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Abstract

Position location is a fundamental requiremsz.:it in autonomous mobile robots
which record and subsequently follow x,y paths. The Dept. of Energy,
Office of Safeguards and Security, Robotic Security Vehicle (RSV) program
involves the development of an autonomous mobile robot for patrolling a
structured exterior environment. A straight-forward method for autonomous
path-following has been adopted and requires "digitizing" the desired road
network by storing x,y coordinates every 2m along the roads. The position
location system used to define the locations consists of a radio beacon
system which triangulates position off two known transponders, and dead
reckoning with compass and odometer. This paper addresses the problem of
combining these two measurements to arrive at a best estimate of position.
Two algorithms are proposed: the "optimal" algorithm treats the ‘
measurements as random variables and minimizes the estimate variance, while
the "average error" algorithm considers the bias in dead reckoning and
attempts to guarantee an average error. Data collected on the algorithms

indicate that both work well in practice, Eu l . SYER
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Optihal Sensor Fusion for Land Vehicle Navigation

Introduction

The Advanced Technology Division 5267 at Sandia National Laboratories has
developed a number of prototype mobile robotic systems for several
different applications. A current project for the Dept. of Energy, Office
of Safeguards and Security (0SS), involves developing a robotic security
vehicle capable of autonomously patiolling a structured exterior
environment.

For the program we have adopted a simple strategy to accomplish autonomous
road-following which requires "mapping" the roads. Thus, there are a
discrete number of roads which the vehicle can traverse autonomously, and
these are stored as lists of x,y points. In order to map the roads, a
position location system is needed to determine the x,y position of the
vehicle.

It is the position location problem which this paper addresses. First the
position location problem is defined. The algorithms developed to solve
the problem are then discussed and collected data on their performance is
presented.

Problem Description

Position location is a fundamental requirement in mobile robotics and is
critical to an autonomous mobile robot which needs to plan and execute a
path to a desired destination. For this paper, the position is defined as
a 2-Dimensional position consisting of x,y and heading. In addition,
experience has shown that autonomous operations such as path following
require a fairly accurate (+/- 0.5 m) determination of x,y position. For
our applications in physical security, the area of coverage can be fairly
small (5-30 km square).

There are many methods of determining, or measuring, position. These range
from navigational satellites, radio beacon triangulation systems, laser
triangulation systems, dead reckoning with a compass and odometer, to
inertial navigation systems. To minimize costs, the system that Sandia has
been using on the 0SS Robotic Security Vehicle project is a combination of
radio beacon and dead reckoning.

Dead reckoning uses odometer and heading information to compute a new
position from the robot’s old position. This method must be initialized to
some global position and then propagates the global position from the
heading and distance travelled. This method is attractive because it is
self-contained on-board the vehicle and is inexpensive. Unfortunately, the
dead reckoning errors accumulate and the position estimate "drifts" with
distance travelled. This drift error is a low frequency error, meaning
that repeated readings at the same location will yield very nearly the same
result, but moving off that location and returning will yield different
results. Another attribute of a low frequency error is that the error
between the robot’s true position and the estimated position will steadily
and smoothly diverge.
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Because of the drift assoclated with dead reckoning error, an external
reference system is often used to remove that error. A radio beacon system
consisting of two transmitters and a receiver is one such system. By
triangulating off known locations of the transmitters, an absolute position
can be computed,

The radioc beacon position estimate is not a function of distance travelled,
but is corrupted by "random" high frequency noise. This means that
repeated measurements at the same position give different values, resulting
in a large variance in the measurement. The system is fairly stable so
that measurements at a given location that are spread out in time will give
very similar results within the "jitter" described above; i.e. this
measurement does not drift with time or distance travelled. Data collected
on our radio beacon system showed a 6 sigma spread in x and y values of
about 1 meter with a normal distribution shape; see Appendix B for a
summary of the data. Note that a 1 meter 60 spread is too large for
autonomous path following.

