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ABSTRACT 

Fiss ion  y i e l d s  induced i n  t h e  'U (n, f ). and ~h (n, f )  r e a c t i o n s  have 
been determined a s  a funct ion of inc iden t  neutron energy (%). The r a t i o  
of 1 1 5 ~ d - t o - 1 4 0 ~ a  y i e l d s  a s  a funct ion of En i s  analyzed i n  t h e  p resen t  
paper by means of t h e  equation Y I / Y ~  = exp[2(al (%+EI)+ -2(a2 ( E ~ + E ~ ) % ]  t o  
g ive  values  of a i ,  t h e  l e v e l  dens i ty  parameter, and E i ,  t h e  e x a i t a t i o n  
energy f o r  &=0. The energies  E i  a r e  i n t e r p r e t e d  on t h e  b a s i s  of t h e  
l i q u i d  drop model with s h e l l  and p a i r i n g  cor rec t ions .  Values a r e  deduced 
f o r  t h e  energy d i s s ipa ted  by v i s c o s i t y  e f f e c t s  i n  t h e  descent from t h e  
sadd le  point  t o  t h e  point  where masses a r e  f ixed i n  t h e  f i s , s ioning nucleus. 
These values  a r e  1.3 MeV'for. 2 3 2 ~ h ( n , f )  and 4.8MeV f o r  2 3 8 ~ ( n , f ) .  These 
values  a r e  c o n s i s t e n t  with t h e  experimental observation t h a t  Gp is 2.0.6 
neutron g r e a t e t  f o r  2 3 9 ~  f i s s i o n  than f o r  2 3 3 ~ h  f i s s i o n  and t h a t  s t r o n g  
odd-even (nucleon p a i r i n  ) e f f e c t s  a r e  found i n  t h e  fragment t o t a l . k i n e t i c  
energy d i s t r i b u t i o n  f o r  ' s ' T ~  f i s s i o n  bu t  not  f o r  2 3 4 ~  f i s s i o n .  The low 
d i s s i p a t i o n  energy values together  wi th  t h e  low values  of pre-sc iss ion 
k i n e t i c  energy deduced by Guet, -- et a l .  [Nucl. Phys. A134 (1971)1] i n d i c a t e  
a s h o r t e r , p a t h  from t h e  saddle  point  of t h e  f i s s i o n i n g  nucleus t o  s c i s s i o n  
than. ,is genera l ly  assumed i n  t h e o r e t i c a l  ca lcu la t ions .  

INTRODUCTION 

One of t h e  most perplexing problems i n  f i s s i o n  t o d a y . i s  t h e  degree of 
a d i a b a t i ~ i t . ~  i n  t h e  descent  of t h e  nucleus from t h e  saddle :point t o  sciS- 
s ion .  That is, how much of t h e  p o t e n t i a l  energy re lease  from sadd le  t o  

. s c i s s i o n  appears a s  nuclear  d i s s i p a t i o n  energy and how much appears  a s  
pre-sc iss ion k i n e t i c  energy? Dynamic c a l c u l a t i o n s  11-31 give  a wide range 
of va lues  f o r  t h e  two energies  depending on t h e  i n i t i a l  assumptions made 
concerning t h e  d i s s i p a t i o n  mechanism,.i .e. ,  two-boCy viscosi ty, .one-body 
v i s c o s i t y ,  e t c .  The reinains s ince  the s c i s s i o n  conf igura t ion  

t Work performed under t h e  auspices of t h e o f f i c e  of ~ a s i k  Eriergy Sciences 
of t h e  Department of Energy. 
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I' cannot be uniquely determined from experimental measurements of t o t a l  
k i n e t i c  energy and e x c i t a t i o n  energy which a r e  measured a t  e s s e n t i a l l y  
i n f i n i t e  d i s t ances  between t h e  fragments. 

Another experiment t h a t  i n  p r i n c i p l e  should provide information on 
t h e  amount of energy d i s s i p a t e d  is  the  measurement of near-symmetric £is- 
s i o n  y i e l d s  a s  a  func t ion  of inc iden t  neutron energy (En). Analyses of 
such y i e l d s  have been made previously but wi th  d i f f e r e n t  ob jec t ives :  t o  
measure t h e  e f f e c t  of angular  momentum [ 4 ] ,  t h e  e f f e c t  of e x c i t a t i o n  
energy [5 ] ,  o r  t h e  e f f e c t  of t h e  l e v e l  d e n s i t y  parameter [5 ,6] .  The 

I measurement of such y i e l d s  is  p a r t  of a  broader program t o  determine t h e  
post-neutron-emission mass d i s t r i b u t i o n s  f o r  f i s s i l e  and f e r t i l e  nucl ides  

I a s  a  func t ion  of En underway a t  Argonne National  Laboratory f o r  the  pas t  
238 s e v e r a l  years .  Experimental r e s u l t s  a r e  p resen t ly  a v a i l a b l e  f o r  U(n,f) 

[7 ,8]  and 2 3  2 ~ h ( n ,  f )  [ 9 ]  with  neutron energ ies  from 1.5 t o  8  M ~ v . '  
I n  view of t h e  success  of t h e  q u a s i s t a t i s t i c a l  sc iss ion-point  model 

of  f i s s i o n  [ l o ]  i n  i n t e r p r e t i n g  mass and t o t a l  k i n e t i c  energy (TKE) d is -  
t r i b u t i o n s  f o r  a  wide v a r i e t y  of f i s s i o n i n g  systems, it is proposed t h a t  
t h e  v a r i a t i o n  of t h e  near-symmetric f i s s i o n  y e i l d s  f o r  2 3 9 ~  and 2 3 3 ~ h  
compound n u c l e i  be  explained i n  terms of such a model. It is  assumed 
t h a t  f i s s i o n  masses a r e  f ixed  a t  some po in t  between t h e  saddle  and s c i s s i o n  
p o i n t s  and t h a t  a  q u a s i s t a t i s t i c a l  equi l ibr ium is a t t a i n e d  a t  t h i s  po in t .  
Assuming t h e  l e v e l  d e n s i t y  t o  be  described by a  F e m i  gas,  t h e  dens i ty  of 
exc i t ed  s t a t e s  t o  which t h e  f i s s i o n  y i e l d  i s  r e l a t e d  is given by [11] 

