

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: REDRILLING OF WELL EE-3 AT THE LOS ALAMOS NATIONAL LABORATORY HDR PROJECT

AUTHOR(S): John C. Schillo, ESS-4, Los Alamos National Laboratory
Robert W. Nicholson, Well Production Testing
Robert H. Hendron, ESS-DOT, Los Alamos National Laboratory
James C. Thomson, Well Production Testing

SUBMITTED TO:
Geothermal Resources Council
1987 Annual Meeting
Oct. 11-14, 1987
Sparks, NV

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos

MASTER
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

REDRILLING OF WELL EE-3 AT THE LOS ALAMOS NATIONAL LABORATORY HDR PROJECT

John C. Schillo, Robert W. Nicholson*, Robert H. Hendron and James C. Thomson*

LOS ALAMOS NATIONAL LABORATORY, LOS ALAMOS, NEW MEXICO
*WELL PRODUCTION TESTING, BOULDER CITY, NEVADA

ABSTRACT

The successful sidetracking of well EE-3 and the drilling of well EE-3A proved that with detailed planning and by adjusting techniques based on previous experience at Fenton Hill, drilling can be accomplished with reduced risk. The primary drilling problems associated with drilling of hot, crystalline basement rock, are (a) abrasiveness between the downhole tools and the formations and (b) a crooked wellbore path. These were essentially eliminated by a specially designed drilling fluid and careful pre-planning of the directional drilling operations. These improvements have taken much of the risk out of drilling at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site.

The sidetracking of EE-3 and drilling of EE-3A were undertaken to complete the hydraulic connection between boreholes. Drilling through fractured regions indicated by the dense zones of microseismic activity increased the probability of success. EE-3 was sidetracked at 9,373' and redrilled to a depth of 13,182' (Figure 1).

INTRODUCTION

The Los Alamos National Laboratory Hot Dry Rock project at Fenton Hill, New Mexico is described in Reference 1. Initially two deep wells, GT-2 and EE-1 were drilled and a HDR reservoir created. This system was extensively tested (Reference 2). Later, a larger, hotter system was planned and a pair of wells, EE-2 and EE-3 were directionally drilled to total depths of 15,289' and 13,933' respectively (References 3,4, and 5). Well EE-3 was above well EE-2 by a vertical separation of 1,200' in the same plan with wellbores inclined at 35° from vertical (Figure 2). Considerable problems with both sidetracking and drilling had plagued previous drilling operations in both the GT-2/EE-1 and the EE-2/EE-3 well pairs.

Drilling problems encountered were associated with five aspects of the granitic formations, namely; hardness, abrasiveness, temperature, hot gases, and deviation.

The hardness of the formations led to difficulty with sidetracking by using the standard techniques with downhole motors and bent subs. Another problem associated with the formation hardness is that abrupt doglegs created during drilling can not be "smoothed out" by standard rotary drilling methods. Doglegs created in softer formations can be rounded to gradual doglegs by the use of "string reamers". These abrupt doglegs increased drill string fatigue and wear problems. This led to numerous fishing operations in the previously drilled boreholes.

The formation abrasiveness caused severe wear on downhole drilling tools, wirelines and wireline tools. Roller reamers and bits with tungsten carbide inserts were rapidly damaged due to the formation abrasiveness. Diametrical bit wear resulted in time consuming reaming operations of under gauge hole. This usually resulted in premature failure of the bit used for reaming. Severe wear of the drill string due to the combination of abrasiveness and high side loading, because of the directional nature of the wells, contributed to the problems of downhole equipment failure and the need for frequent equipment inspections.

The temperature increased the corrosiveness of the drilling fluid reducing the fatigue life of the drill string, resulting in several "twist off's". The temperature also contributed to drill pipe protector failure which increased casing wear from drill pipe tool joints. Downhole motors containing elastomers were limited in usage because the high temperature destroyed the elastomers.

Reservoir creation activities by hydraulically fracturing between EE-2 and EE-3 began in April, 1982. Several hydraulic fracturing operations attempted to connect the two wellbores. In December, 1984 a massive hydraulic fracturing experiment was conducted by pumping 5.6 million gallons into EE-2 (References 6 and 7). The injection zone was 60' of openhole between the 9 5/8" casing shoe at 11,578' and a sand/barite plug at 11,648'. The massive hydraulic fracture created was mapped as a large seismic cloud but did not intersect well EE-3.

Schillo, Nicholson, Hendron, Thomson
The attempts to create a HDR reservoir by hydraulically fracturing between two wells (EE-2, EE-3) already drilled were unsuccessful. It was decided to sidetrack EE-3 and re-direct the wellbore into pre-selected clusters of micro-seismic events which were recorded during the MHF. The drilling would be planned to address the experienced problems to assure a successful deep sidetracking and redrilling operation.

PLANNING

A comprehensive redrilling plan for sidetracking, directional drilling, testing and completing was developed. This plan was developed by the LANL personnel and sub-contractors on the HDR project. The plan was then reviewed by geothermal industry personnel and comments were incorporated into the final planning.

