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by 

Hans G. Kaper and Gary K. Leaf 

ABSTRACT 

This r epor t  i s  concerned with ergodic theorems f o r  Abel 
means of nonlinear  cont rac t ion  mappings and nonlinear  
cont rac t ion  semigroups i n  a  Hi lbe r t  space. 

In a  recent  note [ I ] ,  Bail lon proved an ergodic theorem f o r  CesAro means 
of non l inea rcon t rac t ion  mappings i n  a  Hi lbe r t  space. A s imi la r  theorem was 
obtained by Bail lon and ~ r & z i s  [2]  i n  the  case of nonlinear  con t rac t ive  semi- 
groups. In t h i s  note we give the  analogous ergodic theorems f o r  Abel means. 
Our approach i s  based on the  methods developed by ~ r 6 z i s  and Browder i n  [ 3 ] .  

Throughout t h i s  note,  H denotes a  r e a l  Hi lber t  space with inner product 
( * , a )  and norm ( * ( .  C i s  a  closed bounded convex subset  of H. 'The nota t ions  
-, and A r e f e r  t o  convergence i n  the  norm topology and weak topology i n  H ,  
r e spec t ive ly .  

1. Let T be a nonlinear  con t rac t ive  mapping of C i n t o  i t s e l f .  For r E [0 ,1 ) ,  

n = 0,1, ..., x E C, l e t  U ' ( ~ ) X ' E  C be defined by the  expression 
n 

The boundedness of C implies t h a t  the  sequence {a ( r ) x :  n=0,1, . . . I  i s  
n 

. cauchy i n  the  norm topology; l e t  a ( r ) x  denote i t s  l i m i t .  As C i s  ciosed,  

a ( r ) x  c C; a ( 1 - 1 ~  has the  following representa t ion ,  

Let F denote the: s e t  of.. f ixed points  of T i n  H, which i s  closed,  convex 

and. nonkmpty, .c f .  [4], Lemma 2.7. We f i r s t  prove the. following lemma. 



Lemma 1. Let {r : n=0,1,.  . . I  be a sequence of r e a l  numbers i n  [O, 1 )  
n 

tending t o  1. I f  u ( m ) x  ~ l ,  then e e F. 

Proof. Take any u E H. Then 

m 
i + j  i j I . (~ ) ,x -u I  = (1-1-1 r (T X-u,T X-U) . 

i, j = O  
2 

Using the  law of cos ines ,  2(a-b,a-c) = la-bl + la-c12 - ~b-c12 fo r  any 

th ree  vec to r s  a ,b ,c  E H, we f ind 

Taking u = a ( r ) x  we ob ta in  the  i d e n t i t y  

which we use t o  r ep lace  the  double sum i n  (*) by a s i n g l e  sum. Then, 

taking u = Ta( r )x  i n  (*) we f ind ,  a f t e r  a  rearrangement of terms, 

Since T i s  a  con t rac t ion  i t  follows t h a t  

Each term i n  the, sum i s  negative. Hence, 

2 2 
lu(r)x-Tu(r)xl - < 1 x - T U X  1 d i m  C . 

Now, l e t  { r  : n=O,l, ... I be a sequence of r e a l  numbers i n  [0 ,1)  tending t o  n 

1.. Then u ( \ ) x - ~ u ( r ~ ) x  + 0 a s  n + m .  S i n c e  T i s a  cont rac t ion ,  I-T i s  



demiclosed -- cf. .0pial [5], Lemma 2.. -- i .e., for any sequence {x. ) E C 
n 

which converges weakly to x in C, the strong convergence of the sequence 0 

-Tx ) to a yo 'in C implies that x -Tx - 
Cxn n o - yo. Hence, if ~(r,~)x A 1, 

then l-T1 = 0. 0 
I 

Let ProjF denote the projection of H o n  F. We have the following 

theorem. 

Theorem 2. The Abel means .{a(r)x: r E .[0,1)) of .x converge weakly as 

r + 1 to a fixCd point of 'T; this fixed point is also the strong limit of 

. n  ' the.. sequence {Proj' T x: n=O,l, . . . ) .,as n + m .. . 
F 

Proof. Since the set {u(r)x: r c [0,1)) is sequentially weakly compact, 
- ,  . . 

there exists at least one weakly convergent subsequence of {a(r )x: n 

n=0;1, ...); we assume that this .subsequence~coincides with the sequence 
itself. Let 1 denote its weak limit; then by Lemma 1, 1 E F., Define 

n 
yn := ProjF T x for n=0,1, ... . The sequence {y : n=O,l, ...) converges 

n 

strongly to an element y E ,  F, cf. [I.], Lemma 4. Consequently, the Abel 
m - - 

i 
means (I-rn) 1 rnyi converge strongly to y as n + m .  In order to prove 

i=O 
that 1 = y it suffices to show that (f-y,l-y) 5 0 for all f E F. The 

latter inequality holds true .if 

a0 
i 

lio (I-rn) 1 ri(f-y,~ x-Y~) < 0 . 
n- - .  

i=O 

2 me mncrion ~ ( r )  := Irf + 1 -  - x , t c 1 attains its mini- 

mum value' at t = 0 by virtue of the. definition of yi. Hence, (' (0) , 0 
i . . 

and therefor. (f-yi,yi-T x) - > 0, so 
. . 



