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ABSTRACT

With falling ball rheometry, we have measured the apparent relative
viscosity of suspensions of large, neutrally buoyant, rigid rods in a viscous
Newtonian fluid, while approximately maintaining the rods in a randomly
oriented configuration. A new technique for measuring the time of flight of a ball
between two positions is used. This computerized technique, based upon an eddy
current detector, enables us to determine the position of a metallic (non-magnetic)
ball falling through an opaque suspension, with high accuracy (less than 1.5% error).
The rods for the suspensions had a nominal aspect ratio of 10 and experiments were
carried out at a single volume fraction, 0.05. Two populations of rods were used
having nominal diameters of 1.5875 mm and 3.175 mm. To within the errors of
these experiments, suspensions from both populations had the same relative
viscosity, with the overall average being 1.457. This viscosity was significantly
different from that of a similar suspension (volume fraction = 0.05) of rods of
nominal aspect ratio 20 and it agreed quite well with theoretical results for the
viscosity of a dilute suspension of randomly oriented rods.



A. INTRODUCTION

It was recently shown that a technique historically used in the non-
destructive evaluation of solids, x - ray radiography, could be coupled with high
speed video to produce a powerful tool for probing the microstructural dynamics of
suspensions [1-3]. This technique is capable of accurate studies of the mean
properties of suspensions, and when combined with automated image analysis, it
can provide microstructural information unobtainable by other means. This
marriage of two technologies provides a paradigm for other possible experimental
techniques which might readily be applied to the study of materials, which have
only yielded to scientific investigation with much difficulty, such as highly
concentrated, opaque suspensions.

As with x - ray radiography, eddy current techniques have been employed in a
variety of applications associated with the testing of solids [4]. As described in the
Experimental Section, when this measuring technology is combined with modern
high speed electronics and a computerized data acquisition system, it can be applied
to the study of fluid - like materials, regardless of their optical properties. In
particular, an automated system can be developed for measuring viscosity by falling
ball rheometry.

The particular systems studied using the eddy current technique were
suspensions of randomly oriented rods in a Newtonian fluid. Our principal goal in
these experiments was to determine the effect of aspect ratio, ar, on the viscosity, 4,
of the suspensions. Falling ball rheometry was previously shown to be a useful
method for measuring properties of such suspensions [ 3,5,6], yielding accurate
results which could be favorably compared with available theories
[7-9]. One of our earlier studies focused on determining the effect of volume
fraction, ¢, on the relative viscosity, ur, for a fixed aspect ratio of particle, ar = 20.
Choosing one of the volume fractions used in those experiments, ¢ = 0.05, in this
paper we report upon measurements of the relative viscosity for two suspensions
comprised of particles having ar = 10. The difference between the particles was their
dimensions. Qur previous work [6], showed that when the diameter of the falling
ball reached a critical size between the length and the diameter of the suspended
particles, the apparent viscosities depended upon ball diameter, decreasing with
decreasing ball diameter. The particles used in those studies were the same size, and



the ball diameter was varied. Heretofore, there has been no effort to examine the
effect of maintaining a constant ball size while varying the dimensions of the
suspended rods.

EXPERIMENTAL
1. EDDY CURRENT MEASURING SYSTEM

The principal quantity measured in these experiments was the time required
for a ball, falling under the influence of gravity in a cylindrical column, to pass
across two reference points on the column. Knowing the distance between these
points, it was possible to infer from such measurements the mean velocity of the
falling ball. The technique is based upon a standard method used in non-destructive
testing of solids known as the eddy current test [4]. A schematic of the test is shown
in Figure 1. A sphere is placed in a time varying magnetic field, called the primary
magnetic field. This induces eddy currents in the sphere which produces an
additional time varying magnetic field that modifies the primary field. The field
disturbance is detected by comparing the impedance of the coil containing the test
sphere with the impedance of an identical, empty coil using the bridge shown in
Figure 2. The two potentiometers are used to cancel out any differences in the two
coils and balance the bridge in the absence of a test sphere. The primary field, which
in these experiments oscillated at 100 kHz, is produced by an oscillator. The
magnitude of this field is approximately 0.5 x 10-4 T, or slightly less than the earth's
magnetic field. Hence, any additional forces acting on the falling ball due to the
presence of the magnetic field are negligible. Since sensitivity to the sphere increases
with frequency [4], a moderately high frequency is used.

