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SPHERICAL WAVE PROPAGATION IN
ELASTIC MEDIA AND ITS APPLICATION
TO ENERGY COUPLING FOR TAMPED
AND DECOUPLED EXPLOSIONS

ABSTRACT

The effects of variation in source and medium properties upon near- and far-field
spectra for elastic waves are examined theoretically by considering spherical wave propagation
in unbounded elastic media. This type of analysis, although idealized, provides insight into the
relative effects of the various source and medium parameters on both tamped and decoupled
explosions. It also provides a basis for interpreting both field and laboratory experimental data
obtained during spherical wave propagation in real media. In this paper I attempt to unify the
work that has been done on spherical wave propagation in elastic media. I present the results
in non-dimensional forms, in hopes that others may find these forms of the solutions useful and
some of the conclusions, based upon my parameter studies, enlightening. Also included is a
discussion of some of the limitations of the theory and examples of applications of the spherical
wave propagation theory in real media.

INTRODUCTION

The Department of Energy and the Advanced Research Projects Agency have, for several years,
sponsored research related to an understanding of explosion seismology.' This research is oriented towards treaty
verification and treaty negotiations between the U.S. and the U.S.S.R., but its basic intent is to improve the capa-
bilities for detecting underground explosions and to investigate methods that might be used to conceal such
explosions. Since the signing of the Threshold Test Ban Treaty and with the current negotiations directed at a
Comprehensive Test Ban Treaty, emphasis has been focused on short-term problems related to these treaties. But
the goal, nevertheless, remains the same: develop an understanding of the variability of regional and teleseismic
signals produced by underground explosions and, in particular, discover how the explosive yield and the geology
surrounding the explosion affect these signals. Another problem to be considered is how seismic signals are
produced by eanhquakes, and how to distinguish them from s|gnals that mlght be a result of a suspected treaty

- . we > e® e - . - re o - ®» - sy -
Generally, there are three basic parts to the problem of interpreting seismic signals: (1) the effect of the
source region, (2) the effect of the propagation path, and (3) the effect of the receiver region. In this paper only the
source region is considered, which I define to include the energy source and enough surrounding geologic material
to allow an approach to clastic wave propagation (i.e., out to the “elastic radius™ of the geologic medium of
interest). This definition is convenient for the objectives of my research because it allows me to determine how the
explosive yield and the geological environment surrounding the explosive affect the signals that are produced.
There are at least two approaches that can be used to get an understanding of the source region. One approach is
to infer the source region description from a large sample of seismic data. Unfortunately, this approach cannot
provide a unique description of the source region. A second approach is to attempt to solve the forward problem
by developing an approximate mathematical description of the source region based upon experimental information
about the source and the geological environment surrounding the source. This latter approach is the one I have
chosen 1o use because it offers not only a challenge but also a chance to get a unique description of the source
region.



MATHEMATICAL ANALYSIS

GENERAL PROBLEM

The propagation of divergent, compressional waves in solid media can be examined by mathematical
analysis. provided an idealized statement of the problem is used. Consider a spherical cavity or boundary of
radius a, within a homogeneous, idcally elastic, infinite medium with density p, Lamé's constants A and g, and
compressional wave velocity ¢ to which an arbitrary pressure p(t) is applied at the boundary.

The elastic equation of motion for this problem is:

p%f—=(A+2g)—V'(V'5—ﬂ_‘7(§X5~ )

where £ is the vector displacement and ¥ is the vector differential operator* The relation

F=Tu 1))

gives a solution for compressional wave motion, provided the scalar wave equation
24 _ gy 3)

is satisfied where ¢ = (A + 2u)ip.
In spherical coordinates the radial component of Eq. (2) is given by
£(rt) = ar ¢
and Eg. (3) is

Fu _ 2, @

A reduced displacement potential ¢(7) = r y«(r.1) for outgoing spherical waves can be defined, leading to the
equation

e e e --.Q'¢.=.C~.§g - e e e
at

with plane wave solutions

)
é =it + () + dalt ~ ).
{
In this discussion only the secopnd or outward moving wave will be considered. Using this definition, the dis-
placement is given by

w(r)
o]

= —i—=
£y =~

* | his form of the Navier equation arumcs that body forces such as gravity are zero.
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or

fr = - b - H2 )

where 1 =t — (r — ay)/c is the retarded time (i.e., the time from wave arrival), and ¢(r) means differentiation with
respect to the argument r.
With an arbitrary pressure* p(r) applied at the radius a0, the boundary condition for this problem is

0
pr) = [—n + ) a—f - zxé] P (6)

