facility. While no explicit inverse is con-
structed to “solve” this problem, the combined theoretical/numerical analysis is validated

experimentally, justifying the approximations made.
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1. Introduction

“The goal to be put above everything else 1s an open world
where each nation can assert itself solely by the extent to which
it can contribute to the common culture and help others with
experience and resources.”

N. Bohr

An important problem in NMR medical imaging, now that the first generation of
machines has proven so succe:sful, is to extend the diagnostic value of NMR in medicine
to in vivo spectroscopic studies. A prerequisite to quantitative selective region NMR
spectroscopy is the achievement of reasonable spatial localization. We consider, as a model,
a patient with a small tumor deep inside his parietal cortex (Figure 1.1). The medical
community would like to use NMR not only to locate the site of the diseased tissue, but
also, using spectroscopic techniques, to infer the severity of the diseased state (by perhaps
studying the time course of the tissue metabolism). In order to successfully apply NMR
imaging methods in this case, we must first solve the problem of knowing that the NMR

signal we detect really comes from the region we wish to study.



-Surface Coil

Figure 1.1:

Surface coil measurement of a brain tumor.

The quantum mechanical nature of NMR is most evident in the microscopic description
of nuclear magnetic moments (spin angular momentum). It is these moments in the pa-
tient’s brain tumor we wish to excite, while leaving the spins outside the region of interest
at equilibrium. Thus, the problem of spatial localization in NMR comes down ultimately
to the basic question: What are the nuclear spins doing?

To answer this question, we must consider the Bloch equations, a set of three coupled
first order ordinary difierential equations (ODE) written down by Felix Bloch in 1946(1].

These equations phenomenologically describe the motion of a magnetization vector M,



a macroscopic sum of these elementary nuclear spin moments, under applied magnetic
fields. In the context of present-day NMR medical imaging equipment, we can therefore
consider what possible magnetic field configurations will produce for us, in solving the
Bloch equations, the desired localized excited spin populations.

As we have now stated the problem in basic physical terms, it is appropriate to consider
a clever solution to a problem of a similar kind, which enabled the development of NMR
biomedical image formation to begin ir earnest. This problem is the one of selecting a two-
dimensional planar surface through the patient in which to perform imaging experiments,
and is usually referred to as the problem of slice selection (or selective excitation). A
truncated 7 /2 sinc amplitude modulated rf pulse in the presence of a main field gradient

is the well-known solution(2], and it serves well as point of departure for the present

investigation.

The twov assumptions made in “solving” .that problem, that

(1) although the sinc function lives on the line R and not an interval [-T, T},

the tails of the sinc don't matter much

and that

(2) for a 7/2 pulse in a main field gradient, solving the Bloch equations is

basically equivalent to performing a Fourier Transform|3|

are removed in this analysis. Not anly does this lead to a solution of the problem for =



pulses, but in fact leads to a clear formulation of the problem in full generality. Loosely

speaking, we can phrase the problem in the following way:

Is it physically poscible, in a given time £,
(experimentally on the order of a tew milliseconds) to achieve any desired

final configuration of spins as a function of the relevant £eld strengths?

The field strengths considered are the “standard” ones of current NMR biomedical ima zers,
namely linear main field gradients and the rf coil field.

The ways out of (1) and (2) above both require rigourous mathematical care, but both
are too “pretty” not to comment. The use of prolate spheroidal wave functions as rf field
modulations is, on the one hand, just another example that demonstrates ther tremendous
versatility and practical importance[4]. On the other hand, as in (2), the Bloch equations
are not the Fourier Transform, and their utility in this nonlinear analogue is somewhat
puzzling. Likewise, the use of the rotatior group, while not surprising if one accepts the
Bloch equations, still poses some deep questions about symmetry and natural phenomena.

A second consideration in Figure 1.1 is the use of surface coils as rf field generators.
While such coils provide a gross, first order spatial localization to the region of interest,
there are also problems with such coils. In particular, in reference to the rf field contours
from which one excites the spins, they are not only stronger near the coil, but also close back
on the coil. Thus measurements resulting from the use of these coils are contaminated by

significant surface skin and subcutaneous tissue, and so quantitative in vivo spectroscopy



suffers as a result. Ideally (i.e., neglecting S/N considerations), we would like to excite
only nuclei at the diseased site, so that the use of localized coil= clearly must be combined
with other techniques, if we are to reasonably attain our goal.

The structure of our approach is now clear: after a brief description of the Bloch
equations (suitably adapted for medical NMR), we treat both the problems of main field
strength linear inhomogeneity and rf field strength inhomogeneity from theoretical and
numerical points of view, keeping in mind that we “kmow” what finul configurations for
the tn vivo spin populations are needed, and we wish to design the magnetic fields both
temporally and spatially to achieve these goals. After constructing twe set of linear modes
of rf excitation, an exploration of a full answer to the question asked above will lead to the
discovery of true “nonlinear modes of rf excitation” with rem.irkable properties. Finally,

the results are then experimentally verified at the LBL. NMR Medical Imaging Facility.



2. The Medical Imaging Bloch

Equations (MIBE)

2(a) An application of NMR to biomedical imaging

“Profundity is the next word after the Toran.”
E.L. Hahn

We are concerned with the Bloch equations in the context of medical imaging. Since
we desire to only prepare localized excited spin populations for imaging/spectroscopic
experiments, we shall not be concerned with the relaxation parameters T; and T3. We
justify neglecting these relaxation parameters on two grounds: the time required to exite
the spins in the region of interest had better not take too much time, as we then wish to
perform imaging and spectroscopic measurements (and so still want to have enough of a
signal left to do so). The second reason is one of mathematical expediency: by neglecting

the relaxation parameters, the orbit of the undamped precesing magnetization lies on the



surface of the unit sphere S? in R?, and so precession can be described by rotation group
operators. We therefore specifically address the physical problem of how (in theory and
practice) to excite only those spins in the spatial region of interest.

We begin with a brief derivation, fror quantum mechanical first principles, of the Bloch

equations of NMR, as written down by Felix Bloch in 1946{1] in the component form:

M.(t,x) =(M, B, - M, B) - %
M,(t,x) =4(M, B. - M. B,) - (2.1)
M,(t,x) = 4(M; B, — M, B;) + YezMa
Our derivation will recover the undamped motion of M, as the relaxation phenomena are
irreversible, and thus not explicahle in terms of a Hamiit~zian describing free, noninter-

acting spins. This derivation is of interest for two reasons:

1. The behavior of nuclear spins in applied magnetic fields is
indeed governed by the laws of quantum mechanics.

2. The rotation group plays a central role.
The classical energy E of a magnetic moment x in a magnetic field B is
E=-u-B (2.2)

The quantum mechanical treatment of spin angular momentum|5,6] begins with a similar

Hamiltonian

¥=-u-B (2.3)



but where ¥ and yu are now operators and B is the scalar magnetic field.

In computing the time rate of change of the expectation value of the spin magnetic

moment
<y>=/¢'y¢ (2.4)
we use the fact that ¢ satisfies the Schrodinger equation
i = Ny = (—u-B)y (25)
so that ¢ satisfies
—ihy* = ¢'H = ¢*(—p-B) (2.6)

We thus compute (using (2.5) and (2.€))

<p>=[¢uy+ [ g

(2.7)
=% ¥ [(6-B)p — u(u-B)lY
But the spin magnetic moment u is proportional to the angular momentum J
u = ~4J = ~hl (2.8)

(7 is the gyromagnetic ratio). The dimensionless angular momentum operators I generate

the rotation group SO(3), and so satisfy the commutation relations

Iz L)) = I, (cyelic) (2.9)



In this way, the calculation for the components (say y,) in (2.7) becomes

<Iil> = %I ¢. [I"Ball’x] V4

=1 . 1
,-ﬁf lb ([I‘n”‘z}Bz + [I‘n”‘v]Bv) 'p (2.10)

]

[ ¢ (iBapy — iByps) ¥

=v<u x B>,
This equation has precisely the same form as the Bloch equations (2.1) (neglecting relax-
ation), when we realize that the bulk ma.gnetizaltion M is realy just a “sum” of these small

moments
1 X
M = -ﬁz (vt = u7) (2.11)
=1
where N is the total number of nuclei, and (u*, u~) are the niumber in the (ground,
excitea) states, respectively.
A brief historical comment is relevant here. By neglecting the relaxation parameters
T, and T,, the undamped Bloch equations are really Euler’s equations|7] going back at
least to the 1770’s, and so our tradition of calling them the Bloch equations is somewhat
of a misnomer. That is not to slight Felix Bloch; but his principal contribution in 1946
in developing these equations was precisely to describe the exponential decay of the NMR
signal observed. It is more our analysis, in neglecting T, and T (and so describing the
evolution in terms of rotation operators), that is to blame.
While the basic magnetic field configuration of a large DC z-field B, and an oscillat-

ing rf x-y plane field B, are standard components of an NMR medical imaging system|8],
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there are two principal differences in medical NMR compared to the usual experimental
configurations. The first is the imposition of linear gradients G in the large DC field B,.
The second difference is in the use of specially designed rf coils to produce B, fields with
spatial inhomogeneity (we shall soon describe their purpose). We illustrate this experi-

mental arrangement in Figure 2.1.

Figure 2.1:

Experimental configuration of the biomedical NMR experiment.

Therefore, from the Bloch equations (2.1), we make the modifications as follows. In

addition to neglecting the relaxation terms T; and T; in (Z.1), we consider a total applied

field B of the form

B = (B, + G-X) 2 + B(t,x) [cos (wt + ¢(t))2 + sin (wt +¢() 3]  (2.12)
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(for x € R%) to reflect the imposition of linear gradients and the spatial modification of
the rf field, assuming B, to be a slowly varying function of time t.
We briefly remark that the laboratory to rotating reference frame transformation(9] is

equivalent to the change of variables{10]

M; =m, cos wt — m, sin wt
(2.13)
M, = m. sin wt + my cos wi

bringing us from the lab to our preferred rotating frame picture, where now the magnetic

field has the form

B =(w-w, + YG:X)2 + w, [cos ¢ & + sin ¢ P (2.14)

and w; = vB;. With these modifications, and the imposition of the resonance condition

(w = —vB, = w,), the medical imaging Bloch equations (MIBE) are written

M=Mx+B =AM (2.15)
or, in components,
M, ) 1] Aw —w); 8in ¢ M,
d
|l M| = —-Aw 0 wy cos ¢ M, (2.16)
M, J w: 8in ¢ —w, cos ¢ 0 M,

where Aw = 4G - x is the frequency offset. What makes this set of equations not trivially
solvable is the fact that the matrices in (2.16) do not commute except in special cases,

such as the following.



12

We now explain the purpose of linear gradients in the main field B,. If we consider the
application of only the static z field B,, we solve the Bloch equations (2.1) in this trivial

case (neglecting relaxation) as

M. (t) = M cos w,t — M, sin w,t

M,(t) = M¢ sin w,t + M, cos w,t (2.17)
M.,(t) = M;
We see therefore that the magnetization M precesses at the anguiar frequency w, = —1B,,

so that frequency of precession is proportional to applied field strength. The application
of linear gradients in B, allows for spatial differentiation by the proportionality of distance
to field (along the applied gradient direction), and thus to frequency. One is then able
to determine the relative quan.ity of spins at a given position by examining the signal
strength at the appropriate frequency.