The overall schematic of the experimental apparatus is shown in Figure 3.
The two test coils are wrapped on a cylindrical glass column having a nominal
outside diameter of 153 mm and a nominal inside diameter of 146 mm. Each coil
consisted of fifteen strands of #22 diameter insulated magnet wire [Bel-sol, Beldon
cable.]. These coils are sandwiched between two wraps of copper tape, or Faraday
shields, which act to isolate the coils from electrostatic fields. In the absence of a
sphere, the bridge is balanced to produce the null result using the potentiometers.
As the sphere sediments through the column one of the coils acts as the reference



coil while the sphere passes through the other coil. The change in impedance is
detected by measuring the amplitude of the in - phase and quadrature parts of the
signal from the bridge relative to the signal used to excite the primary magnetic
field. This is done using a lock - in amplifier (Princeton Applied Research, Model
129A, Princeton, NJ) with the oscillator (Tektronix, Model FG 501A, Beaverton, OR)
supplying the reference signal. The two outputs from the lock - in amplifier are
acquired by a 12 bit analog - to - digital convertor (Metrabyte, Stroughton, MA)
attached to an IBM AT (International Business Machines, Boca Raton, FL)
microcomputer. Data acquisition and analysis software was written in BASIC
employing CALL statements to routines supplied with the analog - to - digital
convertor board.

2. STATIC CALIBRATION

A static calibration of the system was performed by suspending metallic balls
of known diameter from a string and incrementally moving them longitudinally
through the column. Measurements were made of the magnitude of the deviation
from the null condition (no object present) as a function of the axial position of the
ball in the column. In the vicinity of the coils, the smallest increment of movement
possible was used, 1 mm. Away from the coils, larger increments were employed.
Tests were performed using balls of various diameters, from 9.525 mm to 25.4 mm,
and the effect of the ball not being on the axis of the column was explored.

Typical results are shown in Figure 4 for a brass ball of nominal diameter
9.525 mm. Three tests are shown in which the ball was moved along the axis of the
column, one ball diameter off the column axis, and approximately 30 mm away
from the wall of the column. In all cases, two peaks are observed corresponding to
the balls' being in the planes of the coils. The distance between the two peaks was
the same under all three conditions, 149 mm. The slight difference in the
magnitude of the peaks can likely be attributed to slight non-uniformity in the
induced magnetic field in the coils. The coils should ideally induce a magnitude
field which is radially uniform. Figure 4 shows that such an assumption is
approximately valid. There is some radial variation with the magnitude of the
peaks exhibiting a local maximum at the center. Away from the center, the peak
magnitude decreases slightly until near the coil where an increase is again observed.
For all of the calibrations, which included balls of larger diameter, up to 254 mm,



and made of one other material, stainless steel, the distance between peaks was
found to be 149.0 £ 1.5 mm. It was concluded that even under the extreme case when
the ball falls far off the axis, it is possible to calculate its average vertical velocity, va
(in mm/s), by measuring the time of flight between the coils, tf (in seconds), using:

149
vVa= T . {1]

3. SOFTWARE DESIGN

Computer software was designed to acquire the data from the lock - in
amplifier and measure the time of flight of the ball as it passes between the two
coils. The technique used to acquire the data is specific to the computer system used
in these experiments, and will not be discussed further. It is sufficient to note that
the net result of the data acquisition step was an array of 3000 voltage values
containing points which were equally spaced in time. The strategy used to
determine the locations of the two peaks, corresponding to the arrival of the falling
ball at the center of the coils, is of general interest and it will be discussed further
here.

Three techniques were used to determine tf. The first involved the
interaction of the user. After the data were acquired, they were plotted on the video
display terminal. The data were searched numerically to ascertain the approximate
location of the two peaks which, in general, are similar to those shown in
Figure 4. Two markers were plotted along with the data, and the user would then
visually check that the software had in fact determined the correct approximate
location of the maxima. In case of a discrepancy between the visual observation of
the maxima and the locations of the markers, the software allowed the user to move
the markers to the approximate locations of the peaks.The time interval determined
in this way constituted a first approximation to tf.

The next stage of data analysis consisted of first performing a five point
running mean average on the data in the neighborhood of the two maxima (200
points on both sides). This procedure smoothed the noise in the data resulting from
noise in the electronics or, in some experiments, a lack of equipment resolution. For



example, it is possible that the analog - to - digital convertor might yield the same
digital representation of slightly different analog values, particularly around
maxima where the signal is slowly varying. Subsequently a search of the smoothed
data was performed to determine the maxima. Generally, the values obtained by
these first two procedures differed by less than 3%.