A solution to this problem in the time domain was given by Sharpe.® Under the assumption that A = m
(i.e., a Poisson's ratio of 1/4) for the driving function p(t) = pe™, and where A = 2\/—/3 ¢/ay, Sharpe
found that

AP empenwdf L2y
(1) A2 - ar + AT [e +e {(\/i A) sin At + cos Ar}:'. (@)

while for a step-function boundary condition p(t) = pu, he found that the potential was given by

o) = 22 [-—l + \/% e* VI gin(Ar + aan"\/i)] ) 8)

3pA’

Without the restriction that A = u, Blake obtained a slightly more complicated expression for the reduced
displacement potential.’ He found that for the forcing function p(t) = pe™
(1) = & —e™" + L] e cos(Fr — E) 9)
T, B_ F T .
where au = (c/an) * (1 = 20)/(1 — o), F = (c/au) - (1 — 20)"*/(1 — 0), B* = F* + (aw ~ @)', E = tan (@ ~ e}/F,
and a is Poisson’s ratio.

According to Latter et al.. this spherical wave propagation problem can also be solved in the frequency
domain.* Substitution of Eq. (5) into Eq. (6) gives

_ ) o f.a, cem]l a1, ._Ml_.
p{r) = (A + 2L) or [ e @(r) 2 :| ' [ (7 Js = a;
CNL Y S P T (10)
e’ r'c fr=a

The Fourier transform of Eq. (10) gives

- A+ 2 3= duiw - 4u -
p(w)=[ £ wig - ‘f“”da——‘.‘—(rJr:&

et re r

*The pressure (or radial stress) p{r) is the boundary condition at the cavity wall or elastic boundary and provides the driving force for the
clastic wave | ion. Therefore, by definition, this pressure (or radial-stress) time history contains all effects associated with motion
inside the boundary.




where

bl = 5 £ o) e dr *

and

Plw) = # I p(r) e™ dr

0

are the Fourier transforms of ¢(7) and p(7), respectively, and both ¢(r) and p{r) are equal 10 zero for 7 < 0.
Rearrangement and substitution of r = a, gives the displacement potential d{w)

&:(w) = M . _I— (1
du By —im—1 "
where 8 = (A + 2p) du, 7 = w/ux, and an = ¢/fan.
Next. the Fourier transform of Eq. (5) is obtained

frw) = - (ri + ‘r—“c‘) Flw), (12)

and Eq. (11) is substituted into (12) to give the desired expression for the displacement as a function of range
and frequency

s _ 1 iw) plwal I
frw) = (: + rc) R e a3

Another useful quantity, the reduced velocity potential (7). can be defined by noting that the particle
velocity w(r.7) is oblained by taking the time derivative of Eq. (5). Thus,

¥i{r)
BE(rY) a[T]
T

u(rt) = 2 . (14)
where
T vm el T TS T T s T
The Fourier transforms of Eqs. (14) and (15) give
Urw) = iwf(rw) (16)
and
yiw) = iwdlw). (17)

*Notice that in performing a Fourier transform of any function f{r), the transformed function f(cw} has the units of f(r) multiplicd by the
units of time,



in the far field (when r' >> rcjew), Eq. (13) reduces to

- _ iwpleja " |
[€(re)]s durc T+ = pr (18)

Substitution of Egs. (I1) and (17) into (18) leads 10 the following simple and useful relationship between the
far-field displacements and the reduced-velocity potential

e = ~ 22 (19)

DFCOUPLED FORCING FUNCTIONS

An explosion in a cavity is said to be fully decoupled if the cavity volume is large enough o insure that
the surrounding medium responds elastically to ihe applied pressure p(t). In the practical case, an explosion in the
center of the cavity is used to produce the pressure pulse, and the Jarge volume around the explosive allows rapid
attenuation of the pressure produced by the explosion. One assumption that has been made is that the pressure
pulse closely approximates an ideal step function with the pressure distributed uniformly throughout the cavity.®
The pressure in this case is given by the expression

rw
=AW 2
P 4rray (20)
where W is the energy and " is a constant characterizing the gas in the cavity.
If we consider a step pressure pulse p{t) = po for t = 0 and p(t) = 0 for t < 0

p—>

Pa

0

1t

. - P T D T T S e e .

we find that the Fourier transform p(w) is given by
plw) = _’_ P 2D
ple iw 27

Substitution of this result into Eq. (I3) gives the displacement &(r,w)

- ! iw\ poab 1
= {= C—— 22
£(rw) (r' rc) iw8mu 1+ip - By Loy

which in the far field (when I’ >> rcfw) reduces to

Pnai‘l . H . (23)
8rurc ! +inp - By

Erw) =



The velocity potential in this case is

P(lai‘l 1

8o I +in - B17_" (24)

e = -

In Fig. | the magunitude of a dimensionless velocity potemiall-{"'(n)| is plotted versus the dimensionless frequency .
(This form is used in presenting the results for convenience in scaling.)