The effect of inhomogeneous B, fields is best visualized in the case of the on-resonance
rotating frame for a constant amplitude B; field (i.e., (2.16) with Aw = ¢=0 and w(t) =
wy), another case that is trivially solved. The magnetization vector rotates in the y-z
plane about the x-axis effective field B,, and the total accumulated phase (flip angle) in
a time ¢, is just wyt,. In this way, we see that the flip angle achieved is proportional to
the strength of the B, field. As only the x-y magnetization produces observable signal, in
an inhomogeneous B; field, one can adjust the pulse duration to achieve a x/2 flip angle

in the desired spatial region (equivalently region of B, field strength) to obtain maximum
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signal strength there.
In equation (2.12), there is a further simplification in the B, field dependence, which
factors

By(t,x) = g(t) f(x) (2-18)

The factor g(t) is called amplitude modulation, and appropriate choices here will bring
us into the special class of “time/band limited” functions. The term f(x) is due to the
spatial configuration of the coil windings in the rf coil, and becarse NMR imagers operate
at MHz frequencies (so that the correspording wavelength is roughly ten meters), the

problem of designing appropriate inhomogeneous B, fields becomes a problem in static

electromagnetism.

2(b) The (relevant) theory of the rotation group

“It seems best to fizx the underlying general concepts with
some precision beforehand, and to that end a little mathe-
matics 18 needed, for which I ask your patience.”
H. Weyl
We begin with a brief account of the quantum mechanics of a spin 1/2 system in
a static magnetic field B. The Hamiltonian (equation (2.3)) is easily “solved”: the two

eigenstates (®,, ;) correspond to the (lower,higher) energies (-uB, +uB) where the spins

are aligned (along,against) the direction of B. In this way, an arbitrary state of the system
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® is described by a (complex) linear combination

d = C1 Ql + e 8, = (a.+bz) Ql + (c+dz) Qz (2.,19)

restricted by the normalization
8P =]aa]* + |eaP=a> + B + S + & =1 (2.20)

The quantum mechanical states of the system are thus naturally put in one-to-one corre-

spondence with the points of the unit sphere 3 in R*.

The mathematical fact of the one-to-one correspondence between a set of four real

numbers satisfying (2.20) and the group SU(2) of unitary unimodular 2 x 2 (complex)
matrices

a+bi e+di
u = (2.21)
—c+di a—b

is well known[11}, as are the Pauli matrices

01 0 —s 1 0
oy = , Oy = y O = (2.22)
10 it O 0 -1
(the three orthonormal basis vectors for the Lie algebra su(2) of traceless hermitian 2 x 2
matrices which generate SU(2) are io).
A further elementary fact of quantum mechanics is the physical reality not of the wave

function @ but rather of its absolute square (2.20) (as the probability of the spin system

to be found in the state &). But this implies that the state u (2.21) and the state -u both
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have the same observable consequences. Hence, while the Lie group SU(2) (the quantum
mechanical rotation group), and its corresponding Lie algebra su(2), are the natural choice
as representation for a spin 1/2 system, it is really the group SO(3), obtained from SU(2)
by identifying antipodal points on S3, that is the rotation group of consequence in NMR.
The rotation group SO(3) is also generated by a three-dimensional Lie algebra, and this
algebra is precisely the set of real skew-symmetric 3 x 3 matrices[11].

We exhibit a standard basis for this algebra

ooo\ 00-1\ 0 10
L=]0o o0 1{,k=|o0o0 o0 ]| ,L=1|-100 (2.23)
0 -1 0, 10 0 0 00

and immediately draw attention to equations (2.16), the MIBE.
We have now a very simple picture of the MIBE. Equations (2.16) state ihat the
infinitesmal time rate of change of the magnetization in applied magnetic fields is just a

sum of the generators of the rotation group SO(3) for the imposed field directions applied

to the magnetization itself

M=[Avl, + w; cos ¢ I, + w; sin ¢ [,| M (2.24)

The integrated motion of this spin vector M is thus a rotation about the instantaneous
applied magnetic field.
The powerful insight that this viewpoint (2.24) provides is best illustrated with a brief

example, which exploits the knowledge of rotations of rigid bodies in three dimensions.
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We choose this example not only to illustrate the usefulness of the rotation group point
of view, but also because we shall, in a later secticn, be interested in understanding phase

modulation of the rf field.

2(c) Phase modulation is frequency modulation

In considering the possibilities of phase modulation, it is important once again to

review the situation vis-a-vis the Bloch equations. The rotating frame MIBE read

M=Mx4B =AM (2.25)
or, in components,
M, f Aw —w, 8in ¢ M,
d
M| T —Aw 0 wy co3 ¢ M, (2.26)
M, w; 8In ¢ —w; cos ¢ 0 Af,

We notice, however, that since the resonance offset term Aw is only 2 function of position

X, we can write

M=AM
(2.27)
= C(x)M(t,x) + D(t,x)M(t,x)
where
Clx) =40wl, (228)

D(t,x) = wi(t,x) [cos ¢(t) I. + sin ¢(t) I}
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By writing the matrix A as a sum in this way, we can immediately integrate the time-

independent piece C. By defining a pseudo-magnetization
N =M (2.29)

we see that N satisfies

N = [-Ce© + e©(C + D)|M

= ¢ CDeC N (2.30)
= KM
But it is easily seen that
e = R,(Awt) (2.31)

(R:() is the operator of rotation around the z axis by angle a) so that K is in fact jusi
conjugation of D by R,

K = ¢t D &

(2.32)
= R, D R;!
Hence, because D is a linear combination of I, and I,
D = w(t,x) [cos ¢(t) I. + sin ¢(t) L] (2.33)
the conjugation by R, merely produces a phase shift
Ad = Auwt (2.34)

Thus, the constant (in time) frequency modulation Aw produces a linear phase shift (2.34)

so that

K = w(t,x) [cos(é+ A¢) I, + sin(¢+ Ad) L] (2.35)
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The general case is now clear. An arbitrary phase modulation ¢(t) is the result of a

frequency modulation Aw(t)
t
#(t) = /0 Aw(t') dt' (2.36)

(i.e., to phase modulate by ¢(t) one frequency modulates by d¢(t)/dt). One comment
about the experimental relevance of frequency modulation: in medical NMR there are
two types, one space-dependent and the other independent of position. As seen above, the
imposition of linear gradients (the on-resonance MIBE) produces the linear phase distortion
(2.34) at any point in the sample. The second type of frequency modulation comes from
off-resonance rf irradiation (the (w—w,) term in (2.14) obtained in the transformation from

lab to rotating frame) and is independent of position (neglecting rf attenuation effects).



3. Slepian-Hasenfeld-rotation

group-pulses (SHARP)

3(a) The “time/band limited” problem

“Band-limited functions possess many properties that stem
from their analyticsity. However, as analyticsty is fragile, not
all of these persist under small perturbation. If we require that
our conclusions remasn stable when functions are determinable
only with given precision, we are led to problems in which the
time-and-frequency-limiting operator enters naturally.”

H.J. Landau

The true paradox in the “time/band limited” problem arises out of a simple contra-
diction: on the one hand, using a square-integrable function f(t) to describe the behavior
of real physical systems, one is necessarily led to believe that f is of finite duration (f has
compact support) as there is no physical response when the system is inactive. On the

other hand, its square-integrable Fourier Transform
1 (T .
= —— dt —twt (3 3.1
Fo) = 2= [ dt e 10 (1)

19
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should also be frequency limited, as physical devices - vocal chords, membranes, oscillators

- all have upper limits on the rate at which they vibrate[12]. The inverse for (3.1) is thus

f(t) = \/Lz—w [ ‘;due-‘”‘ F(w) (3.2)

The contradiction arises in considering the mathematics of the Fourier Transform, where
extending t to the complex plane in (3.1), the requirement that F(w) be bandlimited
(F(w) = 0 when | w | > ) implies that f is analytic (actually entire) and hence cann.t
vanish on any open set without being trivially zero everywhere.

This contradiction is well known to physicists, and has been reformulated as the Heisen-
berg Uncertainty Principle of quantum mechanics. An elegant resolution was found by
some clever people - Slepian, Pollak, and Landau - at Bell Labs in the 1960’s[13-16].
Specifically, let f be an arbitrary function supported on some interval [-T,T| on the real
line R. To handle the problem of concentrating its Fourier Transform Fi on the interval

[-02,0], one needs the singular value decomposition of the map
E = OQFT (3.3)

(where ,T are the operators of restriction to their respective intervals in R). To analyze

this problem, the eigenvectors of

E'E = TF1QFT
(3.4)
EE* = QFTF'0

are needed. The heuristic picture is
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—_— - ~
— t 1 + ©
=T T -Q Q
Sketch 3.1
The operator E*E is an integral operator of convolution type
. sin {1(¢
£es = [ B rgd = a0 (3.5)

and is the time-and-frequency-limiting operator referred to above. A mathematical “acci-

dent” occurs: a second-order differential operator

_d 2 2
D= —(T*-#)—

d
dt

- n*? (3.6)
(with simple spectrum) commutes with E* E, making the computation of the eigenvectors
feasible. As the differential operator arises from separating the Helmholtz scalar wave
equation in prolate spheroidal co-ordinates, the eigenfunctions are appropriately named
prolate spheroidal wave functions (pswf).

This accident is very useful for‘ explicitly evaluating the eigenfunctions, a task which

we shall soon be concerned with. Since E*E commutes with D in (3.6), and D has simple

spectrum, they share the same eigenfunctions. The computation of the eigenfunctions of
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1, however, is possible. When we discretize the problem, this will amount to numerically
computing the eigenvectors of a particular tridiagonal matrix, and a simple numerical
routine exists for precisely this task[17].

We now consider an NMR analogue to this problem, in which the two domains of time
and frequency are present, although the map connecting them is no longer the Fourier
Transform F, but B, the Bloch Transform. One notices that the above prolate spheroidal

wave functions satisfy two properties of real rf pulses

(1) they live on a finite interval ([-T,T] in this case)
(2) an analogue exists for a discrete version of the left side of

Sketch 3.1, and go the pswi can be found in discrete form

so that in trying to idertify a class of functions to be used as amplitude and phase mod-

ulations in g(t) in equation (2.18), one should not be too suprised to find that the pswf

appear|[10].

3(b) The Bloch Transforin

“We had answered questions we had not meant to ask in opiics,
detection and estimation theory, quantum mechanics, laser
modes - to name a few.”

D. Slepian

In attempting to spatially localize the NMR signal, one must take account of the finite

duration of the rf signal (w;,#). By applying a linear gradient in B,, a linear spatial axis
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(along the applied gradient direction) is made equivalent to a linear frequency axis, so that
the NMR signal is spatially decoded by examining its frequency components. The gradient
field defines a resonance offset

Aw=19G-x (3.7)
so that in localizing the signal, one desires a certain response M(Aw) in some given region
(or bandwidth), while in other regions (ranges of Aw), the magnetization should be unaf-
fected, thereby not contributing to the detected signal. Since the rf input which disturbs

the equilibrium magnetization is a finite time signal, we have the following (heuristic) pic-

ture when a linear gradient is imposed

1 — M(A
~\, U A
-T T alleo

Sketch 3.2

where B stands for the Bloch Transform[18] (the nonlinear transformation from B;{t) to
M(Aw)), and the desired response of M is localized in space (equivalently frequency). Two
points here: the first is that one desires a sharply localized response in order to achieve
sharp spatial localization. The second point is that the linear part of the transformation

B at 0 is F[18], so that the coincidence in Sketches 3.1 and 3.2 is more than accidental. As
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the question of the invertibility of B is still an open one[18], we now proceed to describe a

particular choice of w,(t) and ¢(t).

