

1/29/91 JSD

CONF-910728-8

SANDIA REPORT

SAND91-0269 • UC-721
Unlimited Release
Printed July 1991

Changes in Rock Salt Permeability Due to Nearby Excavation

J. C. Stormont, C. L. Howard, J. J. K. Daemen

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

SAND--91-0269

DE92 003589

SAND91-0269
Unlimited Release
Printed July 1991

Changes in Rock Salt Permeability
Due to Nearby Excavation

by

J. C. Stormont
Repository Isolation Systems Division 6346
Sandia National Laboratories
Albuquerque, New Mexico

C. L. Howard
RE/SPEC, Inc.
Carlsbad, New Mexico

J. J. K. Daemen
University of Nevada
Reno, Nevada

Accepted for Presentation at the
32nd U.S. Symposium on Rock Mechanics
University of Oklahoma
July 10-12, 1991
Norman, Oklahoma

* This paper or article has been accepted for publication in the designated conference proceedings or journal, but may differ from its present form when it is published therein.

MASTER *20*
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Changes in Rock Salt Permeability Due to Nearby Excavation

J. C. Stormont

Sandia National Laboratories, Albuquerque, New Mexico, USA

C. L. Howard

RE/SPEC, Inc., Carlsbad, NM, USA

J. J. K. Daemen

University of Nevada, Reno, NV, USA

ABSTRACT: Changes in brine and gas permeability of rock salt as a result of nearby excavation (mine-by) have been measured from the underground workings of the WIPP facility. Prior to the mine-by, the formation responds as a porous medium with a very low brine permeability, a significant pore (brine) pressure and no measurable gas permeability. The mine-by excavation creates a dilated, partially saturated zone in the immediate vicinity of the excavation with an increased permeability to brine and a measurable permeability to gas. The changes in hydrologic properties are discussed in the context of pore structure changes.

1 INTRODUCTION

A Disturbed Rock Zone (DRZ) develops around the excavations of the Waste Isolation Pilot Plant (WIPP), a US Department of Energy research and development facility in bedded salt (halite) near Carlsbad, New Mexico. The DRZ has been defined as the zone of rock in which mechanical and hydrologic properties have changed in response to excavation (Borns and Stormont, 1989). The presence of a DRZ has numerous implications for the performance of the WIPP. The DRZ is relatively permeable compared to the undisturbed formation, and must be considered in seal systems designed to help isolate waste. The increased porosity of the DRZ may also serve as a sink within which fluids (brine or gas) accumulate. Most research has focused on the properties and response of the rock mass outside the DRZ. Current mechanical and hydrologic models for rock salt do not account for the observed behavior in the DRZ.

An in situ experiment was conducted between 1988 and 1990 which monitored the hydrologic response of a halite layer to nearby excavation and provided a hydrologic measure of the DRZ. An array of twelve small-volume pressurized brine- and gas-filled test intervals located about 8 m from an underground room was first established. Their pressure response was monitored with time prior to, during and after the excavation of a nearby large-diameter hole. Sometime later, gas and brine injection tests were conducted in the boreholes. The emphasis of measurements and analyses was to quantify the changes in gas and brine permeability as a result of excavation. The data also provide qualitative information regarding changes in dilation and saturation in response to excavation. These results suggest a more fundamental definition of the DRZ in terms of pore structure changes.

2 EXPERIMENTAL CONFIGURATION AND METHODS

The twelve small-diameter "monitoring" boreholes were drilled vertically down from the floor of the L1 room in the experimental portion of the WIPP facility. These 4.8-cm diameter boreholes were drilled to a depth of 8 m with air as the drilling fluid. A test interval was created in the bottom of each borehole by placing an inflatable rubber packer nominally 65 cm from the bottom of the borehole. A schematic diagram of the monitoring boreholes is given in Figure 1. In order to minimize the volume of test interval, a 4.3-cm diameter steel rod was placed near the bottom of the borehole. The packers have a tubing feed-through to allow access to the test interval for fluid injection or withdrawal. The test interval pressure is measured by means of a strain-gaged diaphragm pressure transducer. A nearby data acquisition shed houses the excitation, signal conditioning and data recording instrumentation.

A plan view of the monitoring boreholes is given in Figure 2. As shown in Figure 2, both brine-filled and gas-filled monitoring boreholes were placed at $1.25, 1.5, 2, 3$, and $4 r$ from the center of the planned large-diameter hole, where r is the radius of the large-diameter hole ($r = 48.3$ cm). Two monitoring boreholes of each type (gas and brine) were located at $1.25 r$ to provide redundancy at this location where the greatest changes in response to excavation were anticipated. At 8 m from the floor of Room L1, the rock adjacent to the test interval is clear to moderately reddish orange halite with some polyhalite stringers and very little disseminated clay. The nearest anhydrite or distinct clay seam is more than 2 m from the test intervals.

Both the brine-filled and gas-filled test intervals were established within 4 days of completion of the borehole drilling by placing the steel rod and packer at the desired location and inflating the packer. The packers were inflated and maintained at a pressure of about 5 MPa using fresh water. For the brine-monitoring boreholes, saturated brine was first placed in the bottom of the borehole prior to placement of the packer and steel bar to reduce the likelihood of trapping gas in the test interval. The brine and gas test intervals were pressurized to about 2 MPa, shut-in, and monitored for about 150 days until the large-diameter hole was drilled. Time zero is taken as the time the first test interval was established. In one brine-filled test interval at $1.25 r$, the borehole fluid and rock temperatures were measured with thermocouples. Approximately 40 days after the first test interval was established, test interval compressibility measurements were made in the brine test intervals.

