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SPHERICAL WAVE PROPAGATION IN 
ELASTIC MEDIA AND ITS APPLICATION 

TO ENERGY COUPLING FOR TAMPED 
AND DECOUPLED EXPLOSIONS 

ABSTRACT 

The effects of variation in source and medium properties upon near- and far-field 
spectra for elastic waves are examined theoretically by considering spherical wave propagation 
in unbounded elastic media. This type of analysis, although idealized, provides insight into the 
relative effects of the various source and medium parameters on both tamped and decoupled 
explosions. It also provides a basis for interpreting both field and laboratory experimental data 
obtained during spherical wave propagation in real media. In this paper I attempt to unify the 
work that has been done on spherical wave propagation in elastic media. I present the results 
in non-dimensional forms, in hopes that others may find these forms of the solutions useful and 
some of the conclusions, based upon my parameter studies, enlightening. Also included is a 
discussion of some of the limitations of the theory and examples of applications of the spherical 
wave propagation theory in real media. 

INTRODUCTION 

The Department of Energy and the Advanced Research Projects Agency have, for several years, 
sponsored research related to an understanding of explosion seismology.1 This research is oriented towards treaty 
verification and treaty negotiations between the U.S. and the US.S.R., but its basic intent is to improve the capa­
bilities for detecting underground explosions and to investigate methods that might be used to conceal such 
explosions. Since the signing of the Threshold Test Ban Treaty and with the current negotiations directed at a 
Comprehensive Test Ban Treaty, emphasis has been focused on short-term problems related to these treaties. But 
the goal, nevertheless, remains the same: develop an understanding of the variability of regional and teleseismic 
signals produced by underground explosions and, in particular, discover how the explosive yield and the geology 
surrounding the explosion affect these signals. Another problem to be considered is how seismic signals are 
produced by earthquakes, and how to distinguish them from signals that might be a result of a suspected treaty 
violation*" ** ' ' - *"~ **'* • - . - . 

Generally, there are three basic parts to the problem of interpreting seismic signals: (I) the effect of the 
source region, (2) the effect of the propagation path, and (3) the effect of the receiver region. In this paper only the 
source region is considered, which I define to include the energy source and enough surrounding geologic material 
to allow an approach to elastic wave propagation (i.e., out to the "elastic radius* of the geologic medium of 
interest). This definition is convenient for the objectives of my research because it allows me to determine how the 
explosive yield and the geological environment surrounding the explosive affect the signals that are produced. 
There are at least two approaches that can be used to get an understanding of the source region. One approach is 
to infer the source region description from a large sample of seismic data. Unfortunately, this approach cannot 
provide a unique description of the source region. A second approach is to attempt to solve the forward problem 
by developing an approximate mathematical description of the source region based upon experimental information 
about the source and the geological environment surrounding the source. This latter approach is the one I have 
chosen to use because it offers not only a challenge but also a chance to get a unique description of the source 
region. 
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MATHEMATICAL ANALYSIS 

GENERAL PROBLEM 

The propagation of divergent, compressions] waves in soJid media can be examined by mathematical 
analysis, provided an idealized statement of the problem is used. Consider a spherical cavity or boundary of 
radius a» within a homogeneous, ideally elastic, infinite medium with density p. Lame's constants A and p., and 
compressional wave velocity c to which an arbitrary pressure p(t) is applied at the boundary. 

The clastic equation of motion for this problem is: 

p AL = ( A + 2 p) ? ( ? • f> - ,i 7(V X F), 0) 

where £ is the vector displacement and V is the vector differential operator.* The relation 

f = V <«, 

gives a solution for compressional wave motion, provided the scalar wave equation 

3'V 
3 f c- V'Ji 

(2) 

(3) 

is satisfied where e" = (A + 2p),p. 
In spherical coordinates the radial component of Eq. (2) is given by 

««>=£ 
and Eq. (3) is 

3-0 
3r 

c" 3 , 3t// 
r or 3r (4) 

A reduced displacement potential <£(r) = r i/f(r,t) for outgoing spherical waves can be defined, leading to the 
equation 

•9-*^ 
with plane wave solutions 

« = 0,(t + iy) + <fc(t - T ) . 
i 

In this discussion only the secojid or outward moving wave will be considered. Using this definition, the dis­
placement is given by ! 

«r,t) < 

I his form ul the Navier equation a 

y 
3r 

ltnes that bodj forces such as gravity arc zero. 



f (M) • — *M — (5) 

where r = t - (r - a»)/c is the retarded time (i.e., the time from wave arrival), and </>(r) means differentiation with 
respect to the argument T. 