N = k(E*) exp ( 2 m )  , 
I 

(1) 

I where E* is  t h e  e x c i t a t i o n  energy a t  t h e  po in t  where masses a r e  f ixed  and 
I 

l 
a  is  the  l e v e l  d e n s i t y  parameter. The r a t i o  of two f i s s i o n  y i e l d s  is then 

The use  of Eq. (2) ,  which is a l s o  t h a t  used by Fong [ l l ]  i n  h i s  s t a t i s t i -  
c a l  approach t o  nuc lea r  f i s s i o n ,  does no t  n e c e s s a r i l y  imply a  s i t u a t i o n  of 
complete damping i n  t h e . d e s c e n t  of t h e  nucleus from t h e  saddle  t o  t h e  
p o i n t .  a t  which masses a r e ,  f i n a l .  Rather, i t  i s  assumed t h a t  a weak cou- 
p l i n g  e x i s t s  between c o l l e c t i v e  and i n t r i n s i c  states  a s  described by 
~ ' d r e n b e r ~  [12]. . . 

The e x c i t a t i o n  energy E: i s  defined a s  

. * 2 
Ei = En + Bn - Bf - %Di + EDIS + AESpi exp [ - ( T ~ / T ~ )  ] . (3) 

The f i r s t  t h r e e  terms a r e  r e spec t ive ly  t h e  k i n e t i c  energy of t h e  neutron,  
i t s  binding energy i n  t h e  compound nucleus,  and t h e  f i s s i o n  b a r r i e r  he ight  
of  t h e  compound nucleus. A l l  of these  terms a r e  known f o r  'U and 3 ~ h  
[13]. The l i q u i d  .drop term ELDi.is t h e  energy requi red  t o  form a  p a i r  of 
fragments o t h e r ' t h a n  t h e  symmetric p a i r  s i n c e  the  l a t t e r  i s  t h e  favored 
conf igura t ion  i n  t h e  l . iquid  drop model. The value  of t h i s  term i s  ob- 
ta ined from l i q u i d  drop ca lcu la t ions .  The quantity'EDIS represen t s  the  
unknown amount of d i s s i p a t i o n  energy a t  t h e  point  where masses a r e  de ter -  
m5ned. The AESpi term includes  the  microscopic s i n g l e - p a r t i c l e  c o r r e c t i o n s  
f o r  s h e l l  and p a i r i n g  e f f e c t s .  The magnitude of t h e  s h e l l  c o r r e c t i o n  
determined i n  t h e  sc iss ion-point  model of f i s s i o n  is shown f o r  neutrons 
i n  Fig. 1 and f o r  protons i n  Fig. 2 [ l o ] .  ~ l t h o u . g h  these  co r rec t ions  
a r e  f o r  independent fragmerits, they a r e  comparable t o  t h e  s i n g l e - p a r t i c l e  
s h e l l .  c o r r e c t i o n s  obtained with the  two-center model [14].  The s h e l l  



2. EXPERIMENT 

I 

The exper imenta l  method i s  desc r ibed  more completely i n  Ref. [ 7 ] .  
M e t a l l i c  f o i l s  of thorium o r  uranium,were i r r a d i a t e d  w i th  e s s e n t i a l l y  . 

7 monoenerget ic  neu t rons  produced by t h e  ~ i ( ~ , n )  ' ~ e  o r  2 ~ ( d , n )  3 ~ e  r e a c t i o n s .  
The induced f i s s i o n  product  a c t i v i t i e s  were analyzed by means of  y-ray 

' s p e c t r o m e t r y  o r  rad iochemica l  t echniques .  A f t e r  apply ing  a p p r o p r i a t e  
c o r r e c t i o n s  f o r  chemical  y i e l d  o r  y-ray abundance, d e t e c t i o n  e f f i c i e n c y ,  
decay,  g e n e t i c  r e l a t i o n s h i p s ,  and deg ree  of  s a t u r a t i o n ,  a b s o l u t e  y i e l d s  
were c a l c u l a t e d  by normal iz ing  t h e  r e s u l t i n g  mass d i s t r i b u t i o n s  t o  200% 
t o t a l  y i e l d .  

The r e s u l t s  of t h e s e  measurements f o r  near-symmetric f i s s i o n  masses 
. a r e  shown i n  F ig .  4  f o r  2 3 9 ~  and i n  P ig .  5  f o r  2 3  3 ~ h .  The r e s u l t s  of.  
Ford and Leachman [4 ] ,  Borisova,  -- e t  a l . ,  [5]  and Adams, -- et a l . ,  [18]  a r e  
a l s o  shown i n  Fig.  4. . The r e s u l t s  of  Turkevich, Niday and Tompkins [19] ,  
Ford and.Leachman [ 4 ] , a n d  Dubrovina, -- e t  a l . ,  [ 6 ]  a r e  a l so . shown i n  F ig .  5. 
An ave rage  v a l u e  of  t h e  14-MeV neu t ron  y i e l d s  given by Crouch [20]  and 
Meek and Rider  [21]  i s  p l o t t e d  i n  F ig .  5 .  