3(c) Modulations

In the rotating frame on resonance (Aw=0), the rf input can be written
BT = wy(t) [cos 4(t) Z+sin ¢(2) §] (3.8)

where w; (t), ¢(t) are arbitrary finite time signals (called amplitude and phase modulations,
respectively). Frora the analogy made above between Sketches 3.1 and 3.2, we tried pswf
as input to the rf field wy(t) and ¢(t), and numerically solved the Bloch equations to deter-
mine the response as a function of Aw. As the rf field experimentally is a digitally sampled
function, and the numerical simulations are finite step ODE solvers (described below), we
needed a discrete version of the pswi. Fortunately, one exists[19]. In this discrete case, the
simultaneous concentration of a function defined on the integers Z and its dual the circle

S! is considered, and again a heuristic picture looks like

Ff

Sketch 3.3
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This time a symmetric tridiagonal NxN matrix{19] D replaces the commuting second

order differential operator in (3.6)

Li(N —i) j=i-1

. (B2 —i)?cos2nW =1
D(N,W);;

i
—
w
le)
S

FE+YN-1-4) j=i+1

o

li—il22

\

(1j=0,1,...,N-1) and its eigenfunctions are obtained by a fast QR diagonalization|17].

For a choice of w;(t) in the Bloch equations ODE solver (see chapter 5), we began with
the eigenvector of [19] with the largest eigenvalue (the eigenvalues measure simultaneous
concentration). The original plan was to use the pswf to design improved = /2 pulses, since
the map B8 is not too nonlinear there, and so “close to” F. The surprising results for 7 pulses
are shown in Figure 3.1. These simulations, while of real practical value in displaying the
final position of the magnetization M(Aw), offer little insight into the dynamics of the

“slice” formation. In Figure 3.2, we also show some interesting simulations of the time

development of the evolving magnetization.
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Figure 3.1: The three simulations shown (read vertically as input followed by response)
compare discrete prolate spheroidal wave function (dpswf) amplitude modulated (¢(t)=0)

7 pulses to a “standard” pulse(20].
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Figure 3.2: The two simulations shown compare the time development of the “slice” se-
lected in a constant amplitude 7 pulse (top) and a discrete prolate spheroidal amplitude
modulated 7 pulse (bottom). ¢, is the pulse duration, and the z component of the magne-
tization for various times and resonance offset values is plotted, with the equilibrium value
+1 at the bottom of each diagram.
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Strengthened by this success, we proceed to another (looser) analogy based on the
preceeding Sketches 3.1, 3.2, and 3.3. According to the Bloch equations (neglecting re-
laxation), the path described by the evolving magnetization under the influence of mag-
netic fields lies on the surface of the sphere S in R3. One application for the appro-
priately designed rf modulation is a narrowband /2 pulse with constant phase response
(arctan(M,/M.)). From the viewpoint of evolving paths on 52, the desired response is for
all the paths to terminate around a point in the x-y plane. The one-parameter family of
paths is indexed by the resonance offset Aw, whereas all the paths start at the aorth pole
(identified with the equilibrium configuration, independent of Aw).

The results of Slepian, Landau, and Pollak have been extended to the sphere[21]. For
our case, we take the “frequency domain” space to be the rotation group SO{? vith
the sphere S? sitting inside) while the “time domain” becomes the non-negative integers
Z,. The domains of concentration are [0,...,L] and the polar cap in S? of “radius” b
(i.e.; b< cos 8 <1). The analogue for NMR is not quite orthodox, in that while we do
take {0,...,L] to be the domain of a finite time rf digital signal, we do not consider the
simultaneous concentration of a corresponding function on S2. Instead, the polar cap
is viewed as the locus of the end-points of the paths mentioned earlier (an equivalent
description is to consider the polar cap as an e-ball in SO(3) around the fixed rotation of

7/2 around the x axis R.(7/2)). We have the following (heuristic) picture
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Sketch 3.4

Again a tridiagonal matrix D is exhibited

r

b 1i=5=1,..,L+1

DLb)y; = | % j=1,.,L (3.10)

[0 |i-il22
where

A2 — (L +1)?

= —i(i—1), %=1 . 3.11
and the eigenvectors are taken as the phase modulation ¢(t) (w:(t) = constant) in (3.8).

The eigenvector with largest eigenvalue produces the desired constant phase magnetization

response shown in Figure 3.3.



30

1809 amplitude modulated pulses compared to rec-
tangular amplitude modulated pul:e

wy (t)=constant (N=100)

1.

op.ﬁﬂ'l-'-l-"ﬁﬂﬂ

wi (t)=constant (N=100)

1

Resonance Offset (i‘—‘:")

o AL E o HHT HP

Input

“wy(t)=dpswil (N=50)

~ wy(t)=dpswi2 (N=100)

a

. . _— _

. p . ::f kY

rl
1 i,
t
o3 a o "-_._‘
0. g d o .."‘.A
I = - 2. @ T —a.
Time (N) Time (N)

Response (M,)

w1 (t)=dpswil (N=50)

[RE X

Resonance Offset (ﬁ—“l‘,’)

- wy(t)=dpswi2 (N=100)

XY 3

Aw
a
Wy

)

Resonance Offset (

Figure 3.3: The three simulations shown (read vertically as input followed by response)

compare discrete rotation group prolate spheroidal wave function (drg/pswf) phase mod-
ulated (w;(t)=constant) #/2 pulses to a “standard” pulse[20].



31

3(d) A geometric picture of the Fourier Transform

For the preceeding example Sketches, there is a rigourous mathematical treatment that
justifies these heuristic analogies. We briefly describe this group rzpre-~ntational point of
view for Sketch 3.3, to illustrate the mathematics behind these simple pictures.

Considering the (square-integrable) function f defined on the circle §? (i.e., f € L*(8")),

we can Fourier decompos= it into the sum

f() = i f(m)e™ (3.12)

m=—co

where f(m) are the Fourier coefficients in the usual way[22]. The function f is thus de-
composed into its one-dimensional “pieces” }'_(m)e‘"", each “piece” lying in the cnbspace
spanned by ™/, aid so labeled by the integer m. In mathematical language, the circle
group S! is said to have unitary irreducible representations labeled by the m in Z (the in-
tegers), where '™ form the basis functions for the vector spaces on which f is represented.
Thus this geometric view of the Fourier Transform (that it takes functions in L? into its
unitary irreducible pieces) is basically a fact about the geometry of L?, which is a separable
Hilbert space. In Sketch 3.3, then, the other side of the diagram (i.e., the integers Z) are
precisely these integers m, so that sitting above the m** “dot” is really a projection oper-
ator onto the irreducible subspace spanned by the m** eigenfunction. In the case of §!, all
of these representations are one-dimensional, but for example, for S? in Sketch 3.4, these

subspaces are 2L+ 1-dimensional, corresponding to the subspaces spanned by the spherical
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harmonics (i.e., the Y, for m unrestricted and fixed 1=L).

The paradox of “time/band limiting” thus has a very natural geometric interpretation:
restricting the Fourier Transform of a function f to live in a subspace of L? spanned by only
a finite number of unitary irreducible representations (by setting }(m) =0for |m|>M,
how well can one concentrate f? For example, in order to absolutely concentrate a function

on the circle S!, we want

O =60)= 3 ém (3.13)

m==-00

so that we need all the integers m in Z. But how well can we do if we only allow | m | <
M=507 The answer is given by the prolate spheroidal wave function in Sketch 3.3 with
the largest eigenvalue, which is the only eigenvector of the 50x50 matrix supplied in (3.9)

with no changes in sign (and which we numerically compute using the QR algorithm in

[17]).

3(e) On gaussian pulses

“Gaussian pulses should prove useful for the majority of
applications of frequency-selective ezcitation.”
C. Bauer, et. al.

In considering amplitude modulation in the rotating frame, a tempting relationship
between the Fourier Transform and the Bloch equations (with regard to the amplitude

of B,(t)) is usually constructed. A major motivation for the development here of prolate
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spheroidal modulated pulses is indeed based on this fact. Nevertheless, one should not
rely solely on this (assumed) Fourier conjugacy between time and frequency, as in fact,
the NMR system is inherently nonlinear, and these linear attempts towards approaching
a solution to the modulation problem obscure its true nature.

In particular, there are some simple realities of pulse NMR that conspire to force a
re-evaluation of the relevance of the linear and continuous approaches. Recall that the rf
pulses used in the laboratory are finite digital signals, not infinite continuous ones. If the
modulation problem really was time/band limiting in the Fourier sense, then gaussians|23]
(in the infinite interval case) and prolate spheroidal wave functions (in the finite interval
case) would be the right functions to use. The virtue of the use of prolate spheroidal
functions over gaussians is to be found in specifically answering two of these restrictions,
namely finiteness and discreteness of the rf temporal waveforms. We are still left at this
point with addressing the nonlinearity.

In the actual use of these functions in NMR, the simulations and experiments are
ultimately the deciding factor. As the time development obeys the Bloch equations, and
is not the Fourier Transform, one should not expect that either the gaussian or the prolate
spheroidal functions should work optimally, if at all. The fact that they both do well in
simulation, however, suggests that the prolate spheroidal functions would be preferred, as
no additional problems of sampling and truncation are introduced.

We illustrate the comparison in Figure 3.4. We use a nonlinear x? fit[24] of a gaussian



34
to the top prolate spheroidal N=32 wave function, and compare the inversions obtained.
One can see that the dpswf (discrete pswf) offer a slightly sharper response, and so the
considerations of finiteness and digital nature of the rf temporal waveforms are meaningful.

We also invite the reader to compare the experiments in Figure 5.3 on page 59.
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4. Inhomogeneous rf Fields

4(a) Basic physics according to Maxwell

“It required the genius of J.C. Mazwell, spurred on by Fara-
day’s observations, to see the inconsistency in [the static]
equations and to modify them into a consistent set which smplied
new physical phenomena, at that time unknown but subsequently
verified in all details by ezperiment.”

J.D. Jackson

We consider here the factor f(x) in equation (2.18), the spatial dependence of the B,
field. The purpose of this chapter is to design rf coils which produce a small volume of
homogeneous field, and a rapidly divergent field in other regions. In this way (recalling
the argument given in section 2(a)), one can obtain a spatially selective region of optimal
w/2 flip angle, while other regions of the sample placed in the coil will not contribute
significantly to the acquired signal. However, there are two important considerations to
be kept in mind here: one is the reciprocity argument(25] stating that the signal produced

in the coil from a given region is proportional to the B, field in that region (so that, by

36
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scaling f = ~B,t,, the signal scales like 8 sin 8, where the factor sin 8 is due to the sinusoidal
dependence of the signal on flip angle). The other is that the source-free Maxwell equations
do not support local maxima for the static fields E and B used in this approximation.
The demonstration of these two facts is made by simple application of the Maxwell
equations|26,27]|. For the reciprocity argurment, we want to show that the flux induced in
a coil from a precessing moment m is proportional to the magnetic field at the moment’s

location due to a unit current in the coil

Ix(x—x
f Bm(x) - da ~ f Ix( = I; (4.1)

where x)=(z,y1,21) labels the coil describing curve C and the curve C spans a surface S.