With an arbitrary pressure* pf) applied at the radius ao, the boundary condition for this problem is 

p(r) = [-(A + 2 „ ) § - 2 X - f ] r = (6) 

A solution to this problem in the time domain was given by Sharpe.* Under the assumption that K = /u 
(i.e., a Poisson's ratio of 1/4) for the driving function p(t) = p 'e" 1 , and where A = 2\/2/3 • c/ai,, Sharpe 
found that 

<Mr) = [-e "' + e ' A ' v 2 < [ —p - — I sin AT + cos Ar> \\\/2 A/ J p[(A/x/2 - o) ; 

while for a step-function boundary condition p(t) = pi, he found that the potential was given by 

Mr) = 
2aoPn 
3pA; n sin(Ar + tan"'\/2) 

(7) 

(8) 

Without the restriction that K = ji, Blake obtained a slightly more complicated expression for the reduced 
displacement potential.1 He found that for the forcing function p(t) = p 'e" ' 

*<r) : 

B'P 
-e~ o r -f — e"°'7 cos(Fr - E) I (9) 

where a» = (c/a») • (1 - 2a)/(l - a), F = (c/a,) • (1 - 2o)' ;/(l - a). Br - F ! + (a,, - a)\ E = tan"'(ao - a)/F, 
and o is Poisson's ratio. 

According to Latter et al„ this spherical wave propagation problem can also be solved in the frequency 
domain.4 Substitution of Eq. (5) into Eq. (6) gives 

P(T) ; -(x + m -
1 • ^ *(r) 

" — ( M V ) * - - ^ 
?A 1 1 , > < * ( r ' —'<MT) r - L 

(A + 2)j)<ft _ 4^oi _ j W 
re* r e r1 

(10) 

The Fourier transform of Eq. (10) gives 

A + 2̂ t 
P M = 

, , 4^im - 4M , 
in <p — — j — <p — —— $ 

*The pressure (or radial stress) p(r) is the boundary condition at the cavity wall or elastic boundary and provides the driving force for the 
clastic wave propagation. Therefore, by definition, this pressure (or radial-stress) time history contains all effects associated with motion 
inside the boundary. 
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where 

and 

* M = T~ J x *(r) e "ur dr * 

p M = - ~ J"6 p(r) e~"": dr 

are the Fourier transforms of <£(T) and D(T>, respectively, and both 4>{T) and p(r) are equal to zero for r < 0. 
Rearrangement and substitution of r = a.i gives the displacement potential #(<u) 

- _ p(tu)a^ 1 . . . . 
* M = — • -T-j : , (II) 

Afi fSr) - IT; - 1 
where |3 = (A + 2fz) 4^, 77 = cu/un. and «M = c/a». 

Next, the Fourier transform of Eq. (5) is obtained 

ftr.w) = " ( 7 + ")*(">. <12> 

and Eq. (II) is substituted inlo (12) to give the desired expression for the displacement as a function of range 
and frequency 

nrM) = U + st)as^.. • . (l3) 
\r re / 4p I + irj - &rf 

Another useful quantity, the reduced velocity potential y(r), can be defined by noting that the particle 
velocity u(r,r) is obtained by taking the time derivative of Eq. (5). Thus, 

u\i.ij — 

where 

»<^T = âr̂ - < 1 4 > 

" 'v(r) = i(r). (15) 

The Fourier transforms of Eqs. (14) and (15) give 

U(r,aj) = ioj|(r,o>) (16) 

and 

y(w) = iw )̂(aj). (17) 

•Notice *hat in performing a Fourier transform of any function i{r}. the transformed function f(w) has the uni:s of f(r) multiplied by the 
units of time. 
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In the far field (when r » rc/w), Eq. (13) reduces to 

[|(r,c»)].i i(op(<'.;)ai I 
4,urc i + irj — firf 

(18) 

Substitution of Eqs. (II) and (17) into (18) leads to the following simple and useful relationship between the 
far-field displacements and the reduced-velocity potential 

U(T.W)]„ =? 
yM 

(19) 

DFC'OUPLED FORCING FUNCTIONS 

An explosion in a cavity is said to he fully decoupled if the cavity volume is large enough to insure that 
the surrounding medium responds elastically to the applied pressure p(t). In the practical case, an explosion in the 
center ot the cavity is used to produce the pressure pulse, and the large volume around the explosive allows rapid 
attenuation of the pressure produced by the explosion. One assumption that has been made is that the pressure 
pulse closely approximates an ideal step function with the pressure distributed uniformly throughout the cavity/ 
The pressure in this case is given by the expression 

3FW 
4n-a« (20) 

where W is the energy and r is a constant characterizing the gas in the cavity. 
If we consider a step pressure pulse p(t) = po for t 5 0 and p(t) = 0 for t < 0 

we find that the Fourier transform p(cu) is given by 

PM = f f- (21) 

Substitution of this result into Eq. (13) gives the displacement |(r,tu) 

