

Conf 910595-16

BNL-45416

**PERFORMANCE CHARACTERISTICS OF MACH-
ZEHNDER MODULATORS FOR TRANSFER OF
DETECTOR SIGNALS BY OPTICAL FIBERS***

T. Tsang, V. Radeka, T. Srinivasan-Rao

Brookhaven National Laboratory, Upton, NY 11973

and

W. J. Willis

Columbia University, New York, NY

November 1990

***This research was supported by the U. S. Department of Energy:
Contract No. DE-AC02-76CH00016.**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor, or subcontractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor or subcontractor thereof.

BNL--45416

DE91 008439

Performance Characteristics of Mach-Zehnder Modulators for Transfer of Detector Signals by Optical Fibers

T. Tsang, V. Radeka, T. Srinivasan-Rao, and W. J. Willis*

Brookhaven National Laboratory, Upton, NY 11973

*BNL and Columbia University, New York, NY 10027

ABSTRACT

The results of the preliminary measurements of the optical power requirement, linearity, dynamic range, and noise characteristics of a Mach-Zehnder electro-optical modulator will be presented. The modulator system will be used to minimize the local electronics on a large scale particle detector.

This manuscript has been authored under contract number DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

48

Performance Characteristics of Mach-Zehnder Modulators for Transfer of Detector Signals by Optical Fibers, T. Tsang, V. Radeka, T. Srinivasan-Rao, and W. Willis, Brookhaven National Laboratory, Upton, NY 11973.

The readout of $\sim 10^6$ electronic particle detectors with high degree of parallelism in signal transfer and processing is recognized as a major challenge. In this study, we utilize an integrated electrooptic modulator and fibers for such a readout system. The optical system comprises of a diode-pumped Nd:YAG laser, a Mach-Zehnder (MZ) interferometric modulator with x-cut y propagating $\text{Ti} : \text{LiNbO}_3$ waveguides, low noise InGaAs photodiodes, and fast shaping amplifiers.

When a charge is injected on one of the electrode of the MZ interferometer, the optical length of one arm changes the relative phase at the end of the interferometer. The output laser power will vary as the square of the cosine of the total phase shift.¹⁻² The MZ modulator has a -3 dB intensity modulation point close to the zero bias point, its transfer characteristic is shown in Figure 1. The fringe intensity has an extinction ratio of 26 dB with a V_π voltage of 2.68 V. For a 1% maximum deviation from a tangent through the -3 dB point, the maximum signal $\frac{V_\pi}{4\pi}$ is ~ 200 mV in our case. If the noise is limited by the photon statistics, the dynamic range with respect to the noise is $0.25\sqrt{\frac{t_m n_o}{a_F}}$, where n_o is the photoelectron rate, t_m is the integration time, and a_F is a filter parameter.³ Using a light intensity at the detector of 1 mW, n_o is $6.7 \times 10^{15} \text{ sec}^{-1}$. With $t_m = 35$ ns and $a_F \approx 1.9$ for our case, the expected dynamic range is $\sim 3 \times 10^3$. By measuring the voltage height of the modulator-receiver responses shown in Figure 2 with different input modulation voltages, the linearity curve is generated in Figure 3. The linearity of the modulated signal is quite good, and the dynamic range is slightly $\geq 3 \times 10^3$.

The noise sources considered in this experiment includes the photodiode, the receiver system, dielectric noise from the modulator, laser noise and photon fluctuations. The low noise photodiode contributes a noise of ≤ 200 rms e^- , which is much less

than the photon noise that we would anticipate. Based on a calibration run of the receiver-detector system (Figure 2), it has $\leq 3 \times 10^3$ rms e⁻ (~ 0.5 fC). Our estimate of the dielectric noise due to the thermal fluctuations in the dielectric constituting the modulator³ is ≤ 500 rms e⁻. The photon noise at the receiver is given by $\sqrt{aF}n_0t_m$. For 1.2 mW light input to the receiving photodiode, the average current is ~ 1.02 mA, which corresponds to a shot noise of 2.10×10^4 e⁻. With a step signal of 10 mV input to the modulator, we measured a signal of 1.28×10^6 e⁻ and a measured noise of 2.25×10^4 rms e⁻ at the receiver-detector. Therefore, the photon noise is clearly dominant over other noise sources and is $\sim 7\%$ higher than the shot-noise-limit at the detection bandwidth.