: [y te)] ! "
*, = = < v
lv*@) o [1 Y B_n] (25)
8mu

Equations 23) and (24) both have the same frequency dependence; therefore, the curves in Fig. | also give the
frequency dependence of the far-field displacement. The only parameter associated with the medium in Eq. (25)
is B, which is related to Poisson’s ratio through the elastic constants A and u. The maximur. value o1 the magnitude
of this dimensionless velocity potential occurs at a dimensionless frequency given by the cxpression
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Fig. 1. A dimensionless reprosentation of the reduced velocity
potential vs frequency for a step function. The only parameter to be
varied is 3, which is related to Poisson’s ratio through the expression

o = {1 - 2B)/(1 - 4p).
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Nmay = 28 (26)

In the limit as n — 0, the di'..«nsionless velocity potential (Eq. (25)) approaches 1. The dimensionless
velocity potential in Fig. | remains relatively flat out 1o.frequencics corresponding to n = 0.2. For stiff materials
(o = 1/4), this flat response continues until frequencies near # = 1. However, very soft matertals (i.e.. ¢ = 3/7)
show a definite maximum in the potential at frequencies corresponding to the nm., of Eg. (26). All materials show a
rapid drop in amplitude with frequency beginning near n = 1. and the slope of the drop approaches —2 at the
higher frequencies (as n — =).*

For the ideal case of a step-pressure function, variations in displacement with frequency in the far field
depend only upon the Poisson's ratio of the elastic medium (see Eq. (23)). Therefore. for a given medium. reiative
amplitudes of displacement at a fixed radius (i.e.. decoupling) are deterrined by ratios of expressions of the form
poas ;Bmurc. However, this is only true at low frequencies (when the right-hand side of Eq. (25) is approximately
cqual to 1), Substitution of Eq. (20) into this expression gives

W
2niure ’ @n

Thus, for a given ideal elastic medium, the displacements in the ideal decoupled medium are proportional to the
yield. Equation 27 also shows that decoupling for different media at the same cnergy W is proportional to the
product uc. Therefore, granite (¢ = 32 GPa and ¢ = 6 km/s) could be approximately three times more effective as
a decoupling medium than NaCl (1 = 15 GPa and ¢ = 4.5 km/s).T This relation is also true at low frequencies and
at all frequencies for different media if ¢ and a can be selected to keep wo equal for the two media.

The actual applied pressure in an explosive-driven, decoupling experiment is a serics of narrow, rapidly
attenuating spikes resulting from shock wave reverberations in the cavity supcrimposcd on a step-pressure pulse
(see, for example, Ref. 6). The first spike is the major perturbation to the step-function assumption, and a measure
of its influence (assuming elastic behavior) can be determined by assuming a forcing function of the form

p(1) = 0 fort<<0

p(t) = pe™+pufort=0 (28

*As a point of interest, note that the vertical separation in this region is related to the ratio of the .

THowc\'cr. the cost of constructing a given cavity in graniiz would be higher.
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where p. + po is the amplitude of the pressure pulse, and ™' is a measure of the width cf the pressure spike (i.e..a™
is the time for the spike to decay to an amplitude of ¢”'p). The Fourier transform of Eq. (28) is

- | D po
= — [ — + =
ple) = o [iw ta im] )
50 that the non-dimensional magnitude of the reduced velocity potential | y*{n)! becomes
2 12 12
> Po\{ Ps
- U2 )=
- 13! " ( px)(xm) !
{o*¥g) = —4—= | ——— /7 4 _
= ) (a . W' W@ -+ | GO
8 *n
ke a,

A comparison of the step function (Eq. (25)) with the step function plus pressure spike (Eq. (30)) is given
in Fig. 2 using a Poisson’s ratio of 1/4. The values of « (5000 5') and ps/po (19.63) were selected based on
cavity pressure measurements made on the Cowboy Experiments’ and on calculations made by Patterson.”

Another useful way of cxamining the cffect of a single spike as compared to a step-function input is to
take the ratio of Eqgs. (30) and (25). This gives relative effects as a function of the dimensionless frequency 7.

R [AeRE ]

AR @
@& v

Figure 2 clearly shows the large effect that a single spike can have upon the higher frequency part of the
spectrum considered in Fig. 2. The spike causes a substantial shift in frequency of maximum amplitude (i.e., 7ms)

10 vy
L Step function
/ with single
/ r spike
I3
F S L . a4 . . .