The y i e l d s  (Y) of  t h e  near-symmetric f i s s i o n  masses i n c r e a s e  r a p i d l y  
w i t h  E, f o r  bo th  2 3 9 ~  and 2 3 , 3 ~ h  w i t h  t h o s e  f o r  2 3 3 ~ h  i n c r e a s i n g  more 
r a p i d l y  i n i t i a l l y .  The o n s e t  o f  second-chance f i s s i o n  i n  2 3 9 ~  i s  marked 
by a  pronounced change i n  s l o p e  of t h e  Y v s .  En cu rves  and perhaps by a 
s l i g h t  d i p .  I n  2 3 3 ~ h  a  d e f i n i t e  d i p  o c c u r s  a t  t h o s e  e n e r g i e s  where 
second-chance f i s s i o n  becomes p o s s i b l e .  The o n s e t  of  third-chance f i s s i o n  
i n  both,  f i s s i o n i n g  systems i s  marked by ano the r  change i n  s l o p e  of  t h e  Y 
vs,. En cu rves .  I n  Fig.  6  t h e  Y v s .  E, curves  of  t h e  v a l l e y  f i s s i o n  prod- - 
uc t " a r e  compared f o r  bo th  733~h and 2 3 9 ~ .  

1 * 
c o r r e c t i o n s  shown i n  F igs .  1 and 2  a r e  f o r  Ei=O. The v a r i a t i o n  of  t h e  
s h e l l  c o r r e c t i o n  w i t h  i n t r i n s i c  tempera ture  of t h e  nuc leus  i s  shown i n  
Fig.  3  f o r  neu t rons  a t  a  f i x e d  (0.65) 6-deformation [ l o ] .  These f u n c t i o n s  
were c a l c u l a t e d  w i t h  t h e  approximation desc r ibed  by Jensen and Damgaard 
[15]  . The more s i m p l i f i e d  tempera ture  c o r r e c t i o n ,  exp [- ( T ~ / T , )  ]  , given  
i n  Eq. (3) i s  one sugges ted  by Ziegenhain,  e t  a l . ,  [16] .  In  t h i s  expres- * t2 -- 
s i o n  T  = (Ei /a i )  and To = 1 . 5  MeV. Although t h e  p a i r i n g  c o r r e c t i o n  
e x h i b i t s  a  d i f f e r e n t  t empera ture  dependence 1171 than do t h e  s h e l l  cor -  
r e c t i o n s ,  t h e  l a t t e r  a r e  g e n e r a l l y  l a r g e r  i n  magnitude. Therefore ,  s i n c e  
one w i l l  n o t  be  a b l e  t o  d i s t i n g u i s h  between p a i r i n g  and s h e l l  c o r r e c t i o n s ,  

I n  c o n t r a s t  t o  t h e  near-symmetric f i s s i o n  mass y i e l d s ,  t hose  of 
asymmetrfc. masses Ileal L l l r  peaks i n  t h c  mass d i s t r i h l i t i n n  decrease 
s l i g h t l y  w i t h  i n c r e a s i n g  En f o r  "'u. Th i s  i s  shown f o r  "NO i n  F i g .  4 .  
The y i e l d  behavior  w i t h  En of t h e  cor responding  masses f o r  ' " ~ h  is  s o r e  
complex a s  s e e n  i n  Fig.  7. Th i s  shows t h a t  t h e  y i e l d s  of masses more 
asymmetric than  t h e  peak-yield masses i n c r e a s e  s h a r p l y  a t  t h e  o n s e t  of  

. , 

a  temperature-dependence c o r r e c t i o n  s u i t a b l e  f o r  t h e  l a t t e r  is a p p l i e d .  
Because of t h e  tempera ture  (o r  E;) dependence of BESpi and i t s  * 

unknown r e l a t i o n s h i p  w i t h  En, t h e  e x c i t a t i o n  energy Ei a s  def ined  i n  Eq. 
(3)  i s  some convoluted f u n c t i o n  of i t s e l f .  Therefore ,  a  s e r i e s  of  * e q u a t i o n s  of  t h e  form of  Eq. (2)  cannot  be  so lved  e x p l i c i t l y  f o r  Ei. I f ,  
however, A E ~ ~ ~  v a r i e s  s lowly  ove r  t h e  E, range  of  t h e  a n a l y s i s ,  t hen  a  
l e a s t - s q u a r e s  f i t  t o  t h e  d a t a  s h n l ~ l d  y i e l d  r ea sonab le  va lues  o f  E: and,  
consequent ly ,  EDIS. I n  t h e  p r e s e n t  paper  we have assumed t h i s  slow 
v a r i a t i o n  and t h a t  t h e  v a l u e s  of  AESpi ob t a ined  a r e  most r e l e v a n t  t o  t h e  
mid-point o f  the E, range o r  'L4.5 MeV. 



second-chance f i s s i o n ;  whereas t h e  y i e l d s  of more symmetric masses decrease 
sharply .  

3. ANALYSIS 

I n  analyzing t h e  da ta ,  f i r s t -chance  f i s s i o n  y i e l d s  were ca lcu la ted  
f o r  neut ron energ ies  a t  which both f i r s t -  and second-chance f i s s i o n  could 
occur. This  was done by use  of  t h e  measured f i s s i o n  c r o s s  s e c t i o n s  (aF) 
f o r  2 3 3 ~ h  [22] and 2 3 9 ~  [23] a s  shown i n  Fig. 6. The measured y i e l d s  a t  
t h e s e  energies  may be  w r i t t e n . a s  - - 

