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Abstract

Position location is a fundamental requirement in autonomous mobile robots

which record and subsequently follow x,y paths. The Dept. of Energy,

Office of Safeguards and Security, Robotic Security Vehicle (RSV) program

involves the development of an autonomous mobile robot for patrolling a

structured exterior environment. A straight-forward method for autonomous

path-following has been adopted and requires "digitizing" the desired road

network by storing x,y coordinates every 2m along the roads. The position

location system used to define the locations consists of a radio beacon

system which triangulates position off two known transponders, and dead

reckoning with compass and odometer. This paper addresses the problem of

combining these two measurements to arrive at a best estimate of position.

Two algorithms are proposed" the "optimal" algorithm treats the
" measurements as random variables and minimizes the estimate variance, while

the "average error" algorithm considers the bias in dead reckoning and

attempts to guarantee an average error. Data collected on the algorithms

" indicate that both work well in practice. _ _
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Optimal Sensor Fusion for Land Vehicle Navi2at_on

!ntroductlon

The Advanced Technology Division 5267 at Sandia National Laboratories has

developed a number of prototype mobile robotic systems for several

different applications. A current project for the Dept. of Energy, Office

of Safeguards and Security (OSS), involves developing a robotic security
vehicle capable of autonomously patrolling a structured exterior
environment.

For the program we have adopted a simple strategy to accomplish autonomous

road-following which requires "mapping" the roads. Thus, there are a

discrete number of roads which the vehicle can traverse autonomously, and

these are stored as lists of x,y points. In order to map the roads, a

position location system is needed to determine the x,y position of the
vehicle.

lt is the position location problem which this paper addresses. First the

position location problem is defined. The algorithms developed to solve

the problem are then discussed and collected data on their performance is
presented.

Problem Description

Position location is a fundamental requirement in mobile robotics and is

critical to an autonomous mobile robot which needs to plan and execute a

path to a desired destination. For this paper, the position is defined as

a 2-Dimensional position consisting of x,y and heading. In addition,

experience has shown that autonomous operations such as path following

require a fairly accurate (+/- 0.5 m) determination of x,y position. For

our applications in physical security, the area of coverage can be fairly
small (5-30 km square).

There are many methods of determining, or measuring, position. These range

from navigational satellites, radio beacon triangulation systems, laser

triangulation systems, dead reckoning with a compass and odometer, to

inertial navigation systems. To minimize costs, the system that Sandia has

been using on the OSS Robotic Security Vehicle project is a combination of
radio beacon and dead reckoning.

Dead reckoning uses odometer and heading information to compute a new

position from the robot's old position. This method must be initialized to

some global position and then propagates the global position from the
heading and distance travelled. This method is attractive because it is

" self-contained on-board the vehicl_ and is inexpensive. Unfortunately, the
dead reckoning errors accumulate and, the position estimate "drifts" with

distance travelled. This drift error is a low frequency error, meaning

' that repeated readings at the same location will yield very nearly the same

result, but moving off that location and returning will yield different

results. Another attribute of a low frequency error is that the error

between the robot's true position and the estimated position will steadily
and smoothly diverge.
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Because of the drift associated with dead reckoning error, an external

reference system is often used to remove that error. A radio beacon system

consisting of two transmitters and a receiver iu ene such system. By

triangulating off known locations of the transmitters, an absolute position

can be computed.

The radio beacon position estimate is not a function of distance travelled,

but is corrupted by "random" high freq_Lency noise. This means that

repeated measurements at the same position give different values, resulting

in a large variance in the measurement. The system is fairly stable so

that measurements at a given location that are spread out in time will give

very similar results within the "Jitter" described above; i.e. this
measurement does not drift with time or distance travelled. Data collected

on our radio beacon system showed a 6 sigma spread in x and y values of

about 1 meter with a normal distribution shape; see Appendix B for a

s_mary of the data. Note that a 1 meter 6a spread is too large for

autonomous path following.

Ideally, an on-board position location system such as dead reckoning is

preferred for a mobile robot because it requires no outside support

hardware and is more covert and secure. Unfortunately, dead reckoning also

drifts with distance travelled and therefore must be "corrected" by an

external source. Conversely, the radio beacon system gives an accurate

position estimate which is corrupted by a zero-mean, high-frequency noise.