15

| SGtep ]
function
0.1 P ) 2 L\L i
0.1 1 10
7 = “
“o

Fig. 2. A non-dimensional plot of Egs. (25) and (30) using 2 Pois-
son’s ratio of 1/4.



and decreases the slope of the dropoff as compared to a step function without a spike for frequencies correspond-
ing to several times fn... However, in the limit as  — o< , both of these curves will approach = sloje of ~2 and will
be separated by a factor p/ps + L.

TAMPED FORCING FUNCTIONS

A tamped explosion is one in which .he medium is initially packed around the cxplosive. The explosion
produces a corplex sequence of events in the medium, including propagation of a shock wave and growth of a
cavity. The shock wave causes inelastic deformation of the surrounding medium until the stress decays to a levcl
of clastic response. The radius at which elastic response begins is called the elastic radius or the boundary for
elastic response. The stress-time history that occurs at this radius is the forcing function p(s} in Eq. (6).

Cavity growth is the result of the extremely high pressures rcleased by the explosion. compressing the
rock boh inefastical”. and elastically. This causes radial purticle motion and displacements to occur as the shock
wave passes, (zs pressure within the cavity will continue to drive the cavity er,pansion at late times until an equi-
librium of forces is established.

Gunerally. the overall result of these processes is a peak in displacement which is reached as the shock
wave passes. and then a relaxation to a permanent displacement.* In consolidated (very low porosity) rock, the
permanent displacemen: should be consistent with the incompressible expansion around the cavity or elastic
boundary. The permanent displacement. &, in this case is given by

b =rn-r

where r. — 1 = rf = r’, and where 1 is
the original radius of the explosive, r. is

" the"radius "of The” cavity. T is the “originial position
of a mass point in the elastic region, and 1 is the final position of that mass point. In this case,

[T (Al o A ) LR

which gives
&L= (r' +r - n>' ‘e

*Much tatcr. as the gases cool and condense, the pressure is relieved causing an imbatance of forees and partial, or in the cise ol a highly
fractured matcrint complete. collapse of the cavity may oceur.



For r >> r. >> ru. the permanent displacement is approximately

In
Glry=z = - (32)
a2 T
In cases where porosity is significant. the permanent displacement in the elastic regime will be signiti-
cantly less than that given by Eq. (32) and dependent upon the amount of volume lost in the crushing of pores.
In an ideal elastic material the permanent displacement can be showi to be related to ¢(sc) by letting

7 —~ ¢ in Eq. (5) and assuming that &(r) approaches a constant value as r — =, This gives
| !
g = 22 33)

The value | é(=)| can be determined from Eq. (10) by letting 7 — ¢ and assuming that ¢(r) approaches a constant
value as v — 2. This gives

i

lpoc) | = B2 (34)
4u

where p is the steady-state final pressure. Substitution of Eq. (34) into Eq. (33) gives

N
lgroe)) = -2 (35)
dur
Thus, the permanent displacement in the clastic region at a radius r is related to the steady state pressure at the
cavity or boundary wall, pv, as indicated in Eq. (35).
The forcing function chosen by Sharp® and Blake® to simulate a tamped explosion was

p(t)y=0fort~ 0
pity=pe™ fort >0 (36)

For this function [¢(oc)| is zero, and there is no permanent displacement [see Eq. (7))

The Fourier transform of p(t) is

sy = B
Pa) = o Fiw) 37
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Substitution into Eq. (13) gives

. | iw P as ]
=5+ —
Hra) (r' ) Sl + @) [Fm-F7 (38)

and in the far field

L .
5 P as in 1
Hrw) = : : (39)
8murc a\ . P
(w(>+m 1+in— By
The reduced velocity potential is given by
. “a i 1
Hw) P (40)

8mu LAV ) oA
(u>+m 1+in— Bn

In Fig, 3 the dimensionless velocity potential 19*(n)! is plotted for various values of (ajws) with
8 =1 (for a Poisson’s ratio of 1/3) where |¥*(n)| is given by

-, _ |:y(w)} _ 1 12 _ 1 ] 12 "
[y*(n) (P a“') (a_)z +n: 1 - (28— g + ﬂ-ﬂ‘ 4n)
8mu o,

1 T T TTITTg T L L L™

0.01
0.

Fig. 3. A dimensionless representation of Eq. (41) for § = 1 and
for various values of the ratio (a/w).