But the vector potential for the magnetic moment m is just

m X (x - x)

A(x) = c Tx—xF (4.2)
so that, using Stokes’ Theorem,
fsBm(X) 'ﬁda = fsV XA(X) 'ﬁda
= [cA(x) 1
c A(x) (43)
mx{x-xy)
= [ x":‘l -1

— Ix(x-x) .
-— fcm}- m
This computation shows that the closer the spins are to the coil, the more they couple to

it (i.e., induce a larger current), as would be expected from intuition.
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The second fact, that the Maxwell equations do not support local maxima in B (away
from currents), comes from another feature of the Maxwell equations, naraely that they

lead to inhomogeneous wave equations; for example

iy 10 am
V'B-SB=—J (4.4)

For source-free regions, we thus obtain a homogeneous wave equation

1 8%

2  — e —
VB = c? Jt?

B (4.5)

However, the right hand side vanishes, since we make the quasi-static approximation (recall
that the wavelengths of interest are an order of magnitude larger than the objects of
interest, and so propagation is neglected). Thus B is a harmonic function in the source-free
region, and hence obeys the maximum principle[28], namely that B attains its maximum
value on the boundary of the source-free region. Thus away from the current sources, no
local maxima can exist.

As a result of these two important considerations, only a small region of homogeneity in
which B has a local minimum can be expected. Thus we must use other techniques, such as
designing pulse sequences sensitive to rf inhomogeneity or using phase-cycling to eliminate
high flux signals, to cancell regions in which the magnetic field B; although divergent is
larger in magnitude. In addition, although the Maxwell equations completely describe the
magnetic fields produced by current sources, in general there will be no analytic formula for

the magnetic fields produced from a given configuration of coil windings, so that numerical
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methods must be used to map out the fields.

4(b) Coils

“Let that sucker flyP
T.F. Budinger

The basic calculation used to determine the magnetic field produced by a wire with

constant current j (recall propagation effects are neglected since the relevant wavelengths
are long) is beased on the Biot-Savart Law

Ix (x —x)

4.6
|x—x |3 d (4.6)

B(x) = [
where C is the loop of wire containing the current j=| J |. There are some coils for which
this integral can be done analytically, but for reasons of both computational simplicity and
practical utilty, we have used digital computations.

The simplest example is one of a single turn loop. While an analytic solution exists (in
terms of K and E, complete elliptic integrals of the first and second kind{29]), not only are
these functions typically unavailable in digital form, but also, given the finite resolution
of the display screen used to show the two-dimensional slices, the discrete line element
approximation to the loop works just as well. There is another simplifying feature in the

calculation of the B, field profiles, which is that there is a cross-product in the Bloch

equations, so that one is only interested in the components of B; perpendicular to the B,

field.



40

Again, we emphasize here that, as a result of the physical limitations imposed in order

to be in agreement with the Maxwell equations, the best we can achieve in coil design is
a resonably well defined region of minimum B field. This then has the disadvantage that,
as the signal scales linearly with field strength, the signal will be low. Moreover, the “hot”
spots in the field will necessarily be close to the current sources, and as the coil is placed

close to the body surface, a means to eliminate these regions of high surface signal must

be found.

4(c) Pulse sequences

We illustrate the simulations developed with some examples. In particular, we simulate
the three-dimensional spatial sensitivity of three coil geometries, represented by slices tak-n

at several displacements from the coil axis. The three geometries depicted in Figure 4.1

are:

(1) a circular surface coil[30,31]
(2) 2 pair of coils
(3) a coil constructed of straight wire segments called a “baseball” [32]

(due to its similarity in shape to the seam on a baseball).
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Figure 4.1: The three coil geometries, as well as the planes on which the B, field is
evaluated are diplayed. The one-turn coil is at the top left, the pair of coils is at the top

right, and the “baseball” coil is below.

18 4
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The calculaticn of the components of B; perpendicular to the B, field in free space
uses the quasi-static approximation of the Biot-Savart Law (it is obvious from the Bloch
equations that only the perpendicular components matter). The circular current loop was
approximated by 360 current elements and the field computed using the Biot-Savart law.
The integral was evaluated once on a two dimensional rectangular grid containing the coil
axis and the result stored, allowing maps through any plane to be constructed by simple
rotation and interpolation. The B, field for the straight sided “baseball” is easily evaluated
analytically. The projection of the B; field vector onto the x-y plane was evaluated on a
101x101 point grid for display and calculation of sensitivity maps.

As mentioned previously, one cannot violate the Maxwell equations, and therefore the
signal induced in the pickup coil will be strongest on the boundary of the source-free
region, namely at the coil windings. One way to eliminate the high signals produced near
the coil currents is to use pulse sequences sensitive to rf field strength. In the rf field
strength-sensitive phase-cycled pulses of Bendall and Gordon[33], the “high flux” signals
are cancelled by averaging a number of NMR experiments, each performed with a different
rf phase (the ¢ in equation (2.16)).

Once one has the effective rf field strength on a co-ordinate grid for the slice of interest,
one can simulate various pulse sequences sensitive to such rf inhomogeneities. The exam-
ple of the Bendall-Gordon phase-cycled method is suitable to modification using SHARP

(chapter 3), while another family of rf sensitive “composite” phase pulses[34] has been
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simulated, but cannot be implemented with SHARP[20], as we shall soon see.

To illustrate some of the potential of depth pulses in the three coil geometries, we show
in Figure 4.2 maps of the B field, the response to a single wide bandwidth pulse, and the
response to one of the pulse sequences developed by Bendall[35]. The depth pulse sequence

simulated is denoted:

20 [£z]; (20 [+z,+y])2; acquire . (4.7)

[£ x] and [+ x,+ y| denote phase cycling and the subscript 2 indicates that the last pulse
is repeated. The acquired signals are summed (or subtracted in the case of an odd number
of £ phases) until the entire phase cycle is complete. The response to the depth pulse is

proportional to
. 4 .2 . 4
— @ cos 20 sin* 8 | 2sin §0 + sin 501/3 . (4.8)
This rather complicated sequence provides excellent suppression of signals from regions

having flip angles near 270 degrees. Useful results with less complete suppression of the

270 degree region may be obtained with shorter sequences.
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Figure 4.2: Simulations of the three representative geometries chosen are shown([36]. The
B, field is scaled to produce a flip angle of 90° one radius away from the surfac. coil on its
axis. The signal induced in the coil from each volume element after a simple hard pulse
is proportional to #sin 8. (Volume elements contributing positive and negative signals are
coded with solid and dotted iines, respectively).
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4(d) B; and AB, togetier

The two (temporal and spatial) aspects of the problem so far have been separated
by some simple restraints concerning the production of the rf field (see equation (2.18)).
In addition, the relevant field strengths in this approach to these two parts of the spatial
localization problem are distinct (i.e., for the temporal problem, one is interested in the
behavior of the magnetization as a function of the linear main field strength B, inhomo-
geneity, while the spatial problem is one of coil geometry to provide rf field inhomogeneity).
It is thus quite natural to ask whether the “solutions” {~ these two problems can be com-
bined. The particular division of the problem we have chosen makes the combination
possible.

In particular, recall that in our approach to the temporal problem, we ask that a certain
response be achieved in a single rf pulse. On the other hand, for the coil problem, we
find that one can improve the rf inhomogeneity sensitivity profile by averaging a number
of experiments. We can therefore combine these two approaches by tailoring the rf pulses
in a given experiment, and then averaging. We can thus see the difficulty of combining
SHARP with other, “composite” pulse schemes, since these methods rely on a single,
phase-modulated pulse.

But the interesting feature here is that the two different pulse schemes, SHARP and
phase-cycled depth pulses of Bendall and Gordon, are sensitive to different field strengths,

main field B, linear inhomgoneity for SHARP and B, rf inhomogeneity for depth pulses.
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Hence the natural combination of these two, provided that the experiments take place in
the combined fields ci linear B, gradients and an inhomogeneous B, rf field.

The imposition of gradients in the B, field and use of rf coils producing B; field inho-
mogeneity provide two “degrees of freedom” for the spatial sensitivity problem. A class of
amplitude and phase modulated pulses called SHARP (chapter 3) have been designed for
narrowband excitation in the presence of a gradient. We simulate the signal obtained from
an inversion-recovery T} measurement, in which the FIDs from the experiments #,-acquire
and 0, — 7 — 0;-acquire are subtracted, where 4, is an amplitude modulated selective inver-
sion pulse and #, is a simple pulse. A gradient is applied during 6, so that inversion occurs
at the same point as ;=90 degrees. Away from the region of interest the §; pulse has little
effect, so that the signals cancel in subtraction. If the purpose is not a T} measurement,
7 may be made as close to zero as the gradient settling time will allow. (Ordidge has
proposed a similar method(37]).

The method utilizes the spatial B, field maps developed above, but now, at each point
in the spatial domain of the coil, values for both the main field strength and rf field strength
are calculated (Aw and w;, respectivelv) X signal surface table is generated on a grid of
Aw and w, values with the Bloch ODE solver, and this table is then correlated with the
particular pair of magnetic field strength values at each site in the spatial AB,-B; map
by linear interpolation to produce the selective slice sensitivity maps. The signal surface

table for an amplitude modulated = pulse is shown in Figure 4.3, and the sensitivity maps
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are presented in Figure 4.4 with a linear B, gradient imposed along the axis of a surface
coil and for the two coil case; the coil diameter is 10 cm and the gradient is 1 gauss/cm

for all cases. The simulations assume r=0.
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Figure 4.3: The spin signal surface produced by subtracting the FID obtained from selective
7 pulse followed by a broadband /2 pulse from the FID obtained from a broadband /2
pulse (i.e., we compute s=sin# - M, sin §). M, is the final z component after the selective
7 pulse. The true signal is then by reciprocity proportional to #-s. Both rf and gradient
values are in gauss.
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In the depth pulse case, the rf (flip angle) selectivity is achieved by phase cycling
a number of repeated experiments. SHARP, however, achieves frequency selectivity by
temporally profiling a single pulse. The two methods can thus be combined, as is shown
in Figure 4.5 for the baseball coil with a linear B, gradient in the z direction. We subtract

the accumulated FID’s from the experiments:

6r[£z]; (2 x 26, + 302); (20:[%z,+y))2; acquire (49)
(2 x 26, + 20,); (202[£z,%y])s; acquire
where the gradient is turned off after the amplitude modulated selective inversion pulse
6, and the 8, pulses are broadband and scaled so that @; is 90 degrees in the region of

interest. The simulations indicate that the combination of selective excitation and depth

pulses allows an isolated sensitive region to be defined, which is not possible with depth

pulses alone for these coil designs.
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Figure 4.5: Combination of SHARP with depth pulses: the resulting sensitivity maps
should be compared to Figure 4.1, in which a simple broadband pulse is simulated|36].
Significant improvement in spatial localization is seern.



5. Experiments

5(a) Numerical simulations

“Seientific laws are now being viewed as algorithms.”
S. Wolfram

The numerical simulations concern basically two physical calculations: the first is the
step-wise integration of the Bloch equations (2.16), while the second is a finite-element Biot-
Savart computation (equation (4.1)). In both cases, the approximation of the continuous
problem is checked with analytical results evaluated at the same (x,y,z) points.

As mentioned in chapter 3, the prolate spheroidal wave functions of interest are repre-
sented as discrete point values. To generate them, an efficient QR algorithm(17] is used,
which specifically handles the eigenvalue/eigenvector computation for symmetric tridiag-
onal matrices. As the matrices provided in [19,21] are of this special form, we have the
waveforms of interest as the eigenvectors of these matrices. We then assume that the mod-

ulations are these piece-wise constant functions, so that a fixed step ordinary differential

52
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equations (ODE) integrator is needed.