The third technique consisted of fitting the data near the maxima determined
after smoothing to parabolas, and then calculating the maxima of the parabolas.
Various numbers of points, from 10 to 230, were routinely used for these fits. The
difference in the numbers of points used for the curve fitting represented our efforts
to ascertain the sensitivity of our measurements to the total number of points
required for these fits. The difference between using, say, 50 and 100 points was that
in the former case, all 25 points before and after the maximum would be used, while
in the the latter case, all 50 points before and after the maximum would be used. In
no instance did varying the number of points used for the fitting procedure
represent a selection process by which spurious data points were eliminated. Except
for the fewest (10 - 30) and most (170 - 230) numbers of points the results were
independent (to within less than 1%) of the number of points used for the fit. This
finding depended upon the total voltage excursion during an experiment, i.e., the
steepness of the maxima.

A comparison of the three techniques was made by dropping balls of
diameters ranging from 9.525 mm to 19.05 mm in a fluid and determining the time
of flight between the coils. The results showed that the technique using the running
mean and that using the fit to a parabola yield the same results. Over eleven
experiments, the ratio of the mean velocities determined by these techniques was
1.000 with a 95% confidence limit of 0.008. From this study it was concluded that the
two numerical data analysis techniques yield the same results and hence they could
be used interchangeably.



4, SUSPENSIONS AND ANCILLARY EQUIPMENT

The particles and fluid were similar to those used in previous studies {3,5,6].
Two populations of particles were manufactured from continuous polymethyl
methacrylate rods, having nominal diameters of 1.5875 mm and 3.175 mm. The rods
were individually cut to have nominal aspect ratios of ten. A statistical study of 25
rods from each population showed that the 1.5875 mm diameter rods had a mean
aspect ratio of 9.88 while the 3.175 mm diameter rods had a mean aspect ratio of
10.01. The standard deviations were 0.44 and 0.13, respectively. As with the earlier
studies, these distributions were considered to be sufficiently narrow that the
particles were monodisperse [3,5,6]). Further, both fiber flexibility, based upon the
criterion of Forgacs and Mason [10], and rotary Brownian motion were negligible [5].

The fluid was a mixture of polyalkylene glycol (UCON-HB-9500 Union
Carbide Corporation, Danbury, CT), 1,1,2,2 tetrabromoethane (Eastman Kodak
Company, Rochester, NY), and Tinuvin 328 (Ciba - Geigy, Ashley, NY).
Tetrabromoethane was added to the polyalkylene glycol to match the density of the
mixture to that of the rods, 1181.8 kg/m3 , at 20.00°C. A small quantity, < 0.2 wt%, of
an antioxidant (Tinuvin) was added to the mixture to prevent the breakdown and
discoloration of the tetrabromoethane by ultraviolet light.

Before the suspensions were made, the rods were cleaned with soap and
water, rinsed with deionized water, and dried. The suspensions were made by
weighing out the required quantities of fluid and rods on a Mettler PC8000 balance.
The balance was accurate to 0.1 g, but was limited to a weight of 8 kg. The
suspensions required 16-24 kg of fluid, resulting in an inaccuracy of the added
weights of each suspension less than or equal to 0.3 g. The uncertainty in the
volume fraction was determined to be less than 5 x 10 and is contained within the
symbols representing the data points on all figures in this paper.

The suspensions were contained in a cylindrical glass column 501 mm high
and 153 mm outside diameter and 146 mm inside diameter. The top of the column
had a removable cover with guide tubes at the center to ensure that the falling ball
was dropped along the center line. The guide tubes were fabricated from Teflon rods
and had bore diameters slightly greater than the diameters of the falling balls.



There was a thin slot in the cover from the guide tube to the wall of the
column for a stirrer. The stirrer, which was used to randomly orient the suspension,
was a long brass rod with a handle on the top and eight short prongs on the bottom.
We mixed the suspension thoroughly before each ball was dropped by briskly
raising, lowering, and twisting the stirrer. Care was taken when stirring to avoid the
introduction of air bubbles. A few colored test rods were placed in one suspension
and their orientations were photographed after stirring. Using data from several
such photographs, we applied the technique of Givler [11] for ascertaining the degree
of randomness. In his analysis, orientation is measured by a scalar, fp , which
varyies between zero and one where zero represents a completely random
orientation distribution. In these experiments, we found that this scalar tended
toward zero as more data (photographs) were used in the analysis. In all,
approximately 100 rods were used to determine that fp = 0.06. From this we
concluded that the suspensions were randomly oriented.

