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LOW-THRUST ROCKET TRAJECTORIES

Paul W. Keaton

ABSTRACT

The development of low-thrust propulsion systems to complement chemical propulsion
systems will greatly enhance the evolution of future space programs. Two advantages of low-
thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the
Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do
chemical engines. Second, in a weak gravitational field, such as occurs in the region between
Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable

propellant mass.

The purpose here is to address the physics of low-thrust trajectories and to interpret the
results with two simple models. Analytic analyses are used where possible—otherwise, the
results of numerical calculations are presented in graphs. The author has attempted to make

this a self-contained report.

I. INTRODUCTION

An evolutionary manned space program will need
vehicles that can lift and lower large masses against
gravitational forces. These large masses may include
lunar regolith gathered for bulk radiation shielding
and lowered to geosynchronous orbit (GEO),!? ox-
ygen unlocked from the Moon’s surface and trans-
ported to low-Earth-orbit (LEO),*® water extracted
from the moons of Mars and placed in caches at
Lagrange stability points,”'* and space stations con-
structed in LEO and lifted into outpost positions.'
Vehicles for these freighter missions must use
propellant efficiently.

The key parameter that affects the efficiency of
rocket engines is the velocity at which the propellant
is expelled from the ship.!* Today’s most efficient
operational rocket propulsion system is the main
engine of the U.S. space shuttle, which performs near
its theoretical limits with an exhaust velocity of about
4.5 km/s in vacuum. But even at that exhaust veloc-
ity it could take years to accumulate enough
propellant in LEO for accomplishing some of the
freighter missions listed above.

A nuclear propulsion system called NERVA, de-
veloped in the 1960s, produced an Earth-tested ex-
haust velocity of 8.5 km/s.'*?? This large exhaust
velocity reduces the propellant mass requirement to
one-half or less of that needed with a chemical
propulsion system. Both the shuttle-type and
NERVA-type engines are based on the “impulse
thrust” concept, which consists of producing large
accelerations followed by extended coast times.

An alternative to impulse-thrust propulsion is low-
thrust propulsion. A low-thrust propulsion system
produces small, continuous accelerations, and the
engines operate during most or all of the flight.!>2>28
Contrasting the two systems conjures up the image of
a speed boat versus a sail boat—each appropriate for
certain types of missions.

If we do not limit ourselves to impulse-thrust
systems, we can choose from a wide range of tech-
nologies that open new and exciting possibilities. For
example, electrical ion acceleration can produce large
propellant velocities,®* photon emission suggests
the ultimate in exhaust velocity,’** and photon
absorption indicates that, as with a sail boat, the



propellant need not be taken along.3**® Other tech-
nologies, such as electromagnetic rail guns or mass
drivers,®%% indicate that mere dirt (or ground-up
empty fuel tanks) can be thrown away from the ship
at velocities of 10 km/s to provide a rocket accelera-
tion. This technology would allow the traveler to go
to a distant planet, moon, or asteroid and scoop up
soil there as propellant for the return trip. Because of
the associated high propellant velocity, all of these
low-thrust systems are potentially more efficient and
flexible than chemical engines could ever be. Low-
thrust propulsion systems must be considered when-
ever a growing space program of the future is being
contemplated.

In choosing a power source necessary for low-
thrust propulsion systems we can use diverse tech-
nologies. Solar cells produce up to 10 kW of elec-
tricity, although considerable improvement must be
made if they are to perform in the 1- to 10-MW,
range, as most of the freighter missions considered
here will require.*® Microwave energy can be beamed
to the ship from a separate power source.*"*? The high
power density of fission nuclear reactors makes them
practical and near-ideal for freighter missions**#
and, should fusion nuclear reactors prove feasible,
fusion may be a future source of electrical power for
low-thrust rockets.*-*? The only real restriction for a
flight-worthy power source is that it not be too
massive for the amount of electrical power supplied.
The mass-to-power ratio is called the specific mass of
an electrical source. For the missions addressed in
this report, a specific mass in the range of 0.05 to
0.002 kilograms per watt will be suitable.

So our prerequisites for a low-thrust propulsion
system are a generic electrical power source activat-
ing a generic mechanism for expelling a generic
propellant at velocities in excess of 10 km/s. For
concreteness we will assume from time to time that
the power source is a nuclear reactor producing 1 to
10 MW,_ and having a specific mass of 0.01 kg/W, and
that the thruster is an ion engine producing velocities
of 10 to 100 kmy/s.>** This configuration is usually
referred to as nuclear-electric propulsion (NEP). The
results are quite general, however, and can be applied
to numerous combinations of systems.

There is no precise definition of “low-thrust” ac-
celeration. It is nearly always used to mean accelera-
tions that are small when compared to the gravita-
tional acceleration at the Earth’s surface, as we do in
this discussion. But also implicit in the use of the
term is not so much a limit on the magnitude of the
acceleration, but an assumption that the duration of
the acceleration is a significant fraction of the dura-
tion of the flight. Thus, the trajectories may not trace
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simple Kepler orbits, and the conclusions sometimes
do not agree with our preconceived notions. The
purpose of this paper is to address the physics of low-
thrust rocket trajectories and to interpret the results
by analogy with simple models. As illustrative exam-
ples, two specific missions are analyzed: lifting large
masses from LEO, and traveling from Earth to Mars.
The models used with these examples provide insight
into the process and bolster our physical intuition
about low-thrust acceleration trajectories.

II. LOW-THRUST MISSIONS

We begin by looking at some of the advantages that
low-thrust propulsion has over conventional (shuttle
engine) propulsion for specific missions. The results
presented here are derived in Section V.