We briefly describe the ODE solver for the Bloch equations. Neglecting relaxation, the
Bloch equations (2.16) are written as a set of three first order coupled ordinary differential
equations

M(t) = A(t)M(2) (5.1)

where A(t) is the matrix of time-varying magnetic field components, containing the rf
modulations of interest. If we approximate the time variation of the rf as a series of broken
piece-wise constant steps h;, over a given time step A (h;) is constant. We immediately
integrate (5.1)

M(hj+1) = Cth(hj) M(h,) (52)

The ODE solver for the Bloch equations is then a subroutine which computes the matrix
e"A at each step and, in applying this matrix to the magnetization position at the start of
the step h, obtains the position of M at the end of the step.

The computation of e™ at each step involves a well-known identity from rotation group

theory

1—cos in 0
&b = 14 (hA)2 ;:’s ) 4 hAs“; (5.3)

where 8 is the angle of rotation (about the rotating frame effective magnetic field (2.14))

with

8 =h () +(1G-r)’ (5.4)
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In this way, because A=B-I (where B is the applied magnetic field and I are the generators

of SO(3) (2.23)), it is easy to compute

b3 + (b3 + b3)cos®  byby(1 — cosf) — bgsind bybs(1 — cos8) + bysin

et = byba(1 — cosf) + bysin® b3+ (b} +b)cos®  babs(1 — cosf) — bysind
bibs(1 — cos0) — bysinf bybs(l — cosf) + bysind b + (b2 + bZ)cos b
(5.5)
where
b, Wy cos ¢
1
B=1| e : 5.6
2 (w1)2 + (Aw)2 Wy sin ¢ ( )
b3 \ Aw

and 4 is obtained from (5.4).

From (5.5) we have an analytical expression for the response to a constant rf pulse. As

the simulations assume for the initial position

( m. 0
M, |=1o (5.7)
\ M, 1

we are able to compare the analytical expression for the (i=3,j=3) element in (5.5) to the
simulated response for M,(Aw) at the end of a constant amplitude rf pulse.
For the coil computations, we demonstrate two cases. The simple loop in Figure 5.1

(of radius a and current j in the x-y plane) '+ approximated by 360 unit-length current
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elements
—a sin 6;
I=1 4 cos ¢ (5.8)
0
so that the integral (4.6) becomes the sum
za cosb;
360 i
B=j3 za sinf; (5-9)

i=1 (\/(z — @ cos8;)? + (y — a sin§;)? + 22)3
a® — za cosf; — ya sinf;
where we neglect the z component (along B,). This is to be compared with the analytical

formulas in [29].

(X, Y, 2)

y a

Figure 5.1:

The Biot-Savart Law integration for = :oil in the x-y plane.
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In the case where a coil can be constructed of line-segments, the magnetic field from

a straight line current (of length 2L along %) is easily computed in closed form: we have
from Figure 5.2
e Ix{x-xp)
1B =] T
=j =& Lsin ¢ (5.10)
s do

so that, with R=y/y? + 2% and r=4/R? + (z + L)?,
B=/[dB
=il e

= £ [2sin 0 df

(5.11)

= &(cos 0, —cos 6,)

where cos 0; and cos 8, are the geometric ratios

z+1 , cos O3 = z_1L (5.12)

ces 8, =
\/(z+L)2+y2+zz \Kn—-L)z+yz+z2

Notice that the field has only components perpendicular to the wire segment; in this
example

e
B=1 L(cos 8, —cos 8;)% (5.13)

j';-(cos 0, —cos 8;)%
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x, Y, 2)

X axis

Figure 5.2:

The Biot-Savart Law integration for a wire segment along the x axis.

In both cumputations, a grid is then set up on which these subroutines run: for the
pswi, one calculates the entire pulse for a range of resonance offset (Aw) values; for the

spatial B; maps, a planar grid is placed in a simple geometric relation to the coil. Using
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the integration (5.9), the values for the single coil were tabulated once on a fine mesh in
a quarter plane perpendicular to the plane of the coil. Simple rotations of this quarter
plane produced values near the sites of the desired image planar grid. In cases where the
tabulated point values did not match the spatial map locations, linear interpolation was

done on the four nearest point values in the table.

5(b) NMR phantom measurements

“Phenomencology is everything?”
M.P. Klein

Experiments were done on phantom samples to drtermine the degree of validity of the
assumptions made above. The first set of experiments was done in collaboration with M.R.
Bendall at Oxford Research Systems in England. The same experimental ideas were then
implernented on the 0.5 Tesla NMR imager at LBL. The basic philosophy is to use a simple
slice phantom to image the sensitive volume of various coil geometries. For the rf temporal
modulations, a long sample (20 cm .1 mM MgCl; doped water filled test tube) was placed
along a static gradient and, after selective excitation, the z component of the magnetization
was interrogated with a hard (broadband) 50/100 usec 90°/180° echo combination.

The measurements for discrete prolate spheroidal wave function amplitude modulated =
pulses are shown in Figures 5.3 and 5.4. On the IBM/Oxford imager at LBL, the z gradient

was 0.2 Gauss/cm, and a 5 msec dephasing delay was used prior to echo formation.
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9. I Han— 0. + + — L .
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TIME TIME TIHE
Response (M;)
Simulations
GAUSSIAN IN=32, ‘W’z2.03) PPSWF IN=32, Wx, DS CONSTANT IN=32!
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GAUSSIARN PROJECTION (M=32, ‘W' :.83) PPSUF PROJECTION (M=3Z, W=, 05) CONSTANT PROJECTION (M=32)

Figure 5.3: Experimetal comparison of three N=32 point temporal waveforms as 7 pulses.
The use of the discrete pswf as amplitude modulations, both in simulation and in mea-

surement, is seen to be preferred to the use of either the gaussian on the left or the constant
on the right (in columns).
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Input

OPSWF (N=32, W=,D2! OPSWF [N=32, W=.0S! DPSwF IN=32, W=.08)

1. - 1. l 1. 71
0.8 4
0.5 0.5
0.6
.y 4 0. ; 0. +
a. 10. 20, 30. 40. 0. 10. 20. 3a. ya. 1] 10 20. 30 40
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Response (M,)
Simulations
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DPSUF PROJECTION (M=32, W=, 85) DPSWF PROJECTION (M=32, ux. B8)

PPEUF PROJECTION (N=32, W= . 082)

Figure 5.4: Further verification ior the dpswf theory. As W (the frequency concentration
variable) varies from .02 (left) to .05 (center) to .08 (right), the inversion bandwidth is
seen to increase.
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The sensitive volume of a square “baseball” coil was imaged at 3! P frequencies using
a slice phantom of concentrated Hz PO, and a procedure employed at Oxford Research

Systems which may be written schematically

§ —————— F ——————— 2§ —————— P —————— (5.14)
incremented acquisition
y gradient,
and x gradient x gradient

(The x gradient is adjusted to ensure that the top of the spin-echo occurs halfway through
signal acquisition). The square “baseball” coil was constructed out of 3.2 mm diameter
copper wire to a side length of 8.7 cm. A round slice phantom of diameter 11.8 cm and
thickness 1.0 cm was used. As the diagonal length of the coil is 12.3 c¢m, the phantom fits
just inside the limits of the coil wire. A 0 pulse length in the range of 250 to 450 usec was
used at approximately 100 watts pulse power.
The scheme above would determine the sensitive volume for the depth pulse 8; 20 [+z, +y|.

The phase-cycling for the 20 refocussing pulse is unnecessary for a homogeneous phantom

when using pulsed field gradients(38,39]. For the depth pulse
(20 [£z))2; 05 20 [£z, xy], (5.15)

the sensitive volume was imaged by replacing # in the imaging sequence by (20 [£z])2; 6.

This depth pulse produces a signal from each volume element proportional to
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8 cos® 26 sin® 4, and so does not suppress the 270° signal (as in the simulation shown

above)[35,38,39]. Simulations and experimental results are shown in Figure 5.5.



Simulated
Sensitivity Map

Experimental \\Q\\/\& %3\
N 8

Sensitivity Map x\\.,_//f&‘-\ ¥ ‘E’Zi
BORE &3 ::‘AN'\\\ N7

SR BH

LT

Figure 5.5: The magnitude of the signal induced by each volume element is shown for the
simulations and experiments[36]. For the depth pulse 28|tz];; 8;260(|+x, +y], the top row
shows the location of the slice, the middle row the calculated sensitivity, and the bottom
;:ow lftha:i measured sensitivity. The experiments were done at Oxford Research Systems in
tngland.

€9
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A15cm x 15 cm X .5 em H,0 square slice phantom was built to map the field of a
10 cm diameter surface coil in the Oxford/IBM .5 T whole body magnet.! The coil was
wound into a single turn of -;— inch copper tubing, and the experiment utilized a 2DFT
imaging sequence similar to (5.14), except that the 26 echo pulse was replaced by an x

gradient reversal. Figure 5.6 compares the measurement with a simulation.

!Thanks to Mirko Hrovat of IBM Instrumenmts, Inc.



Figure 5.6: Experimental results of spatial maps of surface coil (similar to Figure 5.5) is
displayed. The geometry is at the top, followed by a contour plot, and finally a photo of
the 2D experimental image.
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5(c) Two theorems

“It all goes back to Gauss.”
F.A. GI;Imbaum e S
: ; I
Vi :

In performing numerical simulations of the MIBE, some regularities in the results were
apparent. We now state these as theorems in regard to our method of integration. Both

concern amplitude modulated pulses, so that the matrix in (5.5) simplifies to

N,

b2 + blcosf —bssin 6 byb3(1 — cos 6)
e = besing (b3 -+b)cos®  —bysind (5.16)
b1b3(1 — cos 6) by sin 8 b2 + bcosd

In the first case, we noticed that the response M, (Aw) is symmetric for by = Aw. As
our simulations approximate w;(t) by an N-piecewise constant curve, the Bloch evolution
becomes a product of rotation matrices applied to M(t=0,Aw) in (5.7). The second
theorem concerns the final position of M,(Aw) obtained from the two pulses wy(t) and
wq(T-t), for t € [0,T], and is called the Backward Pulse Theorem ?

We now state, and then prove, these two theorems.
Theorem 1 < e¢,RfRf_,..Rfe> =< e,RyRy_,...R{e >
where e denotes the initial condition (5.7), the bracket <> denotes inner product, and

R;- — ehj(u{ I.+Aw L) , RJ_ — eh,-(w{ I.-Aw I.) (517)

2] am indebted to Arnold Lent of Technicare, Inc. for helpful advice.
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with w] the 7 point value of wy and h; the f* “time step”.
Theorem 2 < e,RyRy_1..Rie> =< G,RNRN_I...R].C >

where

R; = ehitilt) Ietho L) | B chilws(T~4) Ltdw L) (5.18)

Proofs of both of these statements follow directly from properties of the rotation ma-

trices R;. To prove Theorem 1, we notice that

Rf =X"'R; X (5.19)
where
-1 00
X=]010]|=X" (5.20)
0 01

Thus, we compute
<e,RFRf_,..Rfe>=<e,X 'Ry XX 'Ry_;X..X 'R Xe >
= < Xe,RyRy_,..R{ Xe > (5.21)
=< e¢,RyRy_,...R{e >

Q.E.D.