The cylindrical columns were placed in an insulated water tank controlled
by a constant temperature circulator (Lauda Company, Brinkman Instruments,
Westbury, NY). The columns were thermally equilibrated for at least 24 hours before
any experiments were performed. The temperature of a suspension was measured
with a thermocouple probe to within £0.01°C (Instrulab Inc., Dayton, OH). The
temperature was measured at the beginning of an experiment and after each set of 5
individual measurements. The probe allowed measurement of the temperature at
different points in the suspension to ensure thermal homogeneity. Falling-ball
experiments were performed when the measured temperature was within £0.10°C
of the desired set point (20.00°C).

The balls used in these experiments were brass ball bearings (Anti-Friction
Bearing Manufacturers grade 200, Hoover Universal Company, Ann Arbor, MI).
They were placed in the water bath and thermally equilibrated to the temperature of
the suspension prior to the experiments. Balls having six different nominal
diameters were used: 3.175, 6.35, 9.53, 12.7, 15.9, and 19.1 mm. The actual diameter of
each ball was measured to £0.003 mm and the weight of each was measured to
30.0002 g.
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C.RESULTS
1. SUSPENDING FLUID

Prior to performing the measurements with the suspensions, falling ball
experiments were performed using the suspending fluid in order to assess the
accuracy of the eddy current system and to ascertain the viscosity of the suspending
fluid itself. The data were analyzed according to the zero Reynolds number form of
the relationship between the mean terminal velocity of the ball, v,, and the
viscosity, 4, which corrects for wall effects [12], viz.,

d%(ps - p)g

k= [1-2.104 (d/D) +2.09 (d/D) - 0.95 /D) + OW/ Dl —qgr—— [
where d is the diameter of the falling ball, D is the diameter of the column
containing the suspension, ps is the density of the ball, p is the density of the fluid,
and g is the gravitational constant. Equation [2] holds for the case when the ball falls
along the center line of the cylindrical glass column [13], and when the characteristic

d
Reynolds number, NRe = pv“a ,
fluid, the largest balls had Reynolds numbers greater than 0.1 but less than 0.14.
However, to within the accuracy of the measurements, the low Reynolds number

equation could also be used to analyze the data from these experiments.

was in the creeping flow regime. In the suspending

Figure 5 presents the result of using Eq. [2] to analyze our data. When
boundary effects are not properly considered, and the standard Stokes formula [14]
for a sphere falling through an unbounded fluid is used to calculate the viscosity,
the viscosity is found to be strongly dependent upon the ball diameter increasing by
approximately 20% when the ball size increases by a factor of two. Applying Eq. [2]
has two effects. Firstly, the dependency upon the ball diameter becomes negligible.
There is a small decrease in the viscosity with b { diameter, but this is within the
error of these experiments, as indicated by the 95% confidence bounds shown in
Figure 5. Secondly, the average value of the viscosity, 11.42 Pa-s, becomes much
closer to the value obtained previously for the same fluid, 11.95 Pa-s [5]. The slight
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difference being likely due to aging effects which occurred over the two year time
span between the two sets of experiments.

Table 1 gives the comparison between the results obtained from the eddy
current measurements and those obtained using an optical technique [3,5,6] to
determine the velocity of the falling balls. For each ball diameter, five individual
experiments, simultaneously employing both techniques, were performed and the
data were analyzed using Eq. [2]. These data clearly show that the two techniques
yield comparable results with the optical method consistently yielding a lower value
of the viscosity. The average difference, 1.49%, was not considered to be sufficiently
large as to warrant further investigation. As will be shown in the upcoming
Sections, such a difference is generally smaller than the statistical variation in the
suspension data. Due to the uncertainties in both techniques, particularly in
obtaining an accurate mapping from camera coordinates to laboratory coordinates
with the optical technique, neither result is more accurate than the other. Indeed,
given the absolute nature of the calibration of the eddy current instrument, values
obtained using it are likely to be the more accurate.

