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Single-Iteration Learning Algorithm for Feed-forward Neural Networks

V. Protopopescu, J. Barhen, and R. Cogswell’

Center for Engineering Science Advanced Research,
Ouk Ridge National Laboratory, Oak Ridge, TN 37831-6364, USA

Abstract. A new methodology for neural learning is presented, whereby only a single iteration is required to train a
feed-forward network with near-optimal results. To this aim, a virtual input layer is added to the multi-layer
architecture. The virtual input layer is connected to the nominal input layer by a special nonlinear transfer function,
and to the first hidden layer by regular (linear) synapses. A sequence of alternating direction singular value
decompositions is then used to determine precisely the inter-layer synaptic weights. This algorithm exploits the
known separability of the linear (inter-layer propagation) and nonlinear (neuron activation) aspects of information
transfer within a neural network.

1. Introduction. Artificial neural networks are adaptive systems that process information by
nonlinear response to discrete or continuous input [1]. Neural networks can provide practical
solutions to a variety of artificial intelligence problems, including pattern recognition [2],
autonomous knowledge acquisition from observations of correlated activities [3], real-time
control of complex systems [4], and fast adaptive optimization [5]. At the heart of such advances
lies the development of efficient computational methodologies for “learning” [6]. The
development of neural learning algorithms has generally been based upon the minimization of an
energy-like error function [7]. Gradient-based techniques have typically provided the main
computational mechanism for carrying out the minimization process, often resulting in excessive
training times for the large-scale networks needed to address real-life applications.
Consequently, to date, considerable efforts have been devoted to: (1) speeding up the rate of
convergence [7,8] and (2) designing more efficient methodologies for deriving the gradients of
these functions or functionals with respect to the parameters of the network [9,10].

In a major departure from the above paradigms, Biegler-Konig and Birman proposed a learning
approach solely based on linear algebraic methods [11]. In their seminal paper, they observed
that it is possible to separate the linear (inter-layer propagation) and nonlinear (individual neuron
activation function) aspects of information processing within a neural network. Using linear
least squares, they obtained the synaptic weights for each layer, and invoked the inverse of the
activation function to propagate any remaining error back into the preceding layer of the
network. The essence of their approach was to minimize the learning error on each layer
separately, rather than globally for the entire network. An accelerated training algorithm based
on a similar scheme was more recently proposed by Tam and Chow [12].

The methodology presented in this letter builds upon these seminal ideas, but introduces
significant innovations. For instance, the algorithms in [1 1,12] solve each of a sequence of least
square problems by using Householder transformations followed by a QR decomposition [13].
Since for most practical applications the number of training examples exceeds the dimensionality
of the training patterns, approximate results are typically obtained. Our proposed algorithm, on
the other hand, implements a sequence of alternating direction singular value decompositions
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(SVD) [13], on a network architecture having a monotonically decreasing number of nodes in
successive layers. We also modify the traditional neural network architecture by introducing a
virtual input layer connected to the input nodes through a nonlinear transfer function. The
virtual layer acts as a preprocessor of the input vectors, and replaces a highly overdetermined
linear system with a solvable one. Our algorithm has several new, important features, namely:
(i) the network is trained in a single iteration; (ii) the method does not rely on calculating
gradients, therefore it is not affected by local minima; (iii) the algorithm achieves near-optimal
training results, and (iv) it generalizes well to vectors outside the training set.

2. Architecture. We consider a generalized multi-layer feed-forward neural network. In general,
the nodes (or neurons) are organized in layers, namely: (i) input, (ii) (one or several) hidden, and
(iii) output. In addition to these traditional layers, we introduce a virtual input layer between the
input layer and the (first) hidden layer. The virtual input layer allows for a specific type of
preprocessing of the input vectors, and the associated computations between the actual and
virtual input layers differ from the usual inter-layer neural network computations.

The feed-forward neural network has (L+1) layers, numbered from zero (input layer) to L (output
layer). An input vector is propagated forward through the neural network as a sequence of
intermediate vectors at each successive layer. For the implementation of the proposed method,

the number of nodes in successive layers must satisfy the inequalities N, 2 N,,, £=1, .., L.