This results in a position estimate which "jumps around" when repeated

readings are taken at the same location. For recording a path, this

characteristic can make the path look very Jagged when it is in fact very

smooth. Thus, combining the radio beacon measurement with the dead

reckoning measurement (relatively "smoother") will smooth out the

jaggedness (lower the variance) in the position location estimate.

In an effort to study how these two position estimates should be combined,

two fusion algorithms were developed.

Fusion Al2orlthms

The first approach to a fusion algorithm was a "Kalman-filter" type

approach which modelled both measurements of position (dead reckoning and

radio beacon) as unbiased, normally-distributed random variables. The

variance of the linear combination was minimized to yield the weighting
factors on each measurement.

The second approach was undertaken to account for an inaccurate assumption

in the first approach' namely, that the dead reckoning measurement gives an

unbiased measurement of position. Looking at traces of x,y position as

recorded by radio beacon and dead reckoning measurements show clearly the

dead reckoning measurements diverging from the radio beacon measurement.

Thus, in an effort to account for the bias in dead reckoning, a second

fusion algorithm was developed which models the dead reckoning measurement

as a biased variable with no variance. The bias term is a linear function

of distance travelled.
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For both fusion algorithms, equations were developed which related the

measurement fusion weighting factor to the distance travelled between

fusions and the dead reckoning drift rate. For the first algorithm, both

dead reckoning and radio beacon measurements are assumed to be unbiased

estimates of the true position with variances. For the second algorithm,

the radio beacon measurement was modelled the same, but the dead reckoning
measurement was modelled as a biased estimate with no variance.

Basle Fusion Equation

The basic fusion equation for combining the two measurements is:

z - =*(DR) + (I-=)*(RB)

where z is the fused estimate of the x (or y) coordinate, (DR) is the dead

reckoning measurement, (RB) is the radio beacon measurement, and _ is the

fusion weighting factor. Because it is anticipated that the x,y coordinate

variances will be approximately equal, the same value of _ is used for both

x and y coordinates.

Using the basic fusion equation described above, the navigational procedure
is as follows:

i) The x,y position is initiai_zed to some global position. This can be

done by a variety of methods, one of which is to use the radio beacon

system.

2) The dead reckoning calculation updates the position quite frequently

(exactly how often depends on computational time available, and

resolution of the odometer). The change in distance since the last

dead reckoning update is used to determine when a new update should

be performed. When this change in distance exceeds some minimum

value, changes in x and y are computed based on the change in

distance and vehicle heading. These changes in x and y are added to

the current estimate of x,y position. In this way the x,y position

is propagated by dead reckoning.

3) Occasionally, a radio beacon measurement of x,y position becomes

available. This is assumed to be much less frequent than the dead

reckoning updates. When a radio beacon measurement is available,

there are now two estimates of position: the radio beacon

measurement, and the dead reckoning propagation measurement.

4) The fusion algorithm is used to combine these measurements tu arrive

at a "best" estimate of position. The basic fusion equation is
simply a linear combination of the measurements. The number

determines the relative weighting of each measurement in the
combination.

5) When the measurements are combined by _he fusion algorithm, the

resulting x,y "best" estimate overwrites the dead reckoning x,y

• location. In this way, the dead reckoning is always propagating the

best estimate of current position. Also, by overwriting the dead

reckoning x,y estimate, the accumulated error in dead reckoning is
' removed.

6) In a sense, the "dead reckoning" measurement really contains both

dead reckoning propagation terms, but also previous radio beacon

measurements as well. It is simply the current position estimate

which is propagated by dead reckoning and corrected by the radio
beacon measurements.
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The dead reckoning is always propagated from the fused estimate since this

represents the best estimate of current position available. Thus, (DR) is
overwritten with z, the fused estimate. Then (DR) is propagated with dead

reckoning calculations until another radio beacon measurement, (RB), is

available, lt is important to note that because (DR) is overwritten with

the latest fusion, (DR) contains "parts of" previous (RB) measurements.

Thus, (DR) is not strictly dead reckoning but contains previous (RB) data _
as weil. (DR) is referred to as the "estimate" or the "position estimate,"

and represents the current best estimate of location.

Assuming two normally distributed variables, (DR) and (RB), the fused

estimate variance is given by:

p - a2*Pdr + (l-a)2*Prb

Where Pdr is the dead reckoning measurement variance, and Prb is the radio
beacon measurement variance.