The "mine-by" excavation was achieved by drilling a 96.5-cm diameter hole. This hole was deepened incrementally: A 5-cm diameter pilot hole was first drilled, followed by

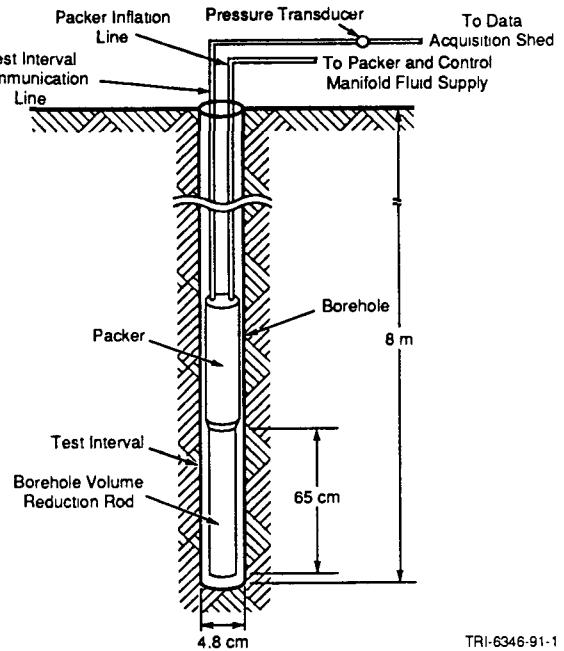


Figure 1: Schematic of monitoring borehole configuration.

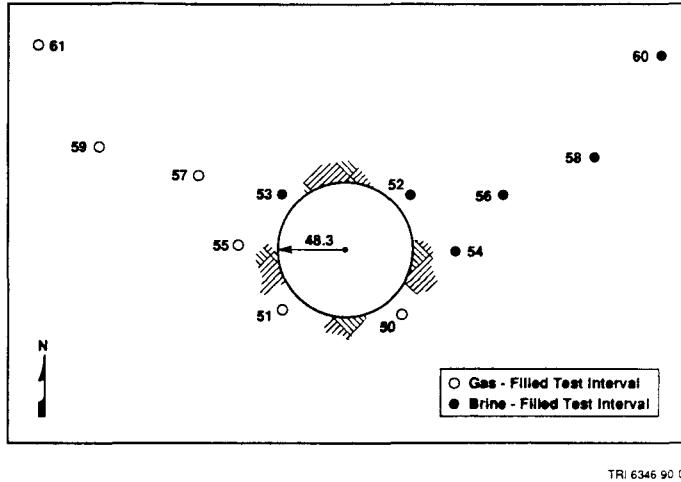


Figure 2: Plan view of mine-by borehole (96.5-cm diameter) and monitoring boreholes (4.8-cm diameter) on the floor of Room L1.

the coring of the 96.5-cm diameter hole to a similar depth. The pilot hole provided directional stability and aided in large core removal. The drilling time was less than 8 hours for both the pilot hole and the large diameter core from about 1 meter above to 1 meter below the mean test interval depth (8 m). Packers within 2 r of the large-diameter borehole were shut-in prior to the mine-by to reduce the potential for packer-induced damage.

About 240 days after the mine-by drilling, injection tests were conducted in all of the test intervals. Constant-pressure tests were conducted in all of the brine-filled test intervals and two of the gas-filled test intervals. The test interval pressures were increased by up to 0.7 MPa, and the flow rate necessary to maintain this pressure was measured with a flow manifold connected to the test interval communication line. Shut-in or pressure-decay tests were performed in three gas-filled test intervals by raising the pressure in the test interval by 1.4 MPa and measuring the pressure decrease as fluid moves out into the formation.

3 RESULTS AND ANALYSES

The principal focus of the data analysis from the in situ experiment is to determine permeability changes of the rock salt as a result of nearby excavation. The analysis approach is to first establish a pre-excavation permeability and then determine the permeability after the excavation. The data are interpreted in terms of transient flow through a compressible, porous medium. The flow is assumed to be radial, applicable for flow to or from a borehole. A finite difference numerical scheme is used to produce simulations of flow to estimate the formation properties.