where t h e  s u b s c r i p t s  I and I1 r e f e r  r e spec t ive ly  t o  ' f i r s t -  and second- 
chance f i s s i o n .  The s.econd-chance f i s s i o n  y i e l d  YII is evaluated i n  the  
f i r s t -chance  f i s s i o n  energy region (En-€,), .where En (-6 MeV) i s  the  s u m  
of t h e  binding ener  and k i n e t i c  energy of a neutron emit ted from t h e  
compound ' ~ h  o r  2"U nucleus p r i o r  t o  f i k s i o n .  This  a n a l y s i s  assumes 
t h a t  t h e  f i s s i o n  y i e l d  from an e x c i t e d .  232Th o r  3 8 ~ '  nucleus ;'is t h e  same 
a s ,  t h a t  from a n . e x c i t e d  2 3 3 ~ h  o r . . 2 3 9 ~  nucleus  a t ' : t h e  ~dme ' i r i c iden t  neutron 
energy, ( E ~ - E ~ ) . '  Values of OF-I were obtained b y  extr&'polat ing horizon- 
t a l l y  t h e  f i s s i o n  c r o s s  s e c t i o n  oF E. E, curve j u s t  .prioy- t o  t h e  6paet of 
secof;d-chance f i s s i o n .  This  g ives  va lues  of 0.14 barn  :for  2 ? 3 ~ h  and .Oi 56 
barn f o r  2 3 9 ~ .  Such .a procedure is f a 5 t l y  s t r a i g h t f o & i r d ' f o r  2 3 9 ~  s i n c e  
t h e  f i s s i o n  c r o s s  s e c t i o n  curve i&a  f a i r l y  f l a t  'plateau i n  the .ene rgy  
region where only f i rs t -chance  f i s s i o n  occurs.  'However, t h e  f i s s i o n .  c ross  
s e c t i o n .  curve.  f d r  3 ~ h  exhibPts some s t r u c t u r e  i n  t h e  energy region f o r  
which only f i r s t - chance  f i s s i o n  occurs. .There  is, the re fo re ,  .some , . ' .  

. . 
ambiguity a s soc ia ted  wi th  the  v'albe o f .  0.14 .barn used. for . ,  uF-1. . Values 
of C r F - l l  were deduced by s u b t r a c t i n g  aFII from OF. Vaiues of Y1.wete 
then c a l c u l a t e d  by s u b s t i t u t i n g  t h e  above q u a n t i t i e s  t n t o  Eq. (4) .  .The 

' 1 1 5  dashed ckrve i n  Fig.  6 h d i c a t e s  t h e ' c a l c u l a t e d  . . Ers t -chance  Cd y i e l d  
. . . . 

for' 2 3 3 . ~ h .  
1 4 0  ' 

... . . 
The r a t i o  of 'Cd-to- Ba y i e l d s  f o r  f i r s t -chance  f i s s i o n  of . '  the  

thorium and uranium systems a r e  shown. a s  c i r c l e s  i n l F i g .  8. Open c i r c l e s  
a r e  t h e  r e s u l t  of measured f i r s t -chance  f i s s i o n  . Sol id  c i r c l e s  
a r e  t h e  r e s i l t  of  f i r s t -chance  f i s s i o n  y i e l d s  deduced by means.,of EI. ( 4 ) .  
For compa.rison t h e  r e s u l t s  of ~ u b r o v i n a ,  e t  al. . ,  [6]  f o r  l l S ~ d - t o - s  . .  Sr  . 

' . 
2 3 J T h T  y i e l d s  a r e  given a s  dpen t r i a n g l e s  f o r  The r e s u l t s  of Borisova,. 

e t  a l .  : [51 f o r  ' ~ d - t o - ~ ( ~ ~ ~ o  + 140Ba) y i e l d s  a r e  given a s  s o l i d .  tri- ' -- 
ang les  f o r  i 2  'U 4 . Since t h e  r a t i o  of 1 4 0 ~ a - t o - 8 9 ~ r  .y ie lds  averages 1.15 
i n  the  reglon where on1 f irs t-cEance f i s s i o n  occurs f o r  3 2 ~ h  [63 and 
t h e  r a t i o  of 'Mo-to-' "Ba y i e l d s  averages. 1.13 i n .  t h e :  cqrrespbnding . ' ' 

regPon f o r  2 3 8 ~  [5] ,  , t h e  da ta  a r e  seen t o  agree v e r y ~ ~ e l l ' : w i t ~  t h e  
da ta  o f .  ~ e £ s .  5 and .6. " . . 

: AlthoughEq. (2) a p p l i e s  t o  y i e l d s  of pre-neutron-emission f i ss i0 .n  
fr'agments, i t  i s  assumed t h a t  t h e  y i e l d s  of  the  post-ne~tr 'on-~emission 
f i s s i o n  .products  5 ~ d  and 4 0  Ba rep=esent  well '  the . 'y ie lds  df .pre-neut;t6n- 
emission pro e n i t o r s  which a ' ie  assumed. f o r  s i m p l i c i t y ' t o  be r e s p e c t i v e l y  

l 4 g  7 ~ h  a n d  . X e .  The.  r e spec t ive  cdmplkments, o f  these  fragments a r e  ' ~ h  
and 9 2 ~ r  f o r  2 3 Z ~ h ( n , f )  and ' 2 2 ~ g  and O O S ~ .  for 7 3 q ~ ( l l , i ) . "  ,; 

I n  applying Eq.: ( 2 ) t o  t h e  d a t a  spown i n  Fig. 8 i t . w a s a s s u m e d  t h a t  
t h e  pre-exponential f a c t o r  kl (E:)/k2 (E ) was, equdl t o  one:. . T h e  l e v e l  
d e n s i t y  parameter was defined a s  a i = ~ f j c i ,  where . Af . i s  kha m a s s p f  t h e  



b 

- f i s s i o n i n g  nuc leus ,  and ci i s  a cons t an t  %lo .  The va lues  of c i  were 
. . 

c o n s t r a i n e d  t o  be t h e  same f o r  bo th  2 3  3 ~ h  and 3 9 ~ .  ' This  i s  reasonable  
s i n c e ,  for '  I 4 ' xe  ( t h e  1 4 0 ~ a  p r o g e n i t o r ) ,  t h e  s h e l l  e f f e c t s  a r e  the. same 
f o r  bo th  f i s s i o n i n g  systems (po in t  H i n  Fig. 1 )  and t h e  complementary 
fragments  a r e  found a t  a B-deformation of  0.4 (fiear po in t  B i n  Ffg. 1 )  
[ lo] ' .  S i m i l a r l y ,  f o r  ' 1 7 ~ h  ( t h e  ' l 5 c d  p r o g e n i t o r ) ,  t h e  s h e l l  e f f e c t s  a r e  ' . 