2. SUSPENSIONS

The results for suspensions of rods are presented in Table 2. Rather than
examining the numerical values, it is useful to examine first the dependency of the
velocities of the falling balls upon their diameters. At low Reynolds numbers, the
velocity of a sedimenting ball in a Newtonian fluid of infinite extent increases as the
square of its diameter. Figure 6 shows v, versus d2 for two suspensions both being
composed of particles nominally having ar = 10 at a volume fraction of 0.05. The
difference between the two suspensions was the size of the rods. As can be seen from
Figure 6, this factor made no systematic difference in the results. For the larger balls,
the proportionality between the velocity and the square of the diameter breaks down
as is easily seen by comparing the data with the straight line lying through the two
data points for the smallest diameter balls. For the largest diameter balls, there are
dramatic differences between the experimental and expected values, e.g., when d =
1.905 mm, this deviation reaches 33%.

Our earlier studies [3,5,6] indicated that such deviations could be assigned to
wall effects of the Faxén type, as described by Eq. [2]. To test this with the present data,
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the velocities in Figure 6 were analyzed using Eq. [2] with the result being shown in
Figure 7, and given in Table 2. Plotted along with these data is the best fit straight
line which passes through the origin. Figure 7 demonstrates that the corrected
velocities, i.e., the measured velocities divided by the term in square brackets in Eq.
[2], are linear with the ball diameter squared. It is important to note that this result is
independent of the diameter of the suspended particle for all but the 3.175 mm
diameter balls.

D. DISCUSSION
1. RELATIVE VISCOSITY

The results for the suspending fluid demonstrate that the eddy current
instrument, developed for this study, can be used to measure the viscosity accurately
and reproducibly. For the randomly oriented suspensions, we have verified that in
the mean they can be considered as Newtonian fluids. That is, the added drag on the
ball due to the walls of the container are accurately described by Eq. 2], and a single
viscosity coefficient characterizes the drag on the ball due to the suspension. As with
our previous studies [3,5,6], such a conclusion applies to the very special case of a
suspension of randomly oriented particles which are only slightly disturbed by the
falling ball. Consistent with these earlier studies, we can therefore use the mean
velocity data given in Table 2 and the viscosity data presented in Table 1 to calculate
the average relative viscosities for each ball size. These data, along with their 95%
confidence limits are also presented in Table 2. To within the uncertainties in these
experiments, the relative viscosities (except possibly that found for the 3.175 mm
diameter particles using the 3.175 mm diameter balls) are independent of the
diameters of the falling balls. This is also shown in Figure 8, where we have plotted
the relative viscosity as a function of the dimensionless ball diameter: d/drods- The
form of this plot is typical of those found in our previous study [6]. For the largest
ball diameters, there is no statistically significant variation in the average relative
viscosity. For the smallest diameter ball used with the largest diameter rod, there
appears to be a decrease in the relative viscosity from the average value obtained
from the analysis of the data for the other balls. Caution must be exercised in
drawing too much significance from this data point even though it represents ten
individual experiments. Despite its mean being lower than all of the other data, the
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95% confidence limits on this point overlap those of all the other data. Hence, it is
not possible to conclude that for d/drods < 1, the relative viscosity decreases.

Consistent with our earlier work [3,5], we avoid complications arising from a
dependency in the measured relative viscosity upon ball diameter by eliminating
data from all but the four largest ball sizes and calculating the average relative
viscosities. These results are presented in Table 2 under the heading of composite.
As might be expected from the previous discussion, the results obtained using the
two suspensions cannot be distinguished. The relative viscosity of the suspension of
1.588 mm diameter rods, which had an average aspect ratio of 9.88, was 1.433 + 0.021
whereas the relative viscosity of the 3.175 mm diameter rods, ar = 10.01, was 1.470
0.032. The difference in aspect ratio might account for some of the variation.
However, it is important to recall that the rods themselves are not uniform and that
to within one standard deviation, they have the same aspect ratio.

While suspensions formed using the two populations of particles are found
to have the same mean properties, a closer examination of the variations about the
mean indicate some differences between them. Figure 9 shows the frequency
distribution for data obtained using balls of diameter 19.05 mm in both suspensions.
The data for the rods of smaller diameter are seen to be much more narrowly
distributed. Ninety percent of these data have velocities between 6.2 and 6.6 mm/s.
The data for the 3.175 mm diameter rods shows a more broader distribution, with
less than 33% lying in that velocity range. A quantitative measure of the spread in
the distributions is their variance, o. For the suspension of 1.588 mm rods this was
1.17 whereas for the suspension of the larger rods, ¢ = 6.09. These results clearly
demonstrate that there is not a measurable effect on the mean properties of the
suspension when different sized rods are used. However, the variance, which can be
extracted from mean velocity data is affected. More experiments would be required
for each ball diameter to ascertain the details of the frequency distribution. At this
time, these results are considered to be preliminary, but representative of a general
trend found in all of the data gathered to date.