«raj) = (-K + —\ P""" • ' 
^r2 ny ico8jrM I + in - firf 

which in the far field (when r » rc/<u) reduces to 

piiaii I 
«r.cu) 8jT|iirc ! + it) - prf 

5 

(22) 

(23) 



The velocity potential in this case is 

y(w) = 
piiaii 

8 i r u 

1 
I + in - /Si)"' (24) 

In Fig. 1 the magnitude of a dimensionless velocity potential|7*(7j)| is plotted versus the dimensionless frequency 77. 
(This form is used in presenting the results for convenience in scaling.) 

ly*<U)l = 
l7(")l ; 

p»an 
Sn-u 

(2/3 - DJ, : + /?-y (25) 

Equations 123) and (24) both have the same frequency dependence; therefore, the curves in Fig. 1 also give the 
frequency dependence of the far-field displacement. The only parameter associated with the medium in Eq. (25) 
is 0, which is related to Poisson's ratio through the elastic constants K and ix. The maximum value 01 the magnitude 
of this dimensionless velocity potential occurs at a dimensionless frequency given by the expression 

10 

• 0 = 3 / 7 ^ 

1 

± 
1/2 
3/4 
2 

0 

0 
1/4 
3/7 

n max 

0 
0.667 
0.612 

• 

\ \ \ 
• 

0.1 

« = %-• 

a = 0 -

0.01 • 1 L I 1 . . . I 1 • • I \ I A \ 
01 1 

17 = • 

10 20 

Fig. 1. A dimensionless representation of the reduced velocity 
potential vs frequency for a step function. The only parameter to be 
varied is p, which is related to Poisson's ratio through the expression 
a = (1 - 2/3)/(l - 4/3). 
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V 2/3 (26) 

hi the limit as rj — 0. the di'.n-nsionless velocity potential (Eq. (25)) approaches 1. Thedimensionless 
velocity potential in Fig. I remains relatively flat out to. frequencies corresponding to rj ~ 0.2. For stiff materials 
(o < |/4), this flat response continues until frequencies near rj — 1. However, very soft materials (i.e.. a ^ 3/7) 
show a definite maximum in the potential at frequencies corresponding to the rjmM of Eq. (26). A1J materials show a 
rapid drop in amplitude with frequency beginning near 17 = 1, and the slope of the drop approaches -2 at the 
higher frequencies (as r\ — <*=).* 

For the ideal case of a step-pressure function, variations in displacement with frequency in the far field 
depend only upon the Poisson's ratio of the elastic medium (see Eq. (23)). Therefore, for a given medium, relative 
amplitudes of displacement at a fixed radius (i.e.. decoupling) are determined by ratios of expressions of the form 
poa'/STT/birc. However, this is only true at low frequencies (when the right-hand side of Eq. (25) is approximately 
equal to 1). Substitution of Eq. (20) into this expression gives 

3FW 
yiir'tirc 

(27) 

Thus, for a given ideal elastic medium, the displacements in the ideal decoupled medium are proportional to the 
yield. Equation 27 also shows that decoupling for different media at the same energy W is proportional to the 
product /2C, Therefore, granite (^ = 32 GPa and c = 6 km/s) could be approximately three times more effective as 
a decoupling medium than NaCI (/u = 15 GPa and c = 4.5 km/s).t This relation is also true at low frequencies and 
at all frequencies for different media if c and an can be selected to keep <JM equal for the two media. 

The actual applied pressure in an explosive-driven, decoupling experiment is a series of narrow, rapidly 
attenuating spikes resulting from shock wave reverberations in the cavity superimposed on a step-pressure pulse 
(see, for example, Rcf. 6). The first spike is the major perturbation to the step-function assumption, and a measure 
of its influence (assuming elastic behavior) can be determined by assuming a forcing function of the form 

p(t) = 0 for t<0 

p(t) = pse '" + p., for t > 0 (28!-

P,.+ Po. 

I •Po 

"As a point of interest, note that the vertical separation in this region is related to the ratio of ihe 0*s. 

However, the cost of constructing a given ca\ity in grani;-: would be higher. 
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where p, + p., is the amplitude of the pressure pulse, and a"1 is a measure of the width cf the pressure spike (i.e.. a' 1 

is the time for the spike to decay to an amplitude of e''^). The Fourier transform of Eq. (28) is 

P(«> - -^ icu + a 
j 
Ituj 

(29) 

so thai the non-dimensional magnitude of the reduced velocity potential \y*(rj)\ becomes 

l7*(f)l 
= lj.(m)l 
( P»ai \ 
I 87TM ) 

'•4*-SO' e l - ( 2 0 - l t f + j8V (30) 