Ideally, an on-board position location system such as dead reckoning is
preferred for a mobile robot because it requires no outside support.
hardware and is more covert and secure. Unfortunately, dead reckoning also
drifts with distance travelled and therefore must be "corrected" by an
external source. Conversely, the radio beacon system gives an accurate
position estimate which is corrupted by a zero-mean, high-frequency noise,
This results in a position estimate which "jumps around" when repeated
readings are taken at the same location. For recording a path, this
characteristic can make the path look very jagged when it is in fact very
smooth. Thus, combining the radio beacon measurement with the dead
reckoning measurement (relatively "smoother") will smooth out the
jaggedness (lower the variance) in the position location estimate.

In an effort to study how these two position estimates should be combined,
two fusion algorithms were developed.

Fusion Algorithms

The first approach to a fusion algorithm was a "Kalman-filter" type
approach which modelled both measurements of position (dead reckoning and
radio beacon) as unbiased, normally-distributed random variables. The
variance of the linear combination was minimized to yield the weighting
factors on each measurement.

The second approach was undertaken to account for an inaccurate assumption
in the first approach: namely, that the dead reckoning measurement gives an
unbiased measurement of position. Looking at traces of x,y position as
recorded by radio beacon and dead reckoning measurements show clearly the
dead reckoning measurements diverging from the radio beacon measurement.
Thus, in an effort to account for the bias in dead reckoning, a second
fusion algorithm was developed which models the dead reckoning measurement
as a biased variable with no variance. The bias term is a linear function
of distance travelled.



- For both fusion algorithms, equations were developed which related the
measurement fusion weighting factor to the distance travelled between
fusions and the dead reckoning drift rate. For the first algorithm, both
dead reckoning and radio beacon measurements are assumed to be unbiased
estimates of the true position with variances. For the second algorithm,
the radio beacon measurement was modelled the same, but the dead reckoning
measurement was modelled as a biased estimate with no variance.

Basic Fusion Equation

The basic fusion equation for combining the two measurements is:
z = a*(DR) + (l-a)*(RB)

where z is the fused estimate of the x (or y) coordinate, (DR) is the dead
reckoning measurement, (RB) is the radio beacon measurement, and a is the
fusion weighting factor. Because it is anticipated that the x,y coordinate
variances will be approximately equal, the same value of a is used for both
x and y coordinates. '

Using the basic fusion equation described above, the navigational procedure
is as follows: .

1) The x,y position is initialized to some global position. This can be
done by a variety of methods, one of which is to use the radioc beacon
system.

2) The dead reckoning calculation updates the position quite frequently
(exactly how often depends on computational time available, and
resolution of the odometer). The change in distance since the last
dead reckoning update is used to determine when a new update should
be performed. When this change in distance exceeds some minimum
value, changes in x and y are computed based on the change in
distance and vehicle heading. These changes in x and y are added to
the current estimate of x,y position. In this way the x,y position
is propagated by dead reckoning.

3) Occasionally, a radic beacon measurement of x,y position becomes
available. This is assumed to be much less frequent than the dead
reckoning updates. When a radio beacon measurement is available,
there are now two estimates of position: the radio beacon
measurement, and the dead reckoning propagation measurement.

4) The fusion algorithm is used to combine these measurements tn arrive
at a "best" estimate of position. The basic fusion equation is
simply a linear combination of the measurements. The number a
determines the relative weighting of each measurement in the
combination.

5) When the measurements are combined by the fusion algorithm, the
resulting x,y "best" estimate overwrites the dead reckoning x,y
location. 1In this way, the dead reckoning is always propagating the
best estimate of current position. Also, by overwriting the dead
reckoning x,y estimate, the accumulated error in dead reckoning is
removed,

6) In a sense, the "dead reckoning" measurement really contains both
dead reckoning propagation terms, but also previous radio beacon
measurements as well. It is simply the current position estimate
which is propagated by dead reckoning and corrected by the radio
beacon measurements.
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The dead reckoning is always propagated from the fused estimate since this
represents the best estimate of current position available. Thus, (DR) is
overwritten with z, the fused estimate. Then (DR) is propagated with dead
reckoning calculations until another radio beacon measurement, (RB), is
available. It is important to note that because (DR) is overwritten with
the latest fusion, (DR) contains "parts of" previous (RB) measurements.
Thus, (DR) is not strictly dead reckoning but contains previous (RB) data
as well. (DR) is referred to as the "estimate" or the "position estimate,"
and represents the current best estimate of location.