The initial step in the development of the redrilling plan was the target selection. Target selection was made with three goals in mind: (1) the penetration of as much of microseismic region created during the MHF as possible. (2) the drilling along a well trajectory that could be easily modified to allow re-direction of the wellbore into other seismic zones if fracture connections to EE-2 could not be made after 600' of initial target region drilling and (3) minimization directional motor drilling and severity of the wellbore curvature.

The target selection resulted in sidetracking at about 9,300' turning the hole to the South from N77E to S36E and dropping hole angle from 22 1/4° to about 11°. The dogleg severity would be limited to 2°/100' maximum while turning and sidetracking and 1°/100' while dropping angle only (Figure 3).

Sidetracking in granite rocks of 28,000 to 40,000 psi comprehensive strength had been attempted several times (and accomplished twice) using cement plugs and downhole motors with bent subs above the motor. Difficulties arose in cement placement and achieving cement compressive strength sufficient to side load the bit to get a "ledge" started into the granite borehole wall. It was planned to make an attempt to sidetrack off the ledge of a previously underreamed section at around 9,290' using a downhole motor and bent sub without placing a cement plug in the milled section. This was given a limited chance of success, but had the desirable features of possibly lower dogleg severity at the sidetrack and elimination of potential problems associated with the use of a whipstock. In case the sidetrack would not be made using the downhole motor and bent sub, two specially built 2°/100' whipstocks were procured.

The drilling fluid was designed to reduce drag, corrosion, torque, abrasion, and to improve hole cleaning. The mud would be a lightweight, low solids, fresh water sepiolite, and bentonite system treated with lignite and caustic. Triglycerides would be used to overcome torque

and drag problems. The mud properties of primary importance were lubricity, pH, solids, weight and yield point (Table IV). The corrosion control program was an integral part of the drilling fluid program. Careful monitoring of pH and corrosion coupons provided guidance for treatments to the system.

Eliminating downhole drill string failures and minimizing wear on the 9 5/8" casing were prime considerations for the drill string design, handling procedures and inspection program. The drill string was designed for 100,000 lbs over pull in air with an 80,000 lb bottomhole assembly. The drill string handling program included: (a) odd-even break on tool joints while tripping to prevent galling and seizure of threads and shoulders on connections, (b) use of non-hardbanded tool joints in casing, and (c) the use of pipe spinners to make-up and break tool joints to reduce wear on the 9 5/8" casing. Rotary slips were to be set softly. Special geothermal grade thread lubricants would be used on all rotary tool joints. In addition, two complete strings of drill pipe and drill collars would be on-site so that drilling could be continued during inspection. Drill pipe pup joints were used to change tool joint position while milling, reaming and drilling.

The drill pipe would undergo a full-length inspection after no more than 200 hours of rotation. Blacklight or magnetic particle inspection of all tool joints in the bottomhole assembly would be performed at intervals not to exceed 100 rotating hours. The option of inspecting drill pipe and bottomhole assemblies prior to the 200 and 100 hour range was retained in the event severe doglegs, fishing, and or milling operations exceeded the normal working range of downhole components.

OPERATIONS

Sidetracking Operations. A section was milled in the 9 5/8" casing from 9,285' to 9,353' (68' (Figure 4)). A series of Dyna-Drills and bent subs were run without achieving a sidetrack. An additional 19' of 9 5/8" casing was section milled down to 9,372'. After section milling a cement plug was set through the section and drilled out. A gauge run with the pack-stop assembly was made to insure locating properly on the bottom stub of 9 5/8" casing. The pack stock and whipstock was run (Figure 3), oriented with a steering tool and hydraulically set. The face of the whipstock was 45°R of N70E, this allowed for a small build-in inclination which was necessary to avoid re-entering the EE-3X abandoned borehole directly below the kick off point (KOP). A limber assembly with a tungsten carbide cutter bit was used to drill off the whipstock. The assembly consisted of: 8 1/2" bit, bit sub, 2 joints of 4 1/2" drill pipe, 6-6 1/2" drill collars, 21 joints of 5" heavy weight drill pipe. After drilling off the whipstock for 30' to a depth of 9,410', the hole was reamed to remove any ledges that may have formed during kick off

operations. A positive displacement motor and 1° bent sub were then utilized to drill to about 9,450'. The inclination was 22 1/4° at 9,450' with an azimuth of N74°E.

At a depth of 9,457' the rig used to sidetrack had reached its depth capabilities and a large drill rig was brought in to drill the remainder of the hole.

Redrilling Operations. After sidetracking off the whipstock, two motor runs were made using a 1° and 2° bent sub to establish the hole on the desired trajectory. Three corrective runs were made at 10,655', 11,015' and 11,315'. The hole angle and direction were primarily controlled by slight variations of the bottom hole assemblies (Table 1).