A comparison of the step function (Eq. (25)} with the step function plus pressure spike (Eq. (30)) is given 
in Fig. 2 using a Poisson's ratio of 1/4. The values of a (5000 s - 1) and ps/po (19.63) were selected based on 
cavity pressure measurements made on the Cowboy Experiments6 and on calculations made by Patterson.7 

Another useful way of examining the effect of a single spike as compared to a step-function input is to 
lake the ratio of Eqs. (30) and (25). This gives relative effects as a function of the dimensionless frequency T?. 

fl '4+>m\ 
w + rf 

(31) 

Figure 2 clearly shows the large effect that a single spike can have upon the higher frequency part of the 
spectrum considered in Fig. 2. The spike causes a substantial shift in frequency of maximum amplitude (i.e., fymx) 

10 

"£ 1 

0.1 

1 

i- Step function 
/ with single 

/ spike 

: ~ ^ \ ; 

\ r otep 

V function 

i . . \ 0.1 10 

Fig. 2. A non-dimensional plot of Eqs. (25) and (30) using a Pois­
son's ratio of 1/4. 
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and decreases the slope of the dropoff as compared to a step function without a spike for frequencies correspond­
ing to several times r ^ . However, in the limit as rj — °e , both tf these curves will approach i. slope of -2 and will 
be separated by a factor p./p» + I. 

TAMPED FORCING FUNCTIONS 
A tamped explosion is one in which .he medium is initially packed around theexplosi\e. The explosion 

produces a complex sequence of events in the medium, including propagation of a shock wave and growth of a 
cavity. The shock wave causes inelastic deformation of the surrounding medium until the stress decays to a level 
of elastic response. T h e radius at which elastic response begins is called the elastic radius or the boundary for 
elastic response. The stress-time history that occurs at this radius is the forcing function p(.-) in Eq. (6). 

Cavity growth is the result of the extremely high pressures released by the explosion, compressing the 
rock boih inelastic^'1-' and elasiically. This causes radial particle motion and displacements to occur as the shock 
wave passes. Gas pressure within the cavity will continue to drive the cavity e\pansion at late times until an equi­
librium of forces is established. 

Generally, the overall result of these processes is a peak in displacement which is reached as the shock 
wave passes, and then a relaxation to a permanent displacement.* In consolidated (very low porosity) rock, the 
permanent displacement should be consistent with the incompressible expansion around the cavity or elastic 
boundary. The permanent displacement. £P, in this case is given by 

where n — r» = n - r , and where m is 
the original radius of the explosive, n. is 

' '.he* radius "61 '7hc*cavity.*7r is trie'original position - • - • • * • - • «.- . . -
of a mass point in the elastic region, and n is the final position of thai mass point. In this case. 

- [r1 + r,' - r«]'' 

which gives 

f r= ( r '+y -n l ) " 

•Much later, as ihc gases cool and condense, the pressure is relie\cd causing an ii 
fiaciured material complete, collapse of the cavin may occur. 

ibitlancr of forces and partial, or in the case ol ;i highls 
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For r > > r> > > r«, the permanent displacement is approximately 

&<r): M (32) 

In cases where porosity is significant, the permanent displacement in the elastic regime will be signifi­
cantly less than that given by Eq. (32) and dependent upon the amount of volume lost in the crushing of pores. 

In an ideal elastic material the permanent displacement can be shown to be related to </>(<») by letting 
T - =« in Eq. (5) and assuming that *(-) approaches a constant value as r — <*>. This gives 

I &(r.=»)l . I <H">) I (33) 

The value I (M00) I can be determined from Eq. (10) by letting T — «= and assuming that <£(r) approaches a constant 
value as r - * . This gives 

!<*(=) I : 
4 M 

(34) 

where p, is the steady-stale final pressure. Substitution of Eq. (34) into Eq. (33) gives 

lfn(r.«=)l : 
Petti 

4/xr" 
(35) 

Thus, the permanent displacement in the clastic region at a radius r is related to the steady state pressure" at the 
cavity or boundary wall, pi>, as indicated in Eq. (35). 

The forcing function chosen by Sharp2 and Blake1 to simulate a tamped explosion was 

p(t) = 0 for t - 0 
p(t) = p'e '" for t > 0 (36) 

For this function I^K00)! is zero, and there is no permanent displacement [see Eq. (7)]. 