To obtain a faster shaping time and better sensitivity, a BNL made 2 ns risetime pulser and a hybrid circuit fast preamp and shaper with 3 ns peaking (integration) time were employed in the receiver-detector system. Details of this work and the results of the noise measurements using a travelling wave MZ modulator will be presented.

References

1. S. K. Korotky and R. C. Alferness, *Optical Fiber Telecommunication II*, New York, Academic Press, p.421 (1988).
2. C. K. Bulmer and W. K. Burns, J. of Lightwave Technology, LT-2, p.512 (1988).
3. V. Radeka, Ann. Rev. Nucl. Part. Sci. 38, pp. 217-277, 1988.

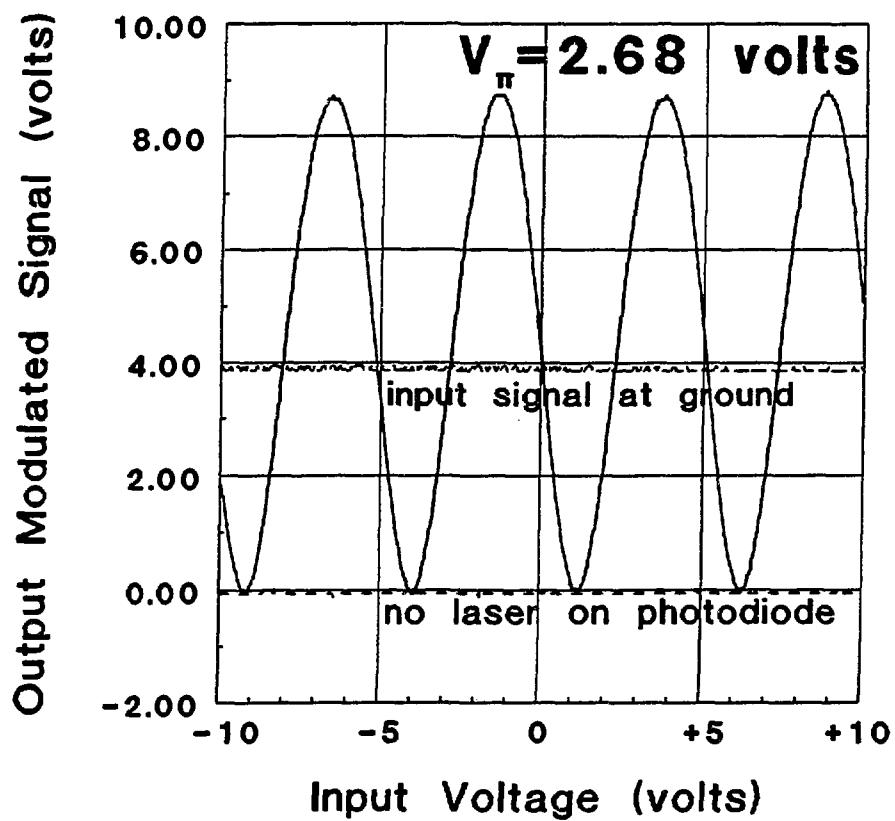


Fig. 1 Transfer characteristics of the MZ modulator.