The directional program was very successful in dropping angle and turning the hole to the right. The bottom hole assemblies were of the following basic types:

1. Slow Dropping Assembly
8 1/2" bit
6 point full gauge reamer
Short drill collar
3 point full gauge reamer
Monel drill collar
3 point full gauge reamer
5 - 6 1/4" drill collars
24 joints 5" heavy weight drill pipe
2. Fast Dropping Assembly
8 1/2" bit
3 point under gauge reamer
Float sub
Monel drill collar
6 point full gauge reamer
Steel drill collar
3 point full gauge reamer
5 - 6 1/4" drill collars
24 joints 5" heavy weight drill pipe.
3. Hold and Drill Assembly
8 1/2" bit
Float sub
8 1/2" full gauge spiral (full wrap stabilizer) (IBS)
Short drill collar
3 point full gauge reamer
X-over
Steel drill collar
8 1/2" full gauge spiral (full wrap stabilizer) (IBS)
4 - 6 1/4" drill collars
24 joints 5" heavy weight drill pipe.

By making small adjustments in weight on bit, rotary RPM, and pump pressure the well bore trajectory target guidelines established in the drilling plan were maintained throughout the redrill.

The 8 1/2" roller cone bit record is shown in Table II. The drilling rates varied from an average low of 9.0' to 16' per hour during normal

Schillo, Nicholson, Hendron, Thomson drilling operations. Average penetration rate for the 3,700' of drilling was 12' per hour. Gauge wear caused no problems and only minimum reaming was required. The use of full gauge tungsten carbide pads installed on bit shanks contributed to the drilling of a full gauge hole.

The drilling fluid program was simple, inexpensive, and greatly reduced the torque, drag and wear problems associated with prior drilling experience using water as a circulating medium. The drilling fluid lost its rheological and lubricity properties after long periods of stagnation at geothermal bottom-hole temperatures. A phase change from sepiolite to smectite was detected using x-ray diffraction analysis. This degradation was associated with significant increases in drillstring drag, torque and drill string wear. The system would then be replenished by increasing the concentration of bentonite and decreasing the use of lignite.

The drilled cuttings were removed efficiently from the wellbore. The cuttings were generally about 1/16" to 1/8" in size. Sample quality was good to excellent throughout the redrill operation. No significant amounts of large size cuttings were recovered in previous drilling using water as a circulating medium.

Coring Operations. The first coring operation was conducted at a depth of 9,450' to 9,457' using an experimental Christensen Navi-Drill Core System with an 8 1/2" diamond and polycrystalline diamond impregnated core bit (Table 2). A total core recovery of 4' 2" or 60% of interval cored was achieved. The second core run utilizing a PDC cutter core system, also an experimental system for hot crystalline rock, cored from 10,875' to 10,880'. Recovery was 2' 7 1/2" of core or 55% of total footage cored. Subsequent runs #2 and #3 were made using a tri-cone X3TC7 hybrid core system. Coring rates of penetration and recovery were substantially improved over previous runs. The hybrid core bit runs of 15' and 30' recovered 87% and 80% respectively in 15' and 30' barrel lengths.

CONCLUSION

The EE-3A redrill operations success can be attributed to several factors that, when combined, led to a safe and productive effort. The dedication of management to insure proper redrill planning and adequate personal, played a vital role. The ability of the management team, scientists, engineers and technicians to work effectively proved to be a valuable resource as the redrill project progressed.

Penetration rates for drilling the deviated hole average approximately 100' per day while staying within the proposed trajectory guidelines (Figure 5). The torque, drag and abrasion were reduced significantly with the use of the sepiolite mud system and sample quality was good to excellent throughout the redrill which was also attributed to the drilling fluid.

Schillo, Nicholson, Hendron, Thomson

The placement of reamers and stabilizers in the bottom hole assemblies performed satisfactorily in maintaining target trajectory throughout most of the redrill. Motor drilling to maintain target trajectory was used 4 times to initiate the required turns. A total of 517' of the 3,732' was motor drilled, roughly 14%, which resulted in substantial cost savings. The ability to drill crystalline rock effectively in a sidetracked borehole and maintain trajectory was accomplished on the redrill.

ACKNOWLEDGMENT

The work was sponsored by the US Department of Energy and supported by the governments of the Federal Republic of Germany and Japan. Special thanks for their support and dedication to achieve a successful redrill.

Reference to a company or product name does not imply approval, recommendation or endorsement of the product or service by the University of California (Los Alamos National Laboratory) or the US Department of Energy to the exclusion of others that may be suitable.