The Fourier transform of p(t) is 

P' p(aj) 2rr(a + i[u) (37) 
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Substitution into Eq. (13) gives 

cir.tu) — I—--t 1 : — • — 
6 V ' \r re/ 8iru(a + I«J) I + 

I 
m-firf 

(38) 

and in the far field 

ar.«) p ai. 
8jr^rc 

1 

&>* 1 + irj — JSTJ" 

The reduced velocity potential is given by 

pal J7) 
7(tu) = 

8TTM 
+ ii) 1 + i t j - 0rj" 

(39) 

(40) 

In Fig. 3 the dimensionless velocity potential ly*(r?)l is plotted for various values of (a/tuu) with 
0 =1 (for a Poisson's ratio of 1/3) where | y*(ij) I •* given by 

17 (1)1 = / . •_< \ = 1 

\ 8vrM / l _ W 
I - (2/3 - l)i)' + 0-T)' 

(41) 

1 1 1 I I I I I | 1 1 1—I M I L 

Fig. 3. A dimcnsionless representation of Eq. (41) for /3 = I and 
for various values of the ratio (a/ax>). 
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Values of TJ corresponding to the maximum velocity potential are given by 

& ) ' ( 2 / 3 - 1 ) ' # 2flV (42) 

which was obtained by taking the derivative of Eq. (41) and setting it equal to zero. Some solutions of Eq. (41), 
accurate to the nearest hundredth, are given below to demonstrate the variation of corner frequency, rjm^, with 
/? and (« UM>Y: 

(a. (MI)" 

0.89 1 
0.98 10 
0.99 20 
0.68 1 
0.70 m 
0.70 20 
0.97 i 
1.12 10 
1.13 20 

P = 3 4 

Hie dmicnsionless velocity potential for Eq. (41] approaches 0 as TJ — 0. The slopes of the curves in Fig 3 approach 
! and h."..c a separation proportional to UA, a as rj — 0. The slope as ri — ^ is -2 . 

A second forcing function representation for tamped explosions is that given by Eg (28). 

p(t) = 0 for t < 0 
p(t) = p,e " + p.i for t 2 0 (28) 

Z Z p o 

This form has been used extensively by Murphy,Kl*'w and Mueller". 
The Fourier transform of Eq. (28) is given by Eq. (29) 

pM iaj + a iui 

and the dimensionless velocity potential |v*(r?)| is given by Eq. (30) 

|y*(>!)i = 17(^)1 
Puail 
87TJU ' ' • $ 

+ I 
I 

I - (2/3 - 1 )rf J- pr) 

(291 

(30) 
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* 

0.01 
10 20 

Fk£. 4. A dimensionless representation of Eq. (30) with / 3 : 

pti/p, = 0.238, and (a/atu) allowed to vary. 
3/4, 

In Fig. 4, Eq. (30) is plotted with (po/p,) = 0.238, /3 = 3/4 and (a/iu.) allowed to vary from 0.3 lo 30. In Fig. 5, 
the effect of varying (p»i/p.) between 0.1 and I is examined with /} = 3/4 and (a/tui) = 3.0. 

In Fig. 4. for a fixed ratio of (po/p,). we see the effect that the ratio of the characteristic time 
wo, associated with the elastic radius au (i.e.. uii> = ao/c) to the measure of the width of the pressure pulse or-1, 
has upon the spectrum. Thus, for large ratios, or/tun = 30, the spectrum is similar to that for a step function 
up to frequencies corresponding to q = I, but for frequencies beyond that point there is an increasing amount 
of high-frequency content. For small ratios of (a/wo) (a/axi = 0.3), the pressure pulse is broad and contributes 
greatly to the amplitude of the potential at all frequencies. However, for very high frequencies (e.g.. rj — 100) 
all three curves converge. 

In Fig. 5, with (or/iu.) and /3 held constant, we see the effect of varying the ratio of the steady-state 
pressure p» to the spike pressure p,. As the ratio is made smaller tl:e influence of the spike increases, and large 
increases in amplitude are seen for all frequencies beyond TJ = 0.2. As the ratio is made larger the influence of 
the spike diminishes and the spectrum begins to approach that expected for a step function. (In the limit as 
p. — 0. Eq. (30) gives the step-function solution.) 

To determine the effect that a finite rise time has upon the far-field spectra, a forcing function of the form 

p(t) = 0 for t < 0 

p(t) = p»(1 - e " ' ) f o r t > 0 (43) 

13 



0.01 10 20 

Fig. 5. A dimension less representation of Eq. (30) with 0 = 3/4, 
(ajioii) = 3, and (po/p>) allowed to vary. 

was chosen. The Fourier transform in this case is 

2ir\lcu icu + al 

|. (44) into Eq. (13) gives for tl 

\ r rc/\87TM/\iw i« + a/ \1 + i>j - pvj 

Substitution of Eq. (44) into Eq. (13) gives for the displacement 

(44) 

(45) 



The corresponding velocity potential is 

7(iu) _ piaii (46) 

The dimensionless velocity potential I7*(n)| is given below and plotted in Fig. 6 to show the effect of variations 
in the ratio (ar/iui) for the case where /? = 3/4. 