The N, nodes at the layer £ receive (local) input values and produce N, output values (i.e. a
vector of dimension N,) which are propagated to the next layer of nodes, or (for the output layer)
represent the calculated output vector corresponding to the initial inputs. For the hidden and
_output layers, the processing can be described as follows. Assume that an initial input vector is
propagated through the network. Let s denote the row vector of outputs of the nodes at the layer

¢, and let t denote the row vector of inputs to the nodes at the layer ({+1). When bias weights are
used, the vector t is calculated as

t=sW+ bv, (1)

where W is the matrix of interconnection weights, b is a constant between 0 and 1 (e.g. 5=0.5),
and v is a row vector of bias weights. Eq. 1 can be represented in an equivalent way by
appending b to s to form §, adding the row vector v to W as the last row of the augmented

matrix W , and calculating t = §W . For the training problem, we consider the K training
input vectors as rows of a matrix S KNy ? where Ny is the number of (scalar) input values. At the

layer £, the output vectors comprise the rows of a matrix S, , where the column dimension N,

is the number of nodes of layer £, and the ith row is the output at layer £ corresponding to the ith
training input vector. Similarly, the input vectors for layer (¢+1) form rows of a matrix Ty

where N,,, denotes the number of nodes in layer ({+1). The propagation of information
between layers is given by the linear matrix equation

TKNlH: SKN: WNtNm + bK va (2)
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where W, , ~is the matrix of interlayer connection weights from layer £ to layer ({+1), bg is a
column vector of constants b; , and v, _is a row vector of N,,, bias weights. If we form S KN,

from S, by appending by, and append v, to W, , toform WN, n,, » We can rewrite (2) as
TKN¢+1= sKN: WN[”M ’ &)

As a single initial input vector is propagated forward, each node in the (hidden or output) layer £
uses a transfer function ¢ that maps the presynaptic vector t at layer £ to a new postsynaptic

output vector s (also at layer £) one component at a time. We assume ¢ is the sigmoid function
with gain 7 so that the ith component s; of s is calculated using

1
= .} = — 4
s =0{t)=1 - “)

For the training problem, the output matrix S ., for the layer (¢+1) is

SKN[+I = q)(TKNm )’ (5)

where the transfer function ¢ is applied to each of the KxN,,, matrix entries individually. The
final output patterns, which are vectors of dimension Np,;, form the rows of the output matrix

KN Lot

The processing between the input and virtual layers is realized in a different way. For a given set
of training vectors, we assume there exists a particular nonlinear transfer function, y, that maps
input vectors to virtual input vectors by directly applying the function y rather than the separate
calculation of the vector t and the (component-wise) nonlinear transfer function at each node:

Svirtual = lP(Sinput)- (6)

In the training algorithm, the function y (which is not altered in the learning algorithm) maps the
input pattern matrix S, (treated as the postsynaptic output of the input-layer nodes) to the

postsynaptic output matrix S, of the virtual layer:

SKNl =¥ SKN., )- 7N

3. Single-iteration neural learning algorithm. The goal in the learning process is to determine
the weight parameters { W, , } that minimize (some norm of) the difference between the
calculated output values and the target outputs. Our new approach is to decouple the

nonlinearities of the transfer functions at each layer from the linear interlayer pattern
propagation. To simplify the description, and without loss of generality, we discuss a network



architecture having Ny = I input nodes, N; = V virtual input nodes, one hidden layer with N, = H
nodes, and N3 = O output nodes. We assume that the interconnection weight matrices Wyy and
W and bias weight vector vo are randomly initialized. The learning algorithm begins with the
output layer. A full iteration consists of a backward pattern propagation to the virtual layer,
followed by a forward sweep to the output layer of the neural network. (In the following, a bar
indicates a calculated quantity, as opposed to a “target” or initialized quantity, and a superscript f
denotes a forward calculation.) We note that since @:R—(0,1) is bijective, the inverse ¢ s
well-defined. The following two equations relate the presynaptic inputs at the output layer:

Txo= ¢ (Sko ); ®)
T ko= S ks Wro +bx Vo. 9)
The first phase of the learning algorithm is implemented to minimize “TKO —TKOI, by solving
the system
(Tko-bx Vo) =S xu Wro (10)

for S xg. Since Txo is known and Wy and v were initialized, we compute S ku using the SVD
of Wy from the right. When Wy is a nonsingular square matrix, this step reduces to inverting
Whyo: however even in that case the SVD may be less expensive, especially for large matrices.

Typically we need to modify the calculated solution S xu, since in the forward calculations the
corresponding entries of Sy are output values of the sigmoid function ¢, with range (0,1). Some

of the calculated values of S xz may be outside the range of ¢. As described below, we shall
find an invertible renormalization matrix I" with the property that

[Sku!bg] =[Skulbx] T. (11)

Then, S xx has values in the range of @, while preserving the final column bk. Here, [§ xu 1 bkl
denotes a matrix with K rows and H + 1 columns. We use S xg to determine Tiu= go"(g KH )-

If more than one hidden layer is used, one minimizes IITKN: - —T_KN‘ “ as above for each preceding
hidden layer £, until reaching the first hidden layer (counting from the input end).