REFERENCES

1. Hot Dry Rock Geothermal Energy Development Program - Annual Report, FY 1984, Los Alamos National Laboratory Report, LAUR-10661-HDR.
2. Hot Dry Rock Geothermal Reservoir Testing, 1978-1980, Los Alamos National Laboratory Status Report, LAUR-9080-SR.
3. Carden, R.S., Nicholson, R.W., Pettit, R.A., Rowley, J.C.; "Unique Aspects of Drilling and Completing Hot Dry Rock Geothermal Wells", IADC/SPE Paper No. 11373, New Orleans, Louisiana, February 20-23, 1983.
4. Planning and Drilling Geothermal Energy Extraction Hole EE-2, Los Alamos National Laboratory Report, LAUR-9302-HDR.
5. Drilling of Hot Dry Rock Geothermal Energy Extraction Well EE-3, Los Alamos National Laboratory Report, LAUR-9512-HDR.
6. Dreesen, D.S., Nicholson, R.W., 1985, Well Completion and Operations for MHF of Fenton Hill HDR EE-2 Geothermal Resources Council, Transactions Vol. 9 - 89, 92.
7. Dash, Z.V., Dreesen, D.S., Walter, F., House, L., 1985, The Massive Hydraulic Fracture of Fenton Hill HDR Well EE-3 Geothermal Resources Council, Transactions Vol. 9, 83, 88.

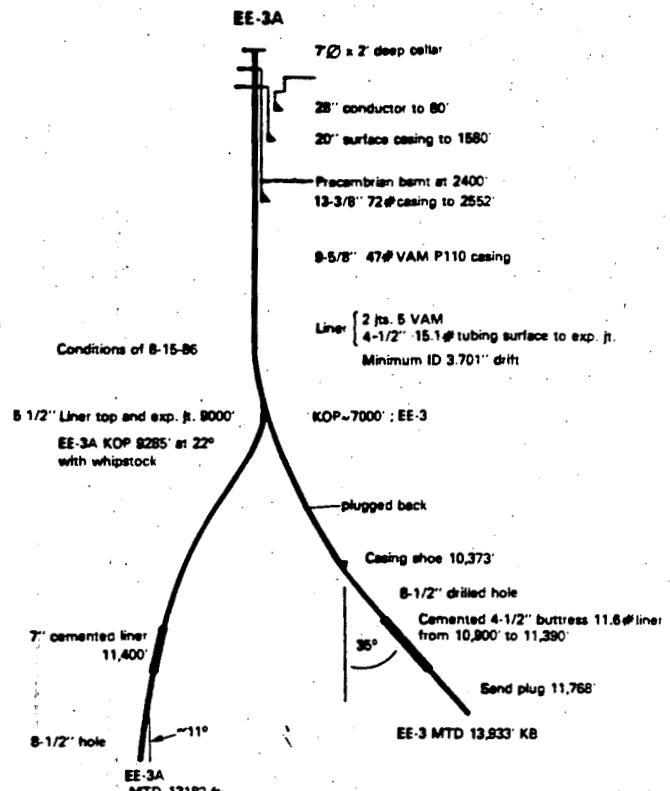


FIGURE 1. Diagram View of EE-3A Wellbore.

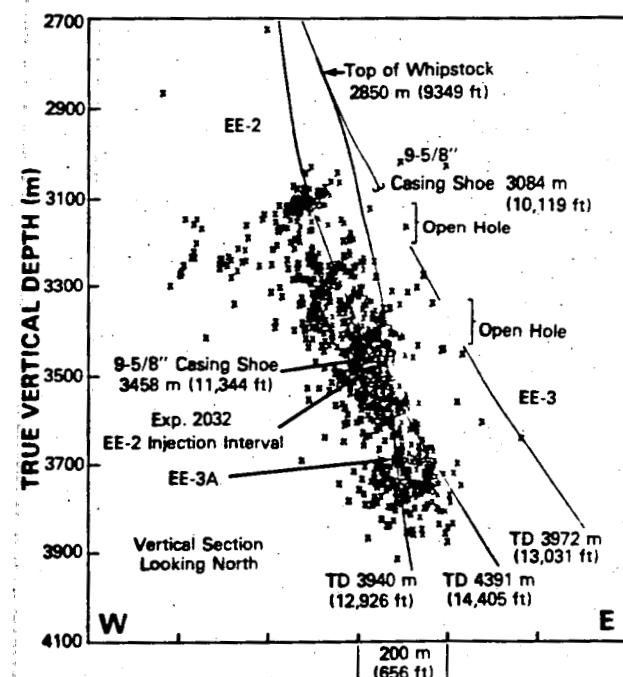


FIGURE 2. Elevation View of Microseismic Events and Boreholes EE-2, EE-3, EE-3A.

Schillo, Nicholson, Hendron, Thomson
HORIZONTAL PROJECTION

LOS ALAMOS NATIONAL LABS
ENERGY EXTRACTION NO EE3 A
LOCATION: SANDOVAL COUNTY, NEW MEXICO
GYRO SURVEY

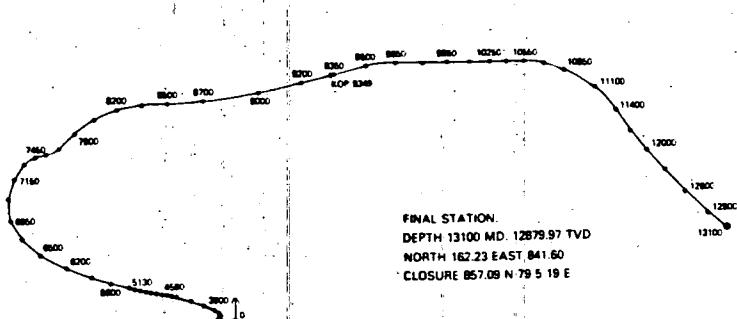


FIGURE 3. Gyro Survey of EE-3A Borehole.