1 - 1 Given any r  > 0,  t h e r e  e x i s t s  a  i ( r )  such t h a t  I Y I - ~ I  < # d i m  C )  r  fo r  

a l l  i > i (  E ) ,  and a n(  r )  such t h a t  1-r i(E) < ?-(diam c ) - ~ E  f o r  a l l  n > n ( c ) .  
n 2 

Then, 

f o r  a l l  n > n ( r ) ,  which proves (**I. 

Since every subsequence of {a(r  )x 1 -converges weakly t o  the  same 
k 

l i m i t  y, y i s  the only weak accumulation point ,  so { d r k ) x 1  i t s e l f  eon- 

verges weakly t o  y. 

Let a ( l ) x  denote t h e  weak l i m i t  of . a ( r )x  a s  r -* 1. Then we have the  

following coro l l a ry .  

Corol lary  3. The opera tor  ~ ( 1 ) :  x l 4  o ( l ) x  i s  a con t rac t ive  mappiilg of C 

i n t o  F, which s a t i s f i e s  To( l )x  = u(l)Tx = a ( l j x  for  a l l  x E C. 

Proof. It. follows immediately from Theorem 2 that u ( l )  maps C i n t o  F, 

- 1 and t h a t  Ta(1)x = a ( l ) x .  Furthermore, a(r)Tx - a ( r ) x  =. (1- r ) r  (a(r)x-x) 

A 0 a s  r .* 1 ; hence, a( 1 )Tx = a ( l ) x .  ' Since the  mapping x i-t .]xi i s  

weakly lower semi-continuous and a ( r )  i s  a  cont rac t ion ,  a(1)  i s  a l s o  a 

con t rac t  ion.. 0 

2. Let { ~ ( t )  : t - > 0 )  be a continuous semigroup of nonlinear  cont rac t ion  

mappings of C i n t o  i t s e l f .  Consider the  r e a l  i n t e r v a l  [O ,RI  f o r  any 

R > 0 .  Fnt x > 0, x C C,  l e t  0 ( X ? X  be defined by t h e  expression 
K .  



, where the ,  i n t g r a l  i s  i .nterpreted as  the  s t rong l i m i t  o f .  Riemann sums. . 

Since C i s  convex, a  (A )x ,r C f o r  every R > 0. The sequence {aR (A )x: R 
n 

n=O,l, . . . I ,  i s  Cauchy i n  the  norm topology of H f o r  any increas ing se- 

quence {R : n=0,1, ...); l e t  a(A)x denote i t s  l i m i t .  As C i s  closed,  
n 

a  (A )x C; a(A ) has the following representa t ion ,  

Let F denote the  s e t  of f ixed points  of S i n  H ,  which i s  closed,  convex 

and nonempty, c f .  [ 4 ] ,  Remark 2.5. By (41, Remark 3.,4 and Theorem A2, 

' t he re  e x i s t s  a  unique maximal d i s s i p a t i v e  s e t  A c HxH such t h a t  i t s  mini- 

mal sec t ion  A' i s  the  generator  df S on the d w a i n . D ( ~ )  of A,  where D(A) 

i s  dense i n  C.  We have the  following lemma. 

Lemma 4. Let {An: n=O,l, . . . I  be a sequence of pos i t ive  r e a l  numbers 

tending t o  zero. I f  x a D(A) and u(An)x A 1, then 1 E F. 

Proof. Take any [v , w l  E A, then 

0 0 
Now, observe t h a t  ( w , ~ ( t ) x - v )  '= (A ~ ( t ) x , ~ ( t ) x - v )  + :(w-A ~ ( t ) x , ~ ( f ) ' x - v ) ,  

where the  l a s t  inner  product i s  .pos i t ive ,  because of the  d i s s i p a t i v i t y  of 

,A.  Thus, 

0 
By [41, Corollary 3..1, A S ( t ) x =  ( d / d t ) + ~ ( t ) x  f o r  t - > 0,  where ( d / d t ) +  

denotes the  r i g h t  .der iva t ive ,  so  



Now, l e t  {An: n=0,1, ... 1 be a sequence of p o s i t i v e  r e a l  numbers tending 

t o  zero. C i s  bounded; hence, X n l  x-vl - < Xn(diam c12 + 0 and 

then (w,L-v) - > 0 f o r  a l l  [v,w] E A. Since A i s  maximal d i s s i p a t i v e ,  

A = { [@ , + I  RXH: (y+ ,x+ < 0 f o r  a l l  [ x , ~ ]  c A ) ,  c f .  [41, Lemma 2.2. - 
It follows t h a t  0 E ~1 and, hence, 1 F. 0 

Let ProjF  denote the  p ro jec t ion  of H on P. We have L l ~ r  following thcorcm. 