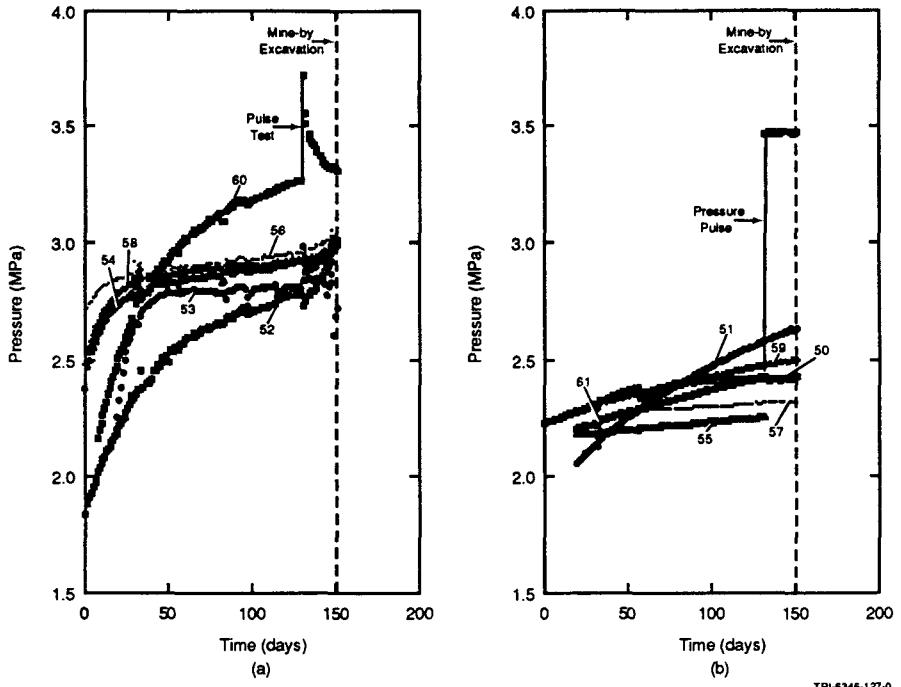


Figure 3: Pressure-time data prior to excavation for (a) brine-filled and (b) gas-filled test intervals. Data from borehole 55 are truncated due to data acquisition problem.

3.1 Pre-excavation responses

The responses of the brine- and gas-filled test intervals after they were shut-in but before excavation of the mine-by borehole are given in Figure 3. Once shut-in, the brine-filled test interval pressures increase and approach a value of about 3 MPa. Borehole 60 appears to be approaching a somewhat greater value. The gas-filled test interval pressure increases at a slower but more linear rate. Pulse tests were conducted in boreholes 60 and 61 prior to the mine-by.

The responses of both the brine- and gas-filled test intervals are consistent with the formation modeled as a very low permeability, low porosity medium with a significant pore (brine) pressure. Flow of brine from the formation into the lower pressure test intervals results in pressure increases in both the brine- and gas-filled test intervals. The flow rates into the test intervals, and consequently the pressure changes, decrease as the test interval fluid pressures approach the formation pressure, and finally level off near the formation pressure. In the gas-filled test intervals, pressures increase at slower rates due to the relatively great test interval fluid compressibilities. The gas in the test intervals does not flow into the formation because (1) the formation brine is at a higher pressure, and (2) there is a threshold or displacement pressure which the gas would have to overcome in order to flow into the formation.

The formation properties are estimated by means of numerical simulations of the test. Permeability, porosity, formation pressure, test interval dimensions (including closure or opening of the test interval), test interval compressibility, formation compressibility, and fluid properties are input to the simulation, and the resulting calculated pressure history

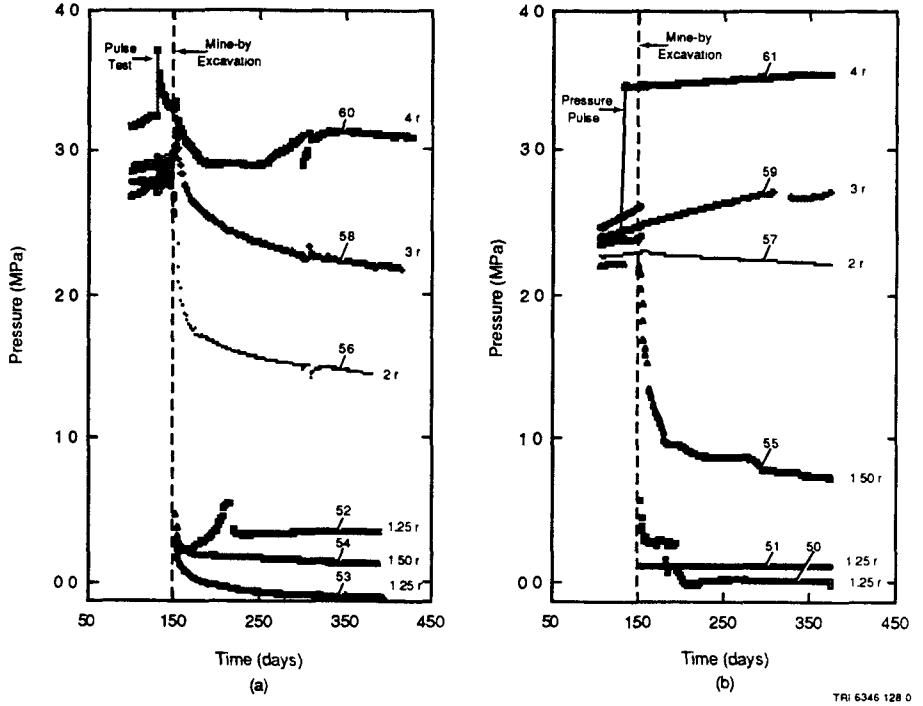


Figure 4: Pressure-time data during and after excavation for (a) brine-filled and (b) gas-filled test intervals.

is compared to the data. The unknown parameters are adjusted until a reasonable agreement between the numerical simulation and measured response is obtained.

The data from the brine-filled test intervals can be bounded with a formation pressure of 2.7 to 3.6 MPa and a permeability of 1×10^{-22} to $8 \times 10^{-21} \text{ m}^2$. The interpreted formation pressures and permeabilities which bound the response of the gas-filled test intervals prior to the mine-by are 3.0 to 3.6 MPa and 2×10^{-20} to $3 \times 10^{-22} \text{ m}^2$, respectively. The range of the interpreted permeabilities is consistent with other measurements for undisturbed rock salt (e.g., Peterson et al., 1987). The pre-excavation response shows that gas does not flow from the test intervals out into the formation, indicating that the effective gas permeability of the formation prior to excavation is zero.