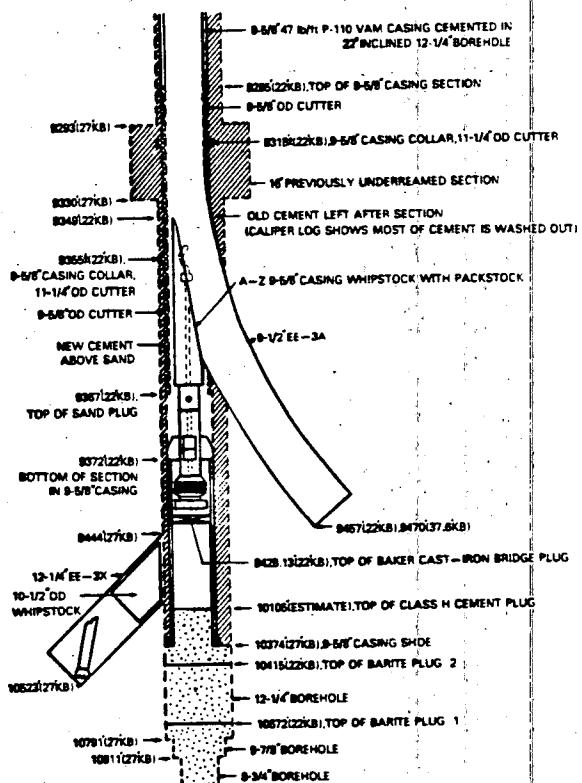


FIGURE 4. Whipstock Assembly and Section Mill.

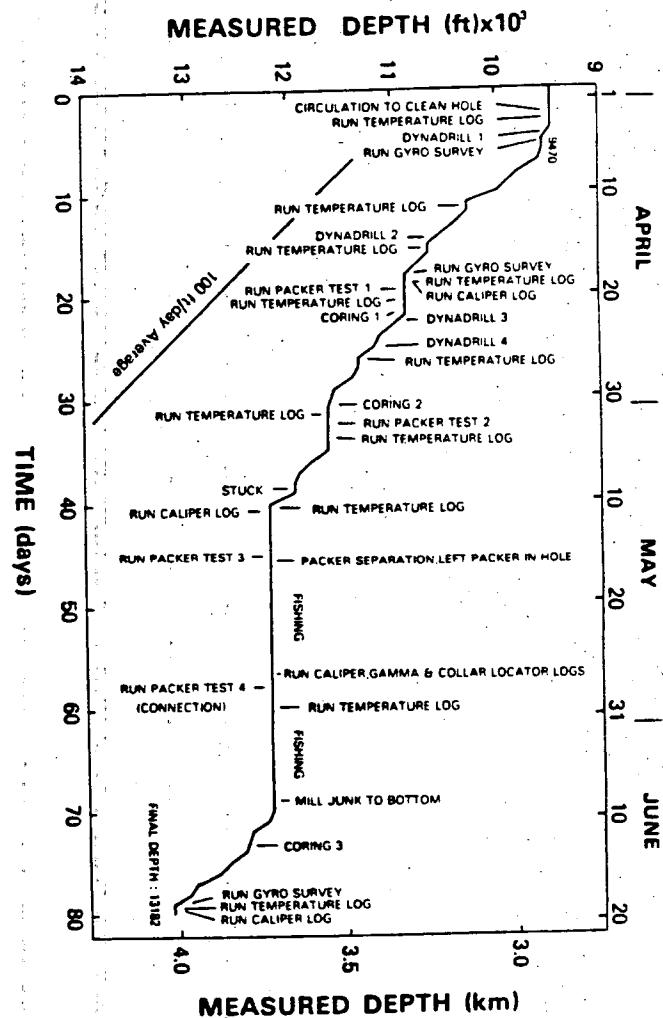


FIGURE 5. Drilling Time Curve with Major Events.