Just as (DR) is overwritten with the fusion result, so Pdr is overwritten

with P, the fusion estimate variance. Thus, the "dead reckoning" variance

always contains the variance of the current estimate of positon.

Fusion Algorlthm #i: Op_ma_

The first fusion algorithm for combining a dead reckoning estimate of an x

or y coordinate with the radio beacon system estimate of the x or y
coordinate assumes that these estimates are unbiased estimates of the

coordinate with normal distributions. While the radio beacon measurement

is assumed to have a constant variance, the dead reckoning measurement

variance increases with distance travelled. The starting point for this

algorithm is the relationship between the dead reckoning variance and the
dead reckoning drift rate.

For a normally-distributed measurement, the probability distribution of

measurements is the familiar "bell"-shaped curve. While theoretically the
probability distribution extends to +_ and -m, the practical limits are

usually taken at ±3a, since this includes 99.8% of a normal distribution

population. The ±3a spread is referred to here as the "range" of the
measurement since it indicates what difference between the maximum and

minimum measurements can be expected. So the range of the measurement (R)

can be written as the following function of standard deviation, a:

R - 6a

The range can sometimes be a more "intuitive" indicator of the spread in a
measurement than variance (or standard deviation). Often a measurement is

described as Y ± x, where x is usually referred to as the "uncertainty" of
the measurement. As the measurement becomes less accurate, or more

uncertain, x increases. So the range can be interpreted as the uncertainty
in a measurement.

-I0-



Since we know that the dead reckoning propagation of position drifts with

distance travelled, the uncertainty (or range, R) of the estimate also

grows with distance travelled, so let'

AR- Q As

• where AR is the change in range (or uncertainty), Q is the dead reckoning
drift constant, and As is the distance travelled since the last radio

beacon update.

So we will increase the uncertainty of the estimate as we propagate" with

dead reckoning according to AR- Q As. Now we have to relate the AR change
to a change in variance.

We start out with the relationship between range, R, and the standard
deviation, a"

' R - 6o,
and solve for o'

o - R/6.

Next, recall that variance and standard deviation are related as follows"

p - 0 2 ,

so we can write variance as a function of R:

P - (R/6)2

We can differentiate this equation to relate dP to dR'

dP - (R/18) dR.

Substituting the expression for R as a function of P"

R - 6 _-,

gives'

dP - ----- dR.

3

Finally, noting that dR- Q ds, we can write'

9-
dP - ----- Q ds.

3

This equation allows us to propagate the variance as the position estimate
is propagated with dead reckoning calculations. When the radio beacon

measurement is made, there aretwo position estimates: one from the radio

beacon, and one from dead reckoning propagation. Each of these
measurements has a variance associated with it and so the fused result of
the two also has a variance.
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The variance of the 'fused" estimate can be minimized by setting dP/d= - 0

to give:

Prb

Prb + Pdr

Where Prb is the radio beacon measurement vazlance, and Pdr is the dead

reckoning variance before fusion. After fusion, the dead reckoning
variance is over-wrltten with the smaller fused estimate variance. This is

very similar to thu optimal fusing in Kalman filtering and is described in

[i],

This fusion algorithm differs from Kalman filtering in that a dynamic model

is not used to propagate the measurement in between updates. Instead, we

assume that the dead reckoning calculation (propagation of position) is

done much more often than the radio beacon measurement is taken. Thus, we

do not have a dynamic model, but rather two sets of measurements, one more

frequent than _he other. In a sense, the dead reckoning calculation acts

llke the dynamic =sdel since it propagates the position estimate in between
upd,%tes with the radio beacon measurement.

The variance of the estimate grows when propagated with dead reckoning in

between radio beacon updates and then falls when the radio beacon

information is fused with the dead reckoning propagation. The result is a

"saw-tooth" curve of the position estimate variance with distance travelled

(see Figure I). This algorithm is easily implemented by propagating the

position estimate variance and using it to compute _.

Figure 1 has three plots of variance vs distance. Each curve varies the

distance between radio beacon updates: 0.25m, l.Om, and 2.0m. The variance

is propagated from an initial value and reaches a steady-state condition

after only about 1Sm. The variance grows steadily as the position estimate

is updated with dead reckoning information, but drops abruptly when fused

with the radio beacon information. Note that the higher the radio beacon

update rate, the lower the steady-state variance values and the smaller the

variance drop when fused. Frequent radio beacon updates provide more

information for an improved estimate (lower variance), and allow %ess time

for the variance to increase during dead reckoning propagation.