For Theorem 2, we first prove a lemma about rotations

Lemma 1 Let R(u,d) be the rotation of angle § about u. Let u',u" be any two vectors

perpzndicular to u such that
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Rn,!) o' = v

Then
R(u,f) = M(v"\M(u")

where M(u' Jx = x-2(u'x)u' (i.e., R can always be ezpressed as a product of reflections in
the plane spanned by (u',w' x u") or (u",u' x u"), and denoted by M(u') or M{u")).

Proof Consider the case u=2. Then u',u" are vectors in the x-y plane

1 cos{?
u = ,u" = G) (5.22)
0 sin(%)
SO
-1 00 ., —czosf —sind O
Mu) =10 10|,MU")Y = |"—sinf cosé 0 (5.23)
0 01 0 0 1
and so that
cosf —sind O\
Mu')M(u") = sinf cos® O = R(%,9) (5.24)

0 0 1

The general case R(w,0) is now obtained by conjugation of the matrix R{uxw,cos™(u-w)).

Q.E.D.
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We can now use this lemma to prove Theorem 2. Since in (5.18) the matrix R; is a

rotation about an axis in the x-z plane, we can always choose u'=# so that

But as (Mz)

and

so that

R,' = M(u")M(i}) = MM,

2~""‘-—I,
Rj_l = Mle(Mz)z = MzR,‘Mz
i 0 0
M; =10 -10
0 0 1
1 0 0 1 0 O
k=10 -10| R |0 -10]| =MRM
0 0 1 0 0 1

We thus compute

< e,RyRy-1...Rie >=< R{..R%_ R%e,e>

but as R; is unitary

< RT..RY_|R%e,e > =< R{'..Ry' |Ry'e,e >
= < M,ByM;..M;Ry M, M;RyMze, e >
=< R]_...RN_lRNMze,Mze >

=< RNI.ZN_]_...RIC,C >

(5.25)

(5.26)

(5.28)

(5.29)

(5.30)

Q.E.D.



6. Is the Bloch Transform Invertible?

6(a) Motivation

One of the essential features of biomedical NMR is the use of linear gradients in the main
field B, to encode spatial information. In chapter 3, we have formulated a transformation
(the Bloch Transform, denoted B) that, under conditions of an applied linear gradient,
relates the rf waveform in the time domain to the final position of the magnetization after
the pulse. As the final desired position of M(Aw) is known a priori, if we could invert the
Bloch Transform, we would be able to find the needed rf modulation.

The basic problem, however, is that the Bloch Transform represents integration of
the nonlinear Bloch equations (2.16), and so is a nonlinear mapping. We therefore try to
reformulate the inversion problem for the Bloch Transform in terms of a better studied one.
Specifically, we will attempt to turn this NMR inverse problem for the Bloch Transform into
an inverse problem in the quantum theory of scattering. We choose to study a particular

nonlinear evolution equation called the Korteweg-de Vries equation (KdV), in which a

70
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series of mathematical arguments leads to the solution of this nonlinear problem[40]. The
relevance to the Bloch inverse problem is then found by rewriting the Bloch equations in
a form similar to the time-independent Schrédinger equation, which enters in the solution
of the KdV equation.

An important complementary aspect of this Bloch inverse problem should be men-
tioned. We have already noted that real rf pulses are finite digital signals. In developing a
general theory of rf excitation for in vivo NMR, it would be useful to generate the pulses
from a suitable family of functions (preferably spanning L?([0,¢,]) - the space of square
integrable functions on the interval [0,,]) representing the harmonics present. Indeed, we
have devoted section 3(e) to this topic, and in ti.at comparison of gaussians to the pswf,
one of the strengths of the prolate spheroidal wave functions is this property. But the
pswf come from linear Fourier theory, whereas the problem really deals with the nonlin-
ear Bloch equations, and so one would really like to find the appropriate nonlinear modes
withix} which to express the desired localized response. Since solitons are naturally non-

linear modes, one should not be surprised to find solitons appearing in the solution, as

discussed later.
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6(b) The inverse scattering transform

“As a working physicist, I am acutely aware of the fact that
the marriage between mathematics and physics, which was so enormously
frustful in past centuries, has recently ended tn divorce.”
F.J. Dyson
The recent revolution in mathematics known as soliton (or inverse scattering) theory,
in addition to having inspired the development of some sophisticated and elegant tools for
theorists, offers some real insights into the nonlinear behavior of simple physical systems.
This series of discoveries has been paralleled by many observations of physical phenomena
that are well described by these nonlinear evolution equations. We face here a nonlinear
evolution problem, called the Bloch Transform inverse problem, and it is natural to ask
wherther these recent developments are applicable to our biomedically motivated inverse
problem. In particular, the phenomenon of self-induced transparency(41], which involves
the coupled Bloch-Maxwell equations, can be well described by some of this machinery[42].
The purpose of this section is to give a quick review of the inverse scattering transform
which will be adequate for sur purposes. For more detailed accounts one can consult {43-
45). In the next section we will indicate how the inversion of the Bloch Transform can be

expressed in terms of the material in this section. We will be using only the Korteweg-de

Vries equation in an exploration of the properties of the direct Bloch Transform. For this

reason we limit our discussion below to the way in which the inverse scattering transform

handles the KdV equation.
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The solution of the KAV equation

G + 699z + Gzzz = O (6.1)

involves treating the function q as the potential in a time-independent Schrédinger equation
Yz + (A* + g(z,t))Y = O (6.2)

(the time variable in the Schradinger equation is a separate parameter from the time t in
the KdV equation) with stationary potential V(x)=-q(x,t}) and energy E=)A%. One asks
the question: how dc the eigenvalues A(t) and eigenfunctions % (x,t) evolve if the potential
satisfies the KdV equation (6.1)? By explicit computation, the discrete eigenvalues
(-A? < 0, n=1,...,,N) for the bound eigenstates (A, = —t)A so that A, > O is real and
positive)
Yy ~ ern? as T — —oo
(6.3)
~ ba(t)e ™ asz — oo

are constants of the motion, and imposing on the scattering states ¢ (i.e., A> > 0) the

boundary conditions

Y~ ez as T — —oo
(6.4)
~ a(),t)e= 4 (A, t)e** asz — oo

one finds that a(A,t) and b(A,t) obey the trivial evolutions

a(Mt)e = 0, b(A,t), = 8iA3(\,t) (6.5)
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The boundary conditions {6.4) have a standard interpretation in quantum physics as
corresponding to a scattering problem in which a wave of amplitude a is incident from
x=00 on the potential V(x). The wave is transmitted to —oo with an amplitude of unity,
and is reflected with amplitude b. The reflection and transmission coefficients for this

scattering problem (6.4) are just

R() = ”—EA—’) T = o7 (6.6)

(the subscript r denotes an incident wave from the right) so that using (6.5) we find that
the transmission coefficient is a constant of the motion and the reflecticn coefficient evolves
by merely changing its phase linearly with time. The solution of the KdV equation at time
t is then found by inverting the scattering data to find the potential v(x) at time t, a
probiem which involves a linear integral equation (the Gel’fand-Levitan-Marchenko equa-
tion). Schematically, we denote this “change of variables” from potential to scattering

data S={(As,5.)¥; R, (1), real} and back as

q(x0) —— SO o
1di¢.dllﬂ

q(x' 1) inverse ransform S(1).

We shall rewrite the Bloch equations in (quasi)-Schradinger form, and so, by relating
the final position of the magnetization M(Aw,T) to the reflection and transmission coeffi-

cien.. \6.6), would like to use this set-up to invert the Bloch Transform. Other nonlinear
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evolutions besides the KdV can be handled in the same way, by an appropriate change of

the time evolution of the scattering data.

One point on notation: from here on, we shall overscore the KdV variables (Z,f) to

remind the reader to separate the KdV evolution from the Schrédinger evolution in (x,t).

6(c) Reformulating the Bloch Transform as a scatter-

ing problem

“Nonlinear ordinary and partial differential equations do not,

in general, admit ezplicit solutions, because the solutions of the
typical nonlinear equation are so wildly irregular that they could

not possibly be represented by known functions. Conversely, nonlinear
equations with very well-behaved solutions should be expected to have
uncommon properties.”

H. Flaschka and A.C. Newell

From the MIBE for pure amplitude modulation

M. 0 Aw 0 M,
d
I M| = -av 0 w@)|]|M (6.7)

describing the motion of a 3-vector M under the applied magnetic field

Bz \ Wy
7 B, | =| o (6-8)
B,} Aw
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and with M(Aw,0)=(0,0,-1)T, we would like to find the appropriate rf waveform w,(t) to
achieve a given final configuration of M({Aw,T), after a finite pulse (i.e., t € [0,T]). In
particular, one would like to explain the phenomenon observed using the complex secant
pulse of Silver, Joseph, and Hoult[46]. An explanation might be possible by generalizing

the results of this chapter, which considers only amplitude modulation, to frequency-

modulated pulses.

Because the length of M is preserved
M+ M} + M} =1 (6.9)

the time development of M is a path on the sphere S2. By defining ¢ to be the stereographic

projection of M onto the y-z plane from the positive x-axis (1,0,0), we find using (6.7) that

$(Aw,t) = ¥M+-+—_-’if—" (6.10)
satisfies a Riccati equation[47]
b=img + L2 - (6-11)
where w, is the unknown rf field amplitude modulation.
The change of variables|48]
9(Aw,t) = ¢ 7 [ (Bue(au) + wi(e) o (6.12)

in (6.11) yields the second order differential equation

- 1 ..
g+Z(Aw2+w§+2zw1)g=0 (6.13)
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in Schrédinger (Liouville) form.

By viewing t as a position variable Z, equation (6.13) has the form of a “time-independent”

Schrédinger equation
dz

d_I'?g + (Az - V)g = 0 (6.14)

where the potential V contains the unknown field modulation w; and its first derivative

Aw

. (6.15)

vV = —%(wf + 2iy), A =
The formulation is now clear from the standpoint of inverse scattering: the conditions
under which the potential V in (6.14) can be reconstructed from asymptotic scattering
data of g (i.e., reflection and transmission coefficients plus bound states and normalization
constants) are known, starting from the work of Gel’fand-Levitan; for a recent account see
[49]. Our original problem of finding w; to yield a desired M(Aw,T) can thus be solved
using the techniques of inverse scattering if the asymptotic scattering data of g can be
related to the known desired response M(Aw,T), as we can then reconstruct V in (6.15),
and thus obtain w;.

We therefore consider g in (6.12). (NB: we identify the Bloch evolution variable t in
(6.7) with the spatial parameter Z in the KdV equation (6.1). We further overscore the
KdV parameters to remind the reader, and state that we are replacing the interval [0,T]
here with [-00,00].) The initial condition is that the spin population is at equilibrium,
M,=-1, and so, using (6.9) and (6.10), ¢=1. Consequently, since the potential V — 0 as

—

Z(=t) — —oo, g~ e~**, Likewise, as t — oo again V — 0, so that the passage of the
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pulse w;(t) amounts to g from (6.12) becoming a linear combination
g(xt) ~ a(d) e + p(A) (6.16)

and so, in general, the NMR observables will be left ringing at frequency A. Hence, the
inverse problem for the Bloch Transform is closely related to the scattering problem for %
in (6.4).
But as t — oo,
gMt) ~ et 5 [T i) & (6.17)
The second factor is known, as [°2_ w, is just the total desired flip angle (i.e., typically a
7/2 or w pulse).