Assuming two normally distributed variables, (DR) and (RB), the fused
estimate variance is given by:

P = a2#Pgp + (l-a)2#%Pyy

Where Pyqy is the dead reckoning measurement variance, and P, is the radio
beacon measurement variance.

Just as (DR) is overwritten with the fusion result, so P4y is overwritten
with P, the fusion estimate variance. Thus, the "dead reckoning" variance
always contains the variance of the current estimate of positon.

Fusion Algorithm #1: Optimal

The first fusion algor.thm for combining a dead reckoning estimate of an x
or y coordinate with the radio beacon system estimate of the x or y
coordinate assumes that these estimates are unbiased estimates of the
coordinate with normal distributions. While the radio beacon measurement
is assumed to have a constant variance, the dead reckoning measurement
variance increases with distance travelled. The starting point for this
algorithm is the relationship between the dead reckoning variance and the
dead reckoning drift rate.

For a normally-distributed measurement, the probability distribution of
measurements is the familiar "bell"-shaped curve. While theoretically the
probability distribution extends to +» and -«, the practical limits are
usually taken at 130, since this includes 99.8% of a normal distribution
population. The 130 spread is referred to here as the "range" of the
measurement since it indicates what difference between the maximum and
minimum measurements can be expected. So the rangse of the measurement (R)
can be written as the following function of standard deviation, o:

R = 60

The range can sometimes be a more "intuitive" indicator of the spread in a
measurement than variance (or standard deviation)., Often a measurement is
described as Y * x, where x is usually referred to as the "uncertainty" of
the measurement. As the measurement becomes less accurate, or more
uncertain, x increases. So the range can be interpreted as the uncertainty
in a measurement.
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Since we know that the dead reckoning propagation of position drifts with
distance travelled, the uncertainty (or range, R) of the estimate also
grows with distance travelled, so let:

AR = Q As

where AR is the change in range (or uncertainty), Q is the dead reckoning
drift constant, and As is the distance travelled since the last radio
beacon update,

So we will increase the uncertainty of the estimate as we propagate . - with
dead reckoning according to AR = Q As., Now we have to relate the AR change
to a change in variance. ‘

We start out with the relationship between range, R, and the standard
deviation, o:

R = 60,
and solve for o:

o = R/6.

Next, recall that variance and standard deviation are related as follows:
P = 02,

so we can write variance as a function of R:

P = (R/6)2
We can differentiate this equation to relate dP to dR:

dP = (R/18) dR.

Substituting the expression for R as a function of P:

R=6[F,

gives:

P
dP = — dR.
3

Finally, noting that dR = Q ds, we can write:

{r
dP = —— Q ds.
3

This equation allows us to prcpagate the variance as the position estimate
is propagated with dead reckoning calculations. When the radio beacon
measurement is made, there are two position estimates: one from the radio
beacon, and one from dead reckoning propagation. Each of these
measurements has a variance associated with it and so the fused result of
the two also has a variance.
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The variance of the 'fused" estimate can be minimized by setting dP/da = 0
to give:

Prb

Pyp + Pgar

Where Pyp is the radio beacon measurement variance, and P4y is the dead
reckoning variance before fusion. After fusion, the dead reckoning
variance is over-written with the smaller fused estimate variance. This is
very similar to the optimal fusing in Kalman filtering and is described in
(1].