The magnitude of the formation pore pressure interpreted from the pressure build-up (about 3 MPa) is less than the probable pore pressure of the undisturbed formation (about 10 MPa, Peterson et al., 1987). This indicates that the test intervals were located close enough to Room L1 (8 m) to be in a region of depressed pore pressure, or this halite layer had an anomalously low pore pressure.

3.2 Responses during and after excavation

The responses of the brine- and gas-filled test intervals during and after excavation are given in Figure 4. All of the test intervals experienced decreasing pressures tending toward equilibrium values. Their responses are a function of the distance the particular test interval is from the excavation; the closer to the excavation, the more the pressure drops and the lower the equilibrium pressure.

The pressure decreases in the brine- and gas-filled test intervals are due to (1) dilation

of the formation, and (2) formation pore pressure changes in response to flow toward the zero pressure boundary of the excavation. The pressure response to dilation will occur relatively quickly, whereas the pressure response due to flow will happen more slowly because of the low permeability of the formation. The test interval responses are consistent with a dilatant zone surrounding the large-diameter borehole out to about 1.5 r. In this region, there appears to be sufficient increase in pore volume so that brine-filled test intervals almost immediately lose nearly all of their pressure. Relatively large increases in pore volume may not be able to be instantaneously saturated by the surrounding low permeability formation. The gas-filled test intervals at 1.25 r also lose their pressure. In order for this to happen, the formation must become undersaturated with respect to brine. At 1.5 r, the gas pressure decreases from over 2 MPa and stabilizes at 0.7 MPa, indicating that some gas flowed out of the borehole into the formation and then stopped. If the pore pressures are symmetric about the excavated borehole, the brine-filled test interval response indicates that the formation pressure at 1.5 r is zero. The equilibrium pressure of 0.7 MPa in the gas-filled test interval at 1.5 r, therefore, may be a measure of a displacement or threshold pressure in the disturbed region.

Beyond 1.5 r, the changes in response to excavation are less dramatic. The pressure responses of the brine-filled test intervals decrease with distance from the large-diameter borehole. In the gas-filled test interval at 2 r, the slow decrease in the test interval pressure suggests that the formation pressure at this location has reduced to below the test interval pressure. Either the gas pressure is sufficient to overcome the threshold pressure, or the brine which has accumulated in the test interval during the pre-excavation inflow period is forced into the formation. Beyond 2 r, the gas-filled test intervals are not affected by the excavation.

3.3 Post-excavation injection tests

Approximately 240 days after excavation, injection tests were conducted in the test intervals. The formation properties were estimated from the injection tests by means of matching the measured response with numerical simulations. All of the injection tests in the brine-filled test intervals were constant-pressure injection tests. The pressures in both test intervals at 1.25 r were increased 0.45 MPa above the previous pressures; the pressures in the remaining test intervals were increased 0.7 MPa over the previous pressures. The results are summarized in Table 1. The permeability and porosity values interpreted from the brine injection tests decrease as the distance from the mine-by borehole increases. At 3 r and 4 r, the interpreted permeabilities and porosities are comparable to those before excavation, indicating that the excavation had no measurable effect on the brine permeability at 3 r and beyond.

Table 1: Summary of Post-Excavation Brine Injection Test Results

Borehole number	Position (r)	Permeability (m^2)	Porosity
52	1.25	5.7×10^{-18}	0.01
53	1.25	5.7×10^{-18}	0.01
54	1.5	1.5×10^{-19}	0.005
56	2.	1.8×10^{-20}	0.001
58	3.	4.5×10^{-21}	0.001
60	4.	5.5×10^{-21}	0.001

The gas injection test results are summarized in Table 2. In the two gas-filled test intervals at 1.25 r, constant-pressure (0.24 MPa) injection tests were conducted. These measurements were interpreted as gas flow into the partially saturated and de-pressurized region near the mine-by borehole.

Table 2: Summary of Post-Excavation Gas Injection Test Results

Borehole number	Position (r)	Permeability (m ²)	Porosity
50	1.25	9.0×10^{-16}	0.01
51	1.25	5.0×10^{-18}	0.01
55 *	1.5	2.0×10^{-19}	0.005
57 *	2	3.0×10^{-21}	0.001
59 *	3	5.0×10^{-21}	0.001

* Tests were interpreted assuming the test interval gas driving brine flow in the formation. Post-excavation injection test not conducted in borehole 61.

In the gas-filled test intervals at 1.5, 2, and 3 r, pressure-decay tests were conducted by increasing the test interval pressure by 1.4 MPa above the previous pressure and shutting in the test interval. The responses from these tests were controlled by flow of brine (not gas) in the formation, the increased gas pressure in the test intervals was driving brine flow in the formation. At 1.5 r, there was sufficient flow of gas from the test interval during the injection test (about 300 cm³) so that it appears that gas is moving into the formation. The uneven pressure history measured during this test is consistent with that expected during viscous fingering or channeling (Dullien, 1979). This phenomenon occurs when the viscosity of the displacing fluid is less than that of the saturating fluid, as is the case for gas displacing brine. Thus, we conclude that the injected gas flow is displacing existing pore brine during this test.

At 2 and 3 r, the shut-in tests result in very small pressure decays. The volume of gas which moves from the test interval into the formation is so small (a few cm³) that it is not possible to determine if the gas actually moves into the formation. Perhaps gas is displacing brine in the formation, but only in a small zone of enhanced permeability surrounding the test intervals. An alternative explanation is that brine that was produced into the test interval during the pre-excavation inflow phase is now being forced back out into the formation. In either case, it appears that the flow of brine in the formation controls the test interval gas pressure response.