First, suppose we wish to lift 500 tons (metric)
from a circular 500-km-altitude orbit to a circular
geosynchronous orbit that is 42 250 km from the
center of the Earth. Assume that a plane angle change
of 28.5° is required. We compare a low-thrust system
with a conventional rocket system for carrying out
this mission.

For the conventional system, two velocity changes
totaling av = 4.2 km/s are required to lift the load
from LEO and insert it into GEO. If we assume we
have the “ideal” shuttle-derived rocket discussed in
the Appendix, achieving this av would require 900
tons of oxygen and hydrogen. It would take about 8
months to deliver that much fuel to LEO if heavy-lift-
launch-vehicles (HLLV) exist to deliver payloads at a
rate of 100 tons per month. The payload could then
be delivered to GEO in a few hours. The low-thrust
system described in the Appendix would require 85
tons of propeliant, which could be delivered to LEO
inone HLLV. The trip from LEO to GEO would then
take 4 months.

Thus, taking into account the time required to
deliver the fuel from the Earth’s surface to LEO, this
mission can be accomplished by low-thrust
propulsion in one-half the time and with one-tenth
the propellant required for a conventional rocket
system. Assuming that a heavy-lift-launch vehicle
can be built to deliver a 100-ton payload from the
Earth to a 500-km-altitude LEO at the rate of $100
million per launch, a savings of $700 million in
delivery costs can be realized by using low-thrust
propulsion on this one mission. The reason low-
thrust propulsion compares so favorably with con-
ventional propulsion here is that we have chosen to
address a classic “freighter” mission, for which low-
thrust is well suited.



This same comparison is illustrated in Fig. 1,
where the areas of the rocket components are propor-
tional to the masses required. The payload mass is
shown as a triangular-shaped nose cone, the
propellant mass constitutes the rectangular-shaped
main body of the rocket, and the remainder of the
rocket mass (engines, tankage structures, reactor
power source, shielding, guidance and control sys-
tems, etc.) is displayed as a trapezoidally-shaped
rocket nozzle. The second stages in Fig. 1 are the
mass configurations needed to move 500 tons from
LEOQO to GEQ. The first stages depict the total mass
required to lift all of the second stage, including the
payload and propulsion system, from Earth to LEO.
The purpose of including the payload here is to
demonstrate that, overall, NEP requires less than
one-half as much lifting cost as do conventional
propulsion systems for a single mission originating at
the Earth. If the payload already exists in LEO, NEP
lifting costs are one-tenth those of conventional sys-
tems. In either case, the lifting expense saved by using
low-thrust propulsion for this mission is about the
cost of seven Saturn V-class launchings.

To illustrate another low-thrust mission, assume
that we wish to deliver a 200-ton payload from LEO
into a highly elliptical orbit around Mars. (This pay-
load could be either inert cargo or a manned Mars

mission.) A typical Hohmann (least-energy) orbital
transfer for conventional systems would require a
total av of 4.3 km/s. About 380 tons of propellant is
needed in LEO (taking 3 months to deliver), and the
trip to Mars will last 8.5 months. From the time when
the first fuel reaches LEO until the rocket arrives at
Mars, the total mission time is 11.5 months. Unlike
the conventional system, the low-thrust system offers
many options. In one scenario it would take 86 tons
for the low-thrust rocket to leave LEO, spiral out
from the Earth, and travel to Mars in 11.5 months.
This scenario calls for 3 months to escape the Earth
and 8.5 months for the Mars journey. If the payload
is a manned mission instead of an unmanned
freighter, the crew can use conventional rockets to
rendezvous with the low-thrust ship just before it
escapes from the Earth. The lift cost saving for this
Mars mission is about three Saturn V-class
launchings per 200-ton mission,

More lifting expenses can be saved by increasing
the mission time and decreasing the amount of
propellant needed for the trip. This option is not
available with impulse-thrust technologies. These
and many other trade-offs are investigated in the
remainder of the report. We turn now to the basic
theory of low-thrust propulsion rockets.

* LEO TO GEO TRANSFERS, 28.5°

CHEMICAL
2™ STAGE

* PAYLOADS = 500 TONS

* NEP TRIP TIME = 4 MONTHS

N

NEP
2* STAGE

Fig. 1. Comparing chemical vs nuclear electric propulsion for low-Earth-orbit to geosynchronous orbit transfers.
The areas are proportional to the mass as explained in the text.



III. OPTIMIZING LOW-THRUST ROCKET
MISSIONS

A rocket ship of mass m at time t, located at a
position r in an inertial frame that contains a gravita-
tional potential mU({r;t), is accelerated according to

mi = —mVU(r;t) + ma , (1)

where each dot indicates a derivative with respect to
time, ma is the ship’s thrust, and V represents the
gradient operator. The potential function U is as-
sumed to derive from planets that may be moving
relative to the inertial frame; hence the explicit de-
pendence on time.

The problem of optimizing low-thrust accelera-
tion programs, a(t), involves finding how to get a
payload mass at point r; with velocity ¥,, to point r,
with velocity F,, in a given time, with a given power
source, and with the least amount of propellant mass.
This places a very complicated set of restrictions both
on hardware choices (i.e., how the rocket is designed)
and on trajectory choices (i.e., how the rocket is
steered). Fortunately, Irving? has developed an
elegant method for separating the rocket configura-
tion optimization from the thrust program optimiza-
tion. To make the present report self-contained, a
sketch of Irving’s general theory is given in the fol-
lowing paragraphs.