This fusion algorithm differs from Kalman filtering in that a dynamic model
is not used to propagate the measurement in between updates. Instead, we
assume that the dead reckoning calculation (propagation of position) is
done much more often than the radio beacon measurement is taken. Thus, we
do not have a dynamic model, but rather two sets of measurements, one more
frequent than the other. In a sense, the dead reckoning calculation acts
like the dynamic ncdel since it propagates the position estimate in between
updates with the radio beacon measurement,

The variance of tne estimate grows when propagated with dead reckoning in
between radio beacon updates and then Ffalls when the radio beacon
information is fused with the dead reckoning propagation. The result is a
"saw-tooth" curve of the position estimate variance with distance travelled
(see Figure 1). This algorithm is easily implemented by propagating the
position estimate variance and using it to compute a.

Figure 1 has three plots of variance vs distance. Each curve varies the
distance between radio beacon updates: 0.25m, 1.0m, and 2.0m. The variance
is propagated from an initial value and reaches a steady-state condition
after only about 15m. The variance grows steadily as the position estimate
is updated with dead reckoning information, but drops abruptly when fused
with the radio beacon information. Note that the higher the radio beacon
update rate, the lower the steady-state variance values and the smaller the
variance drop when fused. Frequent radio beacon updates provide more
information for an improved estimate (lower variance), and allow “ess time
for the variance to increase during dead reckoning propagation.

Figure 2 shows the propagation of the fusion weighting factor, a, with
distance travelled for the same 3 radio beacon update rates used in Figure
1. Note that the values of a are only used during fusion with the radio
beacon data, and at no time during dead reckon!ng propagation. The higher
the radio beacon update rate, the higher the value of a used. The value of
a is the weighting on the dead reckoning measurement during fusion, so a
higher value of a indicates more weight on dead reckoning and less on the
radio beacon. For frequent radio beacon updates, each individual radio
beacon measurement can be weighted less because of the quantity of
measurements that will be taken. Furthermore, a frequent radio beacon
update rate implies the dead reckoning variance growth between updates is
small, so the dead reckoning position estimate drifts little between radio
beacon updates and is quite accurate. '
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The actual performance of the optimal algorithm will be discussed later in
the results section after the next algorithm is discussed. The second
algorithm considers the fact that, in reality, dead reckoning is not an
unbiased estimate of position. Banta [2] reports that many of the error
sources in dead reckoning are not zero-mean. For example, the dead
reckoning calculations used here assume a 2-D world; any hills or valleys
will bias the dead reckoning "long."

|

Thus, a dead reckoning measurement gives a biased estimate of positioua.

The "optimal" welghting algorithm described above minimizes the variance of
the fused position estimate at the cost of propagating the dead reckoning
error. The next algorithm considers the bias in the dead reckoning.

Fusion Algor m : Average Erro

The second fusion algorithm assumes a similar radio beacon to the optimal
algorithm assumption, while the dead reckoning is modelled as a biased
estimate of position with no variance. Thus, the drift in the dcad
reckoning is accounted for as a bias to be added to the dead reckoning
estimate instead of a variance. So the radio beacon measurements have a
variance but no bias, and the dead reckoning measurements have a bias but
no variance.

The fused estimate has some amount of bias due only to the dead reckoning
tarm as well as some variance due to the radio beacon term associated with
it. We assume that the variance associated with the radio beacon
measurement is far larger than the variance associated with the dead
reckoning measurement, and therefore neglect any variance in the dead
reckoning measurement. This is done because the dead reckoning is "smooth"
compared with the radio beacon.

Again, let the fusion equation be written as:
z = a*(DR) + (1l-a)*(RB)

where z 1s the fused estimate of the x (or y) coordinate, (DR) is the dead
reckoning measurement, and (RB) is the radio beacon measurement.