I7*(1)I = |y(<u)l = 

\87r,u/ 

£L 
if + (0 I -<2 jS - i t f + prif 

(47) 

Figure 6 shows that where a ~ OJH. all frequencies about 17 — 0.6 are strongly attenuated with attenua­
tion increasing with frequency. However, when «"' = (I / 10)iu>', the attenuation is very small except at frequencies 
beyond 17 — 4. As 77 — 0 in Eq. (47), the dimensionless velocity potential approaches 1, and as rj — °e, the slopes 
of the curves in Fig. 6 approach - 3 . (Based upon laboratory and field measurements, these two extremes in rise 
time probably closely represent the effects to be expected from a dry, weak, highly porous material such as 
alluvium, and from salt or other materials having little or no dry porosity.12- M The slow rising wave in the dry. 
weak, highly porous material is a result of dispersion as the pores are crushed by the shock wave.) 

THEORY LIMITATIONS 
The application of this simple theory to problems associated with real materials has limi'ations. Thus far 

in this paper we have merely examined exact solutions based upon the ideal conditions assumed in our mathe­
matical description. To apply these results 10 real materials requires several assumptions. Before drawing any 
conclusions based upon application of this theory to real materials, we must be cognizant of the assumptions that 
are made and understand the sensitivity of the results to the assumptions. 

The first assumption is that we are dealing with elastic materials. This is not strictly true for geologic 
media. There remains significant attenuation of the wave even though most geologic materials appear to approach 
elastic behavior beyond a certain radius in spherical divergent flow. Typically, this attenuation is atttributed to 
internal friction, Q ', and is often described in terms of an exponential attenuation function 

A(r,<u.Q ) = A„e~' (48) 

Assuming this type of attenuation law holds beyond the elastic radius, a*i, the higher frequencies will be much more 
strongly attenuated than the lower frequencies, and attenuation will increase with both radius and internal friction 
(Fig. 7), In principal, corrections to the simple theory resulting from this inelastic response can be made provided 
values of Q"1 are available. An example of this type of correction is discussed in the next section. 

A second assumption is that an elastic radius can be defined. In a decoupled cavity, the cavity radius is 
the elastic radius; therefore, selection of the elastic radius for cavity shots depends on whether the cavity was or 
was not overdriven. The elastic radius for tamped explosions is more difficult to define. In real materials, clastic 
behavior is only approached; therefore, a finite elastic radius can only be defined if we assume that it is the radius 
beyond which no major inelastic deformation exists. In most solids, shock wave-indued yielding occurs at some 
finite stress, and below this stress the wave velocity is approximately equal to the sound speed. Therefore, it seems 
logical to define the elastic radius in a medium as the radius beyond which the stress is less than, or equal to, the 
dynamic yield stress. The major problem, however, is to determine a representative value of this stress for the 
geologic media of interest. 
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Fig. 6. * A dimensionless representation of Eq. (47) with p = 3/4, 
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A third assumption is that the wave propagates elastically in a one-dimensional, spherical-divergent 
flow. This, of course, eliminates from consideration applications where free surfaces, other interfaces, or asymmetry 
in the source contribute significantly to the data that are to be compared. 

A fourth assumption, and perhaps the most difficult to justify, is that a forcing function can be chosen to 
represent the actual pressure-time (or stress-time) history that occurs at the clastic radius. In most of the applica­
tions that will be considered, particle-velocity or stress-time histories are available. However, some of these data 
are limited, giving at most the first positive and first negative phase of the waves. Thus, some error is introduced in 
the extrapolation of the pressure pulse. The effect of depth of burial has not been introduced in this treatment but 
hai been considered in the work by Murphy (see, for example, Ref. 9). 

APPLICATIONS 

SALMON 
The Salmon experiment was a 5.3 ± 0.5-kt nuclear explosion fired in the Tatum salt dome.N The 

particle-velocity-time histories recorded by Ferret" suggest that the form of the forcing function at the elastic 
radius can be approximated by either 

p(t) = 0 for t < 0 

p(t) = p,,e""' for t > 0 (36) 

p(t) = 0 for t < 0 
p(t) = p,e '" + D" for t > 0 (28) 

From Perret's report the volume in the cavity created by the explosion was estimated to be equivalent to a cavity 
radius of 21 m. This volume must be accounted for either by the closing of preexisting porosity, by permanent 
displacement, or by a combination of these two effects. We can use Eq. (28) as our forcing function if we assume 
that all of the volume goes into incompressible, permanent displacement of the salt surrounding the cavity. The 
fact is that the porosity at the Salmon site may be zero, and Panel's measurements of permanent displacement, 
which show a great deal of scatter, do not invalidate this assumption. Thus we can calculate the permanent 
displacement using Eq. (32) 

c.\ 3087 , , , , 
ZM ~ —— m, (32) 

or |<M°°)I = 3087 m'.* From Perret's experimental measurements (Perret, 1966) and from sonic logs of the Tatum 
salt, we know 

a"1 = 0.02 s 
H = 1.5 X 10s bar 
0 = 3/4 
c = 4550 m/s. 