A. Separating the Parts

We assume that a rocket with mass m(t) has a
power source that can deliver an amount of power
P(t) to the exhaust material. The mass of the power
supply is designated by m,,. There will always be an
upper limit on the maximum power that can be
supplied, P,, so that

P(t) <P, ,and

m, = oP, , (2)

where a is the specific mass of the power supply in
kg/W. During a short time interval, at, the kinetic
energy delivered to an increment of propellant mass,
am,, is P(t)at = am,c(t)/2, where c(t) is the instan-
taneous exhaust velocity relative to the ship and
power supply. We may then write

p—

1
P() = = th,ci(t) = — 3 rheX(t) , (3)
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where t, is the rate at which propellant mass
changes, and m is the rate at which the rocket mass
changes.

The rocket thrust, F, is generated by the reaction
of the rocket mass to the momentum being imparted
to the expelled propellant. This causes a rocket ac-
celeration, a(t), given by

F(t) mc(t)
- v 4
a(t) m(t) m(t) ’ @

where m is negative, and therefore the acceleration
direction is opposite to that of the exhaust velocity.

Equations 3 and 4 can be combined to eliminate
the exhaust velocity, which may vary with time in
both magnitude and direction. An exact differential
for the inverse rocket mass is formed by setting

aX(t) m d ( 1 )

—_— = = — = — — ,and

2 P(1) m? dt \ m

1 1 " a2

1 +[ a¥(q) dq , )
m(t) m0) J 2P(q)

where m(0) = m,, the initial mass of the rocket, and
the second equation is the integral of the first, with g
as a dummy variable. The rocket is presumed to
contain a payload mass m,, a power supply mass m,,
a propellant mass m,, and a structure mass m,. The
initial mass of the rocket can then be written m, = m,
+ m,, + m, + mg, and after a mission time T when m,
is expelled, the final rocket mass is m(T) = m;=m, —
m, = m, + m, + m,. Since the integrand in Egs. 5 is
nowhere negative, m, — my; = m,, is made as small as
possible for all acceleration values by always making
P(t) as large as possible, namely, P,. From Eqgs. 2 and
S we find

1 1 J 1 [T
— 4+ — ;1= —| a’(vdt,
P, 2 )

mys m,

1 1 2 a7
_=—+L;72=-—fa2(t)dt. (6)
mg m m 2 J,

The dimensionless parameter y is the focus of this
report. It will be shown that for a given y and payload
mass, there is an optimum configuration of power
supply mass and propellant mass. It has already been
implied that the smaller we make vy, the smaller will
be the amount of propellant mass required for a




rocket to accomplish its mission. It follows that the
smaller we make a, the less propellant mass we will
need. These two points relate, of course, to the design
of the rocket itself. The value of y may be further
reduced by choosing the optimum trajectory for the
rocket to follow. The optimum trajectory is found by
minimizing the integral, J, given in Eqgs. 6. This
process requires knowledge of the gravitational forces
that the rocket will encounter throughout its mission.
Minimizing J results in a specific acceleration pro-
gram, a(t), that must be followed by the rocket en-
gines.

Because of its importance, it is worth mentioning
early that y can usually be written as

y="f —, (7)

where av relates to the velocity changes required for
the mission, and V, is the characteristic velocity
equal to (2T/a)¥% For example, suppose that a
particular mission requires a constant acceleration,
ag, to minimize J, and hence y. The change in velocity
in time T would be av = a,T. Substituting these
values into Eqgs. 6 for y, we find that

(3T _ (av)

=—\,—C2

2T/a

2 =

, or

el (8)

Comparing Eqgs. 7 and 8, we see that f = | for this
case. To carry the example further, going from low-
Earth-orbit to geosynchronous orbit on an optimum
trajectory requires av = 5 km/s and nearly constant
acceleration for low-thrust rockets. If the power sup-
ply has a specific mass of o = 10 kg/kW = 0.01 kg/W,
and we wish to make the trip in 1 month = 2.6 X 10°
seconds, then the characteristic velocity is V, = (2 X
2.6 X 109/0.01)> = 23 km/s. From Egs. 8 we see that
Y = 5/23 = 0.22 for this particular mission. In the
next section we will use this number for y to optimize
the configuration design of the rocket.

Before proceeding, we note this important feature
of low-thrust propulsion implied by Egs. 8: even as
the ship is about to embark on its journey, y can still
be reduced by increasing the trip time, T, and hence
the characteristic velocity, V.. This flexibility makes
low-thrust propulsion ideal for reusable vehicles that
may be called upon to make many different kinds of
missions.

B. Optimizing the Rocket Configuration

Since the final mass of the rocket is m;= m, + m,+
m,, we can manipulate Egs. 6 into the form

mg + myg mg — m,, my,

1
= = -1 |,
m, m, m, [mw/mﬂr\(2 ] @

which shows that meaningful values of y always lie
between 0 and 1, because vy = 1 would imply a
negative payload. Equation 9 also shows that (m, +
m,)/m, is a function of m,/m, and reaches a max-
imum value for each fixed value of y. If we set the
first derivative of Eq. 9 to zero, it is straightforward
to show that maximum values of (m, + m,)/m, occur
when

m,, ,
=YT-7 ,
m,
m, + mg
=(1—v)* ,and
D, (10)

For the earlier example (a LEO to GEO transfer
mission with y = 0.22), we see from Egs. 10 that the
optimum rocket ship configuration calls for m,/m, =
0.17, (my + m,)/m, = 0.61, and m,/m, = 0.22.