While the optimal fusing algorithm had only one criterion- minimizing the
variance of the fused estimate, this second algorithm has two criteria: 1)
minimize the variance of the fused estimate, and 2) minimize the error in
the fused estimate. Unfortunately, these goals are mutually exclusive.
Since the radio beacon measurement has no error and the dead reckoning
measurement has an error, minimizing the error in the fused estimate
implies using only the radio beacon measurement (a=0). Since the dead
reckoning measurement is assumed to have zero variance (compared to the
radio beacon measurement), minimizing the variance of the fused estimate
implies using only the dead reckoning measurement (a=l). Neither of these
extremes is acceptable because they result in either zero variance and full
error, or zero error and full variance.
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An important result of fusing the dead reckoning and radio beacon
weasurements as described above with a weighting factor, a, is that the
~steady-state error is bounded for a constant As even with a constant non-
zero bias in the dead reckoning measurement. The worst case dead reckoning
bias is a constant which results in an error which always grows. It is
shown in Appendix A that the minimum and maximum steady state errors for a
constant drift rate (Q) and a constant As can be written as:

emin = Q 4s a/(l-a)
emax - Q As 1/(1‘0)

and the average error as:

eavg = Q As (l+a)/(l-a)
where As i« the distance travelled between radio beacon fusion updates.

What is desired is an expression which relates the fusion weighting factor,
a, to parameters associated with the dead reckoning measurement (drift rate
Q, distance travelled since last fusion, As), and the radio beacon
measurement (variance, Pyh). Since minimizing both the variance and the
error of the estimate is not possible, some other method is required. This
is a classic "trade-off" problem where maximizing one performance criteria
minimizes the other. ‘

The method chosen here is to compute the fusion factor a for a particular
steady-state average error, and then examine the resulting variance. Two
equations have been derived which relate the variance and error of the
estimate to the measurement parameters.

The equation for the average steady-state error, when solved for a, gives
the following expression:

e - QAs/2

e + QAs/2
where e is the average steady-state error, Q is the constant bias dead
reckoning drift rate, and As is the distance travelled between radio beacon
updates, This provides a relationship between the error and the fusion
factor a.
Note that since a>0,
e > QAs/2

which implies that for a given dead reckoning performance (Q) and available
update rate (As), there is a limit to how small an average error can be.

In general, this should be a very conservative relationship which over-

estimates the error since it assumes the worst-case-- constantly increasing
error. The drift rate is very sensitive to the compass calibration, the
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operating environment, calibration of the odometer, and many other factors,
In general, the bias will at times add and other times subtract from the
accumulated error.

The relationship between the variance and the fusion factor a is given by:
P = (1-a)2 Ppy

where P 1s the variance of the estimate, and Py} is the variance of a radio
beacon measurement,

These two equations give relationships between the fusion factor a and the
dead reckoning parameters, drift rate Q and distance between updates As,
and the variance of the radio beacon measurement. In particular, the
fusion factor a can be varied with As, accounting for the additional error
accumulation if radio beacon updates are delayed. Also the effect of a on
the variance of the estimate can also be determined. Thase two equations
can be used to modify a to satisfy an error criterion or variance
criterion, but not necessarily both.

In order to view the a vs As relationship for various values of dead
reckoning drift rate Q, the above equation was used to generate a family of
curves for a constant average error=0.5m. These curves are plotted in
Figure 3. As expected, the value of a decreases as As increases,
indicating that the dead reckoning is weighted less as the accumulated
error in it increases. Large values of As would most likely result in an
unsatisfactory result since a large As implies that much error is
accumulated between radio beacon updates and therefore there would be a
large difference in ithe position before and after fusion.

Figure 4 has two average error algorithm curves of a vs As for different
values of the average error parameter (0.lm and 0.5m). In addition, it has
the optimal algorithm steady-state a vs As so that the two algorithms may
be compared. The algorithms actually give similar a vs As curves for Q=5%
and e=0.5m. Thus, we would expect similar performance from them.
Tightening up the error criterion to 0.lm, however, gives a much lower a
value for the average error algorithm, resulting in a much lowcr weight on
the dead reckoning measurement.