Theorem 5. The Abel means {u(X)x: X > 01 of any x E ~ ' c o n v e r ~ e  weakly as 

X + 0 t o  a f ixed point  of S; t h i s  f ixed point  i s  a l s o  the s t rung l i ~ u i t  of 

{ProjF S ( t ) x :  t > 01 a s  t + m .  

Proof. Suppose x. E D(A). Because the  s e t  {a (X )x: X - > 01. i s  sequen t i a l ly  

weakly compact, t he re  e x i s t s  a weakly convergent sequence {a(A )x: 
n 

n=0,1, ... 1 with a weak l i m i t  & by Lemma 3, 1 E I?. Now, suppose X E  C. 

Then, since.D(A) i s  dense i n  C ,  t h e r e  e x i s t s  a sequence.{x.:  i=1 ,2 ,  . . . I  
1 

with x. c D ( A ) ,  cuch t h a t  Si + u. Thvt~  we lu~eu that  u(A)lt; i~ weakly 
1 

convergent a s  X + 0 t o  L say, and R E F. For any w E H with Iwl = 1 
1 ' i 

we have 

1 I - ( I - .  1 + 1 ( U ( A ) X  i - U ( U ) ~ ~ , ~ ) ~ ,  + , ~ a ( p ~ ~ - a ( p ~ ~ ~ l ~  

Since a i s  a con t rac t ion ,  the  f i r s t  and l a s t  term of the  r i g h t  member can 

each be eg timated hy I x-x I , so i 

and, hence, 

This implies t h a t  { a ( l ) x :  . 1 - > 01 i s  weakly Cauchy and, hence, weakly 



convergent a s  C 0. t o .  l, say;  We now show t h a t  1 E F. We have t h e  
> 

i n e q u a l i t y  :. 

1 X - w  1 - < 2  I x - x ~  I + 1 ( u ( ~ ) x ~ - ~ ~ , w )  1 , 

whence 

Given any E .  > 0,  t h e r e  e x i s t s  a i (  E )  such t h a t  I x - X .  I < €16 f o r  a l l  
1 

i - > i ( ~ ) .  With i t hus  f i xed , .we  can choose a  ~ ( c , i ) . s u c h  t h a t  . . 

~ ( ~ - u ( ~ ) x ~ , i ) l  1 < €14 f o r  a l l  )I < ~ ( o i ) .  1t fol lows ;hat !im(ei-1.w) = 0 
.. . 1- 

f o r  a l l  w c H, so  $ - 1 and, s i n c e  F  i s  c lo sed ,  1 E F .  

It remains t o  be shown t h a t  1 i s  t h e  s t r o n g  l i m i t  of  P ro jF  ~ ( t ) x  a s  

t + -. Define y ( t )  := Pro jF  S ( t ) x  f o r  t > 0. Then y ( t )  converges i n  

norm a s  t + - t o  an element y  E F, c f .  [ 2 ] ,  Lemma 3. A s  i n  t he   roof of 

Theorem 2,  i t  suff i 'ces  t o  show ' t ha t  

f o r  a l l  f .  E F.,, By v i r t u e  of t h e  d e f i n i t i o n  of y ( t )  we have t h e  i n e q u a l i t y  

( f -y( t ) ,S( t . )x -y . ( t ) )  - < 0 . for any f  E F,. so  

1 - 1 
Given any E > 0,  t h e r e  e x i s t s  a  t ( e )  such t h a t  ly ( t ) -y l  < I(diam C )  c  f o r  

a l l  t > t ( ~ ) ,  and a  a ( € )  :such t h a t  a 1 
- If(E)e-'tdt < T(diam c ) - ~ €  f o r  a l l  

0 
x < ~ ( € 1 .  Then , . . 

w 

a e - a t ~ £ - y , ~ ( t ) x - y ( t ) ) ~  < r 
0  

for a l l  1 - < ~ ( € 1 ,  which proves (**I. 



Since y i s  the  only weak l i m i t ,  i t  follows t h a t  & =  y. 0 

Let dO)x denote the  weak l i m i t  of O(X)X as x + O .  Then we have the  

fol lowing c o r o l l a r y .  