The Saturn V rocket was capable of placing about
100 metric tons into LEO. Continuing the example, if
two Saturn V-class payloads, 200 tons, were the
payload plus structure mass that we want to send
from LEO to GEO, then, from Egs. 10, the rocket
would have an initial mass of 200/0.61 = 328 metric
tons. The power supply mass would be 56 tons, and
the propellant mass would be 72 tons. Since a = 0.01
kg/W, the power into the exhaust must be 5.6 MW.
Suppose, instead, that we have available only a 3-
MW power supply with a mass of 30 tons. If we still
want to deliver the 200 tons to GEO with an op-
timum configuration, Egs. 10 can be solved for
m,/(m, + m,) = 30/200 to show that y will be 0.13.
Using Egs. 8 with av = 5 km/s, we deduce that the
characteristic velocity will be V, = 39 km/s, which
requires an increase of flight time from | month to
2.9 months. Although we must pay the price of nearly
tripling the mission time, we have at least gained the
advantage that only 34 tons of propellant is now
required to lift the 200-ton payload from LEO to
GEO. These simple considerations serve to illustrate



how the optimum configuration for a low-thrust
mission may be improvised with the hardware on
hand.

It will be important to find the exhaust velocity of
the propellant once vy is found and the problem is
optimized. Using Egs. 2, 3, 4, and 6, and the defini-
tion of the characteristic velocity, V.,

c(t) Ve [my, o ) }
B —_ d N
v, a(t)T{ m 2 J; F@day .or

c(t)_ V. _ 2__(} '2 ]}
v, —a(t)T{v [Y 2foa(q)dq s (1)

where the second equality in Eqgs. 11 assumes that
m,,/m, has been optimized according to Eq. 9. Equa-
tions 11 are general so long as P(t) > 0 and a(t) > 0.
Rocket engines are usually characterized by the speci-
fic impulse, I;,, which is the rocket thrust divided by
the Earth weight of propellant expelled per second.
From Eq. 4,

Isp=—=_ (12)

where the Earth’s gravitational acceleration is g, =
9.8 m/s? and I, has units of seconds. It follows from
Egs. 11 and 12 that specific impulse for our low-
thrust propulsion system is given by

Lot = ch { _[2_ U«flz d ]} (13
sp goa(t)TY Y an(q)q . )

Similarly, since the thrust, F(t), is given by m(t)a(t),
we can show that

F(t) [y — vy’ a(t)
m, - a ! ’
{Y_ [YZ—EJ' az(q)dq]}
0

for an optimally configured rocket design. In the 1-
month LEO to GEO example discussed above, the
optimum specific impulse starts at L, (0) = 1830
seconds and increases linearly to I (T) = 2350
seconds; the optimum thrust starts at F(0) = 628
newtons (141 Ib) and decreases monotonically to
F(T) =492 newtons (111 Ib).

(14)

Notice from Eqs. 13 and 14 that in general, as the
specific impulse increases, the thrust decreases. This
is the answer to an apparent problem: If the a(t)
program ever calls for zero acceleration, the specific
impulse becomes infinite, which, of course, is im-
possible. Fortunately, zero acceleration is coupled to
zero thrust, and one could accomplish the same effect
by turning off the engines, i.e., by setting P(t) = 0
instead of P(t) = P,. This apparent problem arises
because we have made accommodations for the fact
that power will always have some upper limit without
taking into consideration the fact that
specific impuise (or exhaust velocity) will also always
have some upper limit. For present purposes, as a
practical matter, we can replace high specific impulse
portions of the missions with coast times and suffer
little penalty in the value of y.

It is clear that y plays an important role in all
aspects of low-thrust rocket design. Note that in
Egs.10 the optimum value of y equals the ratio of m,
to m,, and in Eq. 7 y equals f av/V_.. Thus, y can be
envisioned as an intermediate parameter relating the
characteristics of a particular mission to the mass of
propellant needed to accomplish that mission. We
turn next to the problem of minimizing y by finding
the optimum trajectory for a given mission.

C. Optimizing the Acceleration Program

The entire history of the acceleration program is
contained in the integral, J:

1 T 3
=—| 2 a@d |, (15)
2 o =1

where the a, are cartesian components of a in the
inertial frame of reference. Using standard calculus of
variations techniques, an extremum of J may be
found by setting its first variation, 8J, to zero:

T 3
o) = )y a, 8a,dt= 0 ,but
o =1
dx, oU
3= —+— , SO
de? = ox,
5 d28xl+ i 9?U 5
a, = Xy
dtz =1 aXJ 6)(1 ’ (16)



where Eq.1 has been used to obtain the second of Eqgs.
16. The term in 8a, that contains the second deriva-
tive with respect to time may be integrated by parts,
so that it can be shown that

T T 3
d?a, 92U
fa,&a,dt=f {-—+ 2 a —— (8xdt
b p Ldt? =t 7 ax, 9%

T T

d 3x, da,

+a,—x] ——38)(,] . (17)
dt | @,

The last two terms vanish when the initial position
and velocity and the final position and velocity are
specified, because the end points of the integral
would then be fixed. If some of the end points are
unspecified, additional restraints known as trans-
versality conditions are imposed on &J. These
restraints can be found by equating to zero the terms
multiplying the variation of the unspecified
parameters at the appropriate end points. For exam-
ple, in a one-dimensional problem given in Section
IV, the initial position and the inifial and final
velocities are specified (making dx =0att=0and t=
T in Eq. 17), but the final position is not specified (so
that 8x = 0 at t = 0, but not necessarily at t = T). As
can be seen from the last term on the right side of Eq.
17, this lack of specificity imposes on the solution a
transversality condition, namely that 4&(T) = 0.

Whether or not transversality conditions are im-
posed, the Euler equations for a> must be satisfied for
an extremum of J. These equations follow from Eq.
17 and are

<12a,+ : U . 8)
e o Y axax,

Equations [ and 18 govern the optimum trajectory of
a rocket ship under the influence of a potential, U.
They may be written

F+VU(Mmt)=a(t) ,and

at+a- V[VUmy|=0 |, (19)

which in three dimensions represents six second-
order differential equations that must be satisfied
simultaneously for a particular mission profile and
acceleration program. Twelve boundary conditions
are required to eliminate ambiguities. These can be

supplied by specifying the three components each of
r(0), £(0), r(T), and #(T).

