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NONLINEAR ERGODIC THEOREMS FOR ABEL MEANS
by

Hans G. Kaper and Gary K. Leaf

ABSTRACT
This report is concerned with ergbdic‘theoremé for Abel

means of nonlinear contraction mappings and nonlinear
contraction semigroups in a Hilbert space.

In a recent note [l], Baillon proved an ergodic theorem for Cesiro means
of nonlinear contraction mappings in a Hilbert space. A similar theorem was
obtained by Baillon and Brezis [2] in the case of nonlinear contractive semi-
groups. In this note we give the analogous ergodic theorems for Abel means.
Our approach is based on the methods developed by Bréezis and Browder in [3].

Throughout this note, H denotes a real Hilbert space with inner product
(*,*) and norm |*|. C is a closed bounded convex subset of H. The notations

+ and — refer to convergence in the norm topology and weak topology in H,
respectively.

1. Let T be a nonlinear contractive mapping of C into itself. For r ¢ [0,1),
n=0,1,...,xc C, let Oﬁ(r)x‘e C be defined by the expression
- n-1 %L 5
o (r)x := (1-r)(l-r) DR
n .
1=0

The boundedness of C implies that the sequence {On(r)x: n=0,1,...} is
Cauchy in the norm topology; let 0(r)x denote its limit. As C is closed,
o(r)x ¢ C; 9(r)x has the following representation,

a(r)x = (1-r) )} r'T'x .

o i=0
‘Let F denote the set of fixed points of T in H, which is closed, convex

and nonempty, cf. [4], Lemma 2.7. We first prove the. following lemma.



Lemma 1. Let {rn: n=0,1,...} be a sequence of real numbers in [0,1)

tending to 1. If 0(rn)x ~2, thenf « F,

Proof. Take any u € H. Then

]o(r)x-ul2 = (l—r)2 Z r1+J(T1x—u,TJx-u)

i, 3=0
. . _ 2 2 2
Using the law of cosines, 2(a-b,a-c) = fa=bl“ + la-c|® - |b-c|® for any
three vectors a,b,c € H, we find
(%) |°(r)x-u|2 = (1-r) ) rllTlx—ul2 - %—(l-r)2 ) r1+J|T1x-TJx|2 .
i=0 o i,j=0

Taking u = 9(r)x we obtain the identity

%-(l—r) ) ri¢jiTix-TJx|2 =) r"'l'l‘lx-a(r)x|2 R
. i,3=0 i=0
which we use to replace the double sum in (*) by a single sum. Then,

taking u = To(r)x in (*) we find, after a rearrangement of terms, .

lo(r)x-To()x|2 = (1-0)<lx-1o(e)x|? + L it it s-ror)x|?

1=0

- z rllTlx,_o(r)xlz
i=0

Since T is a contraction it follows that

lo()x-To()x]? < (1-r){|x-To(r)x|? + | (e el |rie-o(o)x| 2},
' i=0 ~

Each term in the sum is negative. Hence,

fa(r)x-TO(r)xl2 S_(l-r)lx-Ta(r)xlz_S (1-r)(diam o)l .
Now, let {r : n=0,1,...} be a sequence of real numbers in [0,1) tending to
n . .

1. Then o(rn)x-Td(rn)x + 0asn~+* Since T is a contraction, I-T is



demiclosed -- cf. Opial [5], Lemma 2.-- i.e., for any sequence {xh} € C
which'conVerges weakly to X in C, the strong convergence of the sequence
{x -Tx_} to a y, in C implies that x,-Tx, = y,. Hence, if o(:n)x -2,

then £-T¢ = 0. O

i

Let ProjF denote the projection of H on F. We have the following

theorem.

Theorem 2. The Abel meané'{o(r)x: r ¢ [0,1)} of x converge weakly as

r + 1 to a fixed point of T; this fixed point is also the strong limit of

the- sequence {Proj? ™x: n=0,1,...} as n + =.