TABLE I

RUN NO.	DEPTH OUT (ft)	INTERVAL DRILLED (ft)	BHA USED TO ROTARY DRILL EE-3A		REMARKS
			ASSEMBLY (Rotary Drilling)		
1	9377	28	Bit (0.70), bit sub with float (2.98), baffle ring, 2 jts 4-1/2" DP (62.95), 6-6-1/2" DCs (186.03), 21 jts HMDP (639.22)		First drill by whipstick (BRINKERHOFF SIGNAL). Build assembly.
2	9408	31	Bit (0.70), bit sub (2.98), 6-1/2" IBS (3.63), 2 jts 4-1/2" DP (62.95), 6-6-1/2" DCs (186.03), 21 jts HMDP (639.22)		Ream and drill. Build assembly.
3	9391	0	Bit (0.70), float sub (2.98), 6-1/2" IBS (3.63), 6-9/16" pony collar (4.95), 6-1/2" IBS (4.19), 6-5/8" DC (30.34), 8-1/2" IBS (4.82), 5-6-1/2" spiral DCs (155.69), 21 jts HMDP (639.22)		Ream. Stuck. Build assembly.
4	9410	2	Bit (0.70), float sub (1.63), 6-3/4" 3 pt RR with K (7.02), baffle plate, 6-1/2" pony collar (5.08), 3 pt RR with K (5.12), bit sub (2.98), 6-5/8" DC (30.34), 6-7/8" IBS (4.82), 4-6-5/8" DCs (124.47), 21 jts 4-1/2" HMDP (639.22)		Ream and drill. Build assembly
5	9450	0	Bit (0.70), baffle plate, 6-3/16" 3 pt RR (5.83), 6-1/2" pony collar (5.08), 6-5/16" 3 pt RR (5.12), bit sub (2.98), 6-5/8" DC (30.34), 6-5/16" IBS (4.19), 4-6-5/8" DCs (124.47), 21 jts HMDP (639.22)		Ream and reream.
6	9601	53	Bit (0.85), 8-3/8" 3 pt RR (4.80), float sub (1.50), 6-1/4" monel DC (32.54), 6 pt RR with K & Q (9.15), 6-1/8" DC (29.95), 3 pt RR (6.35), 5-6-1/4" DCs (139.15), X-0 (1.89), 24 jts HMDP (753.15)		First drill by BIG CHIEF. Ream Drill. Drop assembly.
(4)	9636	235	Bit (0.85), 8-3/8" 3 pt RR (4.80), float sub (1.50), 6-1/4" monel DC (32.54), 6 pt RR (9.15), 6-1/8" DC (29.95), 3 pt RR (6.35), 5-6-1/4" DCs (139.15), X-0 (1.89), 24 jts HMDP (753.15)		Drop assembly.
(5)	9913	77	Bit (0.85), 8-3/8" 3 pt RR with Q (4.80), 6-1/4" monel DC (32.54), 6 pt RR with K & Q (9.15), 6-1/8" DC (29.95), 3 pt RR with Q (6.35), 5-6-1/4" DCs (139.15), 3 pt RR (5.90), 24 jts HMDP (753.15)		Drop assembly.
(6)	10273	362	Bit (0.85), 3 pt RR with Q (4.80), 6-1/4" monel DC (32.54), 6 pt RR with Q & K (9.15), 6-1/8" DC (29.95), 3 pt RR (6.35), 5-6-1/4" DCs (139.15), 3 pt RR with K (5.90), 24 jts 5" HMDP (753.15)		Drop assembly.
(7)	10540	265	Bit (0.85), 6 pt RR (7.90), 6-1/4" pony DC (5.08), 6-1/4" monel DC (32.54), 6 pt RR with Q (10.90), 6-1/4" DC (28.10), 3 pt RR with K (7.70), 5-6-1/4" DCs (141.00), X-0 (1.89), 24 jts HMDP (753.15)		Drop assembly
(9)	10875	220	Bit (0.85), 6 pt RR (7.90), 6-1/4" monel DC (32.54), 6 pt RR (10.90), 6-1/4" DC (28.10), 3 pt RR (7.10), 5-6-1/4" DCs (141.00), X-0 (1.89), 24 jts HMDP (753.15)		Drop assembly
(11)	11126	111	Bit (0.85), 3 pt RR (5.12), 6-1/4" short DC (5.06), 6-1/4" monel DC (32.48), 6 pt RR with K (9.15), 6-1/4" DC (29.95), 3 pt RR (6.35), 5-6-1/4" DCs (140.90), X-0 (1.89), 24 jts 5" HMDP (753.15)		Ream and drill. Drop assembly.