Values of n corresponding to the maximum velocity potential are given by

(:."—l):w{zﬁ—l)— B(i‘)] 7 =287 =0 . @2

which was obtained by taking the derivative of Eq. (41) and setting it equal to zero. Some solutions of Eq. (41),
accurate to the nearest hundredth, are given below to demonstrate the variation of corner frequency, fms.. with
B and (a an)’:

Tmas (o, )
B=1 0.59 1
098 10
0.99 20
B =2 0.68 1
0.70 0
0.70 20
B=34 097 1
1.12 10
1.13 20

The dimensionless velocity potential for Eq. (41) approaches 0 as 5 -~ 0. The slopes of the curves in Fig 3 approach
fand haae a separation proportional to ex a as n — 0. The slope as n — = is —2.
A scecond forcing function representation for tamped explosions is that given by Eu. (28).

p(ty =0fort<¢

p(t) = pe ™ + po for t 20 (28)
t
' Ps + Pg
| S,
t—

This form has been used extensively by Murphy,**" and Mucller".

The Fourier transform of Eq. (28) is given by Eq. (29)

- ! P Pu
) :E[iw+a+z] ' (2
and the dimensionless velocity potential |y*(n)| is given by Eq. (30}
n [
+2 = 12
st G .
. = = 3 5 . (30)
| 7*(n) +( =B = = B
n
Sm.t o,

12



10 T LN A e M B | T T T T TIT7]

bl
-

1111

T T T TTTT
1

=

TTEIIT
Lyl

*
15
1
N
[ ,n
=]
SNS—
il
[ ]
o
L 1

01k -
0.0“ L 1 1t 14111 I L 1 L1 11l Ll
0.1 1 10 20
n=
UO
Fig. 4. A dimensionless repr ion of Eq. (30) with 8 = 3/4,

po/p = 0.238, and (a/ax) allowed to vary.

In Fig. 4, Eq. (30) is plotted with (pu/p.) = 0.238, B = 3/4 and (a/w) allowed to vary from 0.3 10 30. In Fig. 5,
the effect of varying (pu/p.) between 0.1 and 1 is examined with 8 = 3/4 and (a/w) = 3.0

In Fig. 4. for a fixed ratio of (po/p.), we see the effect that the ratio of the characteristic time
wi, associated with the elastic radius as (i.e., wo' = ag/c) to the measure of the width of the pressure pulse a™'.
has upon the spectrum. Thus, for large ratios, a/w = 30, the spectrum is similar to that for a step function
up to frequencies corresponding to n = 1, but for frequencies beyond that point there is an increasing amount
of high-frequency content. For small ratios of (ar/ wo) (a/an = 9.3), the pressure pulse is broad and contributes
greatly to the amplitude of the potential at all frequencies. However, for very high frequencies (e.g.. 7 = 100)
all three curves converge.

In Fig. 5, with (ar/wn) and B held constant, we see the effect of varying the ratio of the steady-state
pressure py to the spike pressure p.. As the ratio is made smaller tie influence of the spike increases, and large
increases in amplitude are seen for all frequencies beyond 7 == 0.2, As the ratio is made larger the influence of
the spike diminishes and the spectrum begins to approach that expected for a step function. (In the limit as
p. — 0. Eq. (30) gives the step-function solution.)

To determine the effect that a finite rise time has upon the far-field spectra, a forcing function of the form

p(t} =0fort <D
p(t) = p(l — ey fort20 43)
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Fig. 5. A di ionl p tation of Eq. (30) with 8 = 3/4,

{ajan) = 3, and (po/p,) allowed to vary.

was chosen. The Fourier transform in this case is

By = 2ol o 1)
Plew) 2r (iw iw + a)

Substitution of Ey. (44) into Eq. (13) gives for the displacement

5 (1 e\ pea N1 1 !
§re ) —(rz + rc)( 8rru )(lw iw + a)(l + in — Brf)
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The corresponding velocity potential is

a
AT
- & [ 1
"““’=%_‘ I (+ig-Br) (46)
T v n — Bn

X,

The dimensionless velocity potential | 7*(n)] is given below and plotted in Fig. 6 to show the effect of variations
in the ratio (a/en) for the case where 8 = 3/4.
12 12
]
(D ] ) @7

o el _ (
o« | - 8- Dy + By
)] J

L] =
17*(n) T )
8mu

Figure 6 shows that where @ = ax. all frequencies about y = 0.6 are strongly attenuated with attenua-
tion increasing with frequency. However, when o™ = (1/10)z', the attenuation is very small except at frequencies
beyond n = 4. As 5 — 0in Eq. {(47), the dimensionless velocity potentiat approaches 1, and as » — o<, the siopes
of the curves in Fig. 6 approach —3. { Based upon laboratory and field measurements, these two extremes in rise
time probably closely represent the effecis to be expected from a dry, weak, highly porous material such as
alluvium, and from salt or other materials having little or no dry porosity." '* The slow rising wave in the dry.
weak. highly porous matcrial is a result of dispersion as the pores are crushed by the shock wave.)