t h e  same f o r  bo th  f i s s i o n i n g  systems a t  a 8-deformation of 0 .7,  and t h e  
complementary fragments a r e  found a t  t h e  same deformation ( t o ' t h e  r i g h t  
of  p o i n t  D i n  Fig. 1 ) .  The l a r g e r  deformations f o r  t h e  near-symmetric 
f i s s i o n  fragments i s  i n d i c a t e d  by t h e  d i p  i n  t h e  t o t a l  k i n e t i c  energy 
n e a r  symmetry observed i n  t h e  f i s s i o n  of  bo th  2 3 2 ~ h  [24] and 2 3 8 ~  ' [25,26] 
by e n e r g e t i c  neut rons ,  assuming a smal l  p re - sc i s s ion  k i n e t i c  energy. Re- * w r i t i n g  Ei a s  E + Ei, Eq. (2)  then  becomes 

n 

A p p l i c a t i o n ' o f  Eq. (5) s imul taneous ly  t o  t h e  uranium and thorium d a t a  
gave the .  p re l iminary  l ea s t - squa res  b e s t  f i t s  shown by t h e  s o l i d  curves  i n  . .  

, . 

F i  . 8. Values of t h e  parameters  c i ,  a i ,  and E i  ob ta ined  f o r  2 3  3 ~ h  and 
"U a r e  g iven  i n  Table I. The va lues  o f  a1 , a2 , El,  and E2 determined 

f o r  3 9 ~  a r e  s i g n i f i c a n t l y  s m a l l e r  than  t h e  r e s p e c t i v e  va lues  of 31  .I, 
27.4, 3.6, and 7 .1  obta ined  by Borisova, e t  a l . ,  [5] .  Their  ene rg i e s ,  -- 
El and Ep, a r e  r e p o r t e d  a s  "corresponding to -  t h e  f i s s i o n  t h r e s h o l d  of  

' 

2 3 8 ~ ,  t h a t  is ,  f o r  En=1.5 MeV." S u b s t i t u t i n g  t h e i r  va lues  i n t o  Eq. (5) . , 

. '  does n o t  g i v e  a good f i t  t o  t h e  da ta .  The l e a s t  squares  f i t  t o  t h e  l e v e l  
d e n s i t y  parameter ,  ai, g i v e s  q u i t e  reasonable  va lues  of Af19.59 and Af/11.35 

. . . f o r  t h e  ~ y m m e t r i c ~ a n d  asymmetric mass s p l i t s ,  r e s p e c t i v e l y .  
S ince  E = Ei - En, Eq. (3) can  be  rear ranged  t o  g ive  

i 

. 
, The measured o r  c a l c u l a t e d .  q u a n t i t i e s  on t h e  le f t -hand  s i d e .  of Eq. (6) 
a r e  l i s t e d  i n  Table  11. The v a l u e s  of EDIS-AESPi(T) a t  E, 'b4.5 t o  5.MeV 

. a r e  a l s o  g iven  i n  Table 11. The v a l u e s  of AESp,(T)-AE (T) l i s t e d  i n  
t h e  t a b l e  a r e  ob ta ined  by s u b t r a c t i n g  t h e  two va lues  o ? ~ ~ ~ ~ ~ - A E ~ ~ ~ ( T )  f o r  
a given f i s s i o n i n g  system. To determine EDIS an  e s t i m a t e  of AESPi(T) i s  : 
needed. Values were ' taken from d a t a  descr ibed  by t h e  sc i s s ion -po in t  model 
of  f i s s i o n  [ l o ]  and a r e  l i s t e d  below t h e  dashed l i n e  i n  Table 11. However, . 

t h e s e  c a l c u l a t e d  va lues  a r e  a p p r o p r i a t e  f o r  E ~ = o .  (The exper imenta l  va lues  
Jx a r e  f o r  Ei 4.5 + Ei  MeV.) Therefore ,  t h e  c a l c u l a t e d  va lues  were tor- 

. r e c t e d  t o  correspond t o  t h e  exper imenta l  e x c i t a t i o n  ene rg i e s .  The 
temperature-correc t e d  va lues ,  AESpi(T) and A E ~ ~ ~  ( T ) - A E ~ ~ ~  (T) a r e  g iven  

, i n  Table 111. The c a l c u l a t e d  and exper imenta l ly  der ived  va lues  of 
AESpl(T)-AESp2(T) a g r e e  t o  w i t h i n  7% f o r  ' " ~ h  and 12% f o r  2 3 9 ~ .  This  
.agreement is  r a t h e r  g r a t i f y i n g  i n  view o f  t h e  u n c e r t a i n t i e s  i n  t h e  
S t r u t i n s k i  method f o r  c a l c u l a t i n g  s h e l l  e f f e c t s  f o r  deformed n u c l e a r  
shapes [27] and t h e . u s e  of a n  independent fragment model [ l o ]  f o r  t h e i r  

d e r i v a t i o n .  T o  b r i n g  t h e  c a l c u l a t e d  va lues  of AESpijT) i n t o  agreement 
~ 5 t h  t h e  exper imenta l  va lues ,  t h e  former were normallzed t o  g ive  t h e  
exper imenta l ly  de r ived  va lues  of AESpl(T)-AESp2(T). 'These  va lues  a r e  - .  

l i s t e d  i n  Table f11. Adding the normalized vrlues of A E ~ ~ ~ ( T )  t o  rhe . 

v a l u e s  of EDIS-AESpi(T) g iven  i n  Table I1 y i e l d s  EDIS va lues  of  1 .7  MeV' .. . 

%or 2 3 3 ~ h  and 4 .8  MeV f o r  2 3 9 ~ ,  a  d i f f e r e n c e  of 3 . 1  MeV. 