IV. MODEL PROBLEMS

We turn now to two simple one-dimensional prob-
lems that have characteristics surprisingly similar to
those of LEO to GEO missions and Earth to Mars
missions. Both models assume that no gravitational
fields exist, namely that U(r;t) = 0.2? From Egs. 19
the differential equations in one dimension become

id=0 ;a(t)=Db;t+b, |,

1 1
f=a ) r(t)=€b1t3+5b2t2+b3l+b4 ,and

J:I
2

b2 T3+ b, Tb, +b% (20)

where b,, b,, b;, and b, are constants to be determined
by the boundary values of the model problems being
addressed.

A. LEO to GEO Model (Constant Acceleration)

We are interested here in the acceleration program,
a(t). that will allow a low-thrust rocket ship to achieve
a predetermined velocity, v, in a time, T, with the
least value of y> = oJ. Because we are not concerned
with how far the rocket must travel before it reaches
v, the final position, r,, is not specified. The bound-
ary values are r(0) = 0, #(0) = 0, and #(T) = v,; and
since r(T) is not given, we have the transversality
condition that 4&(T) = 0 (see Eq. 17). Equations 19
show that a(t) = b,t + b,, but since a(T) = 0 we see
that b, = 0. (The reader may wish to verify that b, =0
directly by restricting a(t) to all linear curves that will
result in a velocity v, in a time T. This restriction
produces a relationship between b, and b,. Then,
substituting a(t) into J, one sees that J is a minimum
for b, = 0.) It follows that Eqs. 20 become

a(t)= b, = constant

1
Y(\) = E b2 tz 5 T(\) = V= sz s

1
J= 3 b,’T=v,%(2T) , and



1)

2=aJ= [ VI2 ]:(—‘Q)Z
Y 2T/a vV.)

The thrust program for this model problem is shown
in Fig. 2. We have obtained the same result as that
given in Egs. 8 with av = v,. Notice also that J «
(av)¥/T. Similarities between this simple model and
the problem of a low-thrust rocket spiraling out from
a massive planet are shown in Section V.

B. Earth to Mars Model (Ramp Acceleration)

We are interested here in a ship that begins at rest
in free space, then moves straight toward a
predetermined point and comes to rest there. The
boundary values are r(0) = 0, i{(0) = 0, r(T) = £, and
f(T) = 0, where £ is the distance the ship travels in a
time T. Substituting these boundary values for r(t)
and i(t) in Eqgs. 20, we find thatby,=0, b, =0, b, =
62/T2, and b, = — 122/T>. The acceleration follows a
negative ramp function,

) t
a(t)—? 1—2:1_— ,or

(22)

ACCELERATION

72777,

TIME

Fig. 2. Optimum acceleration program for obtaining a
predetermined velocity in a given time with the least
propellant.

where v, = 32/(2T) is the integral of the acceleration
over time from t = 0 to t = T/2, namely, the ship’s
velocity halfway through the trip. Notice in Fig. 3
that the rocket has a large acceleration at first. As the
velocity of the ship increases, the acceleration falls to
zero at r(T/2) = 2/2, where the velocity reaches the
maximum value of v,. The rocket then turns around
and decelerates, coming to rest at t = T and r(T) = &.
The total change in velocity is av = 2v,, so that

, 2408 4 (Av?
Y= —T3 = 5 e and

f av f 2 23
Y_ vc b - \/3 ( )

Bear in mind that J = y*/a < 9%T>. Similarities
between this model and the problem of a low-thrust
rocket traveling from one planet to another under the
relatively weak gravitational field of the Sun are
taken up in Section V-B.

V. EQUATIONS OF MOTION

We have established the formalism for very gen-
eral gravitational potentials, but we restrict ourselves

TIME

ACCELERATION
\J

Fig. 3. Optimum acceleration program for traveling from
one point to another point in a given time with the least
propeliant.




now to a plane with a central inverse square force
having the potential

U = —% : (24)

where p = GM, G = 6.67 X 107! N - m?/kg? is the
universal gravitational constant in mks units, and
M = 5.98 X10%* kg is the mass of the Earth, or M =
1.99 X 10® kg is the mass of the Sun. Substituting Eq.
24 1nto Eq. 1, we have

i;+ri:r=a , (25)

where VU = (u/r*)r. Operating on Eq. 25 from the left
first with the vector cross product, r X, and then with
the vector inner product, r-, we find two other
equations of motion, namely,

dh . A

—=rxa ; h=rxt=r20k , and

dt

dE _ . L (26)
prabuL L S E=T

respectively, where the ship velocity is f = v; the
angular momentum, h, is directed along the unit
vector, k (along rXv); and the total energy, E, has a
kinetic energy term and a gravitational potential
energy term. . A

In polar coordinates, ¥ = (i — O + 0+ )8 = (i
— h¥d)i + (f}/r)e, where £ is a unit vector pointing
along r, and 0 is a unit vector pointing along k X t.
The components of the equations of motion in Egs.
25 and 26 can now be written

h? n
ER

= +a, , and

h=ra, ; h=r28=rvy , 27

where a, and a, are the radial and circumferential
components of the thrust acceleration, a, pointing
along f and 0 , respectively. With these equations of
motion, we can now address applications for low-
thust rocket propulsion.