2

THEORY LIMITATIONS

The application of this simple theory 1o problems associated with reaf materials has limitations. Thus far
in this paper we have merely examirned exact solutions based upon the ideal conditions assumed in our mathe-
matical description. To apply these results 1o real materials requires scveral assumptions. Before drawing any
conclusions based upon application of this theory to real materials, we must be cognizant of the assumptions that
are made and understand the sensitivity of the results to the assumptions.

The first assumption is that we are dealing with elastic materials. This is not strictly true for geologic
media. There remains significant attenuation of the wave even though most geologic materials appear to approach
elastic behavior beyond a certain radius in spherical divergent flow. Typicaily, this attenuation is atttributed to
internal friction, Q', and is often described in terms of an exponential attenuation function

Alrw Q') = A X0 | (48)

Assuming this type of attenuation law holds beyond the elastic radius, au, the higher frequencies will be much more
strongly attenuated than the lower frequencies, and attenuation will increase with both radius and internal friction
(Fig. 7). In principal, corrections to the simple theory resulting from this inelastic response can be made provided
values of Q' arc available. An example of this type of correction is discussed in the next section.

A second assumplion is that an clastic radius can be defined. 1n a decoupled cavity, the cavity radius is
the elastic radius; therefore, selection of the elastic radius for cavity shots depends on whether the cavity was or
was not overdriven. The elastic radius for tamped explosions is more difficult to define. In real materials. clastic
behavior is only approached; therefore, a finite elastic radius can only be defined if we assume that it is the radius
beyond which no major inelastic deformation exists. In most solids, shock wave-indu-ed yiclding occurs at some
finite stress, and below this stress the wave velocity is approximately equal to the sound speed. Therefore, it seems
logical to define the elastic radius in a medium as the radius beyond which the stress is less than, or equal to, the
dynamic yield stress. The major problem, however, is to determine a represemative value of this stress for the
geologic media of interest.
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A third assumption is that the wave propagates elastically in a one-dimensional. spherical-divergent
flow. This, of course, eliminates frorn consideration applications where free surfaces, other interfaces. or asymmetry
in the source contribute significantly to the data that are to be compared.

A fourth assumption, ard perhaps the most difficult to justify, is that a forcing function can be chosen to
represent the actual pressure-time (or stress-time) history that occurs at the elastic radius. In mosi of the applica-
tions that will be considered, particle-velocity or stress-time histories are available. However, some of these data
are limited, giving at most the first positive and first negative phase of the waves. Thus, some error is introduced in
the extrapolation of the pressure pulse. The effect of depth of burial has not been introduced in this treatment but
has been considered in the work by Murphy (see, for example, Ref. 9).

APPLICATIONS

SALMON

The Salmon experiment was a 5.3 £ 0.5-kt nuclear explosion fired in the Tatum salt dome." The
particle-velocity-time histories recorded by Perret' suggest that the form of the forcing function at the elastic
radius can be approximated by either

p(t)y =0fort<0
p(t) = pee™ fort = 0 (36)

p(t) =0fort <0
p() = pe” + py fort 20 (28)

From Perret’s report the volume in the cavity created by the explosion was estimated to be equivalent to a cavity
radius of 2] m. This volume must be accounted for either by the closing of preexisting porosity, by permanent
displacement, or by a combination of these two effects. We can use Eq. (28) as our forcing function if we assume
that all of the volume goes into incompressible, permanent displacement of the salt surrounding the cavity. The
fact is that the porosity at the Salmon site may be zero, and Prriet’s measurements of permanent displacement,
which show a great deal of scatter. do not invalidate this assumption. Thus we can calculate the permanent
displacement using Eq. (32)
3087
— m

&lr) = = m (32)

or [¢(e<)] = 3087 m’.* From Perret's experimental measurements (Perret, 1966) and from sonic logs of the Tatum
salt, we know

a'l =002
g = 15X 10° bar
B =34
¢ = 4550 m/s.

In a reasonable range of the parameters for the Salmon event, the maximum value of the displacement potential
|¥*(mi [Eq. (30)] occurs at a frequency corresponding to == 1 (i.e., when w = ux). Perret states that the frequency
for peak amplitude occurred at approximately 2.5 Hz. Therefore, the elastic radius as is at approximately 290 in

*This calculated value of [¢b(%0)| is also consistent with Perret's measurements of [¢(e)].
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2 = L = 9350 m
! wy 2m{2.5)

= 290 m.