Figure 2 shows the propagation of the fusion weighting factor, a, with

distance travelled for the same 3 radio beacon update rates used in Figure

I. Note that the values of _ are only used during fusion with the radio

beacon data, and at no time during dead reckon_lng propagation. The higher

the radio beacon update rate, the higher the value of _ used. The value of

is the weighting on the dead reckoning measurement during fusion, so a

higher value of _ indicates more weight on dead reckoning and less on the

radio beacon. For frequent radio beacon updates, each individual radio

beacon measurement can be weighted less because of the quantity of

measurements that _ill be taken. Furthermore, a frequent radio beacon

update rate implies the dead reckoning variance growth between updates is

small, so the dead reckoning position estimate drifts little between radio

beacon updates and is quite accurate.
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The actual performance of the optimal algorithm will be discussed later in

the results section after the next algorithm is discussed The second

algorithm considers the fact that, _in reality, dead reckoning is not an

unbiased estimate of position. Banta [2] reports that many of the error

' sources in dead reckoning are not zero-mean. For example, the dead

reckoning calculations used here assume a 2-D world; any hills or valleys

will bias the dead reckoning "long."
I

Thus, a dead reckoning measurement gives a biased estimate of positio_.

The "optimal" weighting algorithm described above minimizes the variance of

the fused position estimate at the cost of propagating the dead reckoning

error. The next algorithm considers the bias in the dead reckoning.

Fusign Al2or_thm #2: Average Error

The second fusion algorithm assumes a similar radio beacon to the optimal

algorithm assumption, while the dead reckoning is modelled as a biased

estimate of position with t,o variance. Thus, the 'drift in the d<ad

reckoning is accounted for as a bias to be added to the dead reckoning
estimate instead of a variance. So the radio beacon measurements have a

variance but no bias, and the dead reckoning measurements have a bias but
no variance.

The fused estimate has some amount of bias due only to the dead reckoning
term as well as some variance due to the radio beacon term associated with

it. We assume that the variance associated with the radio beacon

measurement is far largez than the variance associated with the dead

reckoning measurement, and therefore neglect any variance in the dead

reckoning measurement. This is done because the dead reckoning is "smooth"
compared with the radio beacon.

Again, let the fusion equation be written as'

z - s*(DR) + (I-e)*(RB)

where z is the fused estimate of the x (or y) coordinate, (DR) is the dead
reckoning measurement, and (RB) is the radio beacon measurement.

While the optimal fusing algorithm had only one criterion- minimizing the

variance of the fused estimate, this second algorithm has two criteria" I)

minimize the variance of the fused estimate, and 2) minimize the error in

the fused estimate. Unfortunately, these goals are mutually exclusive.

Since the radio beacon measurement has no error and the dead reckoning
measurement has an error, minimizing the error in the fused estimate

implies using only the radio beacon measurement (a-0). Since the dead

reckoning measurement is assumed to have zero variance (compared to the
radio beacon measurement:), minimizing the variance of the fused estimate

• implies using only the dead reckoning measurement (_-I). Neither of these

extremes is acceptable because they result in either zero variance and full
error, or zero error and full variance.

6
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An important result of fusing the dead reckoning and radio beacon

measurements as described above with a weighting factor, =, is that the
steady-state error is bounded for a constant As even with a constant non-

zero bia._ in the dead reckoning measurement. The worst case dead reckoning

bias is a constant which results in_an error which always grows, lt is
shown in Appendix A that the minimum and maximum steady state errors for a
constant drift rate (Q) and a constant As can be written as:

emin -Q As =/(I-=)

ema x - Q As !/(i==)

and the average error as:

eavg - Q As (I+_)/<I-=)

where A_ is the distance travelled between radio beacon fusion updates.

What is desired is an expression which relates the fusion weighting factor,

_, to parameters associated with the dead reckoning measurement (drift rate
Q, distance travelled since last fusion, As), and the radio beacon

measurement (variance, Prb). Since minimizing both the variance and the

error of the estimate is not possible, some other method is required. This

is a classic "trade-off" problem where maximizing one performance criteria
minimizes the other.

The method chosen here is to compute the fusion factor _ for a particular

steady-state average error, and then examine the resulting variance. Two
equations have been derived which relate tilevariance and error of the

estimate to the measurement parameters.