2. COMPARISON WITH THEORY

Our previous work led to the surprising conclusion that theories
predicting the viscosity of suspensions in which Brownian forces are dominant
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could accurately predict the results from falling ball experiments using suspensions
of large rods in which Brownian forces are negligible [5). Such a result was
anticipated by the work of Haber and Brenner [15]. They demonstrated that for
bodies of revolution, early theories for suspensions, which described Brownian
forces by specifying that particles in shearing flow remain randomly oriented, were
consistent with later theories in which Brownian forces were rigorously modeled.
An additional and equally surprising conclusion of our earlier study was that the
suspensions were dilute, i.e., yr = ¢, at volume fractions much higher than
previously considered [16,17]. Rods having nominal aspect ratios of twenty had a
linear viscosity - volume fraction relation for ¢ £ 0.12. This result was found to be
consistent with recent molecular theories for rigid rodlike macromolecules [18-20]
although at this time no rigorous basis for such a comparison has been established.

In the present study, these two conclusions provide a basis for comparing our
results with the theory of Brenner for the rheology of dilute suspensions of rods
subject to strong Brownian motion [5,7,15]. This comparison is given in Table 3 both
in terms of each suspension and the overall averages from both suspensions.
Examining first the similarity between the relative viscosity data and Brenner's
prediction [7] quite good agreement is found. The largest error is for the suspensions
of 1.588 mm particles, where the deviation is 2.1%. This comparison, however,
masks some of the discrepancy between our results and Brenner's theory. A more
exacting comparison is that between the experimental and theoretical values of the
intrinsic viscosity, [1]. Since we have obtained relative viscosity data for a single
concentration, it is not possible to apply the usual techniques of suspensions
rheology to obtain [], i.e., plotting (ur - 1) / ¢ versus ¢ and taking the limit as ¢ — 0.
It is possible to use our data to calculate [n] using

pr=1+[pl¢ (31

if we assume, consistent with our earlier findings [5], that our suspensions are
dilute. The results of this calculation are found in Table 3 along with the predictions
of Brenner (7]. In this form the agreement between experiment and theory is not as
close as when the data were expressed in terms of yr , although, at worst, the
discrepancy is only about 12%. Such a disagreement can readily be assigned to either
experiments or the theory. While by the measure available to us, the suspensions
tended to be random [11], no technique was available to determine whether this
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condition was met prior to each experiment. Brenner's theory was derived using
approximation techniques drawn from slender body theory which are likely to break
down for particles having aspect ratios of ten.

Combining the data for the intrinsic viscosity given in Table 3 with the
results of our earlier study for rods having an aspect ratio of twenty [3], it is possible
to begin to construct a curve which describes the dependency of the relative viscosity
upon the aspect ratio for a fixed concentration. Figure 10 shows such a plot for the
two sets of data which are currently available. We have also shown the predictions
of Brenner's theory and, to represent the ar = 1 data, we have used the experimental
results for spherical particles. We view the inclusion of this point as a convenient
reference. It is possible that the intrinsic viscosity of a suspension of rods having ar =

1 will be different from the results for spheres.
E N ION

The computerized data acquisition and analysis system for falling ball
experiments developed around the eddy current detection technique has been
shown to produce accurate results. This device provides excellent data on the
averaged properties of both transparent and opaque materials, and can be
implemented at minimal cost, less than $10,000. Further, it is likely that a more
advanced system could be used to determine the time dependent motion of the
falling sphere, and, hence more detailed microstructural information.

The present studies on suspensions add to the growing body of evidence that
falling ball rheometry offers unique insights into the properties of suspensions of
rods [3,5,6]. Even when the measuring device, viz., the falling ball, is roughly the
same size as the suspended rods, the relative viscosity determined by averaging the
results of many experiments is the same as that measured using balls which are
much larger than the suspended particles. The suspension behaves as if it were a
Newtonian liquid having an effective viscosity in excess of that of the suspending
fluid and which is greater than the viscosity measured for suspensions of rods using
conventional rotational rheometry [21,22]. The large difference between the relative
viscosities measured by the falling ball technique and those measured using
shearing flows [5] can likely be ascribed to the orientation induced by the prescribed
shearing flow. With the falling ball technique, the rods are only slightly perturbed by
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the passage of the ball through the suspension , and an initially isotropic suspension
remains substantially so during a measurement. This conclusion is supported by the
agreement between our results and an existing rigorous theory for the viscosity of a
suspension of randomly oriented rods {7]. The data are consistent with the discovery
of the extended dilute regime [5). However, it is readily admitted that no firm
conclusions can be drawn on this point without obtaining more data over a wider
range of concentrations.