Proof. Since the set {o(r)x: r ¢ [0,1)} is sequentially weakly compagt,

there egists at least one weakly convergent subsequence of {o(rn)x: :
n=0,1,...}; we assume that this subsequence coincides with fhe sequence
itéeif. Let £ denote itsvweak limit; then by Lemma 1, £ « F.. Definé

¥, i< ProjF ™x for nfO,l,... ; The sequence {yn: n=0,1,...} converges
strongly to an element y € F, cf.A[i], Lemma 4. Consequently, the Abel
means (l—rn) .zoriyi‘converge strongly to y és n -+ w; In ofder to.prove
that £ = y itI;uffices to show that (f-y,L~y) < 0 for all f € F. The
latter inequality holds true if

(%) " lim (Q-r) ) ri(f-y,T'x-y.) < O .
‘ nam - n’ oo m ' i’ ="

" The funccion ¢(t) = |ef + (l-t)yi - T1x|2, t ¢ [0,1], attains its mini-

mum value at t = O by virtue of the definition of y;- Hence, $'(0) >0

and thereforé‘(ffyi,yi—Tlx) > 0, so

i i ) i
(£-y,T7x-y;) < (y;=y, Tox-y ) Cly -yl Txoyg |



0

Given any € > 0, there exists a i(€) such that Iyi-yl < %(diam C)-le for

all i > i(e), and a n(e) such that l-r;(e) < %{diam C)-ze for all n > n(e).
Then,
i i
(l—r“).z r (f-y,T"x-y.)
1=0
i(e)-1 @ i i
SA-r)d {1+ L ) rlyylI TRy ) <e
i=0 i=i(e)

for all n > n(e), which proves (**),

Since every subsequence of {O(rk)x}-coﬁverges weakly to the same
limit y, y is the only weak accumulation point, so {G(rk)x} itself con—A
verges weakly to y. 0

Let o(l)x denote the weak limit of o(r)x as r + 1. Then we have the

following corollary.

Corollary 3. The operator o(l): x = o(1)x is a contractive mapping of C

into F, which satisfies To(l)x = o(1)Tx = o(1)x for all x ¢ C.

EEEQE; It follows immediétely from Theorem 2 that o(l) maps C into F,
and that To(l)x = o(1)x. Furthermore, o(r)Tx - o(r)x =’(1—r)r-1(c(r)x-x)
-°'0 as r » 1; hence, o(1)Tx = g(1)x. ' Since the mapping x I+ |x]| is
weakly lower semi-continuous and ¢(r) is a contraction, o(l) is also a

contraction.. a

Let {S(t): t > 0} be a continuous semigroup of nonlinear contraction
mappings of C into itself. Consider the real interval [0,R] for any

R>0. For x>0, xe C, let oR(l)x be defined by the expression

' R
bR(A)x c= A(1-e MRyL L _e—AtS(t)xdt s



where the intgral is interpreted as the strong limit of Riemann sums.

Since C is convex, oR(A)x_e C for every R > 0. The sequence {oR (\)x:

_ n
n=0,1,...} is Cauchy in the norm topology of H for any increasing se-

quence {R : n=0,1,...}; let o0(A)x denote its limit. As C is closed,

o(x)x € C; o(x) has the following representation,

og(l)x =12 I e_ltS(t)xdt .
0 .

Let F denote the set of fixéd points of S in H, which is closed, convex
and nonempty, cf. [4], Remark 2.5. By [4], Remark 3.4 and Theorem A2,
there exists a uniqﬁe maximal dissipative set A ¢ HxH such thét its mini-
mal section A% ié the generator of S on the domain -D(A) of A, where D(A)

is dense in C. We have the following lemma.

Lemma 4. Let {An: n=0,1,...} be a sequence of positive real numbers

tending to zero. If x ¢ D(A) and o(kn)x -~ 2, then £ ¢ F.

Proof. Take any [v,w] ¢ A, then
: ' e, o
(w,0(A)x-v) =21 I e " (w,S(t)x-v)dt ,
0

Now, observe that (w,S(t)x-v) = (AOS(t)x,S(t)va) + ﬁw—AOS(t)x,S(tfx—v),
where the last inner product is positive, because of the dissipativity of
JA. Thus,

(w,0(A)x-v) > A f e_xt(AOS(t)x,S(t)x-v)dﬁ .
0 .

By [4], Corollary 3.1, A S(t)x (d/dt) S(t)x for t > 0, where (a/at)”

denotes the right derivative, 8o

(w a(X)x-v) > %- I (d/dt) IS(t)x-vI dt
. 0

w v

-A :

= “%Xlx-vlz +%A2~i e tls(t)x—v|2ar .
0 .



Now, let {An: n=0,1,...} be a sequence of positive real numbers tending
to zero. C is bounded; hence, knlx—vl2 S_Xn(diam C)2 + 0 and
2 Ant 2 . 2 e
A e . |S(t)x-v|“dt <A (diam C)“ "+ O as n+*, so ifo (A )x ~ £
n’y —"n n
then (w,£-v) > 0 for all [v,w] ¢ A. Since A is maximal dissipative,

A={[p, 0] ¢ ixH: (y+¥,x9) < 0 for all [x,yle A}, cf. [4], Lemma 2.2.