5 DISCUSSION AND CONCLUSIONS

The mine-by experiment provides direct evidence of changes in hydrological parameters of rock salt as a result of nearby excavation. The test results are summarized in Figure 5.

The previous definition of the DRZ has been a qualitative, non-specific term which indicates that some formation properties have been altered in response to excavation. A more fundamental definition of the DRZ is the volume of rock which experiences a change in its pore structure, or the microstructure of its porosity, in response to

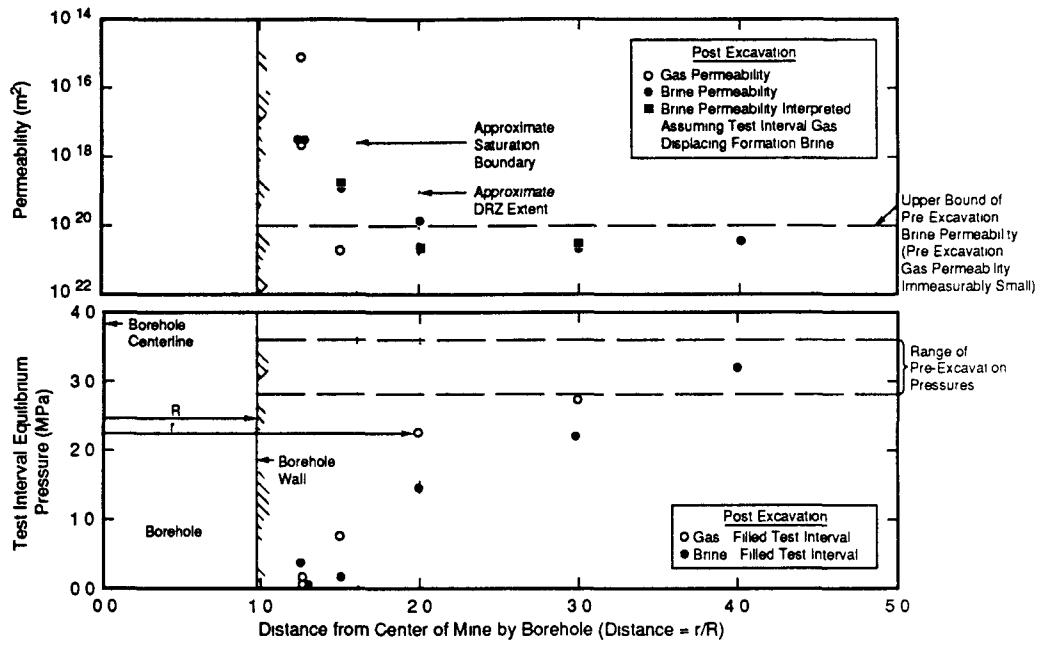


Figure 5: Summary of experimental results.

excavation Defining the DRZ in terms of pore structure changes allows physical insight into the response of the rock mass. Pore structure is the link between the mechanical and hydrologic response of a porous medium. For example, an increase in mean stress tends to close existing pores and cracks, this closure, in turn, reduces the connected porosity and permeability. To predict permeability or permeability changes from a fundamental basis, a model or representation of pore structure must be used.

Pore structure can be altered in two fundamental ways: changes in the existing pore structure and creation (or deletion) of pore space. Most pore structure models concern changes in the existing pore structure. For example, models which relate permeability and mean stress have been developed by assuming elastic, recoverable deformation of the existing pore structure (e.g., Walsh, 1981). Creation of new porosity, i.e., damage, will also induce permeability changes. These permeability changes are due in part to changes in deviatoric stresses, and may or may not be recoverable.

A conceptual model of the DRZ in terms of pore structure changes in the rock surrounding the mine-by borehole is given in Figure 6. The rock mass is defined in terms of three regions. In the first region adjacent to the excavation, the rock is the most damaged (major DRZ). The damage is manifested principally as grain boundary microcracking accompanied by dilation (Stormont, 1990), and is a result of relatively high deviatoric and low hydrostatic stresses induced by the excavation. This damage does not imply failure or loss of strength of the rock salt. With increasing distance from the excavation, the stresses are less conducive for damage. The second region contains a combination of damage with little dilation and changes in the existing pore structure (minor DRZ). The first and second region comprise the DRZ. Beyond some distance from an excavation, there is no significant effect of the excavation on the pore structure (neglecting the very small elastic and unknown time-dependent response of the pore structure). This

TRI 6346 92 1

Figure 6: Conceptual model of pore structure changes in rock salt surrounding an excavation.

so-called undisturbed region is still affected by the excavation, and processes which do not require pore structure changes such as isovolumetric creep and pore pressure changes occur in this region.

Pore structure damage is responsible for the majority of the effects attributed to the DRZ in rock salt. When accompanied by dilation, damage reduces the pore pressure and may induce a partially saturated zone. The development of measurable gas permeability is possible under these conditions. Brine permeability will be increased due to the increased size and connectivity of the damage-induced pore structure. Damage increases the effective or bulk compressibility of a material, not only decreasing the effective elastic moduli but also increasing the hydraulic storage capability of the material.

The experimental results summarized in Figure 5 are consistent with the concept that pore structure change alters the hydrologic properties of rock salt. Gas permeability probably only exists in the region which has experienced substantial damage, and will be nearly coincident with the limit of partial saturation. Brine permeability will be affected by changes in the existing pore structure, and will therefore extend beyond the depth of measurable gas permeability to the limit of the DRZ. Pore pressure changes do not require pore structure change, and can therefore extend outside of the DRZ.