The equation for the average steady=state error, when solved for _, gives
the following expression:

e - Qas12

e + QAsI2

where e is the average steady-state error, Q is the constant bias dead

reckoning drift rate, and As is the distance travelled between radio beacon

updates. This provides a relationship between the error and the fusion
factor _.

Note that since a>0,

e > QAs/2

which implies that for a given dead reckoning performance (Q) and available

update rate (As), there is a limit to how small an average error can be.

In general, this should be a very conservative relationship which over-

estimates the error since it assumes the worst-case-- constantly increasing
error. The drift rate is very sensitive to the compass calibration, the

-14=



operating environment, calibration of the odometer, and many other factors.
In general, the bias will at times add and other times subtract from the
accumulated error.

The relationship between the variance and the fusion factor _ is given by:

P " (l'a) 2 Prb

where P is the variance of the estimate, and Prb is the variance of a radio
beacon measurement.

These two equations give relationships between the fusion factor s and the

dead reckoning parameters, drift rate Q and distance between updates As,

and the variance of the radio beacon measurement. In particular, the

fusion factor _ can be varied with As, accounting for the additional error

accumulation if radio beacon updates are delayed. Also the effect of _ on

the variance of the estimate can also be determined. Th_se two equations

can be used to modify _ to satisfy an error criterion or variance

criterion, but not necessarily both.

In order to view the _ vs As relationship for various values of dead

reckoning drift rate Q, the above equation was used to generate a family of
curves for a constant average error-O.5m. These curves are plotted in

Figure 3. As expected, the value of a decreases as As increases,

indicating that the dead reckoning is weighted less as the accumulated

error in it increases. Large values of As would most likely result in an

unsatisfactory result since a large As implies that much error is

accumulated between radio beacon updates and therefore there would be a
large difference in %:he position before and after fusion.

Figure 4 has two average error algorithm curves of _ vs As for different

values of the average error parameter (O.Im and 0.5m). In addition, it has

the optimal algorithm steady-state a vs As so that the two algorithms may

be compared. The algorithms actually give similar a vs As curves for Q-5%

and e-O.5m. Thus, we would expect similar performance from them.

Tightening up the error criterion to O.im, however, gives a much lower

value for the average error algorithm, resulting in a much lower weight on
the dead reckoning measurement.

Dls_u_slon of Results

Data was collected to characterize the parameters in both the dead

reckoning measurements and the radio beacon measurements. The radio beacon

data is summarized in Appendix B. The dead reckoning drift rate appears to
be approximately 5% of distance t_avelled based on empirical measurements

with the radio beacon serving as the "true" position measurement.

A path was driven and the following data was recorded: raw radio beacon

measurement, raw dead reckoning measurement (propagated from the initial

' point with no fusion with radio beacon), the "optimal" fusion estimate, and
the average error fusion estimate. This data was collected for two

different radio beacon update rates: 0.2s and is. The path was driven at a

relatlvely constant speed of 5 mph (about 2.2 m/s), so the corresponding
distance between updates was approximately 2.2m for ls and 0.44m for 0.2s.
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Figure 5 shows thr a value as propagated during actual runs at different

radio beacon rates (0.2s and Is) for both algorithms, The optimal

algorithm a propa_atio n will be discussed first, followed by the average
error algorithm a propagation. For the is update rate (_s-2.2m), the

• measured value of "steady-state" optimal a (0.69) agnised well with

theoretical predictions (Figure 2). The 0.2s upda_:e rate (As-0.44m) value
of optimal a (0.88) also agreed well with theoretical !predictions. For the

average error algorithm, values of a for both update rate_ agreed well with
the theoretical prediction,_ in Figure 3.

Figures 6 and 7 show x,y traces of position location during runs of update
rates is and 0.2s respectively. Each plot has 4 different curves for

position location: dead reckuning only, radio beacon only, optimal fusion

algorithm, and average error fusion algorithm. Both plots are "snapshots"

in the middle of longer _uns; these "snapshots" are small enough to show

the necessary detail, Both plots clearly show the dead r_ckoning position
estimate diverged from the radio beacon measurement. As the radio beacon

measurement is roughly the "true" position, it is clear that a dead

reckoning position location system alone accumulates much error.