(13)	11593	278	Bit (0.85), 3 pt RR with K (4.78), 6-1/4" short DC (5.12), 3 pt RR (5.06), float sub (1.45), 6-1/4" monel DC (32.48), 6 pt RR (9.15), 6-6-1/4" DCs (170.86), X-0 (1.89), 24 jts HMDP (753.15)		Ream and drill. Drop assembly.
(14)	11600	7	Bit (0.85), junk sub (2.97), 6 pt RR (7.89), float sub (1.45), 6-1/4" monel DC (32.48), 6 pt RR (10.90), 6-6-1/4" DCs (170.85), X-0 (1.89), 24 jts HMDP (753.15)		Ream and drill. Drop assembly.
(15)	11786	171	Bit (0.85), 8-1/2" 6 pt RR with K (7.90), 8-1/2" 4-blade stab (4.05), 6-1/4" short DC (5.05), 8-1/2" RMP stab (7.48), 6-1/2" monel DC (32.48), 8-1/2" 3 pt RR with K (5.48), 9-6-1/4" DCs (255.66), 24 jts HMDP (753.15)		Ream, open 7-7/8" hole and drill. Drop assembly.
(16)	11954	168	Bit (0.85), 8-1/2" 6 pt RR (9.18), 8-1/2" 4-blade stab with float (4.05), 6-1/4" short DC (5.05), 8-1/2" RMP stab (7.48), 6-1/4" monel DC (32.48), 8-1/2" 3 pt RR (5.27), 6-6-1/4" DCs (170.40), 24 jts HMDP (753.15)		Ream and drill. Drop assembly.
(17)	11956	2	Bit (0.85), junk sub (2.97), 8-1/2" 4-blade stab with float (4.05), 8-1/2" 6 pt RR (9.18), 6-1/4" short DC (5.05), 8-1/2" RMP stab (7.48), 6-1/4" monel DC (32.48), 8-1/2" 3 pt RR (5.27), 6-6-1/4" DCs (170.40), 24 jts HMDP (753.15)		Ream and drill. Stuck. Drop assembly.
(18)	12203	247	Bit (0.85), junk sub (2.95), 6 pt RR (9.18), 6-1/4" short DC (5.05), 3 pt RR (5.10), 6-1/4" monel DC (32.48), 3 pt RR (7.73), 6-6-1/4" DCs (170.40), X-0 (1.89), 24 jts HMDP (753.15)		Ream and drill. Drop assembly.
(19)	12402	199	Bit (0.85), bit sub with float (2.95), 3 pt RR with K (5.38), 6-1/2" short DC (4.88), 3 pt RR with K (6.35), 6-1/4" monel DC (31.70), 6 pt RR with K (9.16), 6-6-1/4" DCs (170.40), X-0 (1.70), 24 jts HMDP (753.28)		
(20)	12439	37	7-7/8" bit (0.85), 7-7/8" 3 pt RR (4.91), bit sub (2.95), 6-1/4" short DC (4.88), 7-7/8" 3 pt RR (6.24), 6-1/4" monel DC (31.70), 8-1/2" 6 pt RR (9.16), 6-6-1/4" DCs (170.40), X-0 (1.70), 24 jts HMDP (753.28)		Pilot hole for core.
(20)	12716	247	Bit (0.75), float sub (2.96), 3 pt RR (6.34), 6-1/4" short DC (4.96), 3 pt RR (5.40), 6-1/4" monel DC (31.70), 6 pt RR (9.15), 6-6-1/4" DCs (168.72), X-0 (1.70), 24 jts HMDP (753.28)		Open 7-7/8" hole and drill. Drop assembly.
(21)	13008	292	Bit (0.75), float sub (2.96), 3 pt RR (6.34), 6-1/4" short DC (4.96), 3 pt RR (5.40), 6-1/4" monel DC (31.70), 6 pt RR (9.15), 6-6-1/4" DCs (168.72), X-0 (1.70), 24 jts HMDP (753.28)		Ream and drill. Drop assembly.
(22)	13182	174	Bit (0.75), float sub (2.96), 3 pt RR with K (6.34), 6-1/4" short DC (4.96), 3 pt RR with K (6.71), 6-1/4" monel DC (31.70), 6 pt RR (9.15), 6-6-1/4" DCs (114.01), X-0 (1.70), 24 jts HMDP (753.28)		Ream and drill. Drop assembly.