Discussion of Results

Data was collected to characterize the parameters in both the dead
reckoning measurements and the radio beacon measurements. The radio beacon
data is summarized in Appendix B. The dead reckoning drift rate appears to
be approximately 5% of distance travelled based on empirical measurements
with the radio beacon serving as the "true" position measurement.

A path was driven and the following data was recorded: raw radio beacon
measurement, raw dead reckoning measurement (propagated from the initial
point with no fusion with radio beacon), the "optimal" fusion estimate, and
the average error fusion estimate. This data was collected for two
different radio beacon update rates: 0.2s and ls. The path was driven at a
relatively constant speed of 5 mph (about 2.2 m/s), so the corresponding
distance between updates was approximately 2.2m for 1s and 0.44m for 0.2s.
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Figure 5 shows the a value as propagated during actual runs at different
radio beacon rates (0.2s and 1ls) for both algorithms. The optimal
algorithm a propagation will be discussed first, followed by the average
error algorithm a propagation. For the 1s update rate (As=2.2m), the
measured value of "steady-state" optimal a (0.69) agized well with
theoretical predictions (Figure 2). The 0.2s updai:e rate (As=0.44m) value
of optimal a (0.88) also agreed well with theoretical predictions. For the
average error algorithm, values of a for both update rates agreed well with
the theoretical predictions in Fifure 3.

Figures 6 and 7 show x,y traces of position location during runs of update
rates 1s and 0.2s respectively. Each plot hus 4 different curves for
position location: dead reckuning only, radio beacon only, optimal fusion
algorithm, and average error fusion algorithm. Both pPlots &re "snapshots"
in the middle of longer runs; these "snapshots” are small enough to show
the necessary detail. Both plots clearly show the dead rackoning position
estimate diverged from the radio beacon measurement. As the radio beacon
measurement is roughly the "true" position, it is clear that a dead
reckoning position location system alone accumulates much error.

Figure 6 clearly shows the jaggedness in the fusion algorithms when the
data is fused. The size of the "sawtooth" in the fusion curves is
important when using the information for path-following; too lurge of a
sawtooth will result in unacceptable oscillations while péth-following.
These "sawteeth" are noticeably absent in Figure 7, which has the higher
update rate. The higher update rate does not allow much error to
,accumulate, and so the fusion estimates are alwvays fairly near the "true"
radio beacon measurement.

Figure 7 also clearly shows the "jaggedness" of the radio beacon
measurement trace. It is this roughness which the optimal algorithm seeks
to minimize. Notice that both fusion algorithm traces in Figure 7 are much
smoother than the radio beacon trace.

The last item to note in Figures 6 and 7 is that the optimal algorithm
trace is closer to the radio beacon trace than the average error algorithm
trace. This is expected since the optimal algorithm weighted the radio
beacon measurement more (lower a) for both update rates. Both algorithms
give a position estimate trace that is close to the radio beacon
measurement trace, and smoother than the radio beacon measurement trace.
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Summary/Conclusiong

This paper has focused on methods to iuse two position location
measurements, dead reckoning and radio beacon, to derive a "best" estimate
of position. The first algorithm, called the "optimal" algorithm, treats
both measurements as random variables and seeks to minimize the varianre of
the estimate. The second algcrithm considers the biases in dead reckoning
and attempts to guarantee a maximum average error. Both algorithms vary
the fusion weighting with distance tr-rvelled between rauio beacon updates
in order to account for the error accumulation in dead reckoning.

Collected data show that both algorithms work well in practice by rem wing
error from the position estimat~ and p:oviding a smoother position estimate
X,y trace.

The equations developed provide 1 tool to investigate the trade-offs in
accuracy, variance, and update rate of two or more position location
systems. GPS, laser triangulation, INS, and/or other types of position
location systems can be studied with these techniques. In particular, by
combining several lower-cost, medium-arcuracy position location systems,
the desired accuracy may be achieved. Using multiple systems also
increases the fault-tolerance of the system; losing one system may lower
the accuracy, but position location capability will be retained.