I .  4 .  DISCUSSION 

A number of  assumptions have been made i n  the  above analyses t h a t  
a f f e c t  t h e  accuracy of t h e  deduced EDIS va lues  f o r  t h e  * ' ~ h  and * "U 
compound nuc le i .  Cer ta in ly  one may ques t ion  the  a p p l i c a b i l i t y  of the  Fermi * 
gas 1 e v e l . d e n s i t y  a t  such low values  of Ei. Nevertheless,  the  da ta  cannot 

. b e  f i t  wi th  l a r g e  values  of  E D I S  Therefore, the  p i c t u r e  of complete 
damping 'between t h e  sadd le  po in t  and t h e  po in t  where masses a r e  f ixed  
appears t o  b e  el iminated.  The values  obtained fbr EDIS a r e  a l s o  c o n s i s t e n t  
wi th  t h e  d i scuss ion  on p a i r i n g  i n  the  sc iss ion-point  model [ l o ]  which 
a t t r i b u t e s  t h e  s t rong  odd-even e f f e c t  observed i n  t h e  TKE d i s t r i b u t i o n  f o r  
t h e  f i s s i o n  o f  2 2 9 ~ h  w i t h  thermal neutrons,  shown i n  Fig. 9  [28],  t o  the  
very  low sc iss ion-point  temperature expected i n  thorium systems. 

The d i f f e r e n c e  of ' 3 .1  MeV between vaiues o f  EDIS f o r  2 3 9 ~  and 3 ~ h  
is much l e s s  s e n s i t i v e  t o  t h e  assumptions made and can, i n  f a c t ,  be seen 
d i r e c t l y  i n  t h e  da ta  before  a n a l y s i s  (see  Fig. 6 ) .  The 3.1 MeV EDIS 
di.fference between 2 3 9 ~  and 3~ i s  a l s o  c o n s i s t e n t  wi th  t h e  d i f fe rence  
between Gp f o r  t h e  two nuclides, which i s  -0.6 neutron f o r  a g i v e n i n c i -  
dent  neutron energy [29]. Since t h e  numbet of neutrons emit.ted per  f i s -  
s i o n  i s  a  measure'of.EDIS p l u s  t h e  avera  e  fragment deformation energy and 
t h e  d i f f e r e n c e  i n  between 3 9 ~  and 23kTh i s  accbunted f o r  by t h e  d i f -  

P  ference  i n  EDIS, one may conclude t h a t  t h e  deformation ene rg ies  a t  t h e  
s c i s s i o n  po in t  f o r  t h e s e  two f i s s i o n i n g  systems a r e  approximately equal.  

2 3 5  Guet, et  a l . ,  [30] i n  a  s tudy of  long-range alpha p a r t i c l e s  i n  U(n,f)', 
dec ide  t h a t  only a  compact s c i s s i o n  shape wi th  r e l a t i v e l y  low pre-sc iss ion  
k i n e t i c  energy ( < l o  MeV) i s  c o n s i s t e n t  w i t h  t h e i r  da ta .  I f  pre-scission 
kinetPc e n e r g y . i s  small ,  then t h e  t o t a l  k i n e t i c  energy is dominated by 

I _  
t h e  pos t -sc iss ion  k i n q t i c  energy. The l a t t e r ' c a n  be  approximated by 

where D i s  t h e  d i s t a n c e  between t h e  charge c e n t e r s  a t  s c i s s i o n .  Since 
2 3  3 t h e  t o t a l  deformation energy is  shown t o  be equal  f o r  Th ,and 3 9 ~ ,  

then  D should a l s o  be nea r ly  equal  f o r  systems which a,re s o  s i m i l a r .  One 
may t h e r c f o r e  c a l c u l a t e  the expected TKE d i f f e r e n c e s  f o r  t h e  most probable 
charge d i v i s i o n s  (Z = 54 and 38 f o r  'U and Z = 54 and 36 f o r  3 ~ h ) .  
This  amounts t o  a  5.6% d i f fe rence  o r  -9 MeV f o r  compact s c i s s i o n  shapes - 
deduced b Guet, e t , ' a l . ,  [30]. Experimental values. of TKE'are %172.5 
MeV f o r  239U 1261 and -163 MeV f o r  ' " ~ h  [ 2 4 1 ,  a  5.8%. d i f f e r e n c e  o r  9.5 
MeV. The 0.5-MeV d i f f e r e n c e  between t h e  c a l c u l a t e d  and experimental 
energies  i n d i c a t e s  very  l i t t l e  d i f f e r e n c e  i n  t h e  pre-sc iss ion  k i n e t i c  
energy f o r  t h e  two f i s s i o n i n g  systems. Since a l l  dynamic c a l c u l a t i o n s  
t h a t  p r e d i c t  appreciable  amounts of  pre-sc 'ssion k i n e t i c  energy i n d i c a t e  
a s t rong  dependence on t h e  parameter Z 2 / A 1 f 3  i n  t h e  a c t i n i d e  region of t h e  
elements [31], one concludes t h a t  t h e  pre-sc iss ion  k i n e t i c  energy i s  
small ,  i . e . ,  l e s s  than 1 0  MeV, c o n s i s t e n t  wi th  Guet, -- e t  a l . ,  [30]. 

I n  view of t h e  experimental evidence we conclude t h a t  f i s s i o n  occurs  
wi th  small  amounts of d i s s i p a t i o n  energy, small  amounts of pre-sc iss ion  
k i n e t i c  energy, and cdmpact shapes a t  t h e  s c i s s i o n  po in t .  Such a  s i t u a -  
t i o n  is incompatible wi th  cu r ren t  dynamic c a l c u l a t i o n s .  Or ig inal  one-body 
v i s c o s i t y  ca . l . ru la t ians  yield compact shapes bu t  l a r g e  amounts of EDIS and 
e s s e n t i a l l y  no pre-sc iss ion  k i n e t i c  energy [ 3 ] .  Two-'body v i s c o s i t y  c a l -  
c u l a t i o n s  g ive  very extended shapes with varying but  always l a r g e  amounts 
of pre-sc iss ion  k i n e t i c  energy [2,3] .  I n ' F i g .  10  i s  shown t h e  p o t e n t i a l  
energy s u r f a c e  f o r  2 3 6 ~  a s  a  funct ion  of neck c o n s t r i c t i o n  and t o t a l  