Therefore the asymptotics of g(A,t) for large t can be obtained from the function

f_‘ $(A,t') dt’ (6.18)

One could thus use (6.16) to recover a()) and b()) if one knew ¢(A,t) for all t. However,
since only M(Aw,T) is available, it is clear that this approach cannot be used directly to

achieve the inversion of the Bloch Transform. See, however, section 6(f).

6(d) 2rN-solitons

Although this formulation of the inverse problem for the Bloch Transform would appear

useless in view of the comments at the end of the previous section, we can use it to suggest
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interesting inputs to the direct problem. In particular, we notice from (6.9) and (6.10) that
the condition M,=-1 is equivalent to ¢=1 (independent of t!). Thus, using (6.12) g~ e™**
even as t — oo, implying from (6.16) that b(A)=0. Thus in this case of reflectionless

potentials[50], one can use the ansatz (assumption arising from (6.15))
wi(t) =4V (Z) (6.19)

and take for V a “pure soliton potential”. We proceed to numerically integrate equations
(6.7) according to the procedure introduced in section 5(a). The results shown in Figures
6.1-6.3 display some remarkable properties.

The surprising feature of the simulations is that in this case of N-soliton pulses one
has control over the inverting properties obtained, even though the Bloch Transform is
nonlinear in the regime where population inversions are effected. In the cases when the
flip angle (6.26) are 27 and 6w, one achieves localized inversions for different ranges of Aw,
and in the 47 case, complete return to equilibrium is obtained independent of Aw! One
can say that these N-soliton pulses are thus nonlinear modes of rf excitation.

We briefly outline the computation of the N-soliton potential. We begin by computing

the determinant of the matrix

b —(0ds)z
Ai; = 6 + m g~ (hi+s) (6.20)
] ]
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The potential V(x) is then computed from

- 2
V(o) = Hefd - (2
— _2d’lnd:et!A!

where a=det(A). The time dependence is then -put in using (6.5). For the case N=2, we

(6.21)

find

Vup = A3 cosh(2M0,T — 8AT + ¢y — 63) + A2 cosh(2AT — 8AJT + ¢y + 1) + A3 — AT (6.22)

and

Az — A - -
Viown = ,\2—+,\—1 cosh((Az4+A1)Z—4(A3+A3)T+¢1) +cosh((Az—A1)E—4(A3—A3)T+42) (5.23)
2 1

so that
(AZ - ’\I)Vup

V(z,7) = —4 6.24
(=3) (A2 + A1) Viun (624)

where ¢,, ¢, are the (free) parameters .

1. A AL+ A2 1, Abe

= g 212 AT = olp 212 6.25
hr=gintn, T T T 2 o, (6.25)

See [40] for details.
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Narrative for Figures 6.1, 6.2, and 6.3

We begin with the top diagram in each Figure. From (6.24), we have an explicit form
for the N=2 soliton potential. We evaluate this expression for V on a 50x50 (Z, 1) grid,
thus computing the 50 vectors V(Z),f=constant.

According to the ansatz (6.19), we then use each of these 50 wave profiles in a Bloch
ODE solver{20], numerically integrating (6.7). As the output of the ODE simulation is the
vector M after the pulse, we display in the bottom figure the excited z component as a

function of Aw. For convenience we display -M,. The 50 waveforms are each separately

scaled so that the flip angle is

/°° wit) dt = 2rk  (k=1,2,3) 16.26)

-0
The bottom figure therefore simulates the result of 50 independent NMR experiments
labelled by the parameter {.

The only differences between Figures 6.1, 6.2, and 6.3 are:

1. In Figures 6.2 and 6.3, we run in KdV time out tof = + .4, and

2. we scale the waveforms in Figures 6.1, 6.2, and 6.3 using (6.26) to be 2x,4x, and 6m,

respectively.
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Figure 6.1: The case N=2. Each of the 50 wave profiles in the two soliton solution

constant in the top plot is used as an amplitude modulated 27w pulse in the

V(z), &

Aw
Of 'u—;,'

omponent of the magnetization is displayed as a function

bottom plot, where the z ¢
after the pulse[51].
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Figure 6.3: The case N=2. Each of the 50 wave profiles in the two soliton solution
V(Z), T=constant in the top plot is used as an amplitude modulated 67 pulse in the
bottom plot, where the z component of the magnetization is displayed as a function of ﬁ—‘;’
after the pulse[51]. l
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6(e) On a connection between the Bloch Equations and

the KdV equation

Computer simulations have been a useful tool in developing rf temporal waveforms, by
determining their performance in numerical integrations of the Bloch equations. In chapter
3, we described not only a specific input to the Bloch Transform (i.e., prolate spheroidals),
but also an algorithm for computing the time development of the magnetization in the
presence of time-varying rf magnetic fields. In this chapter, we have uti'ized that algorithm
to compute what happens if we use N-soliton amplitude-modulated rf pulses. In this
section, we will further explore the connection between the undamped Bloch equations
and the KdV equation. By varying two parameters in the solution (6.19), we shall find a
deep connection between solutions of the KdV equation and the Bloch equations.

One way of seeing the KdV phenomenon is to return to the derivation of V in (6.20) and
(6.21). Observe that the pure soliton potential V depends in general on 2N parameters
(the eigenvalues A; and the normalization constants b;), while the energy levels depend
only on A;. Hence, one obtains the N-parameter iso-spectral (i.e., constant eigenvalue)
deformation of the KdV solution as the b; move along f according to (6.5).

In the last section, we made a specific choice, namely A;="i and ¢;=0, to generate a
particular solution of the KdV equation (6.1). As there is no a priorf reason to make this

choice (from which we obtained the V used in Figures 6.1-6.3), the eigenvalues A; would
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appear to be unconstrained parameters. The justification for the choice A;=i for the KdV

potential is based on the fact that these specific potentials have the property that
V(Z,0) = N(N +1) sech?(z) (6.27)

so that in view of (6.19), ike =0 27 pulse is the miraculous pulse of self-induced trans-
parency{41], and so produces the response M, =-1, as is seen in Figure 6.1 on page 80.

Having computed in (6.24) the N=2 socliton potential for arbitrary values of the A,
we next evaluate V allowing these values to vary. Starting from the Figures 6.4, 6.5, and
6.6, one is tempted to believe that the excited spin population can be moved around in
the field of a linear main field gradient simply by changing the eigenvalues in the N=2 2«
exitation pulse off of the special values A;=i (i=1,2). In particular, one is struck by the
smooth excitation contours in these three Figures.

This suggests a method might be developed for simultaneously selecting multiple re-
gions, which can be varied in position, for acquisition of chemical shift or image data.
These data form a set similar to that obtained from coded aper2*ure imaging. The image

restoration process involves another inversion consisting of simple subtraction or recon-

struction imaging[52].
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Figure 6.4: The case N=2. Each of the 50 wave profiles in the two soliton solution
V(Z), t=constant in the top plot is used as an amplitude modulated 27 pulse in the bottcm
plot, where the z component of the magnetization is displayed as a function of %% after

1
the pulse. The eigenvalues for V in this case are A;=0.5 and A;=2. (Consult the Narrative
on page 81)[53].
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3
y
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Figure 6.5: The case N=2. Each of the 50 wave profiles in the two soliton solution in
the top plot is used as an amplitude modulated 27 pulse in the bottom plot, where the
z component of the magnetization is displayed as a function of %’,:,—' after the pulse. The

eigenvalues for V in this case are A;=1 and A;=2(53].
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Figure 6.6: Thke case N=2. Each of the 50 wave profiles in the two soliton solution in
the top plot is used as an amplitude modulated 27 pulse in the bottom plot, where the
z component of the magnetization is displayed as a function of -‘:—‘.l:’- after the pulse. The

eigenvalues for V in this case are A;=1.5 and A,=2(53].
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This is indeed the case. In Figures 6.7-6.9, we show both numerical and experimental
results that indicate one aspect of the special relationship between the Bloch equations
and the KdV equation. In using the N=2 solutions of the KdV equation as 27 amplitude
modulated rf pulses, we see from (6.24) that an apparent 2-parameter set of free variables
in these solutions, at least as far as NMR amplitude modulations is concerned, is given by
letting the A; float. Experimentally we find good agreement with these numerical ~=sults,
and conclude that one can use these soliton amplitude modulations to reduce the nonlinear
excitation problem to a linear geometric one, using the intersection of “planar” volumes

perpendicular to the applied gradient in order to image a given spatial volume.
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Figure 6.7: Experimental measurements and numerical simulations are compared. The
comparison is read vertically as input followed by response. The larger eigenvalue A, is
kept constant, while the smaller eigenvalue A; has the value 0.5[53]. In these three Figures

6.7—6.9, = Ai.
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2x amplitude modulated pulses
Input
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Figure 6.8: Experimental measurements and numerical simulations are again compared.
The only difference with Figure 6.7 is the choice of the lower eigenvalue A; for V, which is
now 1[53).
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2x amplitude modulated pulses
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Figure 6.9: Experimental measurements and numerical simulations are again compared.
The only difference with Figures 6.7 and 6.8 is the choice of the lower eigenvalue A, for V,
which is now set to 1.5[53].
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We return to the first parametric variation (6.26), only now using the N=3 soliton
solution (obtained using the procedure given in (6.20)-(6.25)). Explicitly, by cioosing

Xi=i and again ¢;=0 (i=1,2,3), we find that

180cosh(6T — 72f) + 480 cosh(4T — 208f) + 120cosh(8F — 224%)
+ 1620 cosh(2Z — 56%) + 300cosh(2Z — 1528) + 960 cosh(4Z — 64%)
Vup = (6-28)
+ 360 cosh(6Z — 216f) + 12 cosh(10Z — 280f) + 600cosh(2E — 8t)
+ 1512

and

Viown = cosh(6F — 144%) + 10 cosh(72£) + 15 cosh(2F — 80f) + 6 cosh(4Z — 136)  (6.29)

so that
Veup -
V(Z,t) = —60—— (6.30)
Exactly analogous to Figures 6.1-6.3, we show in Figures 6.10-6.12 the response ob-
tained from 27, 4w, and 6 N=3 soliton amplitude modulated rf pulses. We begin to see,

by using these A;=i (i=1,...,N) solutions of the KdV equation as 2xN amplitude modulatec

rf pulses, a second feature of this connection between the KdV equation and rotations.
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Figure 6.10: The case N=3. Each of the 50 wave profiles in the three soliton solution
V(Z), T=constant in the top plot is used as an amplitude modulated 2x pulse in the
bottom plot, where the z component of the magnetization is displayed as a funrtion of %‘{,i

after the pulse[53].
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Figure 6.11: The case N=3. Each of the 50 wave profiles in the three soliton solution
V(Z), T=constant in the top plot is used as an amplitude modulated 47 pulse in the
bottom plot, where the z component of the magnetization is displayed as a function of ﬁT‘.‘,’

after the pulse(53].



Figure 6.12: The case N=3. Each of the 50 wave profiles in the three soliton solution
V(Z), T=constant in the top plot is used as an amplitude modulated 67 pulse in the

bottom plot, where the z component of the magnetization is displayed as a function of %‘-1.‘,1
after the pulse[53].
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In case you have any doubts about all this, we continue with the N=4 soliton potential.