In a reasonable range of the parameters for the Salmon event, the maximum value of the displacement potential 
lv*(n)l [Eq. (30)] occurs at a frequency corresponding to 77 = I (i.e.. when IU = <«>). Perret states that the frequency 
for peak amplitude occurred at approximately 2.5 Hz. Therefore, the elastic radius a» is at approximately 290 in 

•This calculated value of |iA(°°)l is also consistent with Petrel's measurements of let!00)!-
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_c_ _ 4S50 m 
<«, 2TT(2.5) 

290 m. 

Based upon Perret's measurement, the peak stress, p, + pn. at 290 m is equal to 395 bar. Now. using the above 
results and Eq. (34). we can calculate Do. the steady-state stress: 

4|o.(==)|i, 4(3087)(l.5 X IP1) 
P" ~ i = i = 76 bar. 

a,, (290) 
Rewriting F.q. (301. we get 

-> r, ,i - P | , a" 
2 - | y M — 

4fi 

^ 0 + 'g) 

or upon substituting the known values. 

2jr|yM| = 3087 m' 0.4108 f-
0.0158 f' + I 

I - (2/3 - l)if + fa* 

I 
I - 0.08 f: + 0.0144 f1 

(49) 

(50) 

In Tig. S. Eq. (50) is plotted and compared with measurements reported by Springer et al.1* The calculated curve 
represents :i "besi guess" calculation of Salmon based upon the data reported by Perret. 

In Fig. 9. calculations using two other values of the elastic radius are shown and compared with the 
observed data. It is apparent in this comparison that the calculation with the elastic radius at 240 m (fm^ = 3 Hz) 
agrees as well, if not better, with the experimental results as the calculation using 290 m. This is not surprising since 
the data presented by Springer el al. show a peak in the velocity potential at about 3 Hz. Even better agreement 
with experiment is obtained when an attempt to compensate for the effects of internal friction is made. In this 
adjustment, shown by the arrows in Fig. 9, it was assumed that Q was 550 and that the range was 16 km (i.e., the 
range to one of the observation stations used in getting the experimental data). 

In Fig. 10, the calculation based upon Eq. (50) is compared with a calculation using the forcing function 
described by Eq. (36). Using Eq. (36) is equivalent to assuming that sufficient porosity exists in the material so 
that ptj approaches zero and there is negligible permanent displacement at and beyond the elastic radius. As Fig. 10 
jhows. the removal of permanent displacement considerably reduces the amount of low frequency content in the 
far-field spectrum. 

These comparisons show that the function p(t) = p, e '" -h p» does an excellent job of representing 
the regional seismic data from the Salmon event when the elastic radius is chosen in the 240-290-m range and 
adjustments are made to the calculation to compensate for the effect of internal friction. 

STERLING 
The Sterling experiment was a 0.38-kt nuclear explosion fired in the cavity produced by the Salmon 

nuclear event. The Salmon cavity, with a radius of 17.4 ± 0.6 m, is nearly spherical and partially filled with melt 
and measurements of the volume of the cavity, given an equivalent sphere radius of 16.7 ± 0.6 m. Various criteria 
are available to test whether total decoupling of the Sterling explosion is achieved in this volume. According to the 
Latter decoupling criteria, 0.21-0.42 kt arc decoupled depending on whether the initial spike in pressure produced 
by the explosion and hitting the cavi'y wall can be ignored.* The Sterling explosion is in the upper range of 
these criteria; therefore, we will measure the effect of a pressure spike by comparing ideal decoupling £Eq. (25)] 
with a calculation based on Eq. (30). 

For an ideal decoupled shot, the forcing function is p(t) = p,j, where p> for the Sterling conditions is 
given by 
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\m bar > 

where the value of 0.2 for T is a value appropriate for air.1 Rewriting Eq. (25). we have 

2ir|y(w)| 4,1 [I - (2j8 - 1)„ ; + /337,4 (51) 

For Sterling, the salt out to a radius of approximately 83 m had been altered by the Salmon explosion. As a result, 
measurements indicated that c = 3820 m/s, (i = 1.0 X 10s bar, and /J = 3/4.' Substitution of these values into 
Eq. (51) gives 

2 " l * " ) l = ™ m ' ( l - 4.09 X 10-4 + 3.77 X , 0 - v ) " (52) 

Equation (52) is plotted in Fig. II along with measurements reported by Springer et al." 
A measure of the effect of the first pressure spike hitting the wall in the Sterling experiment i-; given 

by Eq. (30) 