Note: All bits used are 8-1/2" diameter except #20.
 DP = drill pipe; IBS = integral blade stabilizer; pt RR = point roller reamer; K = carbide cutters;
 Q = steel cutters; stab = stabilizer; RMP = replaceable wear pad.
 The numbers in parenthesis correspond to bit numbers in APPENDIX C.

TABLE II

DETAILED EE-3A BIT RECORD

List of Abbreviations

HTC	Hughes Tool Co.
STC	Smith Tool Co.
NSRB	Non-Sealed Roller Bearing
SJB	Sealed Journal Bearing
CB	Core Bit
HWDP	Heavy Weight Drill Pipe
FWDP	Flex Weight Drill Pipe
DC	Drill Collar

BIT NUMBER	SIZE	MAKE	TYPE	JETS	DEPTH OUT	FEET DRILLED	ROTATING HOURS	BIT FT/HR	WEIGHT 1000 #	POUNDS PER DIA IN.	RPM
RR#1	8 1/2"	STC	F3G	14-14-14	9470	78	5.5	14.18	18-20	2118-2353	DynaDrill
2	8 1/2"	HTC	HH77	16-16-16	9548	53	6.5	8.15	40-45	4706-5294	50
3	8 1/2"	STC	7GA	10-10-10	9601	235	23.5	10.	35-40	4118-4706	50
4	8 1/2"	HTC	HH77	12-12-12	9836	77	7.25	9.94	35	4118	50
5	8 1/2"	STC	7GA	14-14-12	9913	362	27.25	13.28	40-45	4706-5294	50
6	8 1/2"	HTC	HH77	14-14-12	10275	265	25.5	10.39	40	4706	45-50
7	8 1/2"	HTC	J55R	16-16-16	10540	115	7	16.43	20-25	2353-2941	DynaDrill
8	8 1/2"	STC	7GA	15-15-15	10655	220	14.75	14.92	40-42	4706-4941	45-50
9	8 1/2"	STC	7GA	12-12-12	10875	5	5.5	0.91	20		55
CB#1	8 1/2"	DOHD CO.	CTS4HR		10880	135	8.75	15.43	20-25	2353-2941	DynaDrill
10	8 1/2"	STC	7GA	14-14-14	11015	111	12.5	8.88	40	4706	65
11	8 1/2"	STC	7GA	12-12-12	11126	189	10	18.9	40-45	4706-5294	DynaDrill
12	8 1/2"	STC	7GA	12-12-12	11315	278	31	9.	40-45	4706-5294	60
13	8 1/2"	STC	7GA	12-12-12	11593	7	1	7.	22	2588	60
14	8 1/2"	STC	7GA	12-12-12	11600	15	4	3.75	8-12		45
CB#2	7 7/8"	STC	X3TC7		11615	171	10.75	15.91	45	5294	60
15	8 1/2"	STC	7GA	14-14-14	11786	168	14.75	11.39	45	5294	60
16	8 1/2"	STC	7GA	14-14-14	11954	2	0.5	4.	20-30	2353-3529	50-60
17	8 1/2"	STC	F7	15-15-15	11956	247	23.25	10.62	35	4118	60
RR#17	8 1/2"	STC	F7	15-15-15	12203	199	8.84	45	5294		55
RR#17	8 1/2"	STC	F7		12402	37	13.45	39	4588		80
18	8 1/2"	STC	7GA	14-14-14	12439	5.75	5.22	12-14			40
19	7 7/8"	HTC	J77	14-14-14	12469	30	8				60-65
CB#3	8 7/8"	STC	X3TC7		12716	247	20.75	11.9	45	5294	55-60
20	8 1/2"	STC	7GA	14-14-14	13008	292	19.75	14.78	46	5412	
21	8 1/2"	STC	7GA	14-14-14	13182	174		40	4706		55-60

BIT NUMBER	PUMP RATE (GPM)	PUMP PRESSURE (PSI)	PUMP HHP/in ²	BEARING TYPE	MUD WEIGHT (PPG)	PLASTIC VISCOSITY (cP)	BIT CONDITION	DEVIATION
RR#1	340	1100	3.85	NSRB	6.7	14	4-4-I	21.09°N82E
2	374	2500	9.61	▪	8.7	17	4-6-I	18.5°N90E
3	390	1750	7.02	▪	8.6	15	7-6-I	16.5°N89F
4	390	1350	5.41	▪	8.7	9		
5	390	1350	5.41	▪	8.6	15	8-8-1/4	11°N90E
6	390	1167	4.68	SJB	8.6	8	8-6-1/16	13°N87E
7	390	1100	3.89	MSRP	8.7	5	7-6-I	13.25°S72E
8	344	1500	6.02	▪	8.6	11	5-5-I	15°S71E
9	390	1500	6.02	CB	8.5	10	2-2-I	
CB#1	395	1150	6.06	NSRB	8.5	14	7-7-I	13.75°S53F
10	393	1500	6.06	▪	8.7	8	3-3-I	
11	390	1445	5.79	▪	8.6	17	6-7-1/16	9.5°S30E
12	390	1445	5.79	▪	8.6	9	8-8-1/2	9°S32E
13	390	1445	5.79	▪	8.6	22		
14	377	1779	6.9	CB	8.8	22		8.5°S36E
CB#2	292	720	5.81	NSRB	8.6	9	6-7-1/8	8.75°S37E
15	390	1450	4.94	▪	8.7	12	5-5-I	8.25°S42E
16	383	1255	4.94	SJB	8.6	12		
17	373	1200	4.6	▪	8.6	12		
RR#17	307	1000	3.16	▪	8.5	12	7-4-1/8	9°S44E
RR#17	372	1350	5.16	NSRB	8.5	3	6-6-I	10°S40E
18	372	1300	5.79	SJB	8.7	12	2-2-I	
CB#3	750			CB	8.7	14		
20	357	1507	5.53	NSRB	8.7	16	8-8-1/16	10°S42.5E
21	357	1476	5.42	▪	8.8	14	7-8-I	11.5°S46.5E
22	357	1376	5.05	▪	8.7	24		12.33°S53.9F

LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest possible dissemination of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state, and local governments. Non-DOE originated information is also disseminated by the Technical Information Center to support ongoing DOE programs.

Although large portions of this report are not reproducible, it is being made available only in paper copy form to facilitate the availability of those parts of the document which are legible. Copies may be obtained from the National Technical Information Service. Authorized recipients may obtain a copy directly from the Department of Energy's Technical Information Center.