A. Spiraling Out from the Earth

Consider a rocket in a low circular orbit about the
Earth. If a low-thust acceleration is directed generally
along the circular velocity, the ship will increase in
velocity for a short inital period; then, because of its
acceleration, the ship will steadily increase its radial
distance, r, from the center of the Earth. As r in-
creases, the ship will maintain a circumferential ve-
locity almost equal to the circular velocity for its
current value of r. That is, if at some later time the
engines are turned off, the rocket will proceed to orbit
at that particular radius in a near circle. Even though
the ship is in the presence of the very strong gravita-
tional acceleration of the Earth (g = 9.8 m/s?), the
effect of the ship’s centripetal acceleration balances
the Earth’s pull, so an acceleration, a(t), that may be
10 g will have a profound influence on the rocket’s
trajectory. In this way, a low-thust rocket can change
from one circular orbit to another in a smooth,
deliberate spiral 2533

The condition necessary for a circular orbit at
some radius, r, is

V92 =

, (28)

- =

where v, is the circumferential velocity. We note that
the rocket velocity decreases as the rocket spirals
outward, even though the ship has a forward thrust.
As a practical upper limit, when the ship reaches r =
150 Earth radii it will be beyond the Earth’s sphere of
influence, and the Sun will dominate the ship’s trajec-
tory. For most reasonable acceleration programs, the
rocket will break out of its spiral and escape from the
Earth’s gravitational field before such a large radius 1s
achieved.

To devise an analytical description of this spiraling
process, we begin with Egs. 27 but make the assump-
tion that v, so nearly satisfies the circular orbit
velocity relations, Eq. 28, that h?/r* = u/r? and, since
h becomes (ur)"/?, the equations can be written

r=a, ,

ul/2f. ]

—zm = dg= Vg , and

_ 6brlag?  2r¥?

P= e (29)




where the final equation indicates that a, and a, are
no longer independent of each other because we want
to maintain circular velocity at every distance from
the massive center. To estimate the order of magni-
tude of a, we note that a mission is characterized by
some av = 3,T, where 3, is the average circumferen-
tial acceleration, and T is the trip time. We expect
that & ~ &,/T = a,%/av, where av is fixed by the
mission. We can then estimate that &, ~ ((a,?), where
the O(x) symbol indicates the same order of magni-
tude as x. It follows that 4, ~ ((ag*); and using Eqgs.
29, a, ~ O(ag?), &, ~ O(ag); and 4, ~ O(ap?).

We can now calculate the ship’s thrust accelera-
tion, a,, and spatial acceleration, §, along a spiral
path, s. Since ag and a, are at right angles to each
other, as are V, and 1, we have

[ =8=[%2+3" , and
la| =[ag® + 2,52 =a, . (30)

But from Eqgs. 29, Vo= —agand f = a,, so that § = —a,.
The minus sign here indicates that the ship velocity
decreases for positive values of a,. We thus arrive at
the equations of motion for the rocket’s optimum
path along s, namely,

§=—a, , and

5.5 =0+ (9(893)

=0 , for aa<<g . 31

But these equations are like the one-dimensional Egs.
20. The initial position and velocity are specified,
and when the final velocity is specified but not the
final position, the same theoretical analysis that led
to the model problem in Egs. 21 shows that J is
optimized when a; is a constant. This important
conclusion, that the optimum acceleration is a con-
stant, allows us to make a simple analysis. But before
proceeding, we look at three other details to simplify
the analysis further.

First, it can be shown that the optimum thrust
should be pointed between the direction of the ship
velocity, §, and the direction of (r X §) X r during most
of the trip. We label the angle between these two
directions & (see Fig. 4), which is given by

: . 471 12
a
tand= — = — <l+[—s]) —1
vo V2 g

10

1/2

. (32)

Fig. 4. Tangential thrust for a spiral orbit.

If the ship is to escape from the Earth’s gravitational
field, the thrust will be pointed more along § during
the last few revolutions. Because the flight path angle
is small during the first part of the journey (6 = 2
a,/g), little error is introduced by assuming that § and
a, are pointing in the same direction throughout the
trip. This is referred to as tangential thrust because
the ship’s acceleration is directed at a tangent to its
trajectory in the inertial frame.

Second, we will assume that the circumferential
velocity is equal to the circular velocity throughout
the trip. Mathematically, this assumption leads to a
restriction on 8 for the last revolution of circular
orbital transfers. But even for achieving escape veloc-
ity, where we will deduce that 8 = 45°, the outcome is
very near to the optimum results of calculations by
numerical methods. Finally, note that at any point
along the trajectory, s, § = v42 + i, which can be
written as a function of r using Egs. 29, so that

g = —ast + vq
a, T=vy—§=Av (33)

where §; is the velocity of the ship at the final radius,
r, and the trip is started from a circular orbit of radius




1o, With vy (rp) = vo = (1/r)"2. Using the geometrically
derived relation that r(d6/dr) = 1/tan 8, we find the
polar angle of the ship to be

1 1 ]
-, (34)

tan 6, tand

1
0=— [5—5°+
2

where 8, = 8(ry), and 6(r;) = 0. To compare these
analytical results with numerical calculations, we
look at the polar coordinates for escaping the Earth’s
gravitational field at r =r,, 6 = 0., ina time t = T
with ¥ = y,.. The ship’s energy starts with a negative
value and increases until it reaches zero at escape,
when §,,. = 2u/r,,., but since we require that vy = p/r
everywhere, f..> must also be p/r., and &, = arctan
(t/ve) = 45°. (Fully optimized trajectories typically
give &, =~ 39°.) It follows from Eqs. 31-34 that by
starting at r = r, with a,<g,,

& Tese =AV ; AV=vg— V(lexc)

AvV
Yese = \-;C , and
gO eCSC
Oesc = —  ; Nee= 35
esc 4as N . 5 ( )

where N, is the number of revolutions that the ship
makes before escape. Equations 35 are compared in
Table I with numerically obtained values from Ref.
23. In Table I, ry is the Earth’s mean radius (6371 km)
plus 320 km altitude, g, is 8.9 m/s? at ry, and v, is 7.72
km/s at r,. This table shows that the analytic analysis
is quite adequate for making estimates of y when a /g,
< 0.005.