e l o n g a t i o n  of t h e  system. Th i s  f i g u r e  was taken from t h e  r e c e n t  paper by 
Negele, et  a l . ,  [ 3 ]  on f i s s i o n  dynamics. Two v a l l e y s  i n  t h e  ' p o t e n t i a l  
energy s u r f a c e  a r e  apparent  i n  t h e  f i g u r e .  The upper v a l l e y  i s  q u i t e  
f l a t  descending from t h e  second' s a d d l e  p o i n t  and e x h i b i t s  s t a b i l i t y  
a g a i n s t  c o n s t r i c t i o n  of  t h e  neck. Th i s  v a l l e y  l e a d s  t o  t h e  extended 
shapes  a t  s c i s s i o n  p r e d i c t e d  by t h e  two-body v i s c o s i t y  ' c a l c u l a t i o n s .  The 
lower v a l l e y  i s  a s s o c i a t e d  wi th  approaching fragments i n  heavy ion  reac-  
t i o n s .  It e x h i b i t s  l i t t l e  s t a b i l i t y  a g a i n s t  neck c o n s t r i c t i o n  and can  
l e a d  t o  more compact shapes a t  s c i s s i o n .  A small r i d g e  s e p a r a t e s  t h e  two 
v a l l e y s .  A t  e l o n g a t i o n s  g r e a t e r  than  1 7  f m  ( % 2 . 2 5 / 4  u n i t s ) ,  t h e  poten- 

" 

t i a l  energy o f  t h e  lower v a l l e y  becomes l e s s  than  t h a t  of t h e  upper 
v a l l e y .  Also, t h e  upper v a l l e y  i s  v e r y  f l a t  i n  t h e  r e g i o n  of 17-18 fm, ' 

e x h i b i t i n g  a s l i g h t  s a d d l e  p o i n t .  Th i s  is s i m i l a r  t o  t h e  s c i s s i o n  s a d d l e  
desc r ibed  by ~ Z r e n b e r g  [12] where t h e  a t t r a c t i v e  f o r c e s  of t h e  neck 
balance.  o r  even over-balance t h e  r e p u l s i v e  Coulomb fo rce .  Davies, e t  a l . ,  
[31] show t h a t  r u p t u r e  occurs  f o r  neck th i cknesses  of  %2 fm. Previous  
c a l c u l a t i o n s  assumed t h a t  s c i s s i o n  occurs  f o r  z e r o  neck th i cknesses .  
The exper imenta l  evidence of  small d i s s i p a t i o n  energy, small p re - sc i s s ibn  
k i n e t i c  energy, and compact. shapes toge the r  w i t h  t h e  2-fm neck t h i c k n e s s  . 
i n d i c a t e  t h a t  s c i s s i o n  occu r s  a t  2 .68 and Q ?, 2.4, i n d i c a t e d  by a n  x i n  
Fig.  10 .  Th i s  c o r r e s p o n d s . t o  a s e p a r a t i o n  between charge  c e n t e r s  of 17-18 
fm. The approximate energy r e l e a s e  from t h e  second s a d d l e  t o  t h i s  s c i s s i o n  
p o s i t i o n  f o r  2 3 ' 6 ~  is  %9 MeV, i n  good agreement w i t h  t h e  p r e s e n t l y  pro- 
posed sum of d i s s i p a t i o n  energy and p re - sc i s s ion  k i n e t i c  energy f o r  2 3 g U  

, ,It i s  sugges ted  t h a t  dynamical c a l c u l a f i o n s  be  undertaken t o  determine 
whether  t h e  f i s s i o n i n g  system can b e  d i v e r t e d  from t h e  upper v a l l e y  i n  
t h e  r e g i o n  of t h e  t h i r d  s,addle po in t ,  i . e . ,  17-18 fm, t o  t h e  lower v a l l e y  
where s c i s s i o n  can  occur  w i t h  parameters  more c o n s i s t e n t  w i t h  those  
de r ived  from experiment.  
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Neutron-shell , co r rec t ions  ca lcu la ted  a s  a( funct ion of B-deforma- 
t i o n  and neutron number. The 8-parameter is defined i n  terms of 
t h e  semimajor c )  and semiminor (a) axes of a  prolat 'e  spheroid 
wi th  c = l ~ r ~ A ' ~ ~ ( ( 1 + 2 8 / 3 )  and a = k r 0 ~ ' I 3  (1-B/3), "here k is a 
volume conservation f a c t o r .  The contours a r e  p lo t t ed  a s . 1  MeV 
i n t e r v a l s  wi th  t h e  black regions ( represent ing t h e ' s t r o n g e s t  
s h e l l s )  conta in ing a l l  values l e s s  than -4 MeV and the  inner  
w h i t e r e g i o n  ( represent ing t h e  weakest s h e l l  correc t ions)  con- 
t a i n i n g  a l l  va lues  g r e a t e r  than +2 MeV. .From Ref. [ l o ] .  

Proton-shell  cor.rect ions ca lcu la ted  a s  a funct ion of  B-deformation 
and proton number. Contour s t r e n g t h s  a r e  described i n  t h e  caption 
f o r  Fig. 1. From Ref. [ l o ] .  

Neutron-shell co r rec t ions  a t  f ixed  d e f o r m t i o n  (0 = 0.65) ca l -  
cu la ted  a s  a funct ion of t h e  temperature of t h e  nucleus. From' 
Ref. [ lo ] .  

F i s s ion  y i e l d ?  and c r o s s  s e c t i o n  OF f o r  f i s s i o n  of 2 3 s ~  by mono- 
energe t i c  neutrons as a funct ion of neutron energy, From Ref. 
[TI. 

F i s s ion  y i e l d s  of near-syuxnet?!ic masses f o r  f i s s i o n  of 2 3 2 ~ h  by 
monoenergetic neutrons a s  a func t ion  of neutron energy. 