The test results reveal that the extent and magnitude of the DRZ depends on which parameter is considered. The greatest changes in hydrologic parameters are confined to $1.5 r$, and are associated with pore structure damage. Defining the DRZ in terms of pore structure change and damage provides a framework for gaining physical insight into the processes active in the development of the DRZ and developing the fundamental relationship between mechanical and hydrologic behavior of rock salt.

REFERENCES

Borns, D. J. and J. C. Stormont 1989. The Delineation of the Disturbed Rock Zone Surrounding Excavations in Salt, Proc. 30th U.S. Symp. on Rock Mechanics, A. A. Balkema, Brookfield, MA: pp. 353-360.

Dullien, F. A. L. 1979. Porous Media: Fluid Transport and Pore Structure. Academic Press, New York.

Peterson, E. W., P. L. Lagus and K. Lie 1987. WIPP Horizon Free Field Fluid Transport Characteristics, Sandia National Laboratories report SAND87-7164 prepared by S-Cubed, LaJolla, CA.

Stormont, J. C. 1990. Gas Permeability Changes in Rock Salt During Deformation. Ph.D. thesis, University of Arizona, Tucson.

Walsh, J. B. 1981. Effect of Pore Pressure and Confining Pressure on Fracture Permeability. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 18:429-435.

DISTRIBUTION

Federal Agencies

U. S. Department of Energy, (5)
Office of Civilian Radioactive Waste
Management
Attn: Deputy Director, RW-2
Associate Director, RW-10
Office of Program
Administration and
Resources Management
Associate Director, RW-20
Office of Facilities
Siting and Development
Associate Director, RW-30
Office of Systems
Integration and
Regulations
Associate Director, RW-40
Office of External
Relations and Policy
Forrestal Building
Washington, DC 20585

U. S. Department of Energy (3)
Albuquerque Operations Office
Attn: J. E. Bickel
R. Marquez, Director
Public Affairs Division
P.O. Box 5400
Albuquerque, NM 87185

U. S. Department of Energy
Attn: National Atomic Museum Library
Albuquerque Operations Office
P. O. Box 5400
Albuquerque, NM 87185

U. S. Department of Energy (4)
WIPP Project Office (Carlsbad)
Attn: Vernon Daub
J. A. Mewhinney
P.O. Box 3090
Carlsbad, NM 88221

U. S. Department of Energy
Research & Waste Management Division
Attn: Director
P. O. Box E
Oak Ridge, TN 37831

U. S. Department of Energy
Waste Management Division
Attn: R. F. Guercia
P. O. Box 550
Richland, WA 99352

U. S. Department of Energy (1)
Attn: Edward Young
Room E-178
GAO/RCED/GTN
Washington, DC 20545

U. S. Department of Energy (6)
Office of Environmental Restoration
and Waste Management
Attn: Jill Lytle, EM30
Mark Frei, EM-34 (3)
Mark Duff, EM-34
Clyde Frank, EM-50
Washington, DC 20585

U. S. Department of Energy (3)
Office of Environment, Safety
and Health
Attn: Ray Pelletier, EH-231
Kathleen Taimi, EH-232
Carol Borgstrom, EH-25
Washington, DC 20585

U. S. Department of Energy (2)
Idaho Operations Office
Fuel Processing and Waste
Management Division
785 DOE Place
Idaho Falls, ID 83402

U.S. Department of Energy
Savannah River Operations Office
Defense Waste Processing
Facility Project Office
Attn: W. D. Pearson
P.O. Box A
Aiken, SC 29802

U.S. Environmental Protection Agency
(2)
Attn: Ray Clark
Office of Radiation Programs
(ANR-460)
Washington, DC 20460

U.S. Geological Survey
Branch of Regional Geology
Attn: R. Snyder
MS913, Box 25046
Denver Federal Center
Denver, CO 80225

U.S. Geological Survey
Conservation Division
Attn: W. Melton
P.O. Box 1857
Roswell, NM 88201

U.S. Geological Survey (2)
Water Resources Division
Attn: Kathy Peter
Suite 200
4501 Indian School, NE
Albuquerque, NM 87110

U.S. Nuclear Regulatory Commission
(4)
Attn: Joseph Bunting, HLEN 4H3 OWFN
Ron Ballard, HLGP 4H3 OWFN
Jacob Philip
NRC Library
Mail Stop 623SS
Washington, DC 20555

Boards

Defense Nuclear Facilities Safety
Board
Attn: Dermot Winters
Suite 700
625 Indiana Ave., NW
Washington, DC 20004

U. S. Department of Energy
Advisory Committee on Nuclear
Facility Safety
Attn: Merritt E. Langston, AC21
Washington, DC 20585

Nuclear Waste Technical
Review Board (2)
Attn: Dr. Don A. Deere
Dr. Sidney J. S. Parry
Suite 910
1100 Wilson Blvd.
Arlington, VA 22209-2297

Richard Major
Advisory Committee
on Nuclear Waste
Nuclear Regulatory Commission
7920 Norfolk Avenue
Bethesda, MD 20814

State Agencies

Environmental Evaluation Group (3)
Attn: Library
Suite F-2
7007 Wyoming Blvd., N.E.
Albuquerque, NM 87109

New Mexico Bureau of Mines
and Mineral Resources (2)
Attn: F. E. Kottolowski, Director
J. Hawley
Socorro, NM 87801

NM Department of Energy & Minerals
Attn: Librarian
2040 S. Pacheco
Santa Fe, NM 87505