Obtaining an accurate representation of the surface defined by the relative
viscosity, volume fraction, and aspect ratio, i.e., ur (ar,$), has eluded many previous
investigators [17]. Recent results would indicate that some progress has been made
for shearing flows [16,21,22], however, all existing studies lack a rigorous theoretical
benchmark against which data can be evaluated. The present study provides more
evidence that the falling ball technique is a powerful method for obtaining accurate
and theoretically consistent results for suspensions of randomly oriented rods. It
appears that the technique could be broadened by inducing some mean orientation
in the rods prior to dropping the ball and use the technique to measure the viscosity
of oriented suspensions, obtaining results comparable to those measured in
shearing or extensional flows.
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LIST OF FIGURES AND TABLES

FIGURES

1. Schematic of the principle of the eddy current device. The oscillator excites the
primary magnetic field in two identical coils. In the absence of the ball, the bridge
connecting the coils is balanced. When the ball is placed near to one of the coils, an
imbalance occurs due to the eddy currents induced in the sphere by the primary
magnetic field.

2. Bridge circuit used for eddy current measurements.

3. Schematic of system used for eddy current measurements of ball's terminal
velocity in falling ball experiments.

4. Calibration of eddy current device. Shown is the voltage versus the distance along
the column for a 9.525 mm diameter brass ball as it is moved axially at three
different radial positions: ( (O) along the center line; ( @) one ball diameter off the
center line; and ( [J ) approximately 30 mm away from the wall of the column. Note
that the zero distance point is arbitrary.

5. Viscosity of the suspending fluid as a function of the diameter of the falling balls.
When Stokes's formula [14] for a ball falling through an unbounded medium is
used to convert velocity to viscosity ( [ ), the viscosity is found to increase with
increasing ball diameter. When Eq. [2] is applied ( 4p ), the viscosity is determined to
be substantially unaffected by the presence of the container walls (see Table 1).

6. Ball velocity as a function of the square of the ball diameter for the suspensions of
rods (see Table 2). ( [J ) 3.175 mm diameter suspended particles; (¢p) 1.588 mm
diameter suspended particles. The straight line passes through the smallest diameter
balls and the origin.

7. Ball velocity corrected for wall effects as a function of the square of the ball
diameter for the suspensions of rods (see Table 2). ( 0 ) 3.175 mm diameter
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suspended particles; (4 ) 1.588 mm diameter suspended particles. Also shown is the
least squares best fit straight line passing through the origin

8. Relative viscosity as a function of the dimensionless ball diameter (see Table 2).
( O ) 1.588 mm diameter rods ; ( 4 ) 3.175 mm diameter rods. The error bars
represent the 95% confidence limits on the data.

9. Frequency distribution of velocities of 19.05 mm balls for suspensions of 1.588 mm
diameter rods (hatched bars) and 3.175 mm diameter rods (solid bars). While both
suspensions yield the same value of average velocity, the variance about the mean
is different with ¢ = 1.17 for the 1.588 mm rods and ¢ = 6.09 for the 3.175 mm rods.

10. Relative viscosity as a function of aspect ratio at a volume fraction of 0.05 for
suspensions of randomly oriented rods. Shown are the values obtained in this study
and our earlier experimental results [3] ( [l ), Brenner's prediction [7] for a particle
having ar = 10.01, the average of that for the two populations of particles used in

these experiments ( € ), and the relative viscosity of a suspension of spheres having
¢ = 0.05 (@) (to gauge approximately the behavior as ar — 1).
TABLES

1. Comparison of the viscosity of the suspending fluid using two different
techniques to measure the terminal velocity of the falling balls.