Future work will involve exploring in more depth some of the simplifying
assumptions made so far in characterizing the measurements. In particular,
the above two algorithms may be combined by modelling the dead reckoning as
a biased random variable. We will also study t's cemperature effects which
cause drift in the radio beacon system. This dvift is very slow and occurs
over hours; it did not affect the data collected here because the runs were
so short in time.
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APPENDIX A
The derivation of the steady-state error for fusion of a constant bilas, Q,
dead reckoning meesurement with an unbiased radio beacon measurement is

done for motion along a straight line., The distance between fusion updates
is As and is a constant,

There are two critical times to deal with: just before the fusion and just
after the fusion., Dead reckoning propagates the measurement from just
after the last fusion to just before the next fusion and the error grows
linearly with the distance travelled between the two fusions,
Recall the fusion equatior,

z = a(DR) + (l-a)(RB)

and note tha* the biésing error is only contained in the (DR) term and thus
is propagated with the o factor.

If we let (el+) indicate the initial error and (e2-) indicate the error
just before the first fusion, then the following expression can be written:

(e2-) = (el+) + Q As

where As is the distance travelled until the first fusion, After the first
fusion the error is expressed as (e2+) and can be written as:

(e2+) = a (e2-)
or
(e24) = a [ (el+) + Q As ]

Likewise, the error just before the next fusion is expressed as (e3-) and
can be written as:

(e3-) = (e2+) + Q As

The error just after the next fusion is expressed as (e3+) and can be
written as:

(e3+) = a (e3-)
or
(e3+) = a [ (e2+) + Q As ]
or, substituting for (e2+),
(e3+) = a [ a[(el+) + Q As] + Q As ]
or, simplifying,

(e3+) = a2(el+) + a QAs + (As
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The general equation for the nth error term can be written Ly extrapolating
the previous examples, The equation is given by:

(en+) = af-l(el+) + an"2 QAs + aP-3 QAs + ... + QAs

Agsuming that the position has been initialized exactly and thus the
initial error, (elt+), is zero, this expression can be simplified to:

k=n

(en+) = QAs j{: [ an-k }

k=2

The steady-state after fusion error expression can be obtained by letting
n~+o and noting that the infinite series converges to a/(l-a):

(ewt) = Q As a/(l-a) = epip
The after fusion error is also the smallest error since it immediately
begins to grow (linearly) with dead reckoning propagation. Since the

maximum error occurs just before the fusion, the steady-state maximum error
can be written as:

(ew-) = (ewt+)/a = Q As 1/(l-a) = epax
The average steady-state error is written as:

(eavg) = (emin + emax)/2

or

(eavg) = Q As (1+a)/(1-a)
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AFPENDIX B

This appendix is a summary of the data collected to summarize the radio
beacon measurement variance., Five different sets of data were measured at
five distinct locations on the driving course at t!i2 Sandia National
Laboratories' Robotics Vehicle Range in Albuquerque, NM.

The vehicle was parked at the location and 250 radio beacon readings were
taken. Thus, there were 250 x,y coordinates measured at each location,
The histograms of this data are listed in this appendix, The histogram
"bin" width is not equal among the different histograms; bin width was
computed using the maximum and minimum values of each histogram.

The y-values have the following variances (in m2) 0.029, 0.031, 0,019,
0.011, 0.029. The average of these is 0,0238, which corresponds to a 6o
spread of about 0,93m,

The x-values have the following variances (in m2): 0,019, 0.017, 0.020,
0.053, 0.014., The average of these is 0.0246, which corresponds to a 6o
spread of about 0,9%4m,

For most of the calculations, the variance used was slightly higher,
0.0278, which corresponded to an even 1.0m 60 spread.
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Frequency

Frequency

POINT A

Y Distribution at Point A

&0

mean=746,23 m
‘rariance=0.029 m2 3

X Distribution at Point A

mean=20.22 m

variance=0.019 m2
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OINT DIO co SUKEMENTS

- Y Distribution at Point B

mean=651,92 m

veriance=0.031 m2

-
"]