NM Environmental Improvement Division
Attn: Deputy Director
1190 St. Francis Drive
Santa Fe, NM 87503

Laboratories/Corporations

Battelle Pacific Northwest
Laboratories (5)
Attn: D. J. Bradley, K6-24
J. Relyea, H4-54
R. E. Westerman, P8-37
H. C. Burkholder, P7-41
L. Pederson, K6-47
Battelle Boulevard
Richland, WA 99352

Savannah River Laboratory (6)
Attn: N. Bibler
E. L. Albenisius
M. J. Plodinec
G. G. Wicks
C. Jantzen
J. A. Stone
Aiken, SC 29801

George Dymmel
SAIC
101 Convention Center Dr.
Las Vegas, NV 89109

INTERA Technologies, Inc. (4)
Attn: G. E. Grisak
J. F. Pickens
A. Haug
A. M. LeVenue
Suite #300
6850 Austin Center Blvd.
Austin, TX 78731

INTERA Technologies, Inc.
Attn: Wayne Stensrud
P.O. Box 2123
Carlsbad, NM 88221

IT Corporation (2)
Attn: R. F. McKinney
J. Myers
Regional Office - Suite 700
5301 Central Avenue, NE
Albuquerque, NM 87108

IT Corporation (2)
Attn: D. E. Deal
P.O. Box 2078
Carlsbad, NM 88221

Los Alamos Scientific Laboratory
Attn: B. Erdal, CNC-11
Los Alamos, NM 87545

RE/SPEC, Inc.
Attn: W. Coons
P. F. Gnirk
Suite 300
4775 Indian School Rd., NE
Albuquerque NM 87110-3927

RE/SPEC, Inc. (7)
Attn: L. L. Van Sambeek
G. Callahan
T. Pfeifle
J. L. Ratigan
P. O. Box 725
Rapid City, SD 57709

Center for Nuclear Waste
Regulatory Analysis (4)
Attn: P. K. Nair
Southwest Research Institute
6220 Culebra Road
San Antonio, TX 78228-0510

Science Applications
International Corporation
Attn: Howard R. Pratt,
Senior Vice President
10260 Campus Point Drive
San Diego, CA 92121

Science Applications
International Corporation
Attn: Michael B. Gross
Ass't. Vice President
Suite 1250
160 Spear Street
San Francisco, CA 94105

Systems, Science, and Software (2)
Attn: E. Peterson
Box 1620
La Jolla, CA 92038

Westinghouse Electric Corporation (7)
Attn: Library
Lamar Trego
W. P. Poirer
W. R. Chiquelin
V. F. Likar
D. J. Moak
R. F. Kehrman
P. O. Box 2078
Carlsbad, NM 88221

Weston Corporation (1)
Attn: David Lechel
Suite 1000
5301 Central Avenue, NE
Albuquerque, NM 87108

Universities

University of Arizona
Attn: J. G. McCray
Department of Nuclear Engineering
Tucson, AZ 85721

University of New Mexico (2)
Geology Department
Attn: D. G. Brookins
Library
Albuquerque, NM 87131

Pennsylvania State University
Materials Research Laboratory
Attn: Della Roy
University Park, PA 16802

Texas A&M University
Center of Tectonophysics
College Station, TX 77840

G. Ross Heath
College of Ocean
and Fishery Sciences
University of Washington
Seattle, WA 98195

Individuals

Dennis W. Powers
Star Route Box 87
Anthony, TX 79821

Libraries

Thomas Brannigan Library
Attn: Don Dresp, Head Librarian
106 W. Hadley St.
Las Cruces, NM 88001

Hobbs Public Library
Attn: Ms. Marcia Lewis, Librarian
509 N. Ship Street
Hobbs, NM 88248

New Mexico State Library
Attn: Ms. Ingrid Vollenhofer
P.O. Box 1629
Santa Fe, NM 87503

New Mexico Tech
Martin Speere Memorial Library
Campus Street
Socorro, NM 87810

Pannell Library
Attn: Ms. Ruth Hill
New Mexico Junior College
Lovington Highway
Hobbs, NM 88240

WIPP Public Reading Room
Attn: Director
Carlsbad Public Library
101 S. Halagueno St.
Carlsbad, NM 88220

Government Publications Department
General Library
University of New Mexico
Albuquerque, NM 87131

The Secretary's Blue Ribbon Panel on WIPP

Dr. Thomas Bahr
New Mexico Water Resources Institute
New Mexico State University
Box 3167
Las Cruces, NM 88003-3167

Mr. Leonard Slosky
Slosky and Associates
Suite 1400
Bank Western Tower
1675 Tower
Denver, Colorado 80202

Mr. Newal Squyres
Holland & Hart
P. O. Box 2527
Boise, Idaho 83701

Dr. Arthur Kubo
Vice President
BDM International, Inc.
7915 Jones Branch Drive
McLean, VA 22102

Mr. Robert Bishop
Nuclear Management Resources Council
Suite 300
1776 I Street, NW
Washington, DC 20006-2496

National Academy of Sciences,
WIPP Panel

Dr. Charles Fairhurst, Chairman
Department of Civil and
Mineral Engineering
University of Minnesota
500 Pillsbury Dr. SE
Minneapolis, MN 55455-0220

Howard Adler
Oak Ridge Associated Universities
Medical Sciences Division
P.O. Box 117
Oak Ridge, TN 37831-0117