Corol lary  6. The opera tor  d o ) :  x I+ dO)x i s  a con t rac t ive  mapping of C 

i n t o  F, which s a t i s f i e s  S ( t ) d ~ ) x  = a(O)S(t)x = dO)x for  a l l  x € C ,  t - > 0. 

Proof. It follows immediately from Theorem 5 t h a t  d o )  maps C i n t o  F, 
w 

and t h a t  S ( t )  o(O)x = o(0)x. Furthermore, o( X)S(t)x = A e - lTs(  ~ ) S ( t ) x d r  = 
OD t 6 

1 e-ITs(  r*t)xd r  = e , which converges weakly 
0 0 

t o  u(0)x as A + O; mapping x I+ Ix I is 

weakly lower semi-continuous and each U(X)  i s  a  cont rac t ion ,  o(0) i s  a l s o  

a con t rac t ion .  0 
I 

References 

[ l ]  Bai l lon ,  J.-B., "Un thgorsme de type ergodique pour l e s  con t rac t ions  non 

l i n e h i r e s  dans. un espace de Hi lbe r t , "  C. R. Acad. Sci.  P a r i s ,  *A 

(19751, 1511-1514. 

[2]  Ba i l lon ,  J . -B.  and .Br&zis,  H. ,  " ~ i e  remarque sur  l e  crmiportement 

a s m p t o t i q u e  des semigroupes non l i n e a i r e s , "  Houston J. of  Math. - 2 

(19761, 5-7. 

[3]  Brgzis ,  H. and Browder, F. E . ,  "Nonlinear ergodic theorems," Bull .  Amer. . 

Math. Soc. 82 (19761, 959-961. 

[4] Crandall ,  M. G. and Pazy, A , ,  "Semi-groups of nonlinear  cont rac t ions  

and d i s s i p a t i v e  s e t s , "  J. of Functional Anal. - 3 (19691, 376-418. 

11 
' [5]  Opial ,  Z . ,  Weak convergence of t h e  sequence of successive.  approxima- 

t i o n s  f o r  nonexpansive mappings , I1  Bull.  Amer. Math. Soc. - 73 (19671, 

591-597. 



Distribution for ANL-79-49 

Internal: 

G. T. Garvey 
R. J. Royston 
J. N. Lyness 
M. Minkoff 
P. C. Messina 
H. G. Kaper (20) 

G. K. Leaf (20) 
M. Gibson (14) 
A. B. Krisciunas 
ANL Contract File 
ANL Libraries (5) 
TIS Files (6) 

External: 

DOE-TIC, for distribution per UC-32 (205) 
Manager, Chicago Operations and Regional Office, DOE 
Chief, Office of Patent Counsel, DOE-CORO 
President, 'Argonne Universities Association 
Applied Mathematics Division Review Committee: 

P. J. Eberlein, SUNY at Buffalo 
G. Estrin, U. California, Los Angeles 
W. M. Gentleman, U. Waterloo 
J. M. Ortega, North Carolina State U, 
E. N. Pinson, Bell Telephone Labs. 
S. Rosen, Purdue U. 
D. M. Young, Jr., U. Texas, Austin 

J. F. G. Auchmuty, Indiana U. 
J. Batt, Mathematisches Inst. der Universitat Miinchen, Germany 
H. ~ rhz i s ,  Paris, France 
M. G. Crandall, U. Wisconsin, Madison 
0. Diekmann, Mathematisch Centrum, Amsterdam, The Netherlands 
C. Goldstein, Brookhaven National Lab. 
J. A. Goldstein, Tulane U. 
J. Grasman, Mathematisch Centrum, Amsterdam, The Netherlands 
W. Greenberg, Virginia Polytechnic Inst. and State U. 
J. Hejtmanek, Universitat Wien, Vienna, Austria 

. E. W. Larsen, Los Alamos Scientific Lab. 
C. G. Lekkerkerker, Universiteit van Amsterdam, Amsterdam, The Netherlands .: 
T. W. Mullikin, Purdue U. 
P. Nelson, Jr., Texas Tech U., Lubbock 
H. Neunzert, Universitaet Kaiserslautern, Kaiserslautern, Germany 
C. V. Pao, North Carolina State U. 
L. Peletier, Rijksuniversiteit Leiden, Leiden, The Netherlands 
S. Reich, U. Southern California 
M. E. Rose, Exxon Production Research Co., Houston 
W. Schappacher, 11. Mathematisches Institut, Graz, Austria 
E. Schechter, Duke U. 
M. E. Schonbek, Northwestern U. 
E. J. Veling, Mathematisch Centrum, Amsterdam, The Netherlands 
J. Voigt, Virginia Polytechnic Inst. and State U. 
A. Wehrl, Institut fiir Theoretische Physiches, Vienna, Austria 