It follows that 0 ¢ AL and, hence, L€ F. O
Let ProjF denote the projection of H on F. We have the féllowing thcorem.

Theorem 5. The Abel means {0(A)x: A > 0} of any x € C converge weakly as
A+ 0 to a fixed point of S; this fixed point is also the strong liwmit of

{ProjF S(t)x: t >0} as t + =,

Proof. Suppose x.€ D(A). Because the set {o(A)x: A > 0} is sequentially
weakly compact, there exists a weakly convergent squence.{o(kn)x:
n=0,1,...} with a weak limit £ by Lemma 3, £ ¢ F. Now, suppose x€ C.
Then, since.D(A) is densg in C, there exists a séquenée-{xi; i=1,2,...}
with x, ¢ D(A), cuch that ¥. + %. Then we koow that U(A)Hi ie weakly
éonVergent as A + 0 to Ei, sa}, and Li € F. For any we H with |w| =1

we have
| (o (A )x-0(u)x,w)] §_|°(X)X*U(X)xil + |(°(l)xi—°(v)xi,w)l *-|°(u)x-°(ﬂ)xi|a

Since 0 is a contraction, the first and last term of the right member can

each be estimated by |x-xi|, 80
| (oM )x-o(u)x,w)l 5_2|x—xi| + l(U(x)xi-U(“)xi,W)l
and, hence,

Lim gupl (70 )x=0()x, )] <alex

This implies that {U(l)x:_X_Z 0} is weakly Cauchy and, hence, weakly



convergent as i + O‘to‘l,-saya We now show that £ € F. We have the
3
inequality

[ Ce)x=2w) | < 2|x=x,| + [(aM)x;-£,,w)| ,

whence

[(L-Lm)] < 2](L-0(M)x.,w)]| + |(a(A)x.—a(N)x,w) | + 2|x—x_ |
I - i i i 1

| A

2|(21f0(k)¥i,w)| + 3|x—xi| .

Given any ¢ > 0, there exists a i(e€) such that |x-xi| < ¢/6 for all
i > i(e). With i thus fixed, we can choose a A(e,i) such that
| (L -a(M)x.,w)| < e/4 for all A < A(e,i). It follows that lim({.-£,w) = 0
1 . 1”7, . - : 1+ L1
for all we H, so fi-* £ and, since F is closed, £ €'F.
It remains to be shown that £ is the strong limit of Projp s(t)x as
t + ». Define y(t) := ProjF s(t)x for t > 0. Then y(t) converges in
norm as t + « to an elgmeﬁt y € F, cf. [2], Lemma 3. As in the proof of
Theorem 2, it suffices to show ‘that
| S Y
(F*k%) lim A I e " (f-y,s(t)x-y(t))dt < 0
for all f € F. By virtue of the definition of y(t) we have the inequality

(f-y(t),s(t)x-y(t)) < 0 for any f € F, so

(£-y,5(E)x-y(£)) < (y(t)-y,5(t)x-y(t))
< yle)-y||s(e)x-y(t) | .
Given any ¢ > 0, there exists a t(e) such that ly(t)-y| < %(diam C)_le for

t(e - -
all t > t(e), and a A(e¢) such that 3 I e xtdt.< %(diam c) 25 for all
. ’ 0 _ .
x» < ale). Then

)\ J' e_xt(f—y,s(t)x—y(t))dt < ¢
0

for all ) £ a(g), which proves (¥*%),



Since y is the only weak limit, it follows that £=y. []
Let o{0)x denote the weak limit of o(A)x as A + 0. Then we have the

following corollary.

Corollary 6. The operator o{0): x |> o{0)x is a contractive mapping of C

into F, which satisfies S(t)o(O)kv= o(0)S(t)x = o(0)x for all x€ C, t > 0.

Proof. It follows immediately from Theorem 5 that o(0) maps C into F,

and that S(t)o(0)x = o(0)x. Furthermore, o 2)S(t)x = J e-ATS(T)S(t)xdT
® -t At £ - : 0
A I e "S(rt)xdt=e " dolN)x - A,I e *'S(7)xd 1}, which converges weakly
0 . 0 :
to o(0)x as A + U; hence o(0)Tx = o(0)x. Sincé the mapping x |» |x| is

weakly lower semi-continuous and each o(A) is a contraction, o(0) is also

a contraction. O
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