Based upon Perret’s measurement, the peak stress. p. + pu. at 290 m is equal to 395 bar. Now, using the above
results and Eq. (34). we can calculate po. the steady-state stress:

_ Aor=)lu _ 4(3087)(1.5 x_10)

= = 76 bar.
an (290) 6 bar
Rewriting Eq. (30). we get
~ N [ [
A T o Bu
: poas |7 (W) (' + ZF) !
rlylw)| = —= |/ + | —_— (49)
vl 4p 7+ (g)' I =28 - Im + B
Y
or upon substituting the known values,
N [ 12
- 0.4108 1
2n = 3087 m' T 5 . 50
(el m ’:0‘0158 £+l [l ~ 008 £ + 00144 f'] 0

In Fig. 8 Eg. (50) is plotied and compared with measurements reported by Springer et al."* The calculated curve
represents a “best guess™ calculation of Salmon based upon the data reported by Perret.

In Fig. 9. calculations using two other values of the elastic radius are shown and compared with the
observed data. [t is apparent in this comparison that the calculation with the clastic radius at 240 m (fm, = 3 Hz)
aprees as well. if not better, with the experimental results as the calculation using 290 m. This is not surprising since
the data presented by Springer et al. show a peak in the velocity potential at about 3 Hz. Even better agreement
with experiment is obtained when an attempt to compensate for the effects of internal friction is made. In this
adjustment, shown by the arrows in Fig. 9. it was assumcd that Q was 550 and that the range was 16 km (i.e., the
range to one of the observation stations used in getting the experimental data).

In Fig. 10, the calculation bascd upon Eq. (50) is compared with a calculation using tbe forcing function
described by Ey. (36). Using Eq. (36) is equivalent to assuming that sufficient porosity exists in the material so
that py approaches zero and there is negligible permanent displacement at and beyond the elastic radius. As Fig. 10
shows, the removal of permanent displacement considerably reduces the amount of low frequency content in the
far-ficld spectrum.

These comparisons show that the function p{t) = p, e -+ pu does an excellent job of representing
the regional scismic data from the Salmon cvent when the elastic radius is chosen in the 240-290-m range and
adjustments are made to the calculation to compensate for the effect of internal friction.

STERLING

The Sterling experiment was a 0.38-kt nuclear explosion fired in the cavity produccd by the Salmon
nuclear event. The Salmon cavity, with a radius of 174 £ 0.6 m, is ncarly spherical and partially filled with melt
and measurements of the volume of the cavity, given an cquivalent sphere radius of 16.7 + 0.6 m. Various criteria
are available to test whether total decoupling of the Sterling explosion is achieved in this volume. According to the
Latter decoupling criteria, 0.21-0.42 kt arc decoupled depending on whether the initial spike in pressure produced
by the explosion and hitting the cavity wall can be ignored.’ The Sterling cxplosion is in the upper range of
these criteria; therefore, we will measure the effect of a pressure spike by comparing ideal decoupling [Eq. (25)]
with a calculation based on Eq. (30).

For an ideal decoupled shot,the forcing function is p{t) = pu. where po for the Sterling conditions is
given by
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I3W _ 3(0.2)(0.38)(4.18 X 10%erg) _

" ama 10" er, = 163 bar
e 4n(167 m)-‘( ; g)
m’ bar

where the value of 0.2 for I is a value appropriate for air.’ Rewriting Eq. (25). we have

3 12
- _ Poad [— 1
2miy(w)| = m [_l — 28 - ])le + ﬁzrlq:l . (51

For Sterling, the salt out ta a radius of appraximately 83 m had been altered by the Salmon explosion. As a result,
measurements indicated that ¢ = 3820 m/s, x = 1.0 X 10° bar, and @ = 3/4* Substitution of these values into
Eq. (51) gives

. _ N l 1.2
Zrlvtell = 215 m (1 “409 X 10T ¥ 377 X lo"f') : 2

Equation (52) is plotted in Fig. 11 along with measurements reported by Springer et al."
A measure of the effect of the first pressure spike hitting the wall in the Sterling experiment iz given

by Eq. (30)
N P p 2 12 12
a5y = B [T T ZE) (ﬁ) + l_l [————l ;
4 aY | > 1-@28~ N + § '
" (EE) + g 4 - ur+
*A ption of these | will give a i value for the reduced-velocity p ial ing clastic behavi
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Using values of & = 5000 s™* and p. = 3200 bar, which seem appropriate based upon the Cowboy experiments® and
the calculations made by Patterson,’” we get the following relationship:

. /1676 X 10" £ @ o 1 "
2 = S 1T U : | . :
iyl = 215 m (2.5 X 10 + 3948 £ ‘) (T2 x e s s xwr 3

Equation (53) is also plotted in Fig. 11.