When the presynaptic input matrix T gy for the (first) hidden layer has been calculated, we alter
the process and begin the forward sweep, in which the weights are updated. We observe that

T xu and the postsynaptic output S kv of the virtual input layer are related by
Trn=Sxv W, (12)

where T gy is known from the backward sweep and S kv is calculated from Sg;. Thus we do not
need to compute S xy. Rather, we carry out an SVD of S kv from the left to determine the
interconnection weight matrix W{H . Using Eq. (12), we derive a forward estimate of Tgs:



TS, = Skv Wiy (13)
The forward estimate of Sy is
Sty =9 (T ). (14)

The augmented weight matrix between the hidden layer and the output layer is updated using the
inverse of the renormalization matrix:

W =T Wgo. (15)
Finally, a forward estimate of Txo is obtained:

TKfo = gfm ) }{0’ (16)
which yields

Si, = o(T ). (17)

The error is measured as some norm (e.g. L, ) of the difference between the provided target
output pattern matrix and the corresponding forward estimate:

E=[S4 -S4 - (18)
If additional hidden layers are used, each hidden layer matrix §x~, is renormalized by post-
multiplying by an appropriate matrix I, as in Eq. (11) during the backward sweep, and the

augmented weight matrix WN, n,, i updated by pre-multiplying by I, ! asin Eq. (15).

4. Construction of the renormalization matrix. The matrix T rescales the backward

computation of S xu so that its elements are in the range of ¢ (where again we assume only one
hidden layer). A simple method for rescaling is the transformation  s; —> & -s; + B for

appropriate constants o, B. The augmented matrix S KH= [§ x| bk ] includes a final column bk.

The rescaled matrix [§ kalbg] = [§ xu 1 bx ] T should preserve the K values of the vector bx in
the last column. The transformations

(s,.j—>a~s,.j+ﬁ,1SjS H; bj—>b;),1<i<K (19)

can be implemented by the matrix



0 0 0 - a O
B BB - B 1

For positive values of ¢ the matrix I' is nonsingular and easily invertible.

Notes:

1. The range (0,1) of @ corresponds to domain values (-0, ). We chose to restrict values to
the subrange [0.1, 0.9], which corresponds to the finite subdomain [ -In(9), In(9) ].

2. We use o< 1 to contract the values { s; } to fit in an interval of length < 0.8. If the range of
{ sij } is less than 0.8, it is not necessary to expand the range, and we let & = 1.

3. The value 3 represents a shift of the values to fit within [ 0.1, 0.9 ]. We have modified our
choices of zand fB so that the average value y for the set { s } is mapped to 0.5, the center
of the interval [ 0.1, 0.9 1, and the value s;; farthest from 4 is mapped to either 0.1 or 0.9.

5. Predicted error of learning results. Due to the SVD computations, the learning algorithm
introduces “minimum norm” type approximations for the solutions of each of the linear systems.
Due to the nonlinear transformations effected by each layer, even if each layer were solved
optimally, this still would not guarantee global optimal results. However, we can predict near-
optimal results for the learning algorithm if the following three conditions are met:

1. The training set does not contain duplicate input vectors.

2. The number H of hidden-layer nodes is greater than the number O of output nodes. (If more
than one hidden layer is used, the number of hidden-layer nodes decreases in successive
hidden layers.)

3. The mapping from the input matrix Sk to the virtual-layer matrix S kv produces a
nonsingular square matrix (with V= K).

If condition (1) is not met, then the training set contains either duplicate copies of the same
(input,output) pair, or contradictory patterns in which the same input is matched with more than
one output pattern. Preprocessing of the training patterns can be introduced to handle such
situations.

Condition (2) implies that the linear system (Txo -bx Vo) = S x# Wxo is underdetermined
(provided that the rows of Wyo are linearly independent, as is usually the case) and hence the

“minimum norm” solution for S gz should be exact (one of infinitely many).

Condition (3) implies that S kv is invertible, and the singular value decomposition gives the
inverse of S xv. Thus the “minimum norm” solution for W v should also be exact.
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Since the inverse of the transfer function ¢ is known explicitly, the preceding analysis predicts
that, in theory, the learning algorithm should result in error E = 0 (or as close to zero as can be
expected from repeated finite-precision calculations with matrices).