Figure 6 clearly shows the Jaggedness in the fusion algorithms when the
data is fused. The size of the "sawtooth" in the fusion curves is

important when using the information for path-following; too large of a

sawtooth will result in unacceptable oscillations while pa_h-following.

These "sawteeth" are noticeably absent in Figure 7, which has the higher
update rate. The higher update rate does not allow much error to

accumulate, and so the fusion estimates are always fairly near the "true"
radio beacon measurement.

Figure 7 also clearly shows the "Jaggedness" of the radio beacon

measurement trace, lt is this roughness which the optimal algorithm seeks

to minimize. Notice that both fusion algorithm traces in Figure 7 are much
smoother than the radio beacon trace.

The last item to note in Figures 6 and 7 is that the optimal algorithm

trace is closer to the radio beacon trace than the average error algorithm

trace. This is expected since the optimal algorithm weighted the radio

beacon measurement more (lower a) for both update rates. Both algorithms
give a position estimate trace that is close to the radio beacon

measurement trace, and smoother than the radio beacon measurement trace.
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" Summary/Concluslon_

This paper has focused on methods to fuse two position location

measurements, dead reckoning and radio beacon, to derive a "best" estimate

of position. The first algorithm, called the "optimal" algorithm, treats
both measurements as random variables alld seeks to miDimize the vari_e of

r

the estimate. The second algorithm considers the biases in dead reckoning

and a_ttempts to guarantee a maximum average error. Both algorithms vary
the fusion weighting with distance tr_velled between rauio beacon updates

in order to account for the error accumulation in dead reckoning.

Collected data show that both algorithmswork well in practice by re_ving

error from the position estimat _ and p:oviding a smoother position estimate
x,y trace.

The equations developed provide I tool to investigate the trade-offs in

accuracy variance and update rate of two or more position location

systems. GPS, laser triangulation, INS, and/or other types of position

location systems can be studied with these techniques. In particular, by

combining several lower-cost, medium-arcuracy position location systems,

the desired accuracy may be achieved. Using multiple systems also

increases the fault-tolerance of the system; losing one system may lower
the accuracy, but position location capability will be retained.

Future work will involve exploring in more depth some of the simplifying
assumptions made so far in characterizing the measurements. In particular,

the above two algorithms may be combined by modelling the dead reckoning as
a biased random variable. We will also study tke =emperature effects which

cause drift in the radio beacon system. This d_ift is very slow and occurs
over hours; it did not affect the data collected here because the runs were
so short in time.
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APPm_Ix

The derivation of the steady-state error for fusion of a constant bias, Q,
dead reckoning measurement with a_:unbiased radio beacon measurement is

done for motion along a straight line, The distance between fusion updates
is As and is a constant,

' There are two critical times to deal with: Just before the fusion and Just

after the fusion. Dead reckoning propagates the measurement from just

after the last fusion to Just before the next fusion and the error grows
linearly with the distance travelled between the two fusions.

Recall the fusion equation,

z - _(DR) + (1-s)(RB)

and note tha _ the biasing error is only contained in the (DR) term and thus

is propagated with the _. factor,

If we let (el+) indicate the inltlal error and (e2-) indicate the error

just before the first fusion, then the following expression can be written:

(e2-) - (el+)+ Q As

where As is the distance travelled until the first fusion. After the first

fusion the error is expressed as (e2+) and can be written as:

(e2+) - c* (e2-)
or

(e2+) - _ [ (el+) + Q As ]

Likewise, the error just before the next fusion is expressed as (e3-) and
can be written as:

(e3-) - (e2+) + Q As

The error just after the next fusion is expressed as (e3+) and can be
written as:

(e3+) - _ (e3-)
or

(e3+) - _ [ (e2+) + Q As ]

or, substituting for (e2+),

(e3+) - c, [ _[(el+) + Q As] + Q As ]

' or, simplifying,

(e3+) - _2(el+) + _ QAs + QAs
6
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The general equation for the nth error term can be written 5y extrapolating

the previous examples, The equation is given by:

(en+) - =n-l(el+) + =n-2 QAs + =n-3 QAs + .., + QAs

Assuming that the position has been initialized exactly and thus the

inltial error, (el+), is zero, this expression can be simplified to:

k-n

(en+) - QAs _ an-k

k-2

The steady-state after fusion error expression can be obtained by letting
n-_= and noting that the infinite series converges to _/(i-_):

(e_+) - Q As u/(l-u) - emf n

The after fusion error is also the smallest error since it immediately
begins to grow (linearly) with dead reckoning propagation. Since the

maximum error occurs Just before the fusion, the steady-state maximum error
can be' written as:

(e®-) - (e_+)/s - Q As i/(I-_) - ema x

The average steady-state error is written as:

(eavg) - (emln + emax)/2

or

(eavg) - Q As (l+s)/(l-_)

A-2



APPENDIX B

This appendix is a summary of the data colle_ted to summarize the radio!

beacon measurement variance, Five different sets of data were measured att

five distinct locations on the driving course at th_ Sandia National

Laboratories' Robotics Vehicle Range in Albuquerque, NM.