The differences that exist between the theoretical calculation and the experimental observation in
the Sterling experiment are difficult 10 explain conclusively. However, the observation of a comer frequency at
approximately 10 Hz impiies a cavity with a radius of at least 40 m, assuming full decoupling

therefore

=~ (2} > (2) 3820 _
B = (3)21rfu = (3) 210y - 0™

This is inconsistent with the actual cavity radius of 17.4 m and suggests that Sterling was not fully decoupled.
Therefore, assuming Sterling was not fully decoupled, it is not surprising to see a difference of a factor of ~ 2 in the
observed and predicted reduced velocity potentials.

DECOUPLING —STERLING COMPARED TO SALMON

A measure of the effectiveness of a cavity to decouple an explosion is given by a direct comparison as
a function of frequency of the amplitudes of a tamped shot to those of a decoupled shot. This comparisor: is made
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for Salmon and Sterling in Fig. 12 using both calculations and measurements. However, comparisons to determine
decounling are more useful if they are made with both shots at the same energy yield. To make this latter corpari-
son, we shali define the decoupling D(f). as the ratio of the reduced velocity potentials determined at the same
energy rield. W, and at the same {requency

(Al ampes

oo = 1Y ) decanpiea

(54)

and use the following cube-root scaling equation to scale from one yield W, to another vield W,

- W \_V_;”
il =wmrlw) ¢

Using Eqy. (55) we have assumed time and distance scale as W'’ and that gravity does not influence our results.

In Fig. 13 the calculated reduced veloity potentials are plotted for Salmon and for Sterling, scaled to
the Saimon vield using Eq. (55). The ratio of these two curves is shown in Fig. 14 along with decoupling results
from the experimental data reported by Springer ¢t al.* The differences are a direct result of the differences that
occur between experimental and calculated velocity potentials for Sterling.

‘]04 T I T T T ] T T T T T
3~
103 E_ \s_&’ ;\_
.% o X
® C x x X
°©
] I
B L
E
<
102 2
r X Murphy (Ref. 8)
[ ~—= Springer et al (Ref. 15) 7
101 1 il Lol |
0.1 1 10 30
Frequency — Hz
Fig. 12. A parison of calculated and d amplitude

ratios for Salmon and Sterling.
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DISCRIMINATION BETWEEN TAMPED AND DECOUPLED EXPLOSIONS

The calcvlated reduced velocity potentials displayed in Fig 13 suggest the possibility of comparing
measurements near the corner frequency with those at significantly higher frequencies as a means of discriminating
betwern tamped and decoupled cxplosions. In Fig. 13, measurcments at 2.5 Hz and 20 Hz would give an ainplitude
ratio of ~ 20 for an cxplosion that was tamped, but cnly a ratio of approximately one foi an explosion that “xas
decoupled. Therefore, it seems reasonable that regional sites (to minimize the high-frequency filtering of the carth)
cquipped with high-frequency passbands to monitor frequencies of the specuuim in the range of 1-20 Hz or
greater, could serve to discriminate betwcen tamped and decoupled explosions.
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SUMMARY

In an ideal decoupling experiment, granite could be as much as three times more effective as a decoupling
medium than sodium chloride.

The serics of spikes superimposed on a step-pressure pulse in an explosive dzcoupling shot causes a large
perturbation on the observed spectrum at the higher frequencies (i.e., beyond the corner frequency).
The rise times of pressure pulses seen in consolidated rocks (those with little dry porosity) are typically of
the order of, or less than, one-tenth the width of the pulse that propagates in the elastic regime. In these
cases the effect on the spectrum is small, except for frequencies beyond four times the coraer frequency.
However, for pressure pulses characteristic of dry porous rocks or frozen soils (i.e., slow rise times), the
spectrum is significantly zltered predominantly at the higher frequencies.

The regional seismic data from Salmon is well represented by the theory if a forcing function of form
p(t) = p.e *' + po is used and the elastic radius, a,, chosen is between 240-290 m.

Comparison of calculations and experimental observations from the Sterling event suggest that Sterling
was not fully decoupled. The experimentally observed lower corner frequency (10 Hz vs 35 Hz) and higher
reduced velocity potential (by a factor of about two) are both consistent with partial decoupling.
Theoretical calculations suggest that regional sites equipped with high-frequency passbands to monitor
frequencies of the spectrum in the range of 1-20 Hz or greater, could serve to discriminate between
tamped and decoupled explosions.
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