60

20 4

0

X Distribution at Point B

80 e 4

mean=76.95 m

variance=0.017 m2
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Frequency

PCINT C RADIO BEACON MEASUREMENTS

Y Distribution at Point C

mean=667.23 m
variance=0.019 m2

120 —
mean=233.25 m

variance=0.020 m2
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Frequency

Frequency

POINT D RADIO BEACON MEASUREMENTS

Y Distribution at Point D

mean=709.45 m

varisnce=0.011 m2

X Distribution at Point D

"

mean=493.66 m

variance=0.053 m2




Frequency

Frequency

POINT E RADIO BEACON MEASUREMENTS

Y Distribution at Point £

mean=1040.80 m
variance=0.029 m2

X Distribution at Point E

B

mean=373.61 m

varisnce=0.014 m2
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APPENDIX C

This appendix contains the derivation of the steady-state value of a as a
function of the dead reckoning drift rate Q, and the distance travelled
between radio beacon updates for the optimal fusion algorithm.

Recall that the value of a for the optimal algorithm is given by:
Prb

Prp + Pdr

where Py}, is the radio bracon variance and P4y is the dead reckoning
variance. ‘
Also recall the equation for the variance of the fused estimate:

P = aZ#Pgy + (1-a)2%Py

By combining the two above equations, the value of the fused estimate
variance can be written as a function of the two measurement variances as
follows: ‘

Prb Pdar
P-

Prp + Pdr

Note that the fused estimate variance is smaller than both measurement
variances, indicating that some additional unbiased information always
improves the current estimate of position.

In these espressions, the radio beacon varjance is a constant, but the dead
reckoning variance increases as the position estimate is propagated with
dead reckoning calculations, and then decreases abruptly when the position
estimate is fused with radio beacon data. Thus, the value of a actually
varies with dead reckoning variance, which in turn varies (by increasing)
with distance travelled.

For a constant distance between updates, As, the steady-state condition
occurs when the growth in variance during dead reckoning propagation
(between radio beacon updates) equals the drop in variance when fusion with
the radio beacon measurement is made. The growth in variance between radio
beacon updates is related to the distance travelled between updates, As,
and the dead reckoning drift rate as:

AP = (QAs/6)2

The drop in variance when the fusion with the radio beacon measurement is
done is the variance before the fusion (P-) minus the variance aftsr the
fusion (P+). So the steady state condition occurs when;

AP = (P-) - (P+)

where AP is the growth in variance during dead reckoning propagation (over
As), (P-) is the estimate variance just before fusion with the radio beacon
data, and (P+) is the estimate variance just after fusion with the radio
beacon data.

c-1



(P+) and (P-) are related by the following expression:
Pep (P-)
(P+) =

Prp + (P-)
So the expression (P-) - (P+) can be written as:
(p-)2
(P-) - (P+) =

Prp + (P-)

where (P-) is the steady-state value of the variance just before fusion.

Also recall that the dead reckoning variance is equal to (P-) just before
fusion and (P+) just after fusion.

Thus, the steady-state value of a is a function of (P-), or the steady-
state dead reckoning variance just before fusion:

Prb
Prp + (P-)
Looking back at the steady-state condition,
AP = (P-) - (P+)
(P-) can be related to Q, As, and Pyp by plugging in the equivalent
expressions for AP and (P-) - (P+):

- (p-)2
(Qas/6)2 =

Prp + (P-)
Solving this quadratic for (P-) gives:

(B-) = (Qas/6) { Lt J L (SA§/6)

So the steady-state value of a is given by:

Prb

Prp + (P-)
where (P-) is defined above,

Cc-2



REFERENCES
[1] Méybeck, Peter 8., "Stochastic Models, Estimation, and Control,
Volume 1", Academic Press Inc, 1979, pp 9-15.

[2] Banta, Larry E., "Self Tuning Navigation Algorithm", IEEE, 1988,
pp 1313-1314,

Bib-1



[ —

it dppm i

il