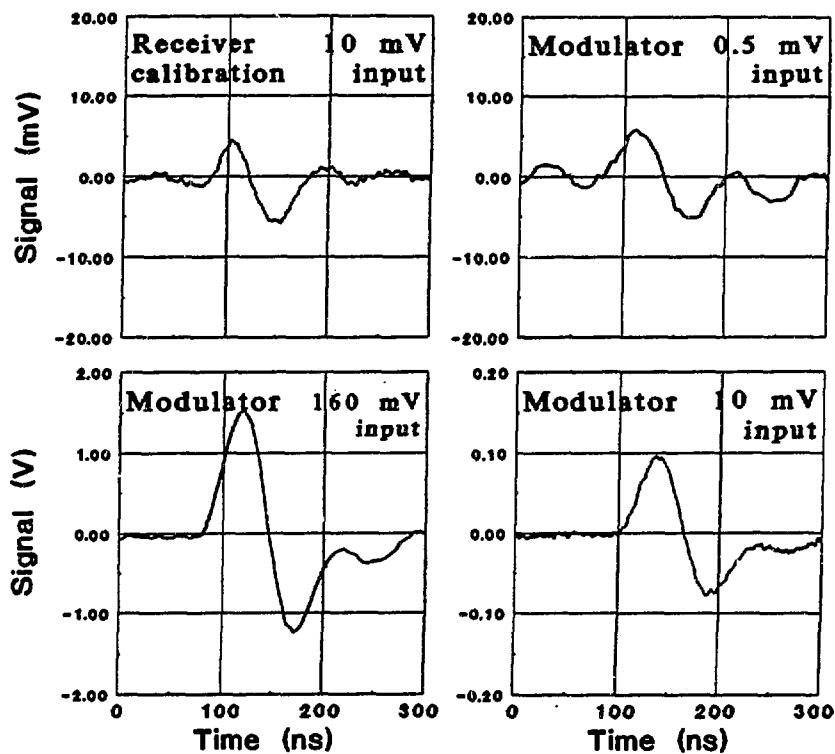


Fig. 2 Modulator-receiver response for various input modulation voltages at shaping time of $\tau_i = \tau_d = 20$ ns. Input equivalent noise is 0.1 mV.

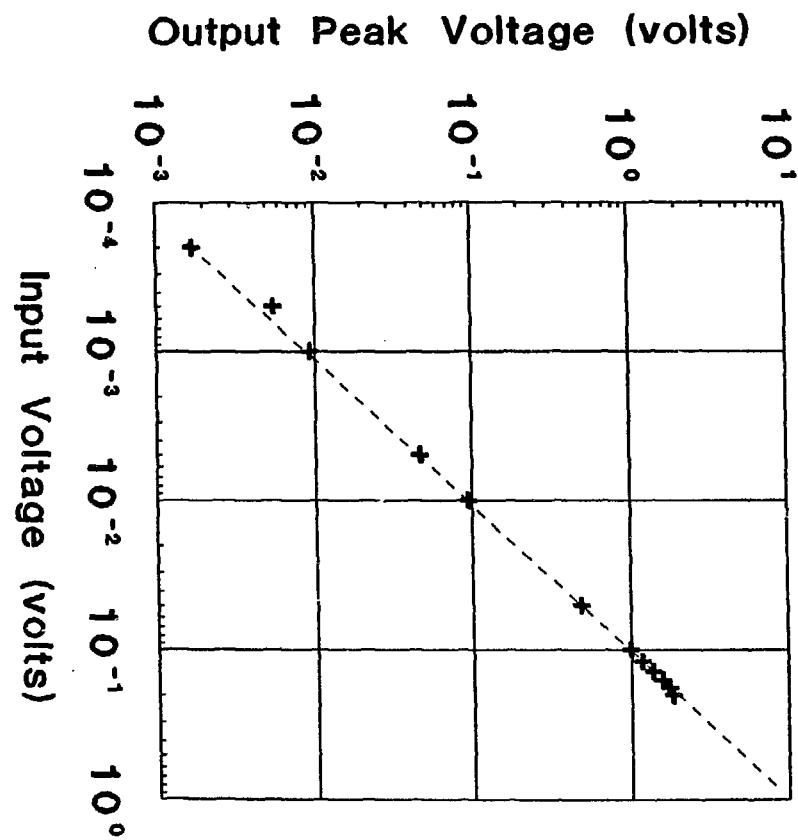


Fig. 3 Linearity of the MZ modulator.