F i s s ion  y i e l d  of t h e  v a l l e y  f i s s i o n  product l l 5 c d  and t h e  f i s s i o n  
c r o s s  s e c t i o n  OF a s  a  funct ion of neutron energy f o r  2 1 2 ~ h ( n , f )  
and 2 3 8 ~ ( n , f ) .  The dashed curve (---) represen t s  t h e  f i r s t -  
chance f i s s i o n  y i e l d  of "'Cd f o r  232Th(n, f )  ca lcu la ted  f o r  
E, > 6 MeV. 

F i s s ion  y i e l d s  of  asymmetric masses f o r  f i s s i o n  of 2 3 2 ~ h  by rn6no- 
energe t i c  neutrons as a funct ion of  neutron energy. The y i e l d s  
of  complementary masses a r e  shown assuuiing t h r e e  neutrons a r e  
emit ted  pe r  f i s s i o n  event .  

Rat io  of symmetric-to-asymmetric y i e l d s  f o r  f i rs t -chance  f i s s i o n  
of 2 3 3 ~ h  and 2 3 9 ~  as a funct ion of  neutron energy. C i rc les  a r e  
p resen t  d a t a  and represent  t h e  r a t i o  of ' '~d-to- '  40 ~a y ie lds .  
Open c i r c l e s  a r e  f o r  y i e l d s  measured i n  t h e  energy region f o r  
which only f i rs t -chance  f i s s i o n  occurs.  Sol id  circles a r e  f o r  
y i e l d s  deduced by t h e  method described i n  t h e  text. Open tri- 
ang les  a r e  t h e  d a t a  of Ref. [6] and represent  th$  r a t i o  of ' 'Cd- 
to-" ~r y i e l d s .  So l id  t r i a n g l e s  a r e  t h e  d a t a  of Ref. [5]  and 
represen t  t h e  r a t i o  of 1 1 5 ~ d - t o - % ( g 9 ~ o  + ' " ~ a )  y i e l d s .  The 
s o l i d  curves a r e  f i t s  t o  t h e  p resen t  da ta  by means of  Eq. (5). 

' FTG. 9. &era e t o t a l  k i n e t i c , e n e r g y  f o r  .thermal neutron induced f i s s i o n  

, 
of "@Th as a funct ion of primary heavy-iragmen' mss. Thc 
dashed curve i n  (b) shows TKE(A) values f o r  t h e  thermal neutron 
induced f i s s i o n  of 3~ mul t ip l i ed  by 0 .944 .  The curve shown i n  
(a)  r epresen t s  t h e  d i f fe rences  between t h e  two curves shown.in 

. , (b). From Ref. [28]. 



FIGURE CAPTIONS (Cont 'd) 
t 

FIG. 10. Contours i n  t h e  Q-n p lane  of  t h e  microscopicimacroscopic 
I p o t e n t i a l  energy of 3 6 ~  wi th  z e r o  spin-orbi ;  i n t e r a c t i o n ,  

' i n  u n i t s  of MeV. The s c i s s i o n  p o i n t  suggested . i n  t h e  p re sen t  
paper  is  denoted by a n  X. From Ref. [3] .  



. . ' TABLE I. Parameters  db ta ined  f o r  Eq. (5) i n  i t s  f i t  
. . t o  f i rs t . -chance f i s s i o n  da t a .  

Parameter 2 3 2 ~ h ( n , f )  2 3 8  U(n , f>  

-0.5 MeV 2 . 4  MeV 

2 . 6  MeV 6 . 8  MeV, 



TABLE 11. Energies used i n  Eq . (6 )  . 
2 3 8  Energy 2 3 2 ~ h ( n , f j  u ( n ,  f.1 

(~-IEIY) (?:ieL') 

B 4 .  955a 4 .  783a n 
b b 

Bf 6.44 " 6.15 

. . 
% a l u e i  determined from exper imenta l  masses giveil i n  

Ref. 1131. . 

b ~ x p e r i m e n t a l  v a l u e s  g iven i n  Table 11 of Ref. [13]. 
C 
-Ca lcu la ted  f o r  a 1171116 mass s p l i t  i n  2 3 3 ~ h .  

8 .  

d ~ a l c u l a t e d  f o r  a 141192 mass s p l i t  i n  ' " 3 ~ -  
e 

Calcu la ted  f o r  a 1221117 mass s p l i t  i n  2 3 9 ~ .  

f ~ a l c u l a t e d  f o r  a 141198 mass s p l i t  i n  2 3 9 ~ .  . : 
g ~ a l u e s  from t h e  p resen t  work a s s m e d  v a l i d  f o r  E 2 
4.5 MeV. n 

h ~ a l c u l a t e d  by means of Eq. ( 6 )  . 
i .  . . 

Calcu la ted  by s u b t r a c t i n g  v a l u e s  0f.E (T) f o r  
D I S - ~ ~ S P ~  

a given f i s s i o n i d g  system. 
. . 

'values based on t h e  . sc iss ion-point  model of f i s s i o n  
desc r ibed  i n  ~ e f .  [ l o ] .  

. . 

k ~ a l c u l a r e d  by s u b t r a c t i n g  va lues  of A E  (T) f o r  a  
S P i  given f i s s i o n i t ~ g  sy 's tem.  . 



TABLE 111. Temperature-corrected and normalized 
v a l u e s  of th2 s i n g l e - ? a r t i c l e  c o r r e c t i o n  
e n e r g i e s .  

. . 

Energy 2 ~ n ( n ,  f )  2 3 8 u(n ,  f )  
(?.lev) (PleV) . . 

Tempera ture-cor rec  t ed  v a l u s s  

( c a l c u l a t e d )  

AESpl (TI-AESp2 (T) 5.81 

( expe r imen ta l )  

Values n o r p a l i z e d  t o  t he  experirn2ntal ly  

de r ived  va lue  of A E ~ ' ~ ~ ( T ) - A E ~ ~ ~ ( T )  
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