Dr. John O. Blomeke
3833 Sandy Shore Drive
Lenoir City, TN 37771

Dr. John D. Bredehoeft
Western Region Hydrologist
Water Resources Division
U.S. Geological Survey (M/S 439)
345 Middlefield Road
Menlo Park, CA 94025

Dr. Fred M. Ernsberger
250 Old Mill Road
Pittsburgh, PA 15238

Dr. Rodney C. Ewing
Department of Geology
University of New Mexico
200 Yale, NE
Albuquerque, NM 87131

B. John Garrick
Pickard, Lowe & Garrick, Inc.
Suite 400
4590 MacArthur Blvd.
Newport Beach, CA 92660-2027

Leonard F. Konikow
U.S. Geological Survey
431 National Center
Reston, VA 22092

Jeremiah O'Driscoll
Jody Incorporated
505 Valley Hill Drive
Atlanta, GA 30350

Dr. Christopher G. Whipple
Clement International
Suite 1380
160 Spear Street
San Francisco, CA 94105

Dr. Peter B. Myers, Staff
Director
National Academy of Sciences
Committee on Radioactive
Waste Management
2101 Constitution Avenue
Washington, DC 20418

Dr. Geraldine Grube, Staff Officer
Board on Radioactive
Waste Management
GF456
2101 Constitution Avenue
Washington, DC 20418

Foreign Addresses

Studiecentrum Voor Kernenergie
Centre D'Energie Nucleaire
Attn: Mr. A. Bonne
SCK/CEN
Boeretang 200
B-2400 Mol
BELGIUM

Atomic Energy of Canada, Ltd. (2)
Whiteshell Research Estab.
Attn: Peter Haywood
John Tait
Pinewa, Manitoba, CANADA
ROE 1L0

Dr. D. K. Mukerjee
Ontario Hydro Research Lab
800 Kipling Avenue
Toronto, Ontario, CANADA
M8Z 5S4

Mr. Francois Chenevier, Director (2)
ANDRA
Route du Panorama Robert Schumann
B.P.38
92266 Fontenay-aux-Roses Cedex
FRANCE

Mr. Jean-Pierre Olivier
OECD Nuclear Energy Agency
Division of Radiation Protection
and Waste Management
38, Boulevard Suchet
75016 Paris, FRANCE

Claude Sombret
Centre D'Etudes Nucleaires
De La Vallee Rhone
CEN/VALRHO
S.D.H.A. BP 171
30205 Bagnols-Sur-Ceze
FRANCE

Bundesministerium fur Forschung und
Technologie
Postfach 200 706
5300 Bonn 2
FEDERAL REPUBLIC OF GERMANY

Bundesanstalt fur Geowissenschaften
und Rohstoffe
Attn: Michael Langer
Postfach 510 153
3000 Hannover 51
FEDERAL REPUBLIC OF GERMANY

Hahn-Meitner-Institut fur
Kernforschung
Attn: Werner Lutze
Glienicker Strasse 100
100 Berlin 39
FEDERAL REPUBLIC OF GERMANY

Institut fur Tieflagerung (4)
Attn: K. Kuhn
Theodor-Heuss-Strasse 4
D-3300 Braunschweig
FEDERAL REPUBLIC OF GERMANY

Kernforschung Karlsruhe
Attn: K. D. Closs
Postfach 3640
7500 Karlsruhe
FEDERAL REPUBLIC OF GERMANY

Physikalisch-Technische Bundesanstalt
Attn: Peter Brenneke
Postfach 33 45
D-3300 Braunschweig
FEDERAL REPUBLIC OF GERMANY

D. R. Knowles
British Nuclear Fuels, plc
Risley, Warrington, Cheshire WA3 6AS
1002607 GREAT BRITAIN

Shingo Tashiro
Japan Atomic Energy Research
Institute
Tokai-Mura, Ibaraki-Ken
319-11 JAPAN

Netherlands Energy Research
Foundation ECN (2)
Attn: Tuen Deboer, Mgr.
L. H. Vons
3 Westerduinweg
P.O. Box 1
1755 ZG Petten, THE NETHERLANDS

Svensk Karnbransleforsorgning AB
Attn: Fred Karlsson
Project KBS
Karnbranslesakerhet
Box 5864
10248 Stockholm, SWEDEN

Sandia Internal

1510 J. C. Cummings
1514 H. S. Morgan
1514 J. G. Arguello
1550 C. W. Peterson
3141 S. A. Landenberger (5)
3145 Document Control (8) for
DOE/OSTI
3151 G. C. Claycomb (3)
6000 D. L. Hartley
6232 W. R. Wawersik
6233 J. L. Krumhansl
6300 T. O Hunter
6310 T. E. Blejwas, Acting
6313 L. E. Shephard
6315 M. D. Siegel
6340 W. D. Weart
6340 S. Y. Pickering
6340A A. R. Lappin
6341 R. C. Lincoln
6341 Staff (9)
6341 Sandia WIPP Central Files
File PS/DRZ (10)
6342 D. R. Anderson
6342 Staff (11)
6343 T. M. Schultheis
6343 Staff (2)
6344 E. Gorham
6344 Staff (10)
6345 B. M. Butcher, Acting
6345 Staff (9)
6346 J. R. Tillerson
6346 Staff (7)
6621 L. D. Tyler
6621 J. C. Stormont (15)
8523 R. C. Christman (SNLL Library)
9300 J. E. Powell
9310 J. D. Plimpton
9320 M. J. Navratil
9325 L. J. Keck (2)
9330 J. D. Kennedy
9333 O. Burchett
9333 J. W. Mercer
9334 P. D. Seward