The formulas in this analysis are reversible—the
calculations for the outward journey also hold for
spiraling inward on the return trip. For simple orbital
transfer, say from a 500-km-altitude LEO to a 35 860-
km-altitude GEO, the circular orbital velocities are
7.617 km/s and 3.072 km/s, respectively. So the av
transfer velocity is 4.545 km/s if no orbital plane
change is made. If there is to be a plane angular
change of ¢, av accordingly can be changed to* av =
[vi2+ v,2 — 2 v,v, cos (np/2)]'”?, where v, and v, are
the beginning and final circular orbital velocities. For

TABLE I. Low-Thrust Escape From Leo!V

as/Bo(z) Nesc resc/rO Tesc(s) Yesc
0.005 A 8.1 12.5 1.6 1.2
B 8.0 11.9 1.2 1.0@
0.001 A 40 28 8.8 0.55
B 40 27 7.3 0.50
0.0001 A 399 87 93 0.18
B 398 84 94 0.17

M Assumed values:
a=0.01 kg/W, go=8.9 m/s?, r,=6 691 km, and
vo=7.72 km/s.

@ Data Set A comes from Irving;>* Data Set B shows
present analytical results.

® Escape time in days.

@y > 1 is nonphysical; a < 0.01 is required.

a plane change of 28.5°, Av becomes 5.85 km/s. The
calculations can now be done in the same way as
those of the model problem for constant thrust.

The results of Eqs. 33 and 35 are shown in Figs. 5
and 6 for lifting payloads near Earth and Mars,
respectively. The assumed value of a is 0.01, so for
other values of a we multiply the indicated gammas
by 10a!/2. Except for ¥, all trajectories plotted have 8
< 15°. The specific impulse, I(T), for constant ac-
celeration depends only on a and T. Therefore, the
given values of I (T) are the same for all missions
shown in Figs. 5 and 6, since the missions have the
same value of a.

B. Traveling from Earth to Mars

In Section V-A, the problem could be treated
analytically because the Earth’s gravitational ac-
celeration is g, = 9 m/s? at 320 km LEO, and typical
low-thrust accelerations are a/g, = 0.001. Therefore,
terms of the same order of magnitude as (a/g,)* could
be neglected. However, the corresponding value of
the Sun’s gravitational acceleration at one
astronomical unit (mean distance of the Earth from
the Sun) is g, = 5.9 X 10°* m/s?, so that a/g, = 1. (For
a/gy = 0.01, a trip time of 3 years would be required
for travel from Earth to Mars, since av = 5.65 km/s
for that mission.) Therefore, numerical integration of
the equations of motion (Eqs.27) must be made in
such a way that the integral J is minimized.?***% One
could use the set of six Egs. 19 for optimizing a, and
ag, but a more direct way was devised by Saltzer and
Fetheroff.” They have used a gradient method of

11
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Fig. 6. Values of y vs trip time are given for a ship to escape the planet from a low Mars orbit and from the

orbits of Phobos and Deimos.
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steepest descent to minimize J, thereby finding op-
timum thrust programs, a(t), for power-limited low-
thrust propulsion systems. Their method was
adapted to the present problem of interplanetary
transfer, and the results are given 1n this section.
Figure 7 plots values of y for Earth to Mars
missions as a function of Mars’ angle from its
perihelion, v, at the time of rendezvous. (Again, o 1s
taken to be 0.01.) Mars and Earth are assumed to be
1n the same plane, and the eccentricity of Earth’s
orbit 1s set to zero. The errors introduced with these
assumptions are neghgible for our purposes.”® The
radial and circumferential velocities of Mars for
given values of r and v were determined as end-point
parameters by the computer program. Figure 7 shows
that, as reported by Saltzer and Fetheroff, the mini-
mum values of y do not occur at Mars’ perithelion. In
fact, they are a function of the trip time. The dashed
lines in Fig. 7 show the values of y that are obtained
when Mars 1s assumed to have a circular orbit. This
assumption 1s now made so that the remaining analy-

sis will be specific and easy for the reader to
reproduce.

Figure 8 shows values of y for Earth-Mars missions
as a function of trip time. The two distinct slopes of y
1n the log-log plot indicate a dependence on different
powers of T for y < I year and y >1 year. This
suggests a combination of the constant acceleration
and the ramp acceleration models In the radial
direction alone, notice that the rocket starts with zero
radial velocity at the Earth’s orbit, accelerates to
some radial velocity between Earth and Mars, and
then comes to rest (radially) at Mars’ orbit. The ship
has traveled a radial distance equal to the difference
of Earth’s and Mars’ circular radu, namely £ = 77.4
X 10° km. The value of J, according to the ramp
acceleration model 1n Egs. 23, 1s J, = 62%/T>. Along
the circumferential direction, we assume that the ship
starts at Earth’s orbit with an orbital velocity of 29 78
km/s and travels at constant circular acceleration
until 1t reaches Mars with an orbital velocity of
24.18 km/s, undergoing a change in orbital velocity
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Fig.7. Values of y vs v are given for an Earth-to-Mars mission The time anomaly, v, 1s the angle of Mars as measured
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Fig. 8. Values of y vs trip time are given for an Earth-to-Mars mission The solid curve was determined by a
numerical calculation, and the dashed curve was determined with a simple physical model The simple
model combines the acceleration profiles of Figs 2 and 3 and contains no free parameters

of av = 5.6 km/s. The corresponding value of J,
according to the constant acceleration model of Egs.
21,18 Jg = (av)?/(27T). Since a, and a, are orthogonal,
we find

1" 622  (av)? 2
5 fo (ar +ag?) dt=— + = " (36)

These values of y are plotted in Fig. 8 as dashed lines.
Note that although the model 1s crude, 1t contains no
free parameters and gives the general trends and
magnitudes of y.