6. Conversion from input layer to virtual-input layer. Condition (2) above illustrates the
critical role of the virtual-input layer. It is common for the number K of training examples to
exceed the number of input nodes . If we attempt to use the training process without the virtual
layer, the linear system Txy = Sgs Wiy is overdetermined for Wig, and the resulting “minimum
norm” solution may be a poor approximation. (For example, for the standard XOR function with
I = 2 binary inputs and K = 4 training examples, the training algorithm applied without the
virtual input layer gives S/, =005 05 05 05 1" as an approximation of the target output
vector Sko=[ 0 1 1 01%)

In the following, we present a mapping W which always produces a nonsingular matrix S kv
Suppose the input vectors have dimension I > 1. For each component m = 1, 2, ..., I, construct a

KK matrix S% in which

5@ =5NDul , i,j=1, ..., K m=1,...,1, (1)
D

m

S&Wa, H=1-

where s(i),, denotes the mth component of the ith training vector s(i) and D, is the maximum of
| () — S()m 1 Overail 4, j=1,.,K. LetS gy be the block diagonal matrix whose mth block is
S . The determinant of the full matrix is [14]:
! K-1 :
m=1 2 j=1 D m

This guarantees that the matrix is nonsingular, but — for large I - severely increases the size of the

matrix. As an alternative, we define the mapping w by taking the (i,j)th component of Skv to
be

1-#—@;—5(’ﬁ, ij=1,..K, 23)

where D is the maximum distance between input vectors in the training set. In general, for some
training sets, the matrix S v obtained by using the transformation (23) may be singular.
However, the SVD method does not require an invertible matrix. If the linear system is
overdetermined, the SVD will generate a “least squares” best fit approximation.

We have studied several virtual-layer transformations to be used within this general approach to
neural network training.  Different virtual layer transformations may provide better
representation of the data, yielding better learning results and/or better ability of the trained

neural network to generalize. The choice of an optimal mapping ¥ from Sg; to S kv is still under
investigation.



7. Implementation. We implemented this algorithm on several examples with excellent results
[14]. Here we present just one example, for illustration purposes. The function fis given by:

£, 290 X3 Xgr X5 ) = [y = 0.25] +sin(6x,) — x;6™ 7 +2x, + 25(05- %), 0S ;< 1.
[242273 5 3 5 5

A neural network was constructed with five input nodes, 1000 virtual-layer nodes, a single
hidden layer with 20 nodes, and one output node, using the component-wise virtual-layer
transformation described by Eq. (21). The training set comprised 200 randomly generated input
vectors (xi, X2, X3, X4, X5 ) in [0,1]5 , with corresponding output values of f. The network was
trained, and the absolute error was computed for each training input vector. The mean error was
0.000006, with a maximum error of 0.000021. We tested the trained network’s ability to
generalize using 1600 randomly generated vectors in [0,1]°. The function values are between —
1.75 and 3.4. The L, norm for the error was 0.0268, with a maximum absolute error of 0. 1348.

We also trained and tested a neural network using the alternative virtual-layer transformation of
Eq. (23), using 5 input nodes, 200 virtual-layer nodes, and 20 hidden-layer nodes. For the
training vectors, the mean error was 0.000189, with a maximum error of 0.000637. Over the test
set, the L, norm error was 0.2812, with a maximum absolute error of 1.014. The component-
wise transformation (21) produced more accurate results for this function. The training set
comprised 200 randomly generated input vectors (x1, X2, X3, X4, X5 ) in [0,1]5, with corresponding
output values of f. The network was trained, and the absolute error was computed for each
training input vector. The mean error was 0.000087, with a maximum error of 0.000295. We
tested the trained network’s ability to generalize using 1600 randomly generated vectors in
[0,1]5 . The function values are between 0 and 3.5. The L, norm for the error was 0.3968, with a
maximum absolute error of 1.34.

8. Conclusions. We presented a new training algorithm for multi-layer feed-forward neural
networks. The new algorithm has several important features: (i) the ability to train in a single
iteration; (ii) avoidance of local minima of the error function; (iii) near-optimal training results;
and (iv) the ability to generalize well.

These features are based on a new architecture that includes a virtual input layer and on a new
algorithmic idea. The algorithm calculates backward from the output layer, alternating between
inverting nonlinear transfer functions within layers and using SVD to solve linear systems
between layers, and then moving forward through the neural network, updating interconnection
weights, to complete the training process in a single iteration. The use of a virtual input layer
reduces a highly overdetermined linear system to a solvable one. We showed that in theory
(with infinite-precision calculations), the method trains the neural network with error E = 0.

The implementation showed that even with finite-precision calculations with large matrices, the
observed training error is near zero. In addition, the examples demonstrated that the trained
neural networks can generalize well for input vectors which are not in the training set.
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