2I-,. ».s[V(' +'£)(£)' , 1 ' T 

•Assumption of ihese parameters will give a maximum value for the reduced-velocity potential assuming clastic behavior. 
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Using values of a = 5000 s"' and p, = 3200 bar, which seem appropriate based upon the Cowboy experiments'" and 
the calculations made by Patterson,7 we get the following relationship: 

2 J r|7(<u)| . , , / 1.676 X IP1 f: \ "-' / 
1 5 m [l.S X 10' + 39.48 fJ + ' / ' V I - 4.09 X 10"T + 3.77 X 10 ̂  (53) 

Equation (53) is also plotted in Fig. II. 
The differences that exist between the theoretical calculation and the experimental observation in 

the Sterling experiment are difficult to explain conclusively. However, the observation of a comer frequency at 
approximately 10 Hz implies a cavity with a radius of at least 40 m, assuming full decoupling 

therefore 

.3/27rf„ 
2\ 3820 

2n-(IO) = 40 m 

This is inconsistent with the actual cavity radius of 17.4 m and suggests that Sterling was not fully decoupled. 
Therefore, assuming Sterling was not fully decoupled, it is not surprising to see a difference of a factor of ~ 2 in the 
observed and predicted reduced velocity potentials. 

DECOUPLING-STERLING COMPARED TO SALMON 
A measure of the effectiveness of a cavity to decouple an explosion is given by a direct comparison as 

a function of frequency of the amplitudes of a tamped shot to those of a decoupled shot. This comparison is made 
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for Salmon and Sterling in Fig. 12 using both calculations and measurements. However, comparisons to determine 
decoupling are more useful if they are made with both shots at the same energy yield. To make this latter conpari-
son, we shali define the decoupling D(f), as the ratio of the reduced velocity potentials determined at the same 
energy > ield. W. and at the same frequency 

0(0 ly(Ol^i»j 
r/(Ou™pi«i (54) 

and use the following cube-root scaling equation to scale from one yield Ŵ  to another yield Wi 

W, 
YiU') W; ®"' 

Using Eq. (55) we have assumed time and distance scale as W and that gravity do&> not influence our results. 
In Fig. 13 the calculated reduced velocity potentials are plotted for Salmon and for Sterling, scaled to 

the Salmon yield using Eq. (55). The ratio of these two curves is shown in Fig. 14 along with decoupling results 
from the cxpciimental data reported by Springer et al. l s The differences are a direct result of the differences that 
occur between experimental and calculated velocity potentials for Sterling. 
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Fig. 13. A comparison of the Salmon and Sterling experiments 
using the simple theory with Sterling scaled to the Salmon yield. 

DISCRIMINATION BETWEEN TAMPED AND DECOUPLED EXPLOSIONS 
The calculated reduced velocity potentials displayed in Fig. 13 suggest the possibility of comparing 

measurements near ;h<̂  corner frequency with those at significantly higher frequencies as a means of discriminating 
between tamped and decoupled explosions. In Fig. 13, measurements at 25 Hz and 20 Hz would give an amplitude 
ratio of ~ 20 for an explosion that was tamped, but enly a ratio of approximately one foi an explosion that was 
decoupled. Therefore, it seems reasonable that regional sites (to minimize the high-frequency filtering of the earth) 
equipped with high-frequency passbands to monitor frequencies of the spectrum in the range of 1-20 H? or 
greater, could serve to discriminate between lamped and decoupled explosions. 
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SUMMARY 
1. In an ideal decoupling experiment, granite could be as much as three times more effective as a decoupling 

medium than sodium chloride. 
2. The series of spikes superimposed on a step-pressure pulse in an explosive decoupling shot causes a large 

perturbation on the observed spectrum at the higher frequencies (i.e., beyond the corner frequency). 
3. The rise times of pressure pulses seen in consolidated rocks (those with little dry porosity) are typically of 

the order of, or less than, one-tenth the width of the pulse that propagates in the elastic regime. In these 
cases the effect on the spectrum is small, except for frequencies beyond four times the corner frequency. 
However, for pressure pulses characteristic of dry porous rocks or frozen soils (i.e., slow rise times), the 
spectrum is significantly altered predominantly at the higher frequencies. 

4. The regional seismic data from Salmon is well represented by the theory if a forcing function of form 
p(t) = p,e "' + p,, is used and the elastic radius, ao, chosen is between 240-290 m. 

5. Comparison of calculations and experimental observations from the Sterling event suggest that Sterling 
was not fully decoupled. The experimentally observed lower corner frequency (10 Hz vs 35 Hz) and higher 
reduced velocity potential (by a factor of about two) are both consistent with partial decoupling. 

6. Theoretical calculations suggest that regional sites equipped with high-frequency passbands to monitor 
frequencies of the spectrum in the range of 1-20 Hz or greater could serve to discriminate between 
tamped and decoupled explosions. 
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