Figure 9 compares the actual vs model dependence
of a, and ay for an Earth-Mars mission time of 4
months. The negative ramp feature of a, 1s
reproduced by the model, whereas the roughly para-
bolic nature of a, 1s not reproduced at all, since the
model yields ag = constant. For completeness, Fig. 10
shows the thrust and specific impulse required to
carry out the 4-month Earth-Mars mission. The cor-
responding model values are also plotted as dashed
curves.

When calculating the integral J for a compound
trip, such as escaping from Earth, traveling to Mars,

14

and getting captured 1in an orbit around Mars, one
should add the separate values of aJ as one would the
various segments of any integral. Because y2 = aJ, the
total ¥ for a compound muission 1s the square root of
the sum of the squares of the separate gammas for
each leg of the trip. However, 1f additional velocity 1s
added, as might come from gravitational assists, the
different boundary values must be matched for the
various components of a compound mission. For
example, a velocity increase of between 1 and 2 km/s
can be realized 1n a lunar gravitational assist,!’ '* and
that should provide a significant propellant mass
saving for an Earth to Mars mission. This potential
saving 1s the object of present investigations at Los
Alamos.

VI. CONCLUSIONS

Two 1mportant advantages of low-thrust
propulsion must be kept in mind: First, in a strong
gravitational field, such as occurs near the Earth,
freighter missions with nuclear electric propulsion
(NEP) require one-tenth as much propellant as do
conventional chemical engines. And, although the
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actual flight time is much longer for NEP, the total
mission duration may be comparable because of the
time needed to accumulate the additional propellant
in LEO for chemical rockets. Second, in a weak
gravitational field, such as occurs at one
astronomical unit from the Sun, missions with NEP
are actually faster than chemical missions with com-
parable propellant mass. For example, starting from
LEO, a chemical rocket can leave the vicinity of the
Earth in a day and travel to Mars in 8.5 months. If the
ratio of propellant mass to payload mass is kept the
same, an NEP rocket can leave the vicinity of the
Earth in 2 months and travel to Mars in 5.7 months.
This shortening of the transit time by nearly 3
months will be important for manned missions to
Mars.

A successful evolutionary space program must
have efficient transportation vehicles in the support-
ing infrastructure. For flexibility and the promotion
of growth, hybrid rockets combining propulsion sys-
tem concepts may be the best vehicles. Low-thrust
propulsion systems are excellent alternatives to im-
pulse-thrust propulsion systems for unmanned
freighter missions in space. Specific examples of low-
thrust propulsion, such as NEP, often promise su-
perior performance when compared with the best

16

chemical engine that exists. But impulse-thrust rock-
ets are best for whisking people from LEO through
the Earth’s radiation belts and beyond. People might
use small chemical rockets to rendezvous with larger
NEP rockets near the fringes of the Earth’s potential
well. A comprehensive space outlook will include
both types of rockets.
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APPENDIX

We convey relevant technical information here to
support the numbers used for specific examples given
in the text. First, we develop numbers for an “ideal”
HLLV.

For a perspective, we note that the Saturn V rocket
weighed 3000 metric tons on the launch pad and was
capable of delivering more than 100 tons to LEO.
From there, it could deliver 50 tons to an orbit
around the Moon. The first stage of the Saturn V used
kerosene and oxygen for fuel, but the second stage
used hydrogen and oxygen in a J2 engine—the
predecessor of the main shuttle engine. In a vacuum,
the exhaust velocity of the main shuttle engine is 4.5
km/s, giving I, = 460 s. The structure and engines of
the Saturn V second stage weighed about 10% as
much as the fuel it carried. This is called the tankage
fraction, k, and is the number we use to compare a
shuttle-derived orbital transfer vehicle (OTV) with
low-thrust propulsion. Futhermore, the mass ratio,
the initial rocket mass to the final rocket mass in
LEO, was about 16 to 1 for the Saturn V using two
stages. These numbers are approximate, but we can
use them to describe an “ideal” shuttle-derived
HLLV . We will assume that a Saturn V-class HLLV
exists that can deliver 100 tons into a 500-km-
altitude LEO with a mass ratio of 11 to I and a
tankage fraction of 10%. Thus, about 900 tons of fuel
is required at the Earth’s surface to deliver a 100-ton
payload to LEO. We will assume that an HLLV can
be launched every month. These are optimistic
numbers, even for some future HLLV based on
shuttle technology. However, the numbers serve the
purpose of giving conventional propulsion systems
every benefit of the doubt so that low-thrust
propulsion is not unduly favored in our comparisons.

It has been stressed that there are many ways to
configure a low-thrust propulsion rocket. But to
make comparisons, a particular configuration, that of
an NEP rocket, was chosen. Today, no space-ready
nuclear reactor of the megawatt-electric class is
known to exist. The SP-100 space reactor is being
planned to produce 300 kW, with a total mass of
about 10 tons, giving a specific mass of a = 0.03
kg/W. An economy of scale for larger reactors pro-
jects values of a between 0.008 and 0.002 for the 1- to
10-MW_ range, as shown in a recent review by
Jones.** Adequate shielding, heat rejection
mechanisms, electric conversion systems, and power
losses can double the effective specific mass of a
nuclear reactor. We will assume that multimegawatt
reactors exist with a value of a = 0.01 kg/W and that

this number absorbs all associated masses and ineffi-
ciencies in the system. The long-term outlook for ion
engines is optimistic.**** Thrusters have been built
with specific impulses of 1000 to 5000 s, and these are
adequate for the missions considered in this report.
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