A laborious computation ! yields

980 cosh(18% — 792%)

+ 61740 cosh(14% — 584%)
+ 548800 cosh(12Z — 576%)
+ 196000 cosh(12ZF — T20%)
+ 326200 cosh(10Z — 520%)
+ 220500 cosh(10Z — 664%)
+ 3322480 cosh(8%F — 512t)
+ 480200 cosh(6Z — 727)
+ 283500 cosh(6Z — 456t)

+ 1715000 cosh(6Z — 504¢%)

+ 17640 cosh(16Z — 736t)
+ 88200 cosh(14F — 728%)

+ 54880 cosh(12Z — 288%)

+ 326200 cosh (107 — 280%)
+ 1543500 cosh (10Z — 568%)
+ 1234800 cosh(8F — 224%)
+ 112000 cosh(8F — 272¢)

+ 5078640 cosh(6Z — 216%)
+ 1200500 cosh(6Z — 360%)

+ 2242240 cosh(4Z — 64¢)

+ 12348000 cosh(4Z — 160) + 2609600 cosh(4Z — 208%)

+ 196000 cosh(4Z — 3047)
+ 24500 cosh (2% + 232t)
+ 2283400 cosh(2T — 567)
+ 2283400 cosh(2Z — 2967)

+ 2401000 cosh(2887)

+ 2609600 cosh(4Z — 4487)
+ 16420880 cosh(2Z — 8%)

+ 15435000 cosh(2z — 1527)
+ 1543500 cosh(2Z — 4407)
+ 5488000 cosh(144%)

+ 15934800

(6.31)

lImpossible without the help of vaxima, the Vax version of the symbolic manipulation program MACSYMA!
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and
7cosh(10Z — 400¢) + 70 cosh(8Z — 392%)
+ 315cosh(6F — 336%) + 490 cosh(4Z — 184%)
Viown = (614)
+ 245cosh(2F + 112) + 350 cosh (4% — 328t) K
+ 1225 cosh(2% — 176%) + 50 cosh(120%)
so that
Vep
V(Z,t) = —4200- (6.15)
Vdown

This time we will skip all the 2rk (k==1,2,3) pulses, and just show in Figure 6.13 the
N=4 8r amplitude modulation.? In case you can’t see 4 solitons in the top plot in Figure
6.13, we compute the N=4 solution out to a longer time (£ = £ .1) in Figure 6.14. I hope we
all agree now that the 2N amplitude modulation (6.19) is the proper NMR generalization

of the 27 hyperbolic secant pulse of self-induced transparency[41].

2The N=3 and N=4 soliton evaluations were performed on a Cray X-MP computer, thanks to helpful

agsistance from Ron Huesman and Bernard Mazoyer.
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Figure 6.13: The case N=4. Each of the 50 wave profiles in the four soliton solution

V(z), t=constant in the top plot is used as an amplitude modulated 8« pulse in the

bottom plot, where the z component of the magnetization is displayed as a function of ﬁ_?
after the pulse.
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Figure 6.14: The case N=4. Each of the 50 wave profiles in the four solitcn solution
V(z), t=constant is computed out to 2 longer (KdV) time = * .1. One clearly sees four
solitons.
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6(f) (Soliton) reflections

In trying to understand the KdV-Bloch connection, some recent discoveries have been
made. In particular, one of these discoveries will now be described in detail, since it will
not only resolve some of the difficulties apparent in the previous sections of this chapter,
but can also a posteriort help everyone understand how the connection was made in the
first place. For this, I have to thank all of those who were willing to lend a critical ear to
my exhortations in the past few months.

Let us recall the goal. We would like to find an inverse for the Bloch Transform 3,
since we would then be able to specify the necessary temporal rf pulse profile to achieve
a given final magnetization profile versus resonance offset, and hence, via rotating frame
arguments, spatial position. In trying to find a suitabie candidate for 371, and simultane-
ously answering the question of why the linear theory worked so well (see chapter 3) for
this nonlinear map B, a way of rewriting the Bloch equations in second order form (similar,
by replacing t with %, to a “time-independent” Schrédinger equation) appeared. At this
point, the KdV-Schrodinger connection became visible, as well as the hope of using this
scheme to invert B.

A second consideration was the remarkable fact about the 27 hyperbolic secant pulse
of self-induced transparency(41], and so eventhough one should really ';olve the Riccati
equation implied in (6.15) to get w; from V, one really wants to neglect the imaginary part

of V because of (6.27). Moreover, neglecting the imaginary part of V side-steps the issue
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of complex potentials, and so non-conservation of probability, and all that this implies (a
point we shall soon return to).
The crucial observation is that one should be looking at f, not g, for t large in (6.17).3
Therefore, on the one hand
g

Aw x
; -~ —ITQS (—1) (6’34)

(for wy a 27k pulse), but also, from (6.16), one has that

g . ac—l’At - bcb\t
9 o % "¢ 6.35
g i ae—IAt + bele ( )

Hence, using the definition of ¢ in (6.10),

= M.C1 " aemiben

(6.36)

and so one really can write the reflection and transmission coefficients in terms of M(Aw,T).

A moment’s reflection reveals that, for large t, the magnetization components obey

M,(t) = gz,,(cd(z,\wa) + e-—i(z,\ﬁ-a))

M,(t) = %(ei(z.\ua) - e—-‘(z,\t+a)) (6.37)
M(t) = m,

for arbitrary phase factor . Thus using (6.36)

m, + :}(‘l‘(ﬂll-{-u)_e-l’(ﬂiﬂ-u))
¢~ TEL (e (D) peENal) -

(6.38)

ag—At_peirt
~ PP TP

3] acknowledge E.H. Wichmann for this observation.
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Cross-multiplying and identifying terms, one obtains the following set of six consistency

relations

mep = —map
Fa =2
msb =0b
m,a = —a
—3xh = —22h
-5ta = Zaa

Moreover, equation (6.9) must also be obeyed.
There are thus only two consistent cases.

casela=0andm,=M; =1

case2b=0and m, =M, =-1

We deal with each of these cases in turn.

(6.39)

Case 1 corresponds to a “super-radiant” potential in the scattering problem above

(see (6.16)), physically allowed when V is complex. Yet we can eliminate this possibility

quite easily without having to consider such complex V. Recall that in the rotating frame

Bloch equations (2.24), the motion of the magnetization is a precession about the effective

applied field. In case 1, the initial condition M,=-1 evolves into M,=+1 (infinite population

inversion bandwidth). However, this is inadmissable for very large values of Aw, since both
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the effective magnetic field and the magnetization M point along the z direction, and so
the precession is trivial. We can therefore dismiss case 1 as unphysical.

For case 2, we hé.ve exactly the 2xN pulses previously considered. Miraculous as this
case is, it is now even more so, given that this entire formulation can only work in this
case.

This computation serves to close the book on this inverse scattering approach to in-
verting B. One is simply unable to invert B in general this way. However, it still does
not destroy the author’s, and many other people’s, conviction that an inverse for B exists
somewhere. Yet these soliton reflectionless potentials have cleared up the special behavior
observed in self-induced transparency, and in providing an infinite number (the N of 27N)
of an infinite number (] ¢ | < €) of pulse profiles, have demonstrated that, at least in one
case, albeit perhaps a useless one for medical imaging purposes,'one can indeed invert B.
Specifically, if one asks that the spins return to equilibrium after the pulse independent of

resonance offset, one can invert 8 in this particular case to find the 27N pulses developed

here,



7. Conclusion

“The miracle of the appropriuateness of the language of
mathematics for the formulatio: of the laws of physics is a
wonderful gift we nesther understand nor deserve.”

E.P. Wigner

The theoretical analysis in t..2 preceeding chapters has been confirmed experimentally
on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Imaging Facility.
As the true worth of a theorist’s ideas (at least in physics) is in their experimental reality,
we have been fortunate indeed to have considered a simple physical system, namely that
of isolated spins in applied magnetic fields. Nevertheless, the quatum nature of these spins
is a nonlinear one, and so the problem is difficult. We have further been fortunate to have
had a series of (divine?) inspirations conspire to demonsrate the feasibility of reaching our
goal of localized NMR measurements. But a difficult problem still remains, that of taking
the demonstrated principles here and implementing them in a concrete medical imaging

situation.

On another level, Wigner’s words above well describe the findings in this thesis. We

106



107

began by asking the question:
1. What are the nuclear spins doing?

In answer to that question, we found that the Bloch equations are the fundamental laws
governing the behavior of nuclear spins in applied magnetic fields. But we are particularly
interested in a prescribed set of magnetic fields (namely those in current NMR biomedical
imagers), and wish to achieve sharply localized spin excitation.

However, the Bloch equations, when viewed as a transformation from rf input to mag-
netization response, are a nonlinear mapping. One manifestation of this nonlinearity is

easily visualized as follows, by considering the following four experiments:

(a) Perform a simple one pulse experiment, calibrating the pulse duration to
yield the maximum signal output (a 90° pulse).

(b) Double the energy in the pulse (a 180° pulse). No signall!!

(c) Triple the energy in (a) (a 270° pulse). Again a maximum signal, but
180° degrees out of phase with the signal detected in (a).

(d) Quadruple the energy in (a) (a 27 pulse). No signal again!

The quantum-mechanical explanation is in terms of coherence[54], and in hindsight
our problem really concerns a basic question in quantum mechanics. This question is the
one of preparation of desired excited spin states. It is a happy accident that we are able

to visualize this problem in terms of the trajectory of a classical vector M on the sphere
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S2; and so in trying to find the nonlinear modes of (localized) rf excitation in biomedical

NMR, it is no accident that we arrived at a set of linear modes with connections to the

Uncertainty Principle[14] and nonlinear modes having many physical manifestations([48].
By formulating the Bloch transform, and hueristically solving by finding two sets of rf

field temporal modulations (prolate spheroidal wave functions) that did the job so well,

we arrived at a second, deeper question:

2. Given that the Bloch Transform is a nonlinear transformation, why did the

linear theory (i.e., pswf) work so well?

An exploration of the invertibility of the Bloch Transform yielded even more spectac-
ular results. At this step, we attempted to find an inverse for the Bloch Transform by
reformulating the problem as a inverse scattering problem in one-dimensional quantum
mechanics. The special solution found here, the N-soliton pulses, have some remarkable
properties as rf temporal modulations, and given their amazirg behavior in a similar prob-
lem in coherent optics[41,55], one is tempted to say that we have reached a deeper level.
Yet an inverse for the Bloch Transform still does not exist!

The analogy here to the stumbling drunk - who drops his key on the way home in the
dark and searches under the lamppost to find it (it is the only possible place to look!) - is
unavoidable. Indeed, in stumbling upon this miracle, I am still in awe. Inspired by recent

results[56] showing a connection between the pswf and the KdV soliton family, we are left

with a final question:
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3. What is the connection between KdV, pswf, and the Bloch equations (BE)?,

or what is the nature of the commutativity of the diagram below?

Simultaneous to these theoretical developments, we have had the pleasure of experi-
mentally realizing some of these results (in collaboration with M. Robin Bendall at Oxford
Research Systems, Mirko Hrovat at M.I.T./ Francis Bitter Magnet Lab, and at the LBL
NMR Imaging Facility). NMR is an experimental science, and it has been quite an educa-
tion getting the spectrometer to behave like the equations in my books. It would not have
been possible without the able assistance of Mark Roos.

I cannot close without a tribute to my advisor, Alberto Grunbaum. He is truly a giant
of computation, capable of finding “good” mathematics almost anywhere. It is a credit
to his practical genius that he chose medical imaging in which to find prolate spheroidal

wave functions, KdV solitons, and other such miraculous creatures.
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