2. Summary of Data for Suspensions of Rods.

3. Comparison of the intrinsic viscosities measured in the these experiments with
the theoretical results of Brenner {7].
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Ball Diameter

(mm)

9.525
12.7
15.875
19.05

Average

Viscosity (Pa-s)

Eddy Current Optical
11.5 + 0.092 11.36 £ 0.02
11.47 £ 0.11 11.32 £ 0.11
11.37 +0.09 11.17+£0.11
11.34 £ 0.01 11.17 £ 0.01
11.42 + 0.03 11.26 + 0.03

Percent
Differencel

1.23
1.32
1.78
1.51

1.49

Table 1. Comparison of the viscosity of the suspending fluid using two
different techniques to measure the terminal velocity of the falling balls.
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1 [Viscosity eddy current - Viscosity optical] x 100 / Average Viscosity.
2 Ninety five percent confidence limit.



Suspended  Ball Number Velocity Corrected Relative

Rod Dia. Diameter of Obser- Velocity Viscosity
(mm) (mm) vations (mm/s) (mm/s)

1.588 9.525 10 18.418+0.721 2145 1.46310.058
1.588 12.7 10 31.506+1.22 38.8 1.43540.058
1.588 15.875 10 47.64241.22 62.2 1.419+0.038
1.588 19.05 10 63.81712. 88.54 1.393+0.019
1,588 Composite 40 1.433+0.021
3.175 3.175 10 2.564+0.25 2.69 1.334+0.142
3.175 6.35 14 8.980+0.54 992 1.429+0.088
3.175 9.525 9 18.961+1.39 22.08 1.425+.102
3.175 12.7 19 30.760%1.16 37.88 1.48040.052
3.175 15.875 18 46.64312.29 60.89 1.460+0.11
3.175 19.05 28 62.34+2.36 86.49 1.48310.058
3.175 Composite2 74 1.47010.032

Table 2. Summary of Data for Suspensions of Rods.

1Errors refer to 95% confidence limits
2Composite (average) includes data from four largest ball sizes only.
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&4

Rod
Diameter
(mm.)
1.588
3.175

ur Ur Percent m (1)) Percent

(Measured) (Theory) Difference (Measured) (Theory)  Difference
1.433 1.495 2.1 8.66 9.85 12.9
1.470 1.50 1.0 9.4 10. 6.2

Table 3. Comparison of the intrinsic viscosities measured in the these experiments with the
theoretical results of Brenner [7].
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4. Calibration of eddy current device. Shown is the voltage versus the distance along
the column for a 9.525 mm diameter brass ball as it is moved axially at three
different radial positions: ( () along the center line; ( @) one ball diameter off the

center line; and (3 ) approximately 30 mm away from the wall of the column. Note
that the zero distance point is arbitrary.
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5. Viscosity of the suspending fluid as a function of the diameter of the falling balls.
When Stokes's formula [14] for a ball falling through an unbounded medium is
used to convert velocity to viscosity ( [J ), the viscosity is found to increase with
increasing ball diameter. When Eq. [2] is applied ( € ), the viscosity is determined to
be substantially unaffected by the presence of the container walls (see Table 1).
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6. Ball velocity as a function of the square of the ball diameter for the suspensions of
rods (see Table 2). ( [J ) 3.175 mm diameter suspended particles; (¢) 1.588 mm

diameter suspended particles. The straight line passes through the smallest diameter
balls and the origin.
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7. Ball velocity corrected for wall effects as a function of the square of the ball

diameter for the suspensions of rods (see Table 2). ( 0 ) 3.175 mm diameter
suspended particles; (€ ) 1.588 mm diameter suspended particles. Also shown is the

least squares best fit straight line passing through the origin
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8. Relative viscosity as a function of the dimensionless ball diameter (see Table 2).
( 0 ) 1.588 mm diameter rods ; ( 4 ) 3.175 mm diameter rods. The error bars
represent the 95% confidence limits on the data.
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9. Frequency distribution of velocities of 19.05 mm balls for suspensions of 1.588 mm
diameter rods (hatched bars) and 3.175 mm diameter rods (solid bars). While both
suspensions yield the same value of average velocity, the variance about the mean
is different with 6 = 1.17 for the 1.588 mm rods and ¢ = 6.09 for the 3.175 mm rods.
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10. Relative viscosity as a function of aspect ratio at a volume fraction of 0.05 for
suspensions of randomly oriented rods. Shown are the values obtained in this study

and our earlier experimental results [3] ( B ), Brenner's prediction [7] for a particle
having ar = 10.01, the average of that for the two populations of particles used in

these experiments ( 4 ), and the relative viscosity of a suspension of spheres havmg
¢ = 0.05 (@) (to gauge approximately the behavior as ar — 1).
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