' The vehicle was parked at the location and 250 radio beacon readings were

tBken. Thus, there were 250 x,y coordinates measured at each location.

The histograms of this data are listed in this appendix. The histogram

"bin" width is not equal among the different histograms; bin width was

computed using the maximum and minimum values of each histogram.

The y-valUes have the following variances (in m2): 0.029, 0.031, 0.019,

0.011, 0.029. The average of these is 0.0238, which corresponds to a 6o
spread of about 0.93m.

The x-val_es have the following variances (in m2): 0.019, 0.017, 0.020,

0.053, 0.014. The average of these is 0.0246, which corresponds to a 6a
spread of about 0.94m.

For most of the calculations, the variance used was sllghtly higher,

0.0278, which corresponded to an even 1.0m 6a spread.
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APPENDIX C

This appendix contains the derivation of the steady-state value of _ as a
function of the dead reckoning drift rate Q, and the distance travelled

between radio beacon updates for the optimal fusion algorithm.

Recall that the value of _ for the optimal algorithm is given by"

' Prb
m 6

Prb + Pdr

where Prb is the radio b_acon variance and Pdr is the dead reckoning
variance.

Also recall the equation for the variance of the fused estimate'

p - a2,Pdr + (l-a)2*Prb

By combining the two above equations, the value of the fused estimate
variance can be written as a function of Lhe two measurement variances as
follows"

Prb Pdr
p -

Prb + Pdr

Note that the fused estimate variance is smaller than both measurement

variances, indicating that some additional unbiased information always
improves the current estimate of position.

In these espressions, the radio beacon variance is a constant, but the dead

reckoning variance increases as the position estimate is propagated with

dead reckoning calculations, and then decreases abruptly when the position

estimate is fused with radio beacon data. Thus, the value of a actually

varies with dead reckoning variance, which in turn varies (by increasing)
with distance travelled,

For a constant distance between updates, As, the steady-state condition

occurs when the growth in variance during dead reckoning propagation
(between radio beacon updates) equals the drop in variance when fusion with

the radio beacon measurement is made. The growth in variance between radio

beacon updates is related to the distance travelled between updates, As,

and the dead reckoning drift rate as:

AP- (QAs/6) 2

The drop in variance when the fusion with the radio beacon measurement is

' done is the variance before the fusion (P-) minus the variance after the

fusion (P+). So the steady state condition occurs when:

' AP . (p.) . (p+)

where AP is the growth in variance during dead reckoning propagation (over
As), (P-) is the estimate variance just before fusion with the radio beacon

data, and (P+) fs the estimate variance Just after fusion with the radio
U_,_-(:#.q,._.U|I Uql:1.LV::L .
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(P+) and (P-) are related by the following expression:

Prb (P")
(p+)- .

Prb + (P-)

So the expression (P-) - (P+) can be written as:

(p.)2
(P-) - (P+) -

Prb + (P")

where (P-) is the steady-state value of the variance Just before fusion.

Also recall that the dead reckoning variance is equal to (P-) Just before

fusion and (P+) Just after fusion.
L

Thus, the steady-state value of a is a function of (P-), or the steady-

state dead reckoning variance Just before fusion'

Prb
, _ mm •

Prb + (P-)

Looking back at the steady-state condition,

AP -- (P-) - (P+)

(P-) can be related to Q, As, and Prb by plugging in the equivalent
expressions for AP and (P-) - (P+)"

(p.)2

(QAs/6) 2 -

Prb + (P")

Solving this quadratic for (P-) gives"

I J 4 Prb
(P-) - (QAs/6) 2 i + i + (QAs/6)2

So the steady-state value of _ is given by'

Prb
m

Prb + (P-)

where